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ABSTRACT v

Abstract

Description logics are a family of knowledge representation formalismspoesenting and reasoning
about conceptual knowledge. Every description logic system hasniegsservices that infer implicit
knowledge from that explicitly given. Standard reasoning problems iectuhcept satisfiability,
concept subsumption, ABox consistency and the instance problem. This theus on the concept
subsumption service, which is considered to be the most common service.

Some years ago, a polynomial-time algorithm for the subsumption problem in Hoeimteon
logic £L£ was developed. After that, algorithms for different problems in tractaliensions of€ £
have been developed. These description logics are sufficient teegpmany knowledge bases, e.g.
a large medical ontology called SNOMED CT. However, there are ontologopsring extensions
of £L that are not tractable. In particular, GALEN, another important medictdla@gy, requires
ELHT fr+, an extension of L that includes role hierarchies, inverse, functional and transitive.roles

This thesis presents a classification algorithm&aHZ f + . Together with this thesis there is an
implementation available &t t p: / /| cel . sour cef or ge. net .


http://jcel.sourceforge.net
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Chapter 1

Introduction

1.1 Overview

The purpose of this thesis is to present a classification algorithm and an inmpétioe for a particular
description logic called LHZ fr+.

Description logics (DL) are a family of logic formalisms that originated in the fidldrtficial
intelligence as a tool for knowledge representation. During the last twadeése description logics
have been successfully applied in knowledge representation and in itiemyaceas such as reasoning
in formalisms based on classes (UML diagrams and databases), and irggrealineering for the
Semantic Web [Baader et al.(2003)Baader, Calvanese, McGuinrash, &hd Patel-Schneider].

The basic entities of description logics a@nceptswhich are built withconcept namefseen as
unary predicates) andle namegseen as binary relations), and a set of concept constructorsland ro
constructors provided by the particular description logic.

An ontologyis a formal vocabulary of terms which refers to a conceptual schema iasidmain.
This is a hierarchical data structure with semantics containing entities an@dmelalations in a
domain, which describe specific topics like those having biological clagsiiica The terms are
related using aontology language

An ontology reasoneis a tool that can process an ontology. The main service that a reasoner
provides isclassification The purpose of classification is to compute a hierarchical relation. Ontolo-
gies may contain errors and reasoners can help finding these ereasoriers are used amtology
editors like Proégﬂ

Pro&cg is a free, open source ontology editor, and also a knowledge basaxork. Proége on-
tologies can be exported to several formats, like RDF, OWL and XML Schimses the OWL AFE,
which is a Java application programming interface (API) and reference rimgpi@ation for creating,
manipulating and serializing OWL ontologies. The OWL API 3 is focused on Nkespecially
version 3.2.2 which is mentioned along this thesis.

These tools are oriented to their use on the Semantid@Wahis is a group of methods and
technologies to give to machines the possibility of capturing the semantics omiation on the
World Wide Web. The term was coined by Tim Berners-Lee, defining ibaséb of data that can be
processed directly and indirectly by machines.”

The Semantic Web is at the present under development. However, teepeaatical examples

Inttp: /7 protege. stanford. edu/
“http:// oW api . sour cef or ge. net/
*http://senmanticweb. or g/


http://protege.stanford.edu/
http://owlapi.sourceforge.net/
http://semanticweb.org/
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of application of these tools in everyday life. This is the case of the medi¢alages, which are
ontologies used in medical fields. In the following, we will focus on this kindrtblogies.

1.2 Ontologies

The first ontology we discuss is GALEN. Its name stands for Generdiitaature for Language,
Encyclopaedias and Nomenclatures. It is a project that has beerdfasdeart of Framework 1V of
the EC Health Care Telematics Research Program. It is a paradigmatic onpoespnted since it
has the main characteristics that motivated the development of the algoriteenfwe in this thesis.
Nowadays, this ontology is distributed by OpenGALE.N

Another important ontology is SNOMED CT, an acronym for Systematized Molatire of
Medicine - Clinical Ternf According to the International Health Terminology Standards Develop-
ment Organisatitﬁﬂt is considered the most comprehensive, multilingual, clinical health care termi-
nology in the world.

1.3 Organization of the thesis

In Chaptef R we present two challenging medical ontologies, SNOMED @TG#LEN, and other
smaller ontologies. These ontologies are the main motivator of this thesis.

In Chaptef B we present description logics formally. They constitute thedtieal basis of this
thesis.

In Chaptet ¥ we present the normalization and completion rules to classifythiegies.

In Chaptefb we present the pseudocode and data structures to impleenenésh

In Chaptef.b we explain how the implementation was done. We present its desitgidered
alternatives to the current implementation, and experiments showing itsiparfoe.

In ChaptefY we present the conclusion of this thesis and some topicgufoe fuork.

4htt p: /7 www. opengal en. or g/
Shtt p: /7 www. i ht sdo. or g/ snoned- ct/
Chttp: // www. i ht sdo. org


http://www.opengalen.org/
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org

Chapter 2

Medical Ontologies

In this chapter, we present two medical ontologies that are challengingdawntology reasoners,
GALEN and SNOMED CT, and other smaller ontologies.

2.1 The GALEN ontology

GALENSstands for General Architecture for Language, EncyclopaediaSamgnclatures in medicine.
GALEN is a project funded by the European Union, as part of FrameWoof the EC Healthcare
Telematics research program. According to its creators, it is intended talpLclinical into the
clinical workstation”. It produces a multilingual coding system for medicira ih different from the
one used in the past.

GALEN has been developed to represent clinical information in a new Wag/project builds an
ontology, the Common Reference Model, to represent medical concepts. dinical systems, such
as electronic health care records, decision support systems and cotmpegd multilingual coding
systems for medicine, benefit from this ontology.

The GALEN Programme represents the overall development of the tegiynaldich has in-
cluded several research projects, like Framework Il (GALEN ptpj@ed Framework 1V (GALEN-
IN-USE project). In the early stage, the GALEN Programme mainly constiucteoncept model
language, named GALEN Representation and Integration Languagel (ERAthe same time, dif-
ferent structures of GALEN Common Reference Model were tested.

The main purpose of GALEN is to achieve the following goals:

1. to create a common medical terminology;

2. to avoid the high costs needed for harmonization of small variations in gmgslo
3. to facilitate clinical applications;
4

. to share patient records required for patient care and for derewss, like in statistics, man-
agement or research;

5. to provide multilingual systems that preserve the meaning and the refattésen

To achieve these goals, GALEN brings five fundamental changes in tdesthapproach.

In the user interface, the user can describe conditions instead of sgleoties. It is possible
to have a central concept described by simple forms. When it is negeasarecise code can be
automatically generated later.
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In the structure, GALEN uses composite descriptions instead of enumeraded. GALEN
handles terminology making descriptions based on the composition of basiepten On the other
hand, other systems work as a phrase book, where each possibigtitasbas to be sought in a list.

In establishing standards, GALEN uses a standard reference mogeldref a standard coding
system. There are differences between coding and classificationse differences arise because
they are used for different purposes. Finding a single set of cadddaufor all medical terms would
be a huge uncoordinated construction. The GALEN Common ReferendelMwwever, provides
means of representing coding and classification in an interrelated fagtierslogan is: “coherence
without uniformity”.

In delivery, GALEN uses a dynamic terminology instead of static coding systel'he project
CorbaMed is an effort to have a terminology server.

In presentation, GALEN uses multilingual terminologies instead of monolinguaiitelogies.
GALEN has a separation between the concepts and the natural langadgesgents them.

Nowadays, the GALEN Programme is not funded by the European Union@me. The members
of the GALEN Programme founded a non-profit organization na@penGALENto expand its re-
sults and to find related technologies for the GALEN ontology. This ontolegyesents a challenge
for the reasoners due to the logic expressivity and the use of geaiaut inclusions.

2.2 The SNOMED CT ontology

SNOMED CTwas a joint development between the National Health Service (@H’rﬂingland and
the College of American Pathologists (CAHDm the United States. It was formed in 1999, although
SNOMED itself was started in 1965 as SNOP (Systematized Nomenclature oldgthand then
extended to other medical fields. SNOMED brings a way to index, storeedridve clinical data
across different specialties. In addition, it helps organizing the comtentedical records. This
ontology represents a challenge for the reasoners due to its big size.

2.3 Smaller ontologies

Due to GALEN's characteristics, some simpler ontologies were developey. are based on GALEN,
but simpler in their structure. The ontology NotGALEN is a selective adaptatiae in 1995 of an
early prototype of the GALEN model, contributed by lan Horrocks. Itsteonis not related to or
representative of any OpenGALEN release. The ontology CELGalemisdification of GALEN,
but without inverse roles nor functional roles, contributed by BoongsSentisrivaraporn.

The Gene Ontology (G@)provides a controlled vocabulary to describe gene and gene product
attributes of any organism. Currently, this ontology consists of thousdratsoept names and only
one transitive rolgart - of .

The (US) National Cancer Institute thesaurus (Iﬁq)t)ovides reference terminology that covers
vocabulary for clinical care, translational and basic research, ablicpnformation.

Another ontology of interest is the Foundational Model of Anatomy (F@IM)is a knowledge
source for biomedical informatics. It is focused on representation esetaor types and the rela-

Ihttp: /7 www. nhs. uk/

“http: 7/ www. cap. or g/

%htt p: /7 www. geneont ol ogy. or g/
“http://ncit.nci.nih. gov/

Shttp://sig. bi ostr.washi ngton. edu/ proj ects/fnl


http://www.nhs.uk/
http://www.cap.org/
http://www.geneontology.org/
http://ncit.nci.nih.gov/
http://sig.biostr.washington.edu/projects/fm/
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tionships used for the symbolic representation of the phenotypic strudttine buman body. It is
intended to be understandable to humans, and also navigable, parshintegretable by automated
systems. Although the FMA is about the human anatomy, its ontological frarkeaarbe applied
and extended to other species.

2.4 Reasoners

A reasoner is a program that can compute consequences deriwed Bet of axioms. Reasoners are
used to classify ontologies. Using a reasoner, it is possible to decidedaamcepts in an ontology,
whether one is a subconcept of the other one. With the help of a reasohenly is it possible to
find errors, like wrong relationships or empty concepts, but also to find ifhplations that are very
difficult to find for a human expert. Different reasoners use diffetechniques to classify ontologies.

Some of the reasoners we mention are the following:

Cdﬁ (Consequence-based reasoner, University of Oxford) is amea$ar HornSHZF ontolo-
gies, i.e. SHZQ ontologies that can be translated to the Horn fragment of first-order |dgis.
implemented in OCaml. It uses a completion-based procedur€4dr” ontologies and works by
deriving new consequent axions [Kazakov(2009)].

CELl (Classifier for EL, Technische UniverattDresden) is a reasoner o€ . It is implemented
in Lisp. It uses a refined polynomial-time algorithm [Baader et al.(20058ad&randt, and Luiz]
[Baader et al.(2008)Baader, Brandt, and lLutz] that can proceagslasge ontologies in reasonable
time.

FacT+H (Fast Classification of Terminologies, University of Manchester) is aamer for the
description logicSHROZQ(D). Itis implemented in C++. It is based on optimized tableaux algo-
rithms [Tsarkov and Horrocks(2006)].

HermiTd (University of Oxford) is a resoner f@HROZQ(D). Itis implemented in Java. Itis
based on a “hypertableau” calculiis [Motik et al.(2007)Motik, Shearat,Horrocks].

Pellef] (Clark & Parsia) is a reasoner f6fHROZQ(D). Itis implemented in Java.

RacerPi] (Renamed ABox and Concept Expression Reasoner, Racer Systeamepsoner for
the description logiSHZQ. It is implemented in Lisp. It uses a highly optimized tableau calculus
for a very expressive description logic [Haarslev andllgr(2001)].

Snorocketd (Commonwealth Scientific and Industrial Research Organisation - CSIRD)eia-
soner for£*. It is implemented in Java. It uses the polynomial-time classification algorithm for
ELT, it was optimized for classifying SNOMED CT, and it was licensed to the latérnal Health
Terminology Standards Development Organisation (IHTSDO) to maintainraddipe SNOMED CT.

2.5 Classification of large ontologies

SNOMED CT has been considered one of the most challenging ontologids ds big size. Differ-
ent approaches have been employed to classify this ontology. With morthtearhundred thousand

Chttp: // cb- reasoner. googl ecode. cont
"http://cel.googl ecode. conl

8http: // T act pl uspl us. googl ecode. cont
*http://hermt-reasoner.conl
Bhttp://clarkparsia. cond pel et/

Yhttp: /7 Www. r acer - syst ens. cont
Ynhttp://research.ict.csiro.aul/ sof t war e/ snor ocket


http://cb-reasoner.googlecode.com/
http://cel.googlecode.com/
http://factplusplus.googlecode.com/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://www.racer-systems.com/
http://research.ict.csiro.au/software/snorocket
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concepts, the ontology needs an important amount of memory if it is classifiedditional algo-
rithms.

GALEN is a relatively famous ontology since it is very difficult to classify. pEsially the
tableaux-based reasoners need to create very large models, due #mttitteat large parts of the
TBox are cyclically interconnected with each other. This difficult versioBALEN can be classified
by a prototypical consequence based reasoner (CB) [Kazaka®)20

Many versions based on GALEN have been created. They typicallyicteiie expressivity
to find a fragment that is classifiable. Among them, we will present two: NotGatel CEL-
Galen. The former is a test ontology. The latter is also a test ontology thatlevetoped to test
CEL [Baader et al.(2006)Baader, Lutz, and Suntisrivargpornth Beere used in the experiments of
Chaptet®.

Although SNOMED CT and GALEN are both challenging for ontology reassrthey have some
important structural differences. On the one hand, SNOMED CT is acgatidoigger than GALEN.
On the other hand, GALEN is more compact, requires more expressiyemesuses general concept
inclusions (GCIs).




Chapter 3

Description Logics

In this chapter, we define the description logi€HZ f+. Its name means that this particular de-
scription logic hasf (existential restrictions)H (role hierarchies)Z (inverse roles),f (functional
roles), andrR™ (transitive roles). The meaning of these terms, syntax and semanfi¢siit  + are
presented below.

3.1 Syntax of ELHTL fr+

The setsN¢, Nr are countable sets of symbols, pairwise disjoint. The elemeni&-adre called
concept nameghe elements dflg are calledole names

The atomic symbols of a description logic signature can be combined csimogpt constructors
androle constructorsto construct more complex concept expressions and role expressgpes-
tively. Each description logic is identified by the set of role and concemtcoctors it has.

Definition 1 (Concept and role3. A role r’ of ELHTI fr+ is eitherr orr—, wherer € Ng. They are
calledrole nameandinverse rolerespectively.
A conceptC of ELHT fr+ is defined as follows:

C:=A|T|-C|CnD|3'.C
whereA € N¢; D is a concepty’ is a role.&

Concepts and roles are used to constteaninological axioms These axioms make the TBox,
which defines the terminology.

Definition 2 (TBox). A terminological axionr is an expression of the following form:
ru=CLECo [ 7L Ery | () |1 or'

whereC; andC are conceptsy, r, r}, are roles.
A TBoxor terminological boxs a finite set, possibly empty, of terminological axioms.
The expressiolw; = C5 used in a TBox represents an abbreviationderC C, andCy C (.
Analogouosly, the expressiofy = r, used in a TBox represents an abbreviatiomfof= r} and of
/ /
ro £y O

Notation: In the literature, it is common to find an axiom of the formC (< 1 7/) to denote
functional roles. In this thesis, we ugér’) with the same meaning.

7
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3.2 Semantics o€ LHT fr+

To define the semantics, we use an interpretation function that maps largyrabels to elements
and relations of a domain.

Definition 3 (Interpretation ). An interpretationZ is a tuple(Az, -Z), whereAz is a non-empty set
calleddomainand-Z is aninterpretation functiordefined as follows:

VAeNc: AT C A;

VTENR:TIQAIXAI

The interpretation function is extended to every concept and everysalestribed in Table 3.1:

TI = AI
(~C)Yr = Ap\CT
(Cin CQ)I = I ney?
@r.CY = {die Az |3dy e Ar:((dy,dy) € T Ady € CT)}
(r )Y = {(di,do) € Az x Az | (do,dy) € T}

whereC1, Cy, C are concepts: are roles.

Table 3.1: Interpretation function.

<&

In other words, an interpretation of a description logic is a first-orderpné¢ation, where only
unary and binary predicates are allowed and the set of functions is empty.

Definition 4 (Satisfaction of a TBoX¥. For an interpretatio and a terminological axionp, the
relationZ = v is defined in TablE3]2:

I=(CcCD) iff ctcD?
ITE(rCs) iff L C st
I\:fr) iff Vd]_EAI:‘{dQGAI|(d1,d2)€TI}|§1

Ik (rorCr) iff rZort Co?

whereC, D are concepts:, s are roles.

Table 3.2: Satisfaction.

Let7 be a TBox,Z an interpretation’, C, Co conceptsy) a terminological axiom. Then:
e We say thafZ is amodelof 7, denotedZ = T, ifand only if V¢ € T : Z = 4.

e We say that/ entailsv, denoted] = 1, if and only if for every interpretatiof: if Z = T,
thenZ = .
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e We say that’ is subsumedby (orincludedin) Cs with respect tg/, denoted”;, Ty Cy, if
and only if 7 |= C1 C Cy. Thus,Cs is asubsumenf C; andC] is asubsumeef Cs.

e We say that a concept namg is adirect subsumeof a concept namé’; with respect toy if
and only if:

- O 7 Gy
— (s isnotCy

— there is no concept nam@, different fromC; and fromCs, such thatC; C+ C and
CCr (s

e We say that is includedin ry with respect to7, denoted; T 7o, ifand only if 7 = r; C
ro.

e We say that” is satisfiablewith respect to/ if and only if there exists an interpretatidnsuch
thatC” # (.

&

3.3 Example of ELHL fr+

In Table[3.B we can see a simple example of use of concept and role coostru

Mother C Woman M1 Parent

Mother C JisMotherOf .Human
hasMother T hasAncestor

isMotherOf = hasMother™

hasAncestor o hasAncestor = hasAncestor
f(hasMother)

ogakrwhE

Table 3.3: Example of LHZ fr+.

The intended meaning of this example is as follows:

1. A mother is a woman and a parent.

2. A mother is a mother of some human being.

3. If z has a mothey, thenx has an ancestar.

4. If x is mother ofy, theny hasx as mother.

5. An ancestor of an ancestor is also an ancestor.

6. If someone has a mother, has at most one mother.
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3.4 Less expressive logics

Some of the ontologies presented in Chapter 2 use a less expressive &gfCtHZ f+. AS ex-
plained above, the name of each of these description logics derivesifeactoncept and role construc-
tors it has. Other description logics liKeC, EL£H, andELZ, have less constructors. Hence, every
econceptir€L, ELH or ELT is also a concept iIELHI fr+. Thus, a TBox which uses concepts for
EL,ELH or ELT is also a TBox i LHI fr+ and can be classified by the algorithm presented in
this thesis.

3.5 Semantic Web terminology

Semantic Web tools use a terminology that is different from the terminology fireedeabove. These
terms follow the OWL 2 standard and can be easily related using Table 3.4.

DL syntax Name OWL 2 functional style syntax
T top Thing

A concept name Class

r role name ObjectProperty

C concept ClassExpression

r’ role ObjectPropertyExpression

r- inverse role InverseObjectProperty
CiM...nC, conjunction ObjectintersectionOff; ... Cy )
Jr.C existential restriction ~ ObjectSomeValuesFram({ )

Ci C Oy concept inclusion SubClass@ff C5)

Ci=0Cy equivalence EquivalentClass&s( C5 )

ry Ery role inclusion SubObjectPropertyQf{ o )

T =T role equivalence EquivalentObjectPropertiest, )
rorCr transitive role TransitiveObjectProperty(

flr) functional role FunctionalObjectProperty(
form) inverse functional role  InverseFunctionalObjectProperty
Ty =1 inverse role definition  InverseObjectProperties(s )

Table 3.4: Terminology defined in the OWL 2 profiles.



Chapter 4

Normalization and Completion Rules

In this chapter, we discuss the rules needed for the algorithm. Theseoutes actually constitute an
algorithm by themselves since they need a way to be computed. Executingtiemiad set of rules
with a naive approach can take an immense amount of time.

The normalization replaces some of the axioms in the TBox by simpler axioms. giftigmg the
normalized TBox, the TBox is saturated with axioms that can be deducedxkomple, if we have
r C sands C t, one saturation rule adasC .

The normalization and completion rules are themselves based on two mainssotlieenormal-
ization rules are taken from [Suntisrivaraporn(2009)]. The completitas are based on the comple-
tion rules in [Vu(2008)], which need the normalized form [of [Suntis@arn(2009)]. It is proved
that the completion rules in [Vu(2008)] are correct, meaning soundoesgletion, and termination.
Since the completion rules presented in this thesis are not exactly the sanmreve¢he correctness
of these rules as well.

4.1 Normal form

In order to apply the rules, it is first necessary to bring the TBox to thditions of application of the
rules. This transformation is callewrmalization and produces aormalized TBoxThe normalized
form uses only a reduced number of axioms which are described below.

Once the TBox is normalized, the axioms will be as presented in Table 4.1.

4.2 Normalization rules

As said above, the normalization is performed before any other rule is dppltee normalization
rules preserve the same models when applied to ontologies. The repetjlieatpn of these rules
on a TBox produces the normalized TBox.

The rules in Tabl€4]2 are taken from [Suntisrivaraporn(2009)]. “Fhmeans a replacement of
the axiom on the left-hand side by the axiom or axioms on the right-hand siftesi#concept name
and afreshrole name are symbols that are not used in the TBox before the rule is applied

Lemma 5. Let 7 be anELHI fr+ TBox and7” after the application of the normalization rules of
Table[4.2. Letd, B be concept names occurringi. ThenA C+ Bif and only if A T B.

Proof. The idea of the proof is to show that the lemma holds for every normalizatiomppléed. To
simplify the individual proofs of each rule, we first show the proofsN&®-7 and NR-8.

11
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GCI-0 ACB
GCl-1 Ayn---NA,CB
GClI-2 ACdr.B
GCI-3 Ir.AC B
RI-1 flr)
RI-2 rCs
RI-3 rorCr
RI-4 r-=s
wherer, s € Ng;
A;, A, B € Nc.

Table 4.1: Normalized axioms.

NR-1 C=D ~ CCD,DCC

NR-2 Cyn---nCn---nC,CD ~ CCACT---MAN---NC,C D
NR-3 3.CCD ~ CCAIACD

NR-4 CCI.D ~ CCAACI.D

NR-5 BC3¥.C ~ BCI.AACC

NR-6 DCCinCy ~ DCC,,DCC(Cy

NR-7 CCdr—.D ~ CCIuD,uCr ,r Cu
NR-8 I~ CCD ~ FGuCCDuCr,r Cu
where

r is arole name;

r’isarole;

C, C;, D are arbitrary concept descriptions;
C, D are complex concept descriptions;

B is a concept name;

A is afreshconcept name;

u is afreshrole name.

Table 4.2: Normalization rules.

For NR-7 and NR-8, let: be a fresh role name. Replacing in the original axiom any occurrence
of r— by u, and adding C »'—, v/~ C u to 7, produces that any model of the axiom before the
substitution is equivalent to the model after the substitution.

For NR-1 and NR-2 the rules are identical to the rules in [Suntisrivargd@009)], where this is
already proved.

For NR-3 and NR-5, if we assume thdis a role name, the proof is shownin[Suntisrivaraporn(2009)].
If 7/ is an inverse role, we can reduce the formulae to the case of NR-7 ar&l NR-

For NR-4 and NR-6 it is sufficient to verify that these rules are variahthe rules shown in
Table[Z4:3. Let us consider the case where these rules differ. T@isisC, 1. ..M C,,, whereC is
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a complex concept description agd . .. C,, are concept names of existential restrictions. The suc-
cessive application of NR-6 reduces the number of conjuncts on thehagitt-side of the inclusion,
placing the axioms in the condition of NR-4.

NR-3-1 CCD ~ CLCAACD
NR-3-3 BCLCMNC ~ BLCC,BLCD

Table 4.3: Some of the original normalization rules.

O]

The rules perform a reduction in the axiom complexity by creating more axiassigy using
new auxiliary concepts and roles.

4.3 Normalized TBox

Once the TBox is normalized, it has to be saturated. Unlike the normalizatics) thie saturation
rules do not remove axioms. After ensuring that r for each role name, the saturation rules in
Table4.4 are applied. The means an addition of the axioms on the right-hand side when the axioms
on the left-hand side are found.

SR-1 rCs ~ r LCs™
SR-2 rCs,sCt ~ rCt¢t

SR-3 rorCr ~ r-or- Cr~
SR-4 rCs,f(s) ~ f(r)

where
r, s, t are role names or inverse roles.

Table 4.4: Saturation rules.

To prove the correctness of the rules in Tdblé 4.4, we prove Ldrhma 6.
Lemma 6. If r, s, t are roles andZ is an interpretation, then the following holds:

1. ZErCsifandonlyifZ E=r~ C s~

2. fZErCsandZ =sCt, thenZ =rCt

3. ZFrorCrifandonlyifZ=r-or- Cr-

4. ifZ =rCsandZ E f(s), thenZ = f(r)

Proof.
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1. ZTE=r Cs™
if and only if by definition(r—)" C (s7)
if and only if by definition{(y,z) | (x,y) € %} C {(y,z) | (z,y) € st}
if and only if by properties of setéxVy : (z,y) € 1t — (z,y) € s*
if and only if by properties of sets and definitioh C s©
if and only if by properties of sets and definitign= r C s

s

2.ZFrCsandZ =sCt
if and only if by definitionr? C s* ands” C t*
then by transitivity of the subset relatioh C t©
if and only if by definitionZ = r C ¢

3. IkEr or Cr-
if and only if by definition(r—)* o (r—)* € (r—)*
if and only if by definition{(z,v) | (y,2) € r*}o{(y, ) | (x,y) € r*
if and only if by properties of setérVyVz : (y,2) € 12 A (2,y) €
if and only if by properties of set§z, ) | (z,y) € r*}o{(y, 2) |
ifandonly ifZ =ror Cr

4. Tl=rCsandZ = f(s)
if and only if by definitionr? C s” andvd € Az :| {(d,e) € sT} |< 1
then{(d,e) € r*} C {(d,e) € sT} andvd € Az : | {(d,e) € s*} |< 1
thenvd € Az : | {(d,e) e T} |< 1
if and only if by definitionZ |= f(r)

O]

After applying the saturation rules exhaustively, some role names aneaéntito the inverse of
other role names. The following step is to add fresh auxiliary role namesepedsent the inverse
roles for those roles not having them.

The last step in this normalization process is to choose for every-ralenique roles such that
r-CseT,s CreT,toaddtwoaxiomstd: r~ = sands™ = r, and to replace any other
occurrence of~ by s and any other occurrence of by r.

In the following, the setdlr andN¢ will refer respectively to the sets of role names and concept
names after the normalization process. We will use the notatioto refer to the roles such that
r~ = s € T. In addition, we have the following property: = r C sifand only ifr C s € T,
wherer, s are role names.

Finally, we are in condition to prove Theoréin 7.

Theorem 7. The normalization process is sound and complete, and terminates in pabirtone.

Proof. Soundness and completeness are direct consequences of Lémma 5.

For showing termination in polynomial time, without loss of generality we assunieNiRa/
and NR-8 have been exhaustively applied. This can be applied at mustfaneach axiom. After
this, the TBox is in the conditions af [Suntisrivaraporn(2009)], whichrsvpd to be terminating in
polynomial time. O]
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4.4 Completion rules

Once the TBox is normalized and saturated, the following phase is the appliohtioe completion
rules. The completion rules are based|on [Vu(2D08)]. We first ptelsersets that remain constat.

e Z:={3Ir.A|reNg,AeNc}
e O:={(A,¢Y)| A€ Nc,v CE}

Based on the sets above, we define the sets that will be modified during-tiessive application
of the completion rules:

e VCQ
e SC{(z,A) |z e AcNc}
e RCA{(r,z,y)|r € Ngr,z,y € Q}

The elements in st are calledS-entries the elements in s&t are calledR-entries the elements
in V are referred asodes

By construction= and(? are finite sets, and therefovg .S, and R are bounded. This observation
is relevant, since the completion rules satuiiajey, and R, and the fact that they are bounded is used
to show termination.

The completion process should satisfy the following invariants:

o if (A,9),C) e S, then(AN [] E)Cr C
Eecp

o if (. (A, ), (B,)) € R, then(Ar [ E) Ty 3r.(Br1 [] E)
Ecyp Ecy

where eact¥ is of the form3r. X.
In addition, we have that C+ B if and only if ((A4,0), B) € S.

4.4.1 Start conditions
The algorithm starts with the following conditions:

e S:={((A,0),A) | Ae Nc}U{((A,0),T)] Ae Nc}
e R:=10

4.4.2 Original completion rules

In Table[4.5, we present the original completion rules giveri by [Vu(fl00hey preserve the same
numbering, although here the rules have an “O” as prefix, to distinguish frem those used in
this thesis. There is no OCR-3 since it was removed in the original. Therenalhchange in the
notation, likeA € S(x) is denoted by(z, A) € S and(z,r,y) € E is denoted by(r, z,y) € R, and
variable name substitutiofs.

As an abbreviationf (r) means that there exists an axionffirstating that- is functional.

There is a small difference in sEtwith respect to[[Vu(2008)], since here we only use role names aniverse role
names. This is not a problem, since every role name has an assigaeskinvle name.

°Rule OCR-6 had an omission, Rule OCFR-1 had a typo and an omissiorRERJOCFR-3 had an extra term
in [Vu(2008]]. All these issues have been corrected.
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4.4.3 Optimized completion rules

The optimized completion rules are presented in Table 4.6. The underlinednéteame membership
checks forS and R. These conditions have special relevance in Chapter 5 where the alydsith
discussed. In the algorithm these conditions are considered the trigggetviate each rule. Since
every applied rule modifieS or R, this automatically triggers the following rules.

We say that a completion rule $&nsitiveto changes in a set, when a rule checks in that set in the
condition of application. For example, in Talplel4.6, CR-1 is sensitive to @simg only, CR-7 is
sensitive to changes iR only, and CR-4 is sensitive to changesSirand R.

As a consequence of the normalized form presented in this thesis, CRa3 &llving several
conjuncts on the left-hand side of the inclusion (GCI-1). This simple optimizagidnces the number
of auxiliary symbols.

A small change is that OCFR-1 has been numbered as rule CR-3, anditdidesanatchings for
y = (B,0)andz = (T,{3r~.A}) have been replaced by assignments. In CR-9, a conditigrfot
has been added.

In LemmdB we prove that the rules in Tablel4.6 are equivalent to the ruleblieZ3.

Lemma 8. The completion rules in Table 4.6 produce the same results as the complelgsnin

Table[45.

Proof. This is proved showing that for each rule in Table] 4.5 there is exactly dedrmrdable[4.6
producing the same result, and there are no more rules. The rulesnCE& mapped to CR-
OCFR-1 is mapped to CR-3, OCFR-2 is mapped to CR-8, and OCFR-3 is map@&d9. There are
changes factorizing thé in CR-6, CR-7 and CR-9:

thon 5
then B; D  isrewritten as

elseC
elseC; D D

CR-2 follows the normalization conditions proved in Theofdm 7. CR-3 fothe instantiation
for y and forv (z in OCR-3) instead of testing possible values. CR-9 checkg f8r > to avoid the
unnecessary execution when= z.

O

The intuition behind the set of completion rules shown in TabIE 4.6 is explaifed.be

4.4.4 Observations

The notationr~ occurring in the GCls in the rules is an abbreviation, since the elemeffsda
not have inverse roles in the GCls. For example;.A T B < 7T is in fact a notation to say
I'ACBeT,r =r"eT.

As mentioned above, the rules have underlined terms according to whngfeshimS' and R can
be relevant to the conditions of application.

Although CR-2 is affected by many changesSinonly one case is considered. This is due to the
fact that the other cases are symmetric, and the rule is triggered anyway.

CR-5 combines transitive roles with role hierarchies. Bethz,y) € R and(r2,y, 2) € R need
to be considered, since both change&tare not symmetric.
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CR-6 “branches” an edge, z, y) to include a new edge-, z, v) if this edge is new in the graph.
CR-7 is very similar to CR-6, but combines the use of transitive roles andhielarchies.

CR-8 is similar to CR-4, although the existential restriction is on right-hand sitfeeanclusion,
using an inverse role. Rokehas to be functional, and therefargandrs.

CR-9 is given to support the combination of role hierarchies and fundtiotes. Although two
possible changes tB can trigger the rule, only one is considered since the other one is symmetric.

The completion rules do not define any order of application. This is disduissChaptell5.
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OCR-1

OCR-2

OCR-4

OCR-5

OCR-6

OCR-7

OCFR-1

OCFR-2

OCFR-3

ifACBeT,(z,A) eSS
then S := SU{(z,B)}

ifATMA, C BeT, (.’E,Al) €S, (I‘,Ag) es
then S := SU{(z,B)}

if3sBCAeT,(rz,y) €R,(y,B)€ S, rCrs
then S :=SU{(z,A)}

ifsosCseT,(r,z,y) €R,(ro,y,2) € Ryri CEr s,r2 C s
then R:= RU{(s,x,2)}

if3sT ACBeT,rCrs, (rz,y) €R, (z,A) €S, (y,B) ¢S, y=(B,v)
then v := (B,y U {3r .A})
ifveg Vihen V.=V U{v}, S:=SU{(v,k)|(y, k) e StU{(v,B)}
else S:=SuU{(v,B)}
R:=RU{(r,z,v)}

if3sT ACBeT,(ry,z,y) € Ryx= (A, p),y= (B v),
rorCreT,rmiCrr,reCrr,Iry . Acp,rCrs

then v := (B',v U {3r~.A})
ifvegVthenV:=VU{v},S:=SU{(v,k)]|(y,k) € S}U{(v,B)}
else S:=SuU{(v,B)}
R:=RU{(re,z,v)}

ifAC3IrBeT,(x,A) €S, y=(B,0),z=(T,{3r .A})
then if f(r)
then R:= RU{(r,x,2)}, S :=SU{(2,B)} U{(2, T)}
else R:= RU{(r,z,y)}

if BC3ry; AeT,(r,z,y) € R, (y,B) €8,
1 Ers,roC7 s, f(s7)
then S :=SU{(z,A)}

if (r,z,y) € R, (r2,x,2) € R, r1 C7 s,
2T sy = (Taw)' z= (T, ), f<3>
then v:= (T,¥ Uyp)
ifog Vthen V:=VU{v}, S:=SU{(v,k)|(y. k) € S} U{(v, k)| (2,k) € S}
else S:=SU{(v, k)| (y,k) € S}U{(v,k) | (2,k) € S}
R:=RU{(r1,z,v)}

Table 4.5: Original completion rules fé&t/CHZ fr+ in [Vu(2008)].
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CR-1

CR-2

CR-3

CR-4

CR-5

CR-6

CR-7

CR-8

CR-9

fACBeT,(x,A) €S
then S :=SU{(x,B)}

ifAjm...nAN...MA, CBeT,
(r,A1) €S, ..., (z,4,)€e S, ..., (x,4,) €S
then S :=SU{(z,B)}

fAC3IrBeT,(z,A) el
then if f(r)
then v := (T,{3r".A})
ifvéVithen V=V U{v}
S:=SU{(v,B)} U{(v,T)}
R:=RU{(r,z,v)}
else y := (B,0)
R:=RU{(r,z,y)}

if3sACBeT,(r,z,y) € R, (y,A) €S, rCrs
then S:=SU{(x,B)}

ifsosCseT,(r,z,y) €R,(re,y,2) € Ryr1 Cr 8,72 Ty s
then R:= RU{(s,x,2)}

if3s". ACBeT,rCrs, (r,z,y) € R, (x,A) €S, (y,B) ¢ S,y=(B,v)
then v := (B',¢v U {3r.A})
ifvé Vthen V.=V uU{v}, S:=SU{(v,k)| (y, k) €S}
S:=SU{(v,B)}
R:=RU{(r,z,v)}

if3sT. ACBeT, (ro,z,y) € Rie= (A p),y=(B,v),
rorCreT,rmmCrr,reCrr,Iry . Acp,rCrs

then v := (B',¢v U {3r .A})
ifvgVthen V.=V U{v}, S:=SU{(v,k)]| (y,k) € S}
S:=SU{(v,B)}
R:=RU{(ro,z,v)}

ifAC 3ry; .BeT,(r1,z,y) € R, (y,A) €5,

riErs,ma 7 s, f(s7)
then S :=SU{(x,B)}

if (r,z,y) € R, (ro,x,z) € R,r1 C7 s,
ra 7 s,y =(T,9), 2= (T,9),y # 2 f(s)

then v:= (T,¥ Uyp)
ifvé Vthen V=V U{v}
S:=8SU{(v,k)|(y, k) e S} U{(v, k)| (2,k) € S}
R:=RU{(r,z,v)}

Table 4.6: Optimized completion rules f6LCHZ fr +.
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Chapter 5

Algorithm

In this chapter, we describe an algorithm for deciding standard deseoriptjic inference problems.
Since satisfiability can be reduced to subsumption and subsumption is itsetpachiem of classifi-
cation, it suffices to have a classification algorithm. In Chdgter 4, it is predea set of rules that can
classify anf LHT fr+ TBox. This means that, given a TBox, the subsumption relations between all
pairs of concept names become explicit.

An algorithm that classifies the TBox applying these rules could be exgeimsitime if it is
performed by a systematic search. It is also expensive in space if ithesetructures directly as
they are described. These two considerations motivate creating an atgwiitbre these aspects are
explicitly managed. We abtained this algorithm by takinghange propagatioapproach.

5.1 General description

The input of the algorithm is a normalized TBox containing axioms as desciib€able[4.1. The
output is a sefS, calledset of subsumptionsuch that for each pair of concept nam&sB in T
(A,B) e Sifandonly if T = AC B.

The algorithm itself has different components. In Figuré 5.1 we can ebsew these compo-
nents are interconnectef.and R correspond to the sets described in Chdgter 4. We can also see the
completion rules, named as CR, which are grouped in two “chains”. Tloeé&gsor”, the “duplicates
checker” and the “start”, are just three different parts of one singjiethat processes the entries. The
arrows indicate how the data flows, i.e. héwentries andR-entries and sent from one component to
the other one. A dashed line indicates that the duplicates checke$ usds before sending an entry
to the following component.

There are components of two kinds: those which prodesstries (having ab between paren-
theses), and those which procég®ntries (having amk between parentheses). Every rule in any of
both groups takes an entry and after applying the operations returnsfaiet entries. These entries
can be eithef-entries orR-entries. They are suggestions of changes {ifor the S-entries) or inR
(for the R-entries).

A chain as described in the diagram is a chain of rules. Every entry is dppliall the rules.
The result is the union of the sets resulting of the application of the individiles. The resulting set
containsS-entries andR-entries to update s&t and setR. If these entries have never been applied,
which is checked by the “duplicates checker”, they are added t§ $etbe taken by the processor,
otherwise they are ignored. Thug,is a set of proposed changes.

21
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S entry
—i duplicates checker [«
S entry
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S entry
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R chain
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Y

R entry
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R entry
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Figure 5.1: Diagram showing the dynamics of the components.

The processor takes entries frag changes sef and R, and informs of these changes to the
corresponding chain of rules. This procedure is repeated@nsilempty.
The algorithm start condition is slightly modified to inclu@eas follows:

e S:=10
e R:=10
o Q:={((4,0),4) | A€ Nc} U{((4,0), T) | A€ Nc}

In order to get the appropriate axioms, the TBox, seen as a set of axwostered in multiple
maps. Each map has a key and a value, where the value is an axiom. Thesarmapcessed by
functions. For example, the functiogstGCIO(A), getGCI1(A), andgetGCI2(A) return all the GCls
of type GCI-0, GCI-1 and GCI-2 respectively, wheteoccurs on the left-hand side. These types are
defined in Tabl€4]1. A full list of the ontology functions is shown in Tablé 5.1.

The completion rules fee@ with new instances to apply the next rule. Since trying all possibilities
is extremely costly, these rules are triggered whenever a relevant sericctihhanged. This property is
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getGCIO(A) =
getGCI1(A) =
getGCI2(A)

getGCI3A(A) =
getGCl3r(r) =
getGCI3rA(r, A) =
getSubRoles(s) =
getSuperRoles(r) =
getRolesFunAncestor(ry) :=
getSubsumers(x)
getSecondByFirst(r, x)
getFirstBySecond(r, y)
getRelationsByFirst(z)
getRelationsBySecond(y) :=

isFunctional(r) =

isTransitive(r) =

{keT|k=AC B}
{keT|k=AnN...NAMN...MNA, C B, A, = A}
{keT|k=AC Ir.B}
{keT|k=3r.AC B}
{(keT|k=3rACB)
{keT|k=3r.AC B}
{reNg|rCseT}
{seNr|rCseT}
{ro €Ng|dseNr: f(s) eTAMEseT,1mCseT}
{A€eNc|(z,A) € S}
{yeV|(razy) € R}
{r eV |(r,z,y) € R}
{reNg|JyeV:(rzy) € R}
{reNr|IyeV:(rzy) €R}

true if f(r)eT
{false otherwise

true ifrorCreT
{false otherwise

Table 5.1: Ontology and status functions.

called thechange propagationEach rule suggests the modification of at least one of these structures,
producing that new rules can be applied using the new status of the seuctine algorithm is based

on a distributed execution of completion rules, where each completion ruledsiied in a similar

fashion.

A conceptual scheme of the algorithm is presented in Table 5.2.

1.SSR,Q:=10

3.while Q # 0
take one

©C©VxNO O

2. for each concept nametl, add((A, (), A) and((A,0), T) to @

if eis anS-entry

let@’ be the result of applying all thg-rules toe
else ife is an R-entry

let@’ be the result of applying all th&-rules toe
elseQ’ := ()
Q=QU((Q\5)\R)

elementin @ and remove it fron@

Table 5.2: General algorithm.
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5.2 Completion rules

The rule descriptions in Table4.6 do not have a condition to avoid repetitioreinghecification.
This is managed by taking produced values as “suggestions”, requitiegtea step of membership
check to avoid repetition.

Every completion rule is sensitive to changesSiror sensitive to changes iR. In order to
ensure the correctness of the algorithm, every completion rule must grafidbe possible changes
according to the given piece of information. Moreover, completion rulasitee to both sets must
be subdivided into two different completion rules: one sensitiv€ Bnd one sensitive t&. To see
how this works, let us take CR-4 as an example. This is shown in [able 5.3.

CR4 if3s.ACBeT,(rz,y) €R,(y,A) e S, rCrs
then S :=SU{(z,B)}

Table 5.3: Completion rule CR-4.

Looking at the underlined terms, we know that this rule is sensitive to thegelsan both setsy
and R. The algorithm is then designed having two parts, one sensitieand one sensitive t&.
They are called CR-4-S and CR-4-R respectively.

Please notice that the order of getting the different values can lead todastewer algorithms.
In fact, some order can be better for some ontologies, and worse fosothkthough GALEN was
used to approximate the best order in the rules, there might be a betteraosrdehis future work is
discussed in ChaptEl 7.

Looking at CR-4-S, we have théy, A) € S. This means that we knowand A. The purpose
is to getz and B. To getr we try all the role names such that there is a tripletRirwith 3 as
second component, usingtRelationsBySecond(y). We find all s that are super roles of using
getSuperRoles(r).

We can usegetGCI3rA(s, A) to get the axiomds.A T B. Finally, we getz for each triplet
(r,x,y) € R usinggetFirstBySecond(r,y), and suggest the addition ©f, B) to S.

The set of known variables goes like this:

{A }getReIationsBySecond(y) getSuperRoles(r) getGCI3rA(s,A)
)

— s {Aa Tvy} 7% {A,T,S,’y} 7 {A,B,T,S,’y}

getFirstBySecond(r,y

7 ){A,B,r,s,x,y}

In this transition diagram, the bold letters correspond to the required vagiable
This process, written with sets of new elements, is:

* *

getRelationsBySecond(y) getSuperRoles(r) getGCI3rA(s,A) getFirstBySecond(r,y)
{A v} — {r}= = {s} —s 7 {B} — {z}
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In the case of CR-4-R, the provided entry(isz,y) € R. In this case, we know, x andy and
we need to find3. We usegetSubsumers(y) to getA. We find all s that are super roles ofusing

getSuperRoles(r). Then, usingsetGCI3rA(s, A) we getds.A C B. Finally we suggest the
of (z,B)to0S.

getSubsumers(y) getSuperRoles(r) getGCI3rA(s,A)
{rzyy ™ — {4} — {s} T — 7 T {B}

addition

The other rules follow the same idea. Given the information of a new tuple iretseesach rule

computes the remaining variables to trigger the rule itself.

The functionaddToV (z) is the only function that modifies the status from inside the rule. All the
other modifications are postponed to be processed later on. The applokditdiloV does not alter
the other rules since only adds fresh elements that are not connectgddthanone. The relations

in S and R are processed together with the other elements.

The look-up process presented in Tdblé 5.4 is a guide to design the algofiganh rule.

CR-1 {A,JI} getGCIO(A {B}
CR-2 (A;, ) getGC”i (Ay,..., A, B}
CR-3 (4,2} W gy —> (v,y}

getReIatlonsBySecond getSuperRoles(r) getGCI3rA(s,A)
)y EREERe) gy RS

CR-4-S  {Ay} B}

getSubsumers getSuperRoles r) getGC|3rA s,A)
CR-4-R {rz,y} ' {4y {s} ' (B}
CR-5-R-1 {7“1,.’1,‘ } getSuperRoIes r1) { } getStﬂ;)les s) { } getSeconﬂFlrst(m ,Y) { }

getSuperRoIes r2) { } getSubRoIes getFlrstBySecond (r1,y)

CR-5-R-2  {rs,y,2} PR {1}
{B, s}

CR-6-S {A }getGCI3A A)

{z}
{ }getSecon_¥F|r5t 7,7) { }—){B,,@D}

getSubRoIes s)

getSubRoles r)
{ri} — {v}
getGCI2(A getSuperRoIes(rg){ }getSubRoles(s)

CR-8-S {4,y} {B,rs} — — {rl} —

getFirstBySecond(r

Pseond(ry) 1

— {v}

tS b mer (x) tS rR les(r) tGCI3rA(s
CR-6R  {r,z,y} — (B, p} SOGESE) ) setsuperfolestn) gy getcCAl {B}—>{v}
CR-7 {1"2,.’1) y} getSupe_rR)c;Ies 7"2){ }getSuirF;oles { } N {A/ B/,go w} getGC|3r {A B}

getFirstBySecond(Thy){ }
T

CR-8-R {Tl, ’y} getSuperRoIes 7"1){ }getSubsumers(y) {A} getGCI2 {B S} |
CR-9 {rl,x,y} getSuperRoIes (r1) { }getSubRoles s) { } N {w} getSeconﬂTrst(rg,x) {Z} N {’U,QO}

Table 5.4: Variable look-up process.

The general way of producing the algorithms consists of replacing-thg by loops {or each)

trying the valid combinations, and placing tifi¢o verify the conditions.

The result of the application is a set of tupléséntries andz-entries) to be processed afterwards.
The rules can also modify sé&f, but the entries related to the new memberd/oére processed

together with the other entries.

Table[5.5, Tablé 5]6 and Talile b.7 have all the algorithms according to whesdsilted above.
In the pseudocode we use a notation of pattern matching when getting thercamgpof a complex
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data structure. For example, the notation= A C B means to create a new axiom usiAgnd B,
and assigning this axiom ta Whereask = A C B means to assign values tband B such that for

a given axiomk, the equality holds. The functiasneElemOf(Q) returns one element of a non-empty
setq).

5.3 Correctness and Complexity

Correctness and complexity are shown below.
Theorem 9. The algorithm in Table5]2 is correct.

Proof. To be correct, the algorithm needs to produce all the entries requirec lmpthpletion rules,
it needs to execute all the completion rules fairly, and it needs to terminate.

To prove that all the required entries are produced, we can obsavedbh completion rule
considers the given entry and completes all the remaining variables intorééerin conditions of
application. In this way, no possible combination of values is left apart.

To prove that all rules are applied fairly, we can observe that all the arde applied for each
given entry, thanks to the chain construction.

To prove that the algorithm terminates, it is enough to observe that the depltzecker prevents
the execution of an entry twice, saturating bounded sets.

By Lemmd8, the algorithm can use the rules in Table 4.6 producing the sartt@sdsurablé 4.5,
which are proved to be correct.

O

Theorem 10. For a normalized€ LHZ fr+ general TBoXJ, the algorithm runs in exponential time.

Proof. The proof in [Vu(2008)] is based on the supporting sets of the algorithnt, andR, finding
a bound for their complete saturation. In this thesis, we use the same sugettsnand the bound
is the same. O

5.4 Direct subsumers

Once the completion rules cannot be applied anymore, the auxiliary symkealeraoved. The fol-
lowing step is to compute the direct subsumers. For doing that, we preselgasithm based on the
enhanced traversal method fin [Suntisrivaraporn(2009)]. Theitigois shown in Tablg5l8.

The intuition of the algorithm is to traverse a graph in levels, whee is the only element in
level 0 and it is the starting node. The algorithm starts in level 0 and comp@esrétt subsumees
of TOP. The direct subsumees ©OP are those having only elements in levell®f) as a subsumer.
Once it gets the direct subsumeesrafP, it marks them as belonging to level 1. Then, it computes
the direct subsumees of every element in level 1. They are those havyngubsumers of level 1
and level 0. In this way the algorithm detects the elements of level 2, and dmtimwes with the
remaining levels until it marks all the nodes in the graph.

These subsumees are nanshddren and theparentsare obtained by reversing the edges. During
the process, thequivalentsare obtained by detecting mutual subsumption.
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procedure main()

S:=10
R:=0
Q:=0

foreach A € N¢o
Q:=QU{((4,0),4)}u{((4,0),T)}
while Q # 0
e := oneElemOf(Q)
Q= (Q\ {e}) Uapply(e)

function chainS(z, A) — ret

ret:= CR-1(z, A) U CR-2(z, A)
U CR-3(x, A) U CR-4-S(z, A)
U CR-6-S(x, A) U CR-8-S(x, A)

function CR-1(z, A) — ret
ret:=0
for eachk € getGCIO(A)
k=ALCDB
ret:=retU {(z, B)}

function CR-2(z, A) — ret
ret:= ()
for eachk € getGCI1(A)
k=An..MmAMN...NA,CB
if {(x,A1),...,(z,4,)} CS
ret:=retU {(z, B)}

function apply(e) — ret

ret:= 0

if e =(z,A)
S:=SU{(z,A)}
ret := chainS(z, A)

if e=(r,z,y)
R:=RU{(r,z,y)}
ret := chainR(r, x, y)

ret:= (ret\ S)\ R

function chainR(r, z,y) — ret

ret := CR-4-R(r, z,y)
U CR-5-R-1(r, z,y) U CR-5-R-2(r, x, y)
U CR-6-R(r, z,y) U CR-7(r, z,y)
U CR-8-R(r, z,y) U CR-9(r, =, y)

function CR-3(z, A) — ret
ret:=(
for eachk € getGCI2(A)
k=ALC 3r.B
if isFunctional(r)
v:=(T,{3Ir".A})
ifogV
addToV(v)
ret:=retU {(v, B)}
ret:=retU{(v, T)}
ret:=retU {(r,z,v)}
else
y = (B,0)
ret:=retU{(r,z,y)}

Table 5.5: Algorithm (Table 1/ 3).
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function CR-4-S(y, A) — ret

ret:= ()

for eachr € getRelationsBySecond(y)

for each s € getSuperRoles(r)
for each k € getGCI3rA(s, A)
k=3ds.AC B
for eachz € getFirstBySecond(r, y)
ret:=retU {(z, B)}

function CR-5-R-1(ry, z,y) — ret
ret:=0
for each s € getSuperRoles(r;)
if isTransitive(s)
for eachry € getSubRoles(s)
for each z € getSecondByFirst(rs, y)
ret:=retU{(s,z,z)}

function CR-6-S(z, A) — ret

ret:=0
for eachk € getGCI3A(A)
k=3ds".ACB

for eachr € getSubRoles(s)
for eachy € getSecondByFirst(r, z)
if B ¢ getSubsumers(y)
Yy = (B,7 1/])
v:= (B¢ U{3Ir .A})
ifogV
addToV(v)
for eachp € getSubsumers(y)
ret:=retU {(v,p)}
ret:=retU {(v, B)}
ret:=retU {(r,z,v)}

function CR-4-R(r, z,y) — ret
ret:= ()
for each A € getSubsumers(y)
for each s € getSuperRoles(r)
for eachk € getGCI3rA(s, A)
k=3ds.ACB
ret:=retU {(z, B)}

function CR-5-R-2(r9,y, z) — ret
ret:=(
for each s € getSuperRoles(rz)
if isTransitive(s)
for eachr; € getSubRoles(s)
for eachx € getFirstBySecond(r1, y)
ret:=retU{(s,z,z)}

function CR-6-R(r, x,y) — ret
ret:= ()
for each A € getSubsumers(x)
for each s € getSuperRoles(r)
for eachk € getGCI3rA(s—, A)
k=ds".ACB
if B ¢ getSubsumers(y)
Yy = (B/a w)
v:= (B¢ U{3r .A})
ifogV
addToV(v)
for eachp € getSubsumers(y)
ret:=retU {(v,p)}
ret:=retU {(v, B)}
ret:=retU {(r,z,v)}

Table 5.6: Algorithm (Table 2/ 3).
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function CR-8-S(y, A) — ret
ret:= ()
for eachk € getGCI2(A)
k=AC3r,.B
for each s € getSuperRoles(rs)
if isFunctional(s™)
for eachr; € getSubRoles(s)

for each x € getFirstBySecond(r1, y)

ret:=retU {(z, B)}

function CR-7(rg, z,y) — ret
ret:= ()
T = (A,’ )
Y= (Blv ¢)
for eachr € getSuperRoles(rz)
if isTransitive(r)
for each s € getSuperRoles(r)
for each k € getGCl3r(s™)
k=3s".ACB
for eachr; € getSubRoles(r)
if Ir; Aep
v:= (B¢ U{3r .A})
ifogV
addToV(v)

for eachp € getSubsumers(y)

ret:=retU {(v,p)}
ret:=retU {(v, B)}
ret:= retU {(ro,z,v)}

function CR-8-R(r1, x,y) — ret
ret:=(
for each s € getSuperRoles(r;)
if isFunctional(s™)
for each A € getSubsumers(y)
for each k € getGCI2(A)
k=AC 3r;.B
if ro € getSubRoles(s)
ret:=retU {(x, B)}

function CR-9(ry, z,y) — ret
ret:=(
ity = (T, )
for eachry € getRolesFunAncestor(r)
for each z € getSecondByFirst(r2, x)
if 2= (T,p)
if y# 2
v:= (T, Up)
ifogV
addToV(v)
for eachp € getSubsumers(y)
ret:=retU {(v,p)}
for eachp € getSubsumers(z)
ret:=retU {(v,p)}
ret:=retU {(ry,z,v)}

Table 5.7: Algorithm (Table 3/ 3).
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procedure computeDag
classified:= classifiedJ (T)
foreach A € N¢
if (A ¢ classified
dagClassify(A)
foreach A € N¢
if children(A) = ()
children(A) := {1}

procedure dagClassify(A)
candidates= {}
foreachBeN¢c, B#£ A, B#T,((A,0),B) €S
if (B,0),A)¢eS
classified:= classifiedJ { B}
equivalents= equivalents) {(4, B)}
else
if B ¢ classified
dagClassify(B)
candidates= candidates) { B}
daglnsert( A, candidate$
classified:= classifiedJ { A}

procedure daglnsert( A, candidate$

marked:= ()
foreach X € N¢, B € candidates

if (B, X) € parents

marked:= markedu { X }

parents:= parentsJ {(A, B) | B € candidatesB ¢ marked
for each (A, B) € parents

children:= childrenu {(B, A) }

Table 5.8: Algorithm for computing direct subsumers.




Chapter 6

Implementation and Experiments

In this chapter, we discuss the implementation of the algorithm presented ine€Bafhe program
is calledjcel and its source code is availabletdtt p: / /] cel . sour cef or ge. net . We also talk
about the experiments we conducted.

6.1 Implementation

The classification algorithm is implemented in Java, which is an object-orier#fhrm-independent,
multithreaded programming environment. The object-oriented design of thisthigdorings a very
low coupling, since each rule can be changed separately. It also Ihigiysohesion because all the
logic of the completion rule is only in the rule itself.

It is implemented using 4 modules:

e jcel-core: it is the reasoner itself; it uses integer numbers in the internal représentar
concepts and roles, instead of special Java classes

e jcel-owlapi : transforms objects from the OWL API 3.2.2 to the internal representatiec lws
the core

e jcel-adapter: is an adapter from the OWL API 2.2.0 to the OWL API 3.2.2

e jcel-protege: is a module to usgel as a Pratge plug-in, either with the OWL API 3.2.2 or
the OWL API12.2.0

The interconnection of these modules is shown in Figurde 6.1. The diagaws stow the problem
of compatibility with the OWL API 2.2.0 and the OWL API 3.2.2 is solved. The redi&sgre the
modules or libraries, and each arrow indicatetependencyi.e. there is a class or interface in one
library (the arrow end) that is used by the other library (the arrow start).

6.2 Successful improvements

In this section we discuss successful improvements that played an impaitaint the implementa-
tion.
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jcel-protege

y 3

jcel-adapter jcel-owlapi
OWL API 2.2.0 OWL API 3.2.2 jcel-core

Figure 6.1: Use of modules in the implementation.

6.2.1 Use of collections

When we talk about the representation$fwe often refer to it as a set. However, it is actually
implemented by a map of array lists. At an abstract level, these lists are seelfeaions, which do
not differ much from sets.

The sets in Java, for exampglashSet or Tr eeSet , are implemented using extra information
to make efficient the membership test. This extra information, used in all the deofeéfiand R,
makes a very important use of memory. In addition, the Java structurasrtigpiuse of classes (like
| nt eger), but the primitive type for integer numberisnt , is kept to make operations faster and
simpler.

Replacing these sets by arraysi oft of exponential growth in the internal representatiorbof
changed drastically the use of memory and therefore the use of the garblector and the total
execution time.

6.2.2 Use of two sets of entries

On the one hand, the algorithm presented by [Suntisrivaraporn(RO@89x structure that is a list of
queues, having one queue for each concept name. On the otheirhtns thesis we talk about one
single set) which has all the entries.

In the real implementation there are two sets, ghefor S-entries and on€) i for R-entries.
These sets are processed in order to have a balanced size. Thugptitara chooses the set with
more entries, and takes one entry from that set. In the tested ontologiesathiaster than having
one single set, and faster than processing first one set and then thereghe

6.2.3 Individualized modification of rules

Since every rule is independent, we used a profiler to detect how much tigneethéred. Following
the specification, we modified each rule to make it faster. Some of the sfidadssnges were to
place theif instruction before théor eachinstruction, and to get the axioms in the ontology before
taking the elements i or R.
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6.2.4 Integers as identifiers

In the jcel-core module every identifier for concepts or roles islam eger . The mapping is done

by thejcel-owlapi module. Storing integer numbers and comparing them became more efficient in
memory and time than usirgt ri ng or other more complex structure. The clear disadvantage de-
rives from the fact of not having types for them. Thus, an extra casd bauitaken to avoid misplacing

the order of parameters in methods and constructors due to the abseligtnofive types.

6.3 Discarded implementations

During the development of the implementation, many different approaches esoasidered. The
main restriction was the memory. The system was developed using a 32-#&iVidaal Machine.
The ontology used to test these approaches was SNOMED CT.

In this section, we discuss the different alternative implementations we tribdtanwe discarded
them.

6.3.1 Shared references

In order to save memory, the idea was to share references for setsdteaeqgual. Java internally
works mainly with pointers to objects. If two sets are known to be equivalest,dan share the same
pointer. Instead of storing the set twice, only one instance is needed.

SetS is formed by sets of subsumers. Many elements may share the same sestohetd Some
of these sets can be considerably big. Taking this idea into account, the inmpéeioie had a set of
references. Using hash maps, having a set as key and a referatsmdftas value, the system was
able to avoid duplication of sets.

The inconvenience of this approach, beyond the overhead of theulpoiethod for finding the
proper pointer, was to keep updated these sets. In the process of tngpétS, two sets may be
the same, but differ afterwards. For example,

S = {(13 3)’ (174)7 (2a 3)? (2’4)}

In the representation,

S(1) ={3,4},5(2) = {3,4}

so they can be

S(1) = ptrl, S(2) = ptrl, ptrl = {3,4}

but when adding (2, 5)}, the pointers need to differ, in order to avoid add{rig, 5)}.

The problem could be overcome by keeping the backlinks, this is, keepéniinits to the keys
using these sets.

The final result considering time and memory was unfavorable, and ¢nertfis approach was
discarded.

6.3.2 Binary compression

Trying to solve the problem of storing s8t a possible approach was to store the data using some
compression. Sef is actually a map, where the key is the subsumee and the value is the set of
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subsumers. Since eatimt eger in Java (in 32-bit platform) uses 32 bits, and considering that the
identifiers were much less thad* = 16777216, the idea was to take advantage of the remaining
8 bits. Hence, 3 numbers, using 32 bits each, use 96 bits. Using the 2dpbitaah, it is possible
to encode 4 numbers of 24 bits using 3 numbers of 32 bits. Although this gainss® be small,
reducing the use of memory, let us say4i)/%, would have been enough to make the classification
process much faster.

In all these process of compression and decompression, a congidiénmad was needed. Hav-
ing the algorithm in mind, this decompression was needed for every time a ¢hedk € S was
considered. The consumed time and the small gain of memory made us discafptioiach.

6.3.3 List compression

A list compression algorithm was considered. With the following set:

S ={(1,3),(1,5),(1,7)}
This set can be stored as

S(1) = {3,5,7)

whereS(x) refers to all the elemenissuch tha{z,y) € S.

It is possible to store the elements in a list. Although lists could contain repeatedreke in the
algorithm there is a check of membership that avoids repetition. But, if wealmtand we consider
the differences (starting with 0), we have

S(1) = [+3,42,+2]
Assuming that we have less than one million identifiers (in fact, lessXiaythe differences between
them during the execution may be smaller. Using 15 bits for the number andat thiefsign, we can
store the numbers in 16 bits using their differences.
For example:
S(1) = [+3, 432000, —10000]

would be

S(1) = {3,32003, 22003}

Considering the bits, the first representation can use 16-bit integersositive and negative
values), while the second one uses 32-bit integers, with only non-negatmbers.

Since the list represents a set, there is no need to repeat any number) Gae be used as escape
code, to force a 32-bit representation, without using the differeridass,

S(1) = {3,720918}

would be

S(1) = [+3,0,11,22]
becausdl - 216 + 22 = 720918.
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Like in the case of the binary compression, this approach took too muchtexetime, and the
difference in the use of memory was negligible. For those reasons, wadkstthis approach.

6.3.4 External storage

The 32-bit Java Virtual Machine has a limit of 2600 MB. Even if we consttier as a big number,
storing numbers uses a big amount of memory. Even for less than one millioegisnthe quadratic-
style approach of storin§ needs an important amount of memory. However, this number is not that
big when using an external storage, for example, using files or lockésoc

Sockets opened locally can communicate very fast. However, their comrtianispeed was not
fast enough. The big number of operations required for a classifica#ate the transmitted amount
of data too much, and hence too slow. For the file, the access was too sieil.aSor these reasons,
these approaches were discarded.

6.3.5 Transitive data structure

The algorithm we use for classification works saturating two se#md R, using a set of entrie®
while @ is not empty. SefS basically stores a transitive closure of a reachability graph, wisere
reachable fronrmeanss subsumer ofHaving this idea in mind, we implemented a “slim” graph, a
graph where the transitivity is not explicit but implicit.

In this way, S; = {(1,2),(2,3)} actually meansS = {(1,2),(2,3),(1,3)}, whereS; is the
implicit representation. The algorithm works completisign a progressive fashion, though. Thus, it
was needed to represefit= {(1, 2), (2, 3) } without really representing = {(1,2),(2,3),(1,3)}.

For solving this, two possibilities were considered. One was to store “negadges”. For exam-
ple,S = {(1,2),(2,3)} would be represented & = {(1,2),(2,3)} andS,, = {(1,3)}, whereS,,
stores the negative edges. This approach needed an explicit r@ptaseof.S,,, bringing an almost
identical case as the initial one.

Another possibility was to process the different edges first. In this agphrdhe negative edges
were not really stored, but processed first to avoid the inconsisteimégrtunately this approach did
not work either, since the temporary use of memory was too high.

The post processing was not skipped either because of the auxilittigsenAfter the normal-
ization, a number of auxiliary entities are created, and become part ofdph giructure. Removing
them without creating false direct subsumers was much slower than jushguthe standard algo-
rithm. For these reasons, we discarded this approach.

6.3.6 Horn-style completion

To determine which rules were consuming more execution time, a profiler wakded. This pro-
filer uses some execution time, and because of that, the total execution timater.ghe Tablé 61,
we can see a comparison of the consumed time in the execution, and how isecasTine rule that
consumed the most waR-2.

This characteristic gave us the idea of improviti+2, which is described in Table 8.2.

In Prolog, each rule has a counter of the number of satisfied precorsitidhen this counter
reaches 0, the rule is triggered. Adapting an idea of how Prolog woriksiulle would be triggered
only when all the conditions are satisfied. This means that a counter is kepgvary time it is
informed that(z, A;) € S for somex and some4;, the counter is decreased. Reaching zero means
thatall 4, ... A, are satisfied and necessarfly= S U {(z, B)} is triggered.
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rule accepted  suggested total time
CR-1 5461356 139813430 55121 ms
CR-2 2875912 1398134301492323A3sns
CR-3 2803075 139813430 46201 ms
CR-4-S 15462923 139813430 74227 ms
CR-4-R 1102649 3226022 58358 ms

Table 6.1: Used times for each rule when classifying SNOMED CT.

CR-2 ifANMN..NAN..NMA,CBeT,(x,A)eS, ..., (x,4)esS, ..., (x,A,) €S
then S :=SU{(z,B)}

Table 6.2: Completion rul€R-2.

The idea was implemented using the algorithm described in Talle 6.3. In thiglagove use
“maps”, which formally could be considered as set of paifswhere for each: (calledkey) there is
at most ong, (calledvalue) such thatxz,y) € M. When there is no such we say that the value is
undef. A map has the following function:

B y if (z,y) em
get(m,z) = { undef  otherwise

In the algorithm countersis a map of maps, where the keyazigthe samer of CR-2). Each map
m has an axiom of type GCI 1 (which 4, 1...M A,, C B) as key, and the value is the number of
A; that are already satisfied.

Itis important to remark that in our experiments the maps were hash idapbl/ap), and every
axiom had an appropriate hash function, although not necessarily optimal.

The algorithm was tested with the Gene Ontology, since the use of memory wasy®rtant.
Using around the double of memory, and being slower, we discarded thisnmaptation ofCR-2.
However, we consider that some extra experiments could be perforniad to/reduce the used
memory, or improving the accessing time to the maps.

6.3.7 Multithreaded processing

The nature of having independent rules sparked the idea of a distriexgedtion. Even for a short
time, and using some overhead, assuming the processing execution d¢stnibetdd in several cores,
most of the execution would be distributed and the total time would be smaller. iipgesdea is
actually compatible with the model. To implement this idea, we needed a protocohtowaicate the
threads themselves and a monitor to avoid inconsistencies. Java providebigiatevel elements to
manage this in an elegant fashion.

The first approach was to follow exactly the dynamics shown in Figude 5His Means, for
each entry, eithef-entry or R-entry, to branch the execution among the different completion rules.
Each completion rule would have an image of the status. Just when all theldhaea finished,
the modifications to the status are performed. Considering the corredtniess, equivalent to the
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function CR-2-Horn(z, A) — ret

ret := ()
m := get(countersx)
if m = undef

m:=10

counters:= countersJ {(z,m)}
for eachk € getGCI1(A)

k=An...MA,CB
c:= get(m, k)
if ¢ = undef

cC:=n
m:=m\{(k;c)}
c:=c—1
m:=mU{(k,c)}
ifc=0

ret :=ret U {(z, B)}

m = m\ {(k,c)}

if m=10

counters:= counters\ {(z,m)}

Table 6.3: Algorithm CR-2 using a Horn-style completion.

sequential processing. There is a small exception, and it is that somenuodiy setl” during their
execution. In the way the rules run, the new elements add&ddo not interfere with other rules.

Despite of the fact that this model looked perfect, each step needeceti@aorof all the threads
(one for each completion rule) and a join (of all the threads) after psotgeach entry. In the case
of SNOMED CT, this is run more than 100 million times. Although the functions pexvioy Java
are very fast, if each one takes 1 ms, the execution time can take more thanorg7 Gnfortunately,
the execution time provided by Java was not fast enough, which led us $ed¢bad approach.

The second approach was designed having all the completion rulesyaltgering. This means,
no object creation time was needed, and the join was managed using montisrsedond approach
made the protocol very complicated. The critical data was prone to enteransistent states very
easily. As a result, the only correct execution was a much slower exedhtopractically put the
completion rules in sequential execution, wasting all the advantages of the nealtitd processing.
For the reasons above, we discarded this approach.

6.4 Implementation quality

The implementation includes features of quality. These features added smm®lnmedundancy,
which according to the tests did not affect the execution time nor the use of mefieese features
brought stability and maintainability to the system, and made it more resilient.
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6.4.1 No null pointers

A null pointer or a null reference is a reserved value for a variable atitig that it does not refer to
any object. Null pointers were invented in 1965 for ALGOL W by C.A.R. Hpand since then they
have been used in many languages such as C, C++ and Java. In 206¢rhed to his invention as
“The Billion Dollar Mistakefl.

The main problem of using null pointers is that ihteendedmeaning can be different in different
parts of the source code. In languages like C there is no differenceedet@, NULL andfalse
Projecting the same idea in Java, if a variable of tgpest is null, this could be interpreted as an
empty list; if a variable of typé nt eger isnull, this could be interpreted as a value “0”; if a variable
of typeBool ean is null, this could be interpreted adase However, in Java executing a method of
a variable with null pointer throws an exceptidiu( | Poi nt er Except i on). This brings the idea
of consideringhull as anundefinedbject.

In the implementation, public and protected methods do not accept null poastgrarameters
nor return null pointers as result. In Tablel6.4, there is a comparison diffeeent meanings of null
pointers. In the C-like casaull is the same as 0, and the minimum between 3 and 0 isrullifis
accepted as an undefined object, the minimum between Baththg elsds 3. If null is considered
an undefined object such that the result is also an undefined object, tineumibetween 3 andull
is null. Finally, the exception approach refuses to continue the execution,isegsumes that this
computation is due to an error. This latter criterion was adopted for all pubficotected methods of
every class in the implementation, and they do not accept null pointers aaragiar. Every object
sent as a parameter needs to be an instance. As a counterpart, metieodstoen null pointers.

case expression value
C-like min(3,null) 0
undefined accepting min(3, null) 3
undefined rejecting min(3, null) null
exception min(3,null)  —

Table 6.4: Compared meanings of null pointers.

6.4.2 Unmodifiable collections

In Java,l nt eger andSt ri ng are types with unmodifiable elements. However, this is not the case
with collections Col | ecti on), like Li st, Set andMap, which are modifiable. This means that

if a public method returns a set, the caller can modify the set. This does nohdwokul unless we
consider what happens if the returned set is an internal set. In thistkas@ller can actually modify
the set and violate the invariant of the called object.

If a defective piece of code tries to modify a set assumed immutable, this shewtbpped to
avoid a wrong computation. This is exactly the purpose of unmodifiable colhectibhese collec-
tions are returned by public and protected methods, giving simplicity in opesatiioread them, but
impeding their modification. Clearly, the methods to modify each collection is avaitabie object
containing it, if the object allows the modification.

Ihttp: /7 gconl ondon. cond | ondon- 2009/ pr esent at i on/ Nul | +Ref er ences: +The+Bi [ [ i on+Dol | ar +M st ake
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6.4.3 No cyclic dependencies of packages

A package in Java is a set of classes and interfaces. Each of the mdntiodales has several pack-
ages. Each package has several classes and interfaces. Oaggaad&pends on another package
when at least one class or interfacaiidepends on at least one class or interfade in

Avoiding cyclic dependencies facilitates maintenance, since modificationseopackage do not
alter any other package that does not depend on the former.

6.4.4 Javadoc

Implementation documentation has been specially considered. Every paekagy class and every
interface has their corresponding javadoc information. All public antepted methods have javadoc
unless their function is inherited (likeoSt ri ng() ).

6.5 Experiments

The implementation of the presented algorithm was tested with ontologies pkse@teapter . The
experiments were run on a computer with 2 cores Intel(R) Core(TM)2 RId E8500 @ 3.16GHz,
with processors at 1998 MHz, and using 4 GB of RAM memory.

6.5.1 Experiments inE LHr+

In Table[6.Y we compare the sizes of the different ontologies mentioned pt&@fdh The numbers
of concepts and roles do not inclu@®P andBOTTOM of concepts and roles. From left to right,
the columns show the ontology name, the description logic used by the ontthegpumber of
axioms, the number of normalized axioms, the number of concepts, the nufmbérsy the number
of auxiliary concepts, and the number of auxiliary roles.

ontology logic axioms norm. ax. concepts roles aux.concepts aux.roles
NCI EL 74662 47080 27652 70 0 0
GO ELp+ 49363 28900 20465 1 0 0
FMA ELRp+ 150282 119570 75139 2 0 2
SNOMED CT &LH 962796 1127193 378569 61 354774 56
NotGalen ELHR+ 7540 15089 2748 413 3417 413
CELGalen ELHR+ 60637 102742 23141 950 24704 950

Table 6.5: Ontologies usingLH +.

In order to compare this implementation with other reasoners, the execution tenesempared
with the CEL system. CEL is one of the fastest reasoners in the community amérada/n to
have correct results [Mendez and Suntisrivaraporn(2009)]rélévant to mention that the generated
inferred ontology is identical in both classifications. The results are slioWwable[6.6.

6.5.2 Experiments inELHL fr+

The full version of GALEN is one of the most challenging ontologies since simo reasoner can
classify it. Two GALEN ontologies were considered. One is the originaivarof GALEN (referred
as GALEN-A), and the other one is a newer version of GALEN (reteag GALEN-B).



40 CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

ontology entries jcel 0.13.0 CEL Plug-in 0.5.0 quotient

NCI 346887 8.9s 10.2s 0.87

GO 154489 44s 35s 1.26

FMA 9576858 149 s 2388 s 0.06

SNOMED CT 143039451 1108 s 705s 1.57

NotGalen 224565 29s 5.2s 0.56

CELGalen 6836237 52s 134 s 0.39

Table 6.6: Compared times of classification betwjgehand CEL.

ontology logic axioms norm. ax. concepts roles aux.concepts aux.roles
GALEN-A  ELHI fr+ 8140 12930 2748 413 3458 0
GALEN-B ELHIfr+ 61787 95789 23143 950 24704 0

Table 6.7: Ontologies usinGLHZ f5+.

For GALEN-A, jcel took 1093 s and CB less than 1 s.

For the case of GALEN-Bgel could not finish due to lack of memory. CB classified this ontology

in5s.

Although GALEN-B was not classified, classifying GALEN-A is alreadyslered a successful

achievement.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

We presented not only a classification algorithm8@/* 7 f +, but also a meta-algorithm that allows
the extension of expressivity in a direct way. The presented algorithm &ffiwient generalized
cohesive modular algorithm with very low coupling. This general algorittas presented in a multi-
level view, going from the more abstract and general aspects to the impkdinardetails. We also
presented an effective way of developing efficient completion rules.

In the experimental results the implementation showed an excellent perfamemeimplemen-
tation is modular, resilient and highly extensible. Implemented in a state-ofdtheeanology, it
is portable and brings an optimal interface with other technologies of the Sierivdeb. We have
presented a particular configuration of this algorithm for the 16gi6{Z fr + .

7.2 Future work

7.2.1 Different order for different ontologies

The presented algorithm and implementation are based on the fact thauéaekacutes the com-
mands in a particular order. A possible extension to this work would be tdagetiee rules finding
the elements in a different order. In fact, different implementations fdn eale can be dynamically
loaded according to the properties of the ontology. An ontology with mangeguie, but a minimal
use of roles, may need a different implementation of rules from an ontolagyaweep role hierarchy
but relatively few concepts. A diagnose test could be run in advarta aet of rules expected to be
optimal could be choosen for each ontology.

7.2.2 More expressivity

The general algorithm does not prevent from having rules managing expressive logics. Every
constructor that can be processed using a rule-based algorithm, likeetmdomains [Lutz(2002)],
could be added without interfering with the other rules. A good extensiaridime to complete the
constructor set to be completely compliant with the OWL 2 EL profile.
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