
Technische Universität Dresden
Faculty of Computer Science

Institute of Theoretical Computer Science

Chair of Automata Theory

A Classification Algorithm For ELHIfR+

Master’s Thesis
European Master’s Program in Computational Logic

Author

Julian Alfredo Mendez

Supervisor

Prof. Dr.-Ing. Franz Baader

Dresden, Germany — March 2011

ii

iii

TECHNISCHE UNIVERSIT̈AT DRESDEN

Author: Julian Alfredo Mendez
Matriculation number: 3361365
Title: A Classification Algorithm For ELHIfR+
Degree: Master of Science
Date of submission: 2011-03-15

Declaration
Hereby I certify that this thesis has been written by me. Any help that I have received in my research
work has been acknowledged. Additionally, I certify that I have not used any auxiliary sources and
literature except those I cited in this thesis.

Julian Alfredo Mendez

iv

ABSTRACT v

Abstract

Description logics are a family of knowledge representation formalisms for representing and reasoning
about conceptual knowledge. Every description logic system has reasoning services that infer implicit
knowledge from that explicitly given. Standard reasoning problems include concept satisfiability,
concept subsumption, ABox consistency and the instance problem. This thesis focus on the concept
subsumption service, which is considered to be the most common service.

Some years ago, a polynomial-time algorithm for the subsumption problem in the description
logic EL was developed. After that, algorithms for different problems in tractable extensions ofEL
have been developed. These description logics are sufficient to represent many knowledge bases, e.g.
a large medical ontology called SNOMED CT. However, there are ontologiesrequiring extensions
of EL that are not tractable. In particular, GALEN, another important medical ontology, requires
ELHIfR+ , an extension ofEL that includes role hierarchies, inverse, functional and transitive roles.

This thesis presents a classification algorithm forELHIfR+ . Together with this thesis there is an
implementation available athttp://jcel.sourceforge.net.

http://jcel.sourceforge.net

vi

ACKNOWLEDGEMENTS vii

Acknowledgements

First of all, I would like to thank my advisor, Prof. Franz Baader, for sharing his broad experience
in description logics with me and for giving me the wonderful possibility of working at the Chair of
Automata Theory (LAT).

I would like to thank Barbara Morawska, Ph.D., who kindly read several drafts and gave me her
valuable opinion. I would like to express my gratitude to Dr. Rajeev Goré, with whom I discussed
how to work with inverse roles. I would like to thank my former advisors, Prof. Carsten Lutz, who
taught me how to write a scientific paper in English, and Dr. Carlos Areces, who introduced me in the
amazing world of non-classical logics.

I would like to thank my colleagues, Dr. Anni-Yasmin Turhan, for giving me thechance to prove
my skills designing and programming; Marcel Lippmann, who had a helpful look at the implementa-
tion and gave me his suggestions; and Dr. Rafael Peñaloza, with whom I discussed different properties
of description logics. I would like to thank Dr. Boontawee Suntisrivaraporn (Meng), who kindly ex-
plained the CEL algorithm to me.

I would like to express my gratitude to the secretaries Kerstin Achtruth and Sylvia Wünsch, who
gave me a very important help.

I would like to thank my wife, Silvia, for her company all this time and for acceptingthe challenge
of living abroad. She read many drafts and gave me her suggestions in theuse of English. I would like
to express my gratitude to my parents, Luis and Julia, my brother Fernando, and my friends across the
world, for their constant and important support during my studies.

“Piano, piano, si va lontano.”(Popular saying)

viii

Contents

Abstract . v
Acknowledgements .vii

1 Introduction 1
1.1 Overview . 1
1.2 Ontologies . 2
1.3 Organization of the thesis .2

2 Medical Ontologies 3
2.1 The GALEN ontology . 3
2.2 The SNOMED CT ontology . 4
2.3 Smaller ontologies . 4
2.4 Reasoners .5
2.5 Classification of large ontologies .. 5

3 Description Logics 7
3.1 Syntax ofELHIfR+ . 7
3.2 Semantics ofELHIfR+ . 8
3.3 Example ofELHIfR+ . 9
3.4 Less expressive logics 10
3.5 Semantic Web terminology . 10

4 Normalization and Completion Rules 11
4.1 Normal form . 11
4.2 Normalization rules . 12
4.3 Normalized TBox . 13
4.4 Completion rules . 14

4.4.1 Start conditions . 15
4.4.2 Original completion rules . 15
4.4.3 Optimized completion rules . 15
4.4.4 Observations . 16

5 Algorithm 19
5.1 General description .. 19
5.2 Completion rules . 22
5.3 Correctness and Complexity .24
5.4 Direct subsumers .24

ix

x CONTENTS

6 Implementation and Experiments 29
6.1 Implementation . 29
6.2 Successful improvements .. 29

6.2.1 Use of collections . 30
6.2.2 Use of two sets of entries . 30
6.2.3 Individualized modification of rules . 30
6.2.4 Integers as identifiers . 31

6.3 Discarded implementations . 31
6.3.1 Shared references .31
6.3.2 Binary compression . 31
6.3.3 List compression . 32
6.3.4 External storage . 33
6.3.5 Transitive data structure . 33
6.3.6 Horn-style completion . 33
6.3.7 Multithreaded processing . 34

6.4 Implementation quality . 35
6.4.1 No null pointers . 36
6.4.2 Unmodifiable collections . 36
6.4.3 No cyclic dependencies of packages .. 37
6.4.4 Javadoc . 37

6.5 Experiments . 37
6.5.1 Experiments inELHR+ . 37
6.5.2 Experiments inELHIfR+ . 37

7 Conclusion and Future Work 39
7.1 Conclusion . 39
7.2 Future work . 39

7.2.1 Different order for different ontologies 39
7.2.2 More expressivity . 39

Bibliography 40

List of Figures

5.1 Diagram showing the dynamics of the components. 20

6.1 Use of modules in the implementation. 30

xi

xii

List of Tables

3.1 Interpretation function. .. 8
3.2 Satisfaction. 8
3.3 Example ofELHIfR+ . 9
3.4 Terminology defined in the OWL 2 profiles. .. 10

4.1 Normalized axioms. 11
4.2 Normalization rules. 12
4.3 Some of the original normalization rules. .. 13
4.4 Saturation rules. .13
4.5 Original completion rules forELHIfR+ in [Vu(2008)]. 17
4.6 Optimized completion rules forELHIfR+ . 18

5.1 Ontology and status functions. .. 21
5.2 General algorithm. 21
5.3 Completion rule CR-4. 22
5.4 Variable look-up process. 23
5.5 Algorithm (Table 1 / 3). .25
5.6 Algorithm (Table 2 / 3). .26
5.7 Algorithm (Table 3 / 3). .27
5.8 Algorithm for computing direct subsumers. .. . 28

6.1 Used times for each rule when classifying SNOMED CT. 34
6.2 Completion ruleCR-2. 34
6.3 Algorithm CR-2 using a Horn-style completion. 35
6.4 Compared meanings of null pointers. .. . 36
6.5 Ontologies usingELHR+ . 37
6.6 Compared times of classification betweenjcel and CEL. 38
6.7 Ontologies usingELHIfR+ . 38

xiii

xiv

Chapter 1

Introduction

1.1 Overview

The purpose of this thesis is to present a classification algorithm and an implementation for a particular
description logic calledELHIfR+ .

Description logics (DL) are a family of logic formalisms that originated in the field of artificial
intelligence as a tool for knowledge representation. During the last two decades, description logics
have been successfully applied in knowledge representation and in many other areas such as reasoning
in formalisms based on classes (UML diagrams and databases), and in ontology engineering for the
Semantic Web [Baader et al.(2003)Baader, Calvanese, McGuinness, Nardi, and Patel-Schneider].

The basic entities of description logics areconcepts, which are built withconcept names(seen as
unary predicates) androle names(seen as binary relations), and a set of concept constructors and role
constructors provided by the particular description logic.

An ontologyis a formal vocabulary of terms which refers to a conceptual schema insidea domain.
This is a hierarchical data structure with semantics containing entities and relevant relations in a
domain, which describe specific topics like those having biological classification. The terms are
related using anontology language.

An ontology reasoneris a tool that can process an ontology. The main service that a reasoner
provides isclassification. The purpose of classification is to compute a hierarchical relation. Ontolo-
gies may contain errors and reasoners can help finding these errors. Reasoners are used inontology
editors, like Prot́eǵe1.

Prot́eǵe is a free, open source ontology editor, and also a knowledge base framework. Prot́eǵe on-
tologies can be exported to several formats, like RDF, OWL and XML Schema. It uses the OWL API2,
which is a Java application programming interface (API) and reference implementation for creating,
manipulating and serializing OWL ontologies. The OWL API 3 is focused on OWL2, especially
version 3.2.2 which is mentioned along this thesis.

These tools are oriented to their use on the Semantic Web3. This is a group of methods and
technologies to give to machines the possibility of capturing the semantics of information on the
World Wide Web. The term was coined by Tim Berners-Lee, defining it as “a web of data that can be
processed directly and indirectly by machines.”

The Semantic Web is at the present under development. However, there are practical examples

1http://protege.stanford.edu/
2http://owlapi.sourceforge.net/
3http://semanticweb.org/

1

http://protege.stanford.edu/
http://owlapi.sourceforge.net/
http://semanticweb.org/

2 CHAPTER 1. INTRODUCTION

of application of these tools in everyday life. This is the case of the medical ontologies, which are
ontologies used in medical fields. In the following, we will focus on this kind ofontologies.

1.2 Ontologies

The first ontology we discuss is GALEN. Its name stands for General Architecture for Language,
Encyclopaedias and Nomenclatures. It is a project that has been funded as part of Framework IV of
the EC Health Care Telematics Research Program. It is a paradigmatic ontologypresented since it
has the main characteristics that motivated the development of the algorithm presented in this thesis.
Nowadays, this ontology is distributed by OpenGALEN4.

Another important ontology is SNOMED CT, an acronym for Systematized Nomenclature of
Medicine - Clinical Terms5. According to the International Health Terminology Standards Develop-
ment Organisation6 it is considered the most comprehensive, multilingual, clinical health care termi-
nology in the world.

1.3 Organization of the thesis

In Chapter 2 we present two challenging medical ontologies, SNOMED CT and GALEN, and other
smaller ontologies. These ontologies are the main motivator of this thesis.

In Chapter 3 we present description logics formally. They constitute the theoretical basis of this
thesis.

In Chapter 4 we present the normalization and completion rules to classify the ontologies.
In Chapter 5 we present the pseudocode and data structures to implement the rules.
In Chapter 6 we explain how the implementation was done. We present its design, considered

alternatives to the current implementation, and experiments showing its performance.
In Chapter 7 we present the conclusion of this thesis and some topics for future work.

4http://www.opengalen.org/
5http://www.ihtsdo.org/snomed-ct/
6http://www.ihtsdo.org

http://www.opengalen.org/
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org

Chapter 2

Medical Ontologies

In this chapter, we present two medical ontologies that are challenging forthe ontology reasoners,
GALEN and SNOMED CT, and other smaller ontologies.

2.1 The GALEN ontology

GALENstands for General Architecture for Language, Encyclopaedias andNomenclatures in medicine.
GALEN is a project funded by the European Union, as part of Framework IV of the EC Healthcare
Telematics research program. According to its creators, it is intended to “put the clinical into the
clinical workstation”. It produces a multilingual coding system for medicine that is different from the
one used in the past.

GALEN has been developed to represent clinical information in a new way.The project builds an
ontology, the Common Reference Model, to represent medical concepts. Many clinical systems, such
as electronic health care records, decision support systems and computer-based multilingual coding
systems for medicine, benefit from this ontology.

The GALEN Programme represents the overall development of the technology, which has in-
cluded several research projects, like Framework III (GALEN project) and Framework IV (GALEN-
IN-USE project). In the early stage, the GALEN Programme mainly constructed a concept model
language, named GALEN Representation and Integration Language (GRAIL). At the same time, dif-
ferent structures of GALEN Common Reference Model were tested.

The main purpose of GALEN is to achieve the following goals:

1. to create a common medical terminology;

2. to avoid the high costs needed for harmonization of small variations in ontologies;

3. to facilitate clinical applications;

4. to share patient records required for patient care and for general views, like in statistics, man-
agement or research;

5. to provide multilingual systems that preserve the meaning and the representation.

To achieve these goals, GALEN brings five fundamental changes in the standard approach.
In the user interface, the user can describe conditions instead of selecting codes. It is possible

to have a central concept described by simple forms. When it is necessary, a precise code can be
automatically generated later.

3

4 CHAPTER 2. MEDICAL ONTOLOGIES

In the structure, GALEN uses composite descriptions instead of enumeratedcodes. GALEN
handles terminology making descriptions based on the composition of basic concepts. On the other
hand, other systems work as a phrase book, where each possible description has to be sought in a list.

In establishing standards, GALEN uses a standard reference model instead of a standard coding
system. There are differences between coding and classifications. These differences arise because
they are used for different purposes. Finding a single set of codes usable for all medical terms would
be a huge uncoordinated construction. The GALEN Common Reference Model, however, provides
means of representing coding and classification in an interrelated fashion.The slogan is: “coherence
without uniformity”.

In delivery, GALEN uses a dynamic terminology instead of static coding systems. The project
CorbaMed is an effort to have a terminology server.

In presentation, GALEN uses multilingual terminologies instead of monolingual terminologies.
GALEN has a separation between the concepts and the natural language that presents them.

Nowadays, the GALEN Programme is not funded by the European Union anymore. The members
of the GALEN Programme founded a non-profit organization namedOpenGALENto expand its re-
sults and to find related technologies for the GALEN ontology. This ontology represents a challenge
for the reasoners due to the logic expressivity and the use of general concept inclusions.

2.2 The SNOMED CT ontology

SNOMED CTwas a joint development between the National Health Service (NHS)1 in England and
the College of American Pathologists (CAP)2 in the United States. It was formed in 1999, although
SNOMED itself was started in 1965 as SNOP (Systematized Nomenclature of Pathology) and then
extended to other medical fields. SNOMED brings a way to index, store and retrieve clinical data
across different specialties. In addition, it helps organizing the contentof medical records. This
ontology represents a challenge for the reasoners due to its big size.

2.3 Smaller ontologies

Due to GALEN’s characteristics, some simpler ontologies were developed. They are based on GALEN,
but simpler in their structure. The ontology NotGALEN is a selective adaptationmade in 1995 of an
early prototype of the GALEN model, contributed by Ian Horrocks. Its content is not related to or
representative of any OpenGALEN release. The ontology CELGalen is amodification of GALEN,
but without inverse roles nor functional roles, contributed by Boontawee Suntisrivaraporn.

The Gene Ontology (GO)3 provides a controlled vocabulary to describe gene and gene product
attributes of any organism. Currently, this ontology consists of thousands of concept names and only
one transitive rolepart-of.

The (US) National Cancer Institute thesaurus (NCI)4 provides reference terminology that covers
vocabulary for clinical care, translational and basic research, and public information.

Another ontology of interest is the Foundational Model of Anatomy (FMA)5. It is a knowledge
source for biomedical informatics. It is focused on representation of classes or types and the rela-

1http://www.nhs.uk/
2http://www.cap.org/
3http://www.geneontology.org/
4http://ncit.nci.nih.gov/
5http://sig.biostr.washington.edu/projects/fm/

http://www.nhs.uk/
http://www.cap.org/
http://www.geneontology.org/
http://ncit.nci.nih.gov/
http://sig.biostr.washington.edu/projects/fm/

2.4. REASONERS 5

tionships used for the symbolic representation of the phenotypic structure of the human body. It is
intended to be understandable to humans, and also navigable, parsable and interpretable by automated
systems. Although the FMA is about the human anatomy, its ontological framework can be applied
and extended to other species.

2.4 Reasoners

A reasoner is a program that can compute consequences derived from a set of axioms. Reasoners are
used to classify ontologies. Using a reasoner, it is possible to decide for two concepts in an ontology,
whether one is a subconcept of the other one. With the help of a reasoner, not only is it possible to
find errors, like wrong relationships or empty concepts, but also to find implicit relations that are very
difficult to find for a human expert. Different reasoners use different techniques to classify ontologies.

Some of the reasoners we mention are the following:
CB6 (Consequence-based reasoner, University of Oxford) is a reasoner for HornSHIF ontolo-

gies, i.e. SHIQ ontologies that can be translated to the Horn fragment of first-order logic.It is
implemented in OCaml. It uses a completion-based procedure forEL++ ontologies and works by
deriving new consequent axioms [Kazakov(2009)].

CEL7 (Classifier for EL, Technische Universität Dresden) is a reasoner forEL+. It is implemented
in Lisp. It uses a refined polynomial-time algorithm [Baader et al.(2005)Baader, Brandt, and Lutz]
[Baader et al.(2008)Baader, Brandt, and Lutz] that can process very large ontologies in reasonable
time.

FaCT++8 (Fast Classification of Terminologies, University of Manchester) is a reasoner for the
description logicSHROIQ(D). It is implemented in C++. It is based on optimized tableaux algo-
rithms [Tsarkov and Horrocks(2006)].

HermiT9 (University of Oxford) is a resoner forSHROIQ(D). It is implemented in Java. It is
based on a “hypertableau” calculus [Motik et al.(2007)Motik, Shearer,and Horrocks].

Pellet10 (Clark & Parsia) is a reasoner forSHROIQ(D). It is implemented in Java.
RacerPro11 (Renamed ABox and Concept Expression Reasoner, Racer Systems) isa reasoner for

the description logicSHIQ. It is implemented in Lisp. It uses a highly optimized tableau calculus
for a very expressive description logic [Haarslev and Möller(2001)].

Snorocket12 (Commonwealth Scientific and Industrial Research Organisation - CSIRO) isa rea-
soner forEL+. It is implemented in Java. It uses the polynomial-time classification algorithm for
EL+, it was optimized for classifying SNOMED CT, and it was licensed to the International Health
Terminology Standards Development Organisation (IHTSDO) to maintain and produce SNOMED CT.

2.5 Classification of large ontologies

SNOMED CT has been considered one of the most challenging ontologies due to its big size. Differ-
ent approaches have been employed to classify this ontology. With more thanthree hundred thousand

6http://cb-reasoner.googlecode.com/
7http://cel.googlecode.com/
8http://factplusplus.googlecode.com/
9http://hermit-reasoner.com/

10http://clarkparsia.com/pellet/
11http://www.racer-systems.com/
12http://research.ict.csiro.au/software/snorocket

http://cb-reasoner.googlecode.com/
http://cel.googlecode.com/
http://factplusplus.googlecode.com/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://www.racer-systems.com/
http://research.ict.csiro.au/software/snorocket

6 CHAPTER 2. MEDICAL ONTOLOGIES

concepts, the ontology needs an important amount of memory if it is classified by traditional algo-
rithms.

GALEN is a relatively famous ontology since it is very difficult to classify. Especially the
tableaux-based reasoners need to create very large models, due to the fact that large parts of the
TBox are cyclically interconnected with each other. This difficult version of GALEN can be classified
by a prototypical consequence based reasoner (CB) [Kazakov(2009)].

Many versions based on GALEN have been created. They typically restrict the expressivity
to find a fragment that is classifiable. Among them, we will present two: NotGalen and CEL-
Galen. The former is a test ontology. The latter is also a test ontology that wasdeveloped to test
CEL [Baader et al.(2006)Baader, Lutz, and Suntisrivaraporn]. Both were used in the experiments of
Chapter 6.

Although SNOMED CT and GALEN are both challenging for ontology reasoners, they have some
important structural differences. On the one hand, SNOMED CT is acyclicand bigger than GALEN.
On the other hand, GALEN is more compact, requires more expressiveness, and uses general concept
inclusions (GCIs).

Chapter 3

Description Logics

In this chapter, we define the description logicELHIfR+ . Its name means that this particular de-
scription logic hasE (existential restrictions),H (role hierarchies),I (inverse roles),f (functional
roles), andR+ (transitive roles). The meaning of these terms, syntax and semantics ofELHIfR+ are
presented below.

3.1 Syntax ofELHIfR+

The setsNC, NR are countable sets of symbols, pairwise disjoint. The elements ofNC are called
concept names, the elements ofNR are calledrole names.

The atomic symbols of a description logic signature can be combined usingconcept constructors
and role constructors, to construct more complex concept expressions and role expressionsrespec-
tively. Each description logic is identified by the set of role and concept constructors it has.

Definition 1 (Concept and roles). A role r′ of ELHIfR+ is eitherr or r−, wherer ∈ NR. They are
calledrole nameandinverse rolerespectively.

A conceptC of ELHIfR+ is defined as follows:

C ::= A | ⊤ | ¬C | C ⊓D | ∃r′.C

whereA ∈ NC; D is a concept,r′ is a role.3

Concepts and roles are used to constructterminological axioms. These axioms make the TBox,
which defines the terminology.

Definition 2 (TBox). A terminological axiomτ is an expression of the following form:

τ ::= C1 ⊑ C2 | r
′
1 ⊑ r′2 | f(r

′) | r′ ◦ r′ ⊑ r′

whereC1 andC2 are concepts;r′, r′1, r
′
2 are roles.

A TBoxor terminological boxis a finite set, possibly empty, of terminological axioms.
The expressionC1 ≡ C2 used in a TBox represents an abbreviation forC1 ⊑ C2 andC2 ⊑ C1.

Analogouosly, the expressionr′1 ≡ r′2 used in a TBox represents an abbreviation forr′1 ⊑ r′2 and of
r′2 ⊑ r′1. 3

Notation: In the literature, it is common to find an axiom of the form⊤ ⊑ (≤ 1 r′) to denote
functional roles. In this thesis, we usef(r′) with the same meaning.

7

8 CHAPTER 3. DESCRIPTION LOGICS

3.2 Semantics ofELHIfR+

To define the semantics, we use an interpretation function that maps languagesymbols to elements
and relations of a domain.

Definition 3 (Interpretation). An interpretationI is a tuple〈∆I , ·
I〉, where∆I is a non-empty set

calleddomainand·I is aninterpretation functiondefined as follows:

∀A ∈ NC : AI ⊆ ∆I

∀r ∈ NR : rI ⊆ ∆I ×∆I

The interpretation function is extended to every concept and every role as described in Table 3.1:

⊤I := ∆I

(¬C)I := ∆I \ CI

(C1 ⊓ C2)
I := C1

I ∩ C2
I

(∃r.C)I := {d1 ∈ ∆I | ∃d2 ∈ ∆I : ((d1, d2) ∈ rI ∧ d2 ∈ CI)}

(r−)
I := {(d1, d2) ∈ ∆I ×∆I | (d2, d1) ∈ rI}

whereC1, C2, C are concepts;r are roles.

Table 3.1: Interpretation function.

3

In other words, an interpretation of a description logic is a first-order interpretation, where only
unary and binary predicates are allowed and the set of functions is empty.

Definition 4 (Satisfaction of a TBox). For an interpretationI and a terminological axiomψ, the
relationI |= ψ is defined in Table 3.2:

I |= (C ⊑ D) iff CI ⊆ DI

I |= (r ⊑ s) iff rI ⊆ sI

I |= f(r) iff ∀d1 ∈ ∆I : | {d2 ∈ ∆I | (d1, d2) ∈ rI} | ≤ 1
I |= (r ◦ r ⊑ r) iff rI ◦ rI ⊆ rI

whereC,D are concepts;r, s are roles.

Table 3.2: Satisfaction.

Let T be a TBox,I an interpretation,C, C1, C2 concepts,ψ a terminological axiom. Then:

• We say thatI is amodelof T , denotedI |= T , if and only if∀ψ ∈ T : I |= ψ.

• We say thatT entailsψ, denotedT |= ψ, if and only if for every interpretationI: if I |= T ,
thenI |= ψ.

3.3. EXAMPLE OFELHIFR+ 9

• We say thatC1 is subsumedby (or includedin) C2 with respect toT , denotedC1 ⊑T C2, if
and only ifT |= C1 ⊑ C2. Thus,C2 is asubsumerof C1 andC1 is asubsumeeof C2.

• We say that a concept nameC2 is adirect subsumerof a concept nameC1 with respect toT if
and only if:

– C1 ⊑T C2

– C2 is notC1

– there is no concept nameC, different fromC1 and fromC2, such thatC1 ⊑T C and
C ⊑T C2

• We say thatr1 is includedin r2 with respect toT , denotedr1 ⊑T r2, if and only if T |= r1 ⊑
r2.

• We say thatC is satisfiablewith respect toT if and only if there exists an interpretationI such
thatCI 6= ∅.

3

3.3 Example ofELHIfR+

In Table 3.3 we can see a simple example of use of concept and role constructors.

1. Mother ⊑ Woman ⊓ Parent

2. Mother ⊑ ∃isMotherOf.Human

3. hasMother ⊑ hasAncestor

4. isMotherOf ≡ hasMother−

5. hasAncestor ◦ hasAncestor ⊑ hasAncestor

6. f(hasMother)

Table 3.3: Example ofELHIfR+ .

The intended meaning of this example is as follows:

1. A mother is a woman and a parent.

2. A mother is a mother of some human being.

3. If x has a mothery, thenx has an ancestory.

4. If x is mother ofy, theny hasx as mother.

5. An ancestor of an ancestor is also an ancestor.

6. If someone has a mother, has at most one mother.

10 CHAPTER 3. DESCRIPTION LOGICS

3.4 Less expressive logics

Some of the ontologies presented in Chapter 2 use a less expressive logic thanELHIfR+ . As ex-
plained above, the name of each of these description logics derives fromthe concept and role construc-
tors it has. Other description logics likeEL, ELH, andELI, have less constructors. Hence, every
econcept inEL, ELH or ELI is also a concept inELHIfR+ . Thus, a TBox which uses concepts for
EL, ELH or ELI is also a TBox inELHIfR+ and can be classified by the algorithm presented in
this thesis.

3.5 Semantic Web terminology

Semantic Web tools use a terminology that is different from the terminology we defined above. These
terms follow the OWL 2 standard and can be easily related using Table 3.4.

DL syntax Name OWL 2 functional style syntax

⊤ top Thing
A concept name Class
r role name ObjectProperty
C concept ClassExpression
r′ role ObjectPropertyExpression
r− inverse role InverseObjectProperty
C1 ⊓ . . . ⊓ Cn conjunction ObjectIntersectionOf(C1 . . . Cn)
∃r.C existential restriction ObjectSomeValuesFrom(r C)
C1 ⊑ C2 concept inclusion SubClassOf(C1 C2)
C1 ≡ C2 equivalence EquivalentClasses(C1 C2)
r1 ⊑ r2 role inclusion SubObjectPropertyOf(r1 r2)
r1 ≡ r2 role equivalence EquivalentObjectProperties(r1 r2)
r ◦ r ⊑ r transitive role TransitiveObjectProperty(r)
f(r) functional role FunctionalObjectProperty(r)
f(r−) inverse functional role InverseFunctionalObjectProperty(r)
r−1 ≡ r2 inverse role definition InverseObjectProperties(r1 r2)

Table 3.4: Terminology defined in the OWL 2 profiles.

Chapter 4

Normalization and Completion Rules

In this chapter, we discuss the rules needed for the algorithm. These rulesdo not actually constitute an
algorithm by themselves since they need a way to be computed. Executing the presented set of rules
with a naive approach can take an immense amount of time.

The normalization replaces some of the axioms in the TBox by simpler axioms. Aftergetting the
normalized TBox, the TBox is saturated with axioms that can be deduced. Forexample, if we have
r ⊑ s ands ⊑ t, one saturation rule addsr ⊑ t.

The normalization and completion rules are themselves based on two main sources. The normal-
ization rules are taken from [Suntisrivaraporn(2009)]. The completionrules are based on the comple-
tion rules in [Vu(2008)], which need the normalized form of [Suntisrivaraporn(2009)]. It is proved
that the completion rules in [Vu(2008)] are correct, meaning soundness,completion, and termination.
Since the completion rules presented in this thesis are not exactly the same, we prove the correctness
of these rules as well.

4.1 Normal form

In order to apply the rules, it is first necessary to bring the TBox to the conditions of application of the
rules. This transformation is callednormalization, and produces anormalized TBox. The normalized
form uses only a reduced number of axioms which are described below.

Once the TBox is normalized, the axioms will be as presented in Table 4.1.

4.2 Normalization rules

As said above, the normalization is performed before any other rule is applied. The normalization
rules preserve the same models when applied to ontologies. The repetitive application of these rules
on a TBox produces the normalized TBox.

The rules in Table 4.2 are taken from [Suntisrivaraporn(2009)]. The means a replacement of
the axiom on the left-hand side by the axiom or axioms on the right-hand side. Afreshconcept name
and afreshrole name are symbols that are not used in the TBox before the rule is applied.

Lemma 5. Let T be anELHIfR+ TBox andT ′ after the application of the normalization rules of
Table 4.2. LetA,B be concept names occurring inT . ThenA ⊑T B if and only ifA ⊑T ′ B.

Proof. The idea of the proof is to show that the lemma holds for every normalization ruleapplied. To
simplify the individual proofs of each rule, we first show the proofs forNR-7 and NR-8.

11

12 CHAPTER 4. NORMALIZATION AND COMPLETION RULES

GCI-0 A ⊑ B
GCI-1 A1 ⊓ · · · ⊓An ⊑ B
GCI-2 A ⊑ ∃r.B
GCI-3 ∃r.A ⊑ B
RI-1 f(r)
RI-2 r ⊑ s
RI-3 r ◦ r ⊑ r
RI-4 r− = s

wherer, s ∈ NR;
Ai, A,B ∈ NC.

Table 4.1: Normalized axioms.

NR-1 C ≡ D C ⊑ D,D ⊑ C

NR-2 C1 ⊓ · · · ⊓ Ĉ ⊓ · · · ⊓ Cn ⊑ D Ĉ ⊑ A,C1 ⊓ · · · ⊓A ⊓ · · · ⊓ Cn ⊑ D

NR-3 ∃r′.Ĉ ⊑ D Ĉ ⊑ A, ∃r′.A ⊑ D

NR-4 Ĉ ⊑ ∃r′.D Ĉ ⊑ A,A ⊑ ∃r′.D

NR-5 B ⊑ ∃r′.Ĉ B ⊑ ∃r′.A,A ⊑ Ĉ
NR-6 D ⊑ C1 ⊓ C2 D ⊑ C1, D ⊑ C2

NR-7 C ⊑ ∃r−.D C ⊑ ∃u.D, u ⊑ r−, r− ⊑ u
NR-8 ∃r−.C ⊑ D ∃u.C ⊑ D, u ⊑ r−, r− ⊑ u

where
r is a role name;
r′ is a role;
C, Ci,D are arbitrary concept descriptions;
Ĉ, D̂ are complex concept descriptions;
B is a concept name;
A is afreshconcept name;
u is afreshrole name.

Table 4.2: Normalization rules.

For NR-7 and NR-8, letu be a fresh role name. Replacing in the original axiom any occurrence
of r− by u, and addingu ⊑ r′−, r′− ⊑ u to T , produces that any model of the axiom before the
substitution is equivalent to the model after the substitution.

For NR-1 and NR-2 the rules are identical to the rules in [Suntisrivaraporn(2009)], where this is
already proved.

For NR-3 and NR-5, if we assume thatr′ is a role name, the proof is shown in [Suntisrivaraporn(2009)].
If r′ is an inverse role, we can reduce the formulae to the case of NR-7 and NR-8.

For NR-4 and NR-6 it is sufficient to verify that these rules are variants of the rules shown in
Table 4.3. Let us consider the case where these rules differ. This isĈ ⊑ C1 ⊓ . . . ⊓ Cn, whereĈ is

4.3. NORMALIZED TBOX 13

a complex concept description andC1 . . . Cn are concept names of existential restrictions. The suc-
cessive application of NR-6 reduces the number of conjuncts on the right-hand side of the inclusion,
placing the axioms in the condition of NR-4.

NR-3-1 Ĉ ⊑ D̂ Ĉ ⊑ A,A ⊑ D̂
NR-3-3 B ⊑ C ⊓ C B ⊑ C,B ⊑ D

Table 4.3: Some of the original normalization rules.

The rules perform a reduction in the axiom complexity by creating more axioms possibly using
new auxiliary concepts and roles.

4.3 Normalized TBox

Once the TBox is normalized, it has to be saturated. Unlike the normalization rules, the saturation
rules do not remove axioms. After ensuring thatr ⊑ r for each role namer, the saturation rules in
Table 4.4 are applied. The means an addition of the axioms on the right-hand side when the axioms
on the left-hand side are found.

SR-1 r ⊑ s r− ⊑ s−

SR-2 r ⊑ s , s ⊑ t r ⊑ t
SR-3 r ◦ r ⊑ r r− ◦ r− ⊑ r−

SR-4 r ⊑ s , f(s) f(r)
where
r, s, t are role names or inverse roles.

Table 4.4: Saturation rules.

To prove the correctness of the rules in Table 4.4, we prove Lemma 6.

Lemma 6. If r, s, t are roles andI is an interpretation, then the following holds:

1. I |= r ⊑ s if and only ifI |= r− ⊑ s−

2. if I |= r ⊑ s andI |= s ⊑ t, thenI |= r ⊑ t

3. I |= r ◦ r ⊑ r if and only ifI |= r− ◦ r− ⊑ r−

4. if I |= r ⊑ s andI |= f(s), thenI |= f(r)

Proof.

14 CHAPTER 4. NORMALIZATION AND COMPLETION RULES

1. I |= r− ⊑ s−

if and only if by definition(r−)I ⊆ (s−)
I

if and only if by definition{(y, x) | (x, y) ∈ rI} ⊆ {(y, x) | (x, y) ∈ sI}
if and only if by properties of sets∀x∀y : (x, y) ∈ rI → (x, y) ∈ sI

if and only if by properties of sets and definitionrI ⊆ sI

if and only if by properties of sets and definitionI |= r ⊑ s

2. I |= r ⊑ s andI |= s ⊑ t
if and only if by definitionrI ⊆ sI andsI ⊆ tI

then by transitivity of the subset relationrI ⊆ tI

if and only if by definitionI |= r ⊑ t

3. I |= r− ◦ r− ⊑ r−

if and only if by definition(r−)I ◦ (r−)
I
⊆ (r−)

I

if and only if by definition{(z, y) | (y, z) ∈ rI}◦{(y, x) | (x, y) ∈ rI} ⊆ {(z, x) | (x, z) ∈ rI}
if and only if by properties of sets∀x∀y∀z : (y, z) ∈ rI ∧ (x, y) ∈ rI → (x, z) ∈ rI

if and only if by properties of sets{(x, y) | (x, y) ∈ rI}◦{(y, z) | (y, z) ∈ rI} ⊆ {(x, z) | (x, z) ∈ rI}
if and only if I |= r ◦ r ⊑ r

4. I |= r ⊑ s andI |= f(s)
if and only if by definitionrI ⊆ sI and∀d ∈ ∆I :| {(d, e) ∈ sI} |≤ 1
then{(d, e) ∈ rI} ⊆ {(d, e) ∈ sI} and∀d ∈ ∆I : | {(d, e) ∈ sI} |≤ 1
then∀d ∈ ∆I : | {(d, e) ∈ rI} |≤ 1
if and only if by definitionI |= f(r)

After applying the saturation rules exhaustively, some role names are equivalent to the inverse of
other role names. The following step is to add fresh auxiliary role names that represent the inverse
roles for those roles not having them.

The last step in this normalization process is to choose for every roler a unique roles such that
r− ⊑ s ∈ T , s− ⊑ r ∈ T , to add two axioms toT : r− = s ands− = r, and to replace any other
occurrence ofr− by s and any other occurrence ofs− by r.

In the following, the setsNR andNC will refer respectively to the sets of role names and concept
names after the normalization process. We will use the notationr− to refer to the roles such that
r− = s ∈ T . In addition, we have the following property:T |= r ⊑ s if and only if r ⊑ s ∈ T ,
wherer, s are role names.

Finally, we are in condition to prove Theorem 7.

Theorem 7. The normalization process is sound and complete, and terminates in polynomial time.

Proof. Soundness and completeness are direct consequences of Lemma 5.
For showing termination in polynomial time, without loss of generality we assume that NR-7

and NR-8 have been exhaustively applied. This can be applied at most once for each axiom. After
this, the TBox is in the conditions of [Suntisrivaraporn(2009)], which is proved to be terminating in
polynomial time.

4.4. COMPLETION RULES 15

4.4 Completion rules

Once the TBox is normalized and saturated, the following phase is the application of the completion
rules. The completion rules are based on [Vu(2008)]. We first present the sets that remain constant.1

• Ξ := {∃r.A | r ∈ NR, A ∈ NC}

• Ω := {(A,ψ) | A ∈ NC, ψ ⊆ Ξ}

Based on the sets above, we define the sets that will be modified during the successive application
of the completion rules:

• V ⊆ Ω

• S ⊆ {(x,A) | x ∈ Ω, A ∈ NC}

• R ⊆ {(r, x, y) | r ∈ NR, x, y ∈ Ω}

The elements in setS are calledS-entries, the elements in setR are calledR-entries, the elements
in V are referred asnodes.

By construction,Ξ andΩ are finite sets, and thereforeV , S, andR are bounded. This observation
is relevant, since the completion rules saturateV , S, andR, and the fact that they are bounded is used
to show termination.

The completion process should satisfy the following invariants:

• if ((A,ϕ), C) ∈ S, then(A ⊓
d

E∈ϕ

E) ⊑T C

• if (r, (A,ϕ), (B,ψ)) ∈ R, then(A ⊓
d

E∈ϕ

E) ⊑T ∃r.(B ⊓
d

E∈ψ

E)

where eachE is of the form∃r.X.
In addition, we have thatA ⊑T B if and only if ((A, ∅), B) ∈ S.

4.4.1 Start conditions

The algorithm starts with the following conditions:

• S := {((A, ∅), A) | A ∈ NC} ∪ {((A, ∅),⊤) | A ∈ NC}

• R := ∅

4.4.2 Original completion rules

In Table 4.5, we present the original completion rules given by [Vu(2008)]. They preserve the same
numbering, although here the rules have an “O” as prefix, to distinguish them from those used in
this thesis. There is no OCR-3 since it was removed in the original. There is a small change in the
notation, likeA ∈ S(x) is denoted by(x,A) ∈ S and(x, r, y) ∈ E is denoted by(r, x, y) ∈ R, and
variable name substitutions.2

As an abbreviation,f(r) means that there exists an axiom inT stating thatr is functional.

1There is a small difference in setΞ with respect to [Vu(2008)], since here we only use role names and notinverse role
names. This is not a problem, since every role name has an assigned inverse role name.

2Rule OCR-6 had an omission, Rule OCFR-1 had a typo and an omission, andRule OCFR-3 had an extra term
in [Vu(2008)]. All these issues have been corrected.

16 CHAPTER 4. NORMALIZATION AND COMPLETION RULES

4.4.3 Optimized completion rules

The optimized completion rules are presented in Table 4.6. The underlined elements are membership
checks forS andR. These conditions have special relevance in Chapter 5 where the algorithm is
discussed. In the algorithm these conditions are considered the triggers toactivate each rule. Since
every applied rule modifiesS orR, this automatically triggers the following rules.

We say that a completion rule issensitiveto changes in a set, when a rule checks in that set in the
condition of application. For example, in Table 4.6, CR-1 is sensitive to changes inS only, CR-7 is
sensitive to changes inR only, and CR-4 is sensitive to changes inS andR.

As a consequence of the normalized form presented in this thesis, CR-2 allows having several
conjuncts on the left-hand side of the inclusion (GCI-1). This simple optimizationreduces the number
of auxiliary symbols.

A small change is that OCFR-1 has been numbered as rule CR-3, and the variable matchings for
y = (B, ∅) andz = (⊤, {∃r−.A}) have been replaced by assignments. In CR-9, a condition ofy 6= z
has been added.

In Lemma 8 we prove that the rules in Table 4.6 are equivalent to the rules in Table 4.5.

Lemma 8. The completion rules in Table 4.6 produce the same results as the completion rules in
Table 4.5.

Proof. This is proved showing that for each rule in Table 4.5 there is exactly one rule in Table 4.6
producing the same result, and there are no more rules. The rules OCR-n are mapped to CR-n.
OCFR-1 is mapped to CR-3, OCFR-2 is mapped to CR-8, and OCFR-3 is mappedto CR-9. There are
changes factorizing theif in CR-6, CR-7 and CR-9:

if A
thenB;D
elseC;D

is rewritten as

if A
thenB
elseC
D

CR-2 follows the normalization conditions proved in Theorem 7. CR-3 forces the instantiation
for y and forv (z in OCR-3) instead of testing possible values. CR-9 checks fory 6= z to avoid the
unnecessary execution wheny = z.

The intuition behind the set of completion rules shown in Table 4.6 is explained below.

4.4.4 Observations

The notationr− occurring in the GCIs in the rules is an abbreviation, since the elements inT do
not have inverse roles in the GCIs. For example,∃r−.A ⊑ B ∈ T is in fact a notation to say
∃r′.A ⊑ B ∈ T , r− = r′ ∈ T .

As mentioned above, the rules have underlined terms according to what changes inS andR can
be relevant to the conditions of application.

Although CR-2 is affected by many changes inS, only one case is considered. This is due to the
fact that the other cases are symmetric, and the rule is triggered anyway.

CR-5 combines transitive roles with role hierarchies. Both(r1, x, y) ∈ R and(r2, y, z) ∈ R need
to be considered, since both changes toR are not symmetric.

4.4. COMPLETION RULES 17

CR-6 “branches” an edge(r, x, y) to include a new edge(r, x, v) if this edge is new in the graph.
CR-7 is very similar to CR-6, but combines the use of transitive roles and rolehierarchies.

CR-8 is similar to CR-4, although the existential restriction is on right-hand side of the inclusion,
using an inverse role. Roles has to be functional, and thereforer1 andr2.

CR-9 is given to support the combination of role hierarchies and functional roles. Although two
possible changes toR can trigger the rule, only one is considered since the other one is symmetric.

The completion rules do not define any order of application. This is discussed in Chapter 5.

18 CHAPTER 4. NORMALIZATION AND COMPLETION RULES

OCR-1 if A ⊑ B ∈ T , (x,A) ∈ S
then S := S ∪ {(x,B)}

OCR-2 if A1 ⊓A2 ⊑ B ∈ T , (x,A1) ∈ S, (x,A2) ∈ S
then S := S ∪ {(x,B)}

OCR-4 if ∃s.B ⊑ A ∈ T , (r, x, y) ∈ R, (y,B) ∈ S, r ⊑T s
then S := S ∪ {(x,A)}

OCR-5 if s ◦ s ⊑ s ∈ T , (r1, x, y) ∈ R, (r2, y, z) ∈ R, r1 ⊑T s, r2 ⊑T s
then R := R ∪ {(s, x, z)}

OCR-6 if ∃s−.A ⊑ B ∈ T , r ⊑T s, (r, x, y) ∈ R, (x,A) ∈ S, (y,B) /∈ S, y = (B′, ψ)
then v := (B′, ψ ∪ {∃r−.A})

if v /∈ V then V := V ∪ {v}, S := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v,B)}
else S := S ∪ {(v,B)}
R := R ∪ {(r, x, v)}

OCR-7 if ∃s−.A ⊑ B ∈ T , (r2, x, y) ∈ R, x = (A′, ϕ), y = (B′, ψ),
r ◦ r ⊑ r ∈ T , r1 ⊑T r, r2 ⊑T r, ∃r−1 .A ∈ ϕ, r ⊑T s

then v := (B′, ψ ∪ {∃r−.A})
if v /∈ V then V := V ∪ {v}, S := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v,B)}
else S := S ∪ {(v,B)}
R := R ∪ {(r2, x, v)}

OCFR-1 if A ⊑ ∃r.B ∈ T , (x,A) ∈ S, y = (B, ∅), z = (⊤, {∃r−.A})
then if f(r)

then R := R ∪ {(r, x, z)}, S := S ∪ {(z,B)} ∪ {(z,⊤)}
else R := R ∪ {(r, x, y)}

OCFR-2 if B ⊑ ∃r−2 .A ∈ T , (r1, x, y) ∈ R, (y,B) ∈ S,
r1 ⊑T s, r2 ⊑T s, f(s−)

then S := S ∪ {(x,A)}

OCFR-3 if (r1, x, y) ∈ R, (r2, x, z) ∈ R, r1 ⊑T s,
r2 ⊑T s, y = (⊤, ψ), z = (⊤, ϕ), f(s)

then v := (⊤, ψ ∪ ϕ)
if v /∈ V then V := V ∪ {v}, S := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v, k) | (z, k) ∈ S}
else S := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v, k) | (z, k) ∈ S}
R := R ∪ {(r1, x, v)}

Table 4.5: Original completion rules forELHIfR+ in [Vu(2008)].

4.4. COMPLETION RULES 19

CR-1 if A ⊑ B ∈ T , (x,A) ∈ S

then S := S ∪ {(x,B)}

CR-2 if A1 ⊓ . . . ⊓Ai ⊓ . . . ⊓An ⊑ B ∈ T ,
(x,A1) ∈ S, . . ., (x,Ai) ∈ S, . . ., (x,An) ∈ S

then S := S ∪ {(x,B)}

CR-3 if A ⊑ ∃r.B ∈ T , (x,A) ∈ S

then if f(r)
then v := (⊤, {∃r−.A})

if v /∈ V then V := V ∪ {v}
S := S ∪ {(v,B)} ∪ {(v,⊤)}
R := R ∪ {(r, x, v)}

else y := (B, ∅)
R := R ∪ {(r, x, y)}

CR-4 if ∃s.A ⊑ B ∈ T , (r, x, y) ∈ R, (y,A) ∈ S, r ⊑T s

then S := S ∪ {(x,B)}

CR-5 if s ◦ s ⊑ s ∈ T , (r1, x, y) ∈ R, (r2, y, z) ∈ R, r1 ⊑T s, r2 ⊑T s

then R := R ∪ {(s, x, z)}

CR-6 if ∃s−.A ⊑ B ∈ T , r ⊑T s, (r, x, y) ∈ R, (x,A) ∈ S, (y,B) /∈ S, y = (B′, ψ)

then v := (B′, ψ ∪ {∃r−.A})
if v /∈ V then V := V ∪ {v}, S := S ∪ {(v, k) | (y, k) ∈ S}
S := S ∪ {(v,B)}
R := R ∪ {(r, x, v)}

CR-7 if ∃s−.A ⊑ B ∈ T , (r2, x, y) ∈ R, x = (A′, ϕ), y = (B′, ψ),
r ◦ r ⊑ r ∈ T , r1 ⊑T r, r2 ⊑T r, ∃r−1 .A ∈ ϕ, r ⊑T s

then v := (B′, ψ ∪ {∃r−.A})
if v /∈ V then V := V ∪ {v}, S := S ∪ {(v, k) | (y, k) ∈ S}
S := S ∪ {(v,B)}
R := R ∪ {(r2, x, v)}

CR-8 if A ⊑ ∃r−2 .B ∈ T , (r1, x, y) ∈ R, (y,A) ∈ S,
r1 ⊑T s, r2 ⊑T s, f(s−)

then S := S ∪ {(x,B)}

CR-9 if (r1, x, y) ∈ R, (r2, x, z) ∈ R, r1 ⊑T s,
r2 ⊑T s, y = (⊤, ψ), z = (⊤, ϕ), y 6= z, f(s)

then v := (⊤, ψ ∪ ϕ)
if v /∈ V then V := V ∪ {v}
S := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v, k) | (z, k) ∈ S}
R := R ∪ {(r1, x, v)}

Table 4.6: Optimized completion rules forELHIfR+ .

20

Chapter 5

Algorithm

In this chapter, we describe an algorithm for deciding standard description logic inference problems.
Since satisfiability can be reduced to subsumption and subsumption is itself a sub-problem of classifi-
cation, it suffices to have a classification algorithm. In Chapter 4, it is presented a set of rules that can
classify anELHIfR+ TBox. This means that, given a TBox, the subsumption relations between all
pairs of concept names become explicit.

An algorithm that classifies the TBox applying these rules could be expensive in time if it is
performed by a systematic search. It is also expensive in space if it usesthe structures directly as
they are described. These two considerations motivate creating an algorithm where these aspects are
explicitly managed. We obtained this algorithm by taking achange propagationapproach.

5.1 General description

The input of the algorithm is a normalized TBox containing axioms as describedin Table 4.1. The
output is a setS, calledset of subsumptions, such that for each pair of concept namesA, B in T :
(A,B) ∈ S if and only if T |= A ⊑ B.

The algorithm itself has different components. In Figure 5.1 we can observe how these compo-
nents are interconnected.S andR correspond to the sets described in Chapter 4. We can also see the
completion rules, named as CR, which are grouped in two “chains”. The “processor”, the “duplicates
checker” and the “start”, are just three different parts of one single unit that processes the entries. The
arrows indicate how the data flows, i.e. howS-entries andR-entries and sent from one component to
the other one. A dashed line indicates that the duplicates checker usesS orR before sending an entry
to the following component.

There are components of two kinds: those which processS-entries (having anS between paren-
theses), and those which processR-entries (having anR between parentheses). Every rule in any of
both groups takes an entry and after applying the operations returns a listof new entries. These entries
can be eitherS-entries orR-entries. They are suggestions of changes inS (for theS-entries) or inR
(for theR-entries).

A chain as described in the diagram is a chain of rules. Every entry is applied to all the rules.
The result is the union of the sets resulting of the application of the individualrules. The resulting set
containsS-entries andR-entries to update setS and setR. If these entries have never been applied,
which is checked by the “duplicates checker”, they are added to setQ to be taken by the processor,
otherwise they are ignored. Thus,Q is a set of proposed changes.

21

22 CHAPTER 5. ALGORITHM

R chain

S chain

CR-1 (S)

CR-2 (S)

CR-8 (S)

. . .

S entry

S entry

R entry

CR-4 (R)

CR-5 (R)

CR-9 (R)

. . .

R entry

S entry

R entry

R

duplicates checker

duplicates checker

S

R entry

S entry

Q processorstart

Figure 5.1: Diagram showing the dynamics of the components.

The processor takes entries fromQ, changes setS andR, and informs of these changes to the
corresponding chain of rules. This procedure is repeated untilQ is empty.

The algorithm start condition is slightly modified to includeQ as follows:

• S := ∅

• R := ∅

• Q := {((A, ∅), A) | A ∈ NC} ∪ {((A, ∅),⊤) | A ∈ NC}

In order to get the appropriate axioms, the TBox, seen as a set of axioms,is stored in multiple
maps. Each map has a key and a value, where the value is an axiom. These maps are accessed by
functions. For example, the functionsgetGCI0(A), getGCI1(A), andgetGCI2(A) return all the GCIs
of type GCI-0, GCI-1 and GCI-2 respectively, whereA occurs on the left-hand side. These types are
defined in Table 4.1. A full list of the ontology functions is shown in Table 5.1.

The completion rules feedQwith new instances to apply the next rule. Since trying all possibilities
is extremely costly, these rules are triggered whenever a relevant structure is changed. This property is

5.1. GENERAL DESCRIPTION 23

getGCI0(A) := {k ∈ T | k = A ⊑ B}
getGCI1(A) := {k ∈ T | k = A1 ⊓ . . . ⊓Ai ⊓ . . . ⊓An ⊑ B,Ai = A}
getGCI2(A) := {k ∈ T | k = A ⊑ ∃r.B}
getGCI3A(A) := {k ∈ T | k = ∃r.A ⊑ B}
getGCI3r(r) := {k ∈ T | k = ∃r.A ⊑ B}
getGCI3rA(r, A) := {k ∈ T | k = ∃r.A ⊑ B}
getSubRoles(s) := {r ∈ NR | r ⊑ s ∈ T }
getSuperRoles(r) := {s ∈ NR | r ⊑ s ∈ T }
getRolesFunAncestor(r1) := {r2 ∈ NR | ∃s ∈ NR : f(s) ∈ T ∧ r1 ⊑ s ∈ T , r2 ⊑ s ∈ T }
getSubsumers(x) := {A ∈ NC | (x,A) ∈ S}
getSecondByFirst(r, x) := {y ∈ V | (r, x, y) ∈ R}
getFirstBySecond(r, y) := {x ∈ V | (r, x, y) ∈ R}
getRelationsByFirst(x) := {r ∈ NR | ∃y ∈ V : (r, x, y) ∈ R}
getRelationsBySecond(y) := {r ∈ NR | ∃y ∈ V : (r, x, y) ∈ R}

isFunctional(r) :=

{

true if f(r) ∈ T
false otherwise

isTransitive(r) :=

{

true if r ◦ r ⊑ r ∈ T
false otherwise

Table 5.1: Ontology and status functions.

called thechange propagation. Each rule suggests the modification of at least one of these structures,
producing that new rules can be applied using the new status of the structures. The algorithm is based
on a distributed execution of completion rules, where each completion rule is executed in a similar
fashion.

A conceptual scheme of the algorithm is presented in Table 5.2.

1. S,R,Q := ∅
2. for eachconcept nameA, add((A, ∅), A) and((A, ∅),⊤) toQ
3. while Q 6= ∅
4. take one elemente in Q and remove it fromQ
5. if e is anS-entry
6. letQ′ be the result of applying all theS-rules toe
7. else ife is anR-entry
8. letQ′ be the result of applying all theR-rules toe
9. elseQ′ := ∅

10. Q := Q ∪ ((Q′ \ S) \ R)

Table 5.2: General algorithm.

24 CHAPTER 5. ALGORITHM

5.2 Completion rules

The rule descriptions in Table 4.6 do not have a condition to avoid repetition in their specification.
This is managed by taking produced values as “suggestions”, requiring an extra step of membership
check to avoid repetition.

Every completion rule is sensitive to changes inS or sensitive to changes inR. In order to
ensure the correctness of the algorithm, every completion rule must propose all the possible changes
according to the given piece of information. Moreover, completion rules sensitive to both sets must
be subdivided into two different completion rules: one sensitive toS and one sensitive toR. To see
how this works, let us take CR-4 as an example. This is shown in Table 5.3.

CR-4 if ∃s.A ⊑ B ∈ T , (r, x, y) ∈ R, (y,A) ∈ S, r ⊑T s

then S := S ∪ {(x,B)}

Table 5.3: Completion rule CR-4.

Looking at the underlined terms, we know that this rule is sensitive to the changes in both sets,S
andR. The algorithm is then designed having two parts, one sensitive toS and one sensitive toR.
They are called CR-4-S and CR-4-R respectively.

Please notice that the order of getting the different values can lead to faster or slower algorithms.
In fact, some order can be better for some ontologies, and worse for others. Although GALEN was
used to approximate the best order in the rules, there might be a better order, and this future work is
discussed in Chapter 7.

Looking at CR-4-S, we have that(y,A) ∈ S. This means that we knowy andA. The purpose
is to getx andB. To getr we try all the role names such that there is a triplet inR with y as
second component, usinggetRelationsBySecond(y). We find all s that are super roles ofr using
getSuperRoles(r).

We can usegetGCI3rA(s,A) to get the axiom∃s.A ⊑ B. Finally, we getx for each triplet
(r, x, y) ∈ R usinggetFirstBySecond(r, y), and suggest the addition of(x,B) to S.

The set of known variables goes like this:

{A, y}
getRelationsBySecond(y)

−→∗ {A, r, y}
getSuperRoles(r)

−→∗ {A, r, s, y}
getGCI3rA(s,A)

−→∗ {A,BBB, r, s, y}

getFirstBySecond(r,y)
−→∗ {A,BBB, r, s,xxx, y}

In this transition diagram, the bold letters correspond to the required variables.
This process, written with sets of new elements, is:

{A, y}
getRelationsBySecond(y)

−→∗ {r}
getSuperRoles(r)

−→∗ {s}
getGCI3rA(s,A)

−→∗ {BBB}
getFirstBySecond(r,y)

−→∗ {xxx}

5.2. COMPLETION RULES 25

In the case of CR-4-R, the provided entry is(r, x, y) ∈ R. In this case, we knowr, x andy and
we need to findB. We usegetSubsumers(y) to getA. We find alls that are super roles ofr using
getSuperRoles(r). Then, usinggetGCI3rA(s,A) we get∃s.A ⊑ B. Finally we suggest the addition
of (x,B) to S.

{r,xxx, y}
getSubsumers(y)

−→∗ {A}
getSuperRoles(r)

−→∗ {s}
getGCI3rA(s,A)

−→∗ {BBB}

The other rules follow the same idea. Given the information of a new tuple in the sets, each rule
computes the remaining variables to trigger the rule itself.

The functionaddToV(x) is the only function that modifies the status from inside the rule. All the
other modifications are postponed to be processed later on. The applicationof addToV does not alter
the other rules since only adds fresh elements that are not connected to any other one. The relations
in S andR are processed together with the other elements.

The look-up process presented in Table 5.4 is a guide to design the algorithmof each rule.

CR-1 {A,xxx}
getGCI0(A)
−→∗ {BBB}

CR-2 {Ai,xxx}
getGCI1(Ai)

−→∗ {A1, . . . , An,BBB}

CR-3 {A,xxx}
getGCI2(A)
−→∗ {BBB,rrr} −→ {vvv,yyy}

CR-4-S {A, y}
getRelationsBySecond(y)

−→∗ {r}
getSuperRoles(r)

−→∗ {s}
getGCI3rA(s,A)

−→∗ {BBB}
getFirstBySecond(r,y)

−→∗ {xxx}

CR-4-R {r,xxx, y}
getSubsumers(y)

−→∗ {A}
getSuperRoles(r)

−→∗ {s}
getGCI3rA(s,A)

−→∗ {BBB}

CR-5-R-1 {r1,xxx, y}
getSuperRoles(r1)

−→∗ {sss}
getSubRoles(s)

−→∗ {r2}
getSecondByFirst(r2,y)

−→∗ {zzz}

CR-5-R-2 {r2, y, zzz}
getSuperRoles(r2)

−→∗ {sss}
getSubRoles(s)

−→∗ {r1}
getFirstBySecond(r1,y)

−→∗ {xxx}

CR-6-S {A,xxx}
getGCI3A(A)

−→∗ {BBB, s}
getSubRoles(s)

−→∗ {rrr}
getSecondByFirst(r,x)

−→∗ {yyy} −→ {B′, ψ} −→ {vvv}

CR-6-R {rrr,xxx,yyy} −→ {B′, ψ}
getSubsumers(x)

−→∗ {A}
getSuperRoles(r)

−→∗ {s}
getGCI3rA(s−,A)

−→∗ {BBB} −→ {vvv}

CR-7 {r2r2r2,xxx,yyy}
getSuperRoles(r2)

−→∗ {r}
getSuperRoles(r)

−→∗ {s} −→ {A′, B′, ϕ, ψ}
getGCI3r(s−)

−→∗ {AAA,BBB}
getSubRoles(r)

−→∗ {r1} −→ {vvv}

CR-8-S {A, y}
getGCI2(A)
−→∗ {BBB, r2}

getSuperRoles(r2)
−→∗ {s}

getSubRoles(s)
−→∗ {r1}

getFirstBySecond(r1,y)
−→∗ {xxx}

CR-8-R {r1,xxx, y}
getSuperRoles(r1)

−→∗ {s}
getSubsumers(y)

−→∗ {A}
getGCI2(A)
−→∗ {BBB, s}

CR-9 {r1r1r1,xxx,yyy}
getSuperRoles(r1)

−→∗ {s}
getSubRoles(s)

−→∗ {r2} −→ {ψ}
getSecondByFirst(r2,x)

−→∗ {zzz} −→ {vvv, ϕ}

Table 5.4: Variable look-up process.

The general way of producing the algorithms consists of replacing the−→∗ by loops (for each)
trying the valid combinations, and placing theif to verify the conditions.

The result of the application is a set of tuples (S-entries andR-entries) to be processed afterwards.
The rules can also modify setV , but the entries related to the new members ofV are processed
together with the other entries.

Table 5.5, Table 5.6 and Table 5.7 have all the algorithms according to what is described above.
In the pseudocode we use a notation of pattern matching when getting the components of a complex

26 CHAPTER 5. ALGORITHM

data structure. For example, the notationk := A ⊑ B means to create a new axiom usingA andB,
and assigning this axiom tok. Whereas,k = A ⊑ B means to assign values toA andB such that for
a given axiomk, the equality holds. The functiononeElemOf(Q) returns one element of a non-empty
setQ.

5.3 Correctness and Complexity

Correctness and complexity are shown below.

Theorem 9. The algorithm in Table 5.2 is correct.

Proof. To be correct, the algorithm needs to produce all the entries required by the completion rules,
it needs to execute all the completion rules fairly, and it needs to terminate.

To prove that all the required entries are produced, we can observe that each completion rule
considers the given entry and completes all the remaining variables in orderto be in conditions of
application. In this way, no possible combination of values is left apart.

To prove that all rules are applied fairly, we can observe that all the rules are applied for each
given entry, thanks to the chain construction.

To prove that the algorithm terminates, it is enough to observe that the duplicates checker prevents
the execution of an entry twice, saturating bounded sets.

By Lemma 8, the algorithm can use the rules in Table 4.6 producing the same result as in Table 4.5,
which are proved to be correct.

Theorem 10. For a normalizedELHIfR+ general TBoxT , the algorithm runs in exponential time.

Proof. The proof in [Vu(2008)] is based on the supporting sets of the algorithm:V , S, andR, finding
a bound for their complete saturation. In this thesis, we use the same supporting sets, and the bound
is the same.

5.4 Direct subsumers

Once the completion rules cannot be applied anymore, the auxiliary symbols are removed. The fol-
lowing step is to compute the direct subsumers. For doing that, we present analgorithm based on the
enhanced traversal method in [Suntisrivaraporn(2009)]. The algorithm is shown in Table 5.8.

The intuition of the algorithm is to traverse a graph in levels, whereTOP is the only element in
level 0 and it is the starting node. The algorithm starts in level 0 and computes the direct subsumees
of TOP. The direct subsumees ofTOP are those having only elements in level 0 (TOP) as a subsumer.
Once it gets the direct subsumees ofTOP, it marks them as belonging to level 1. Then, it computes
the direct subsumees of every element in level 1. They are those having only subsumers of level 1
and level 0. In this way the algorithm detects the elements of level 2, and then continues with the
remaining levels until it marks all the nodes in the graph.

These subsumees are namedchildren, and theparentsare obtained by reversing the edges. During
the process, theequivalentsare obtained by detecting mutual subsumption.

5.4. DIRECT SUBSUMERS 27

proceduremain()
S := ∅
R := ∅
Q := ∅
for eachA ∈ NC

Q := Q ∪ {((A, ∅), A)} ∪ {((A, ∅),⊤)}
while Q 6= ∅
e := oneElemOf(Q)
Q := (Q \ {e}) ∪ apply(e)

function apply(e) → ret
ret := ∅
if e = (x,A)
S := S ∪ {(x,A)}
ret := chainS(x,A)

if e = (r, x, y)
R := R ∪ {(r, x, y)}
ret := chainR(r, x, y)

ret := (ret \ S) \ R

function chainS(x,A) → ret
ret := CR-1(x,A) ∪ CR-2(x,A)

∪ CR-3(x,A) ∪ CR-4-S(x,A)
∪ CR-6-S(x,A) ∪ CR-8-S(x,A)

function chainR(r, x, y) → ret
ret := CR-4-R(r, x, y)

∪ CR-5-R-1(r, x, y) ∪ CR-5-R-2(r, x, y)
∪ CR-6-R(r, x, y) ∪ CR-7(r, x, y)
∪ CR-8-R(r, x, y) ∪ CR-9(r, x, y)

function CR-1(x,A) → ret
ret := ∅
for eachk ∈ getGCI0(A)
k = A ⊑ B
ret := ret∪ {(x,B)}

function CR-2(x,A) → ret
ret := ∅
for eachk ∈ getGCI1(A)
k = A1 ⊓ . . . ⊓A ⊓ . . . ⊓An ⊑ B
if {(x,A1), . . . , (x,An)} ⊆ S

ret := ret∪ {(x,B)}

function CR-3(x,A) → ret
ret := ∅
for eachk ∈ getGCI2(A)
k = A ⊑ ∃r.B
if isFunctional(r)
v := (⊤, {∃r−.A})
if v /∈ V
addToV(v)

ret := ret∪ {(v,B)}
ret := ret∪ {(v,⊤)}
ret := ret∪ {(r, x, v)}

else
y := (B, ∅)
ret := ret∪ {(r, x, y)}

Table 5.5: Algorithm (Table 1 / 3).

28 CHAPTER 5. ALGORITHM

function CR-4-S(y,A) → ret
ret := ∅
for each r ∈ getRelationsBySecond(y)

for eachs ∈ getSuperRoles(r)
for eachk ∈ getGCI3rA(s,A)
k = ∃s.A ⊑ B
for eachx ∈ getFirstBySecond(r, y)

ret := ret∪ {(x,B)}

function CR-4-R(r, x, y) → ret
ret := ∅
for eachA ∈ getSubsumers(y)

for eachs ∈ getSuperRoles(r)
for eachk ∈ getGCI3rA(s,A)
k = ∃s.A ⊑ B
ret := ret∪ {(x,B)}

function CR-5-R-1(r1, x, y) → ret
ret := ∅
for eachs ∈ getSuperRoles(r1)

if isTransitive(s)
for each r2 ∈ getSubRoles(s)

for eachz ∈ getSecondByFirst(r2, y)
ret := ret∪ {(s, x, z)}

function CR-5-R-2(r2, y, z) → ret
ret := ∅
for eachs ∈ getSuperRoles(r2)

if isTransitive(s)
for each r1 ∈ getSubRoles(s)

for eachx ∈ getFirstBySecond(r1, y)
ret := ret∪ {(s, x, z)}

function CR-6-S(x,A) → ret
ret := ∅
for eachk ∈ getGCI3A(A)
k = ∃s−.A ⊑ B
for each r ∈ getSubRoles(s)

for eachy ∈ getSecondByFirst(r, x)
if B /∈ getSubsumers(y)
y = (B′, ψ)
v := (B′, ψ ∪ {∃r−.A})
if v /∈ V
addToV(v)
for eachp ∈ getSubsumers(y)

ret := ret∪ {(v, p)}
ret := ret∪ {(v,B)}
ret := ret∪ {(r, x, v)}

function CR-6-R(r, x, y) → ret
ret := ∅
for eachA ∈ getSubsumers(x)

for eachs ∈ getSuperRoles(r)
for eachk ∈ getGCI3rA(s−, A)
k = ∃s−.A ⊑ B
if B /∈ getSubsumers(y)
y = (B′, ψ)
v := (B′, ψ ∪ {∃r−.A})
if v /∈ V
addToV(v)
for eachp ∈ getSubsumers(y)

ret := ret∪ {(v, p)}
ret := ret∪ {(v,B)}
ret := ret∪ {(r, x, v)}

Table 5.6: Algorithm (Table 2 / 3).

5.4. DIRECT SUBSUMERS 29

function CR-8-S(y,A) → ret
ret := ∅
for eachk ∈ getGCI2(A)
k = A ⊑ ∃r−2 .B
for eachs ∈ getSuperRoles(r2)

if isFunctional(s−)
for each r1 ∈ getSubRoles(s)

for eachx ∈ getFirstBySecond(r1, y)
ret := ret∪ {(x,B)}

function CR-8-R(r1, x, y) → ret
ret := ∅
for eachs ∈ getSuperRoles(r1)

if isFunctional(s−)
for eachA ∈ getSubsumers(y)

for eachk ∈ getGCI2(A)
k = A ⊑ ∃r−2 .B
if r2 ∈ getSubRoles(s)

ret := ret∪ {(x,B)}

function CR-7(r2, x, y) → ret
ret := ∅
x = (A′, ϕ)
y = (B′, ψ)
for each r ∈ getSuperRoles(r2)

if isTransitive(r)
for eachs ∈ getSuperRoles(r)

for eachk ∈ getGCI3r(s−)
k = ∃s−.A ⊑ B
for each r1 ∈ getSubRoles(r)

if ∃r−1 .A ∈ ϕ
v := (B′, ψ ∪ {∃r−.A})
if v /∈ V
addToV(v)
for eachp ∈ getSubsumers(y)

ret := ret∪ {(v, p)}
ret := ret∪ {(v,B)}
ret := ret∪ {(r2, x, v)}

function CR-9(r1, x, y) → ret
ret := ∅
if y = (⊤, ψ)

for each r2 ∈ getRolesFunAncestor(r1)
for eachz ∈ getSecondByFirst(r2, x)

if z = (⊤, ϕ)
if y 6= z
v := (⊤, ψ ∪ ϕ)
if v /∈ V
addToV(v)

for eachp ∈ getSubsumers(y)
ret := ret∪ {(v, p)}

for eachp ∈ getSubsumers(z)
ret := ret∪ {(v, p)}

ret := ret∪ {(r1, x, v)}

Table 5.7: Algorithm (Table 3 / 3).

30 CHAPTER 5. ALGORITHM

procedure computeDag

classified:= classified∪ (⊤)
for eachA ∈ NC

if (A /∈ classified)
dagClassify(A)

for eachA ∈ NC

if children(A) = ∅
children(A) := {⊥}

proceduredagClassify(A)
candidates:= {}
for eachB ∈ NC,B 6= A,B 6= ⊤, ((A, ∅), B) ∈ S

if ((B, ∅), A) ∈ S
classified:= classified∪ {B}
equivalents:= equivalents∪ {(A,B)}

else
if B /∈ classified
dagClassify(B)

candidates:= candidates∪ {B}
dagInsert(A, candidates)
classified:= classified∪ {A}

proceduredagInsert(A, candidates)
marked:= ∅
for eachX ∈ NC,B ∈ candidates

if (B,X) ∈ parents
marked:= marked∪ {X}

parents:= parents∪ {(A,B) | B ∈ candidates, B /∈ marked}
for each (A,B) ∈ parents

children := children∪ {(B,A)}

Table 5.8: Algorithm for computing direct subsumers.

Chapter 6

Implementation and Experiments

In this chapter, we discuss the implementation of the algorithm presented in Chapter 5. The program
is calledjcel and its source code is available athttp://jcel.sourceforge.net. We also talk
about the experiments we conducted.

6.1 Implementation

The classification algorithm is implemented in Java, which is an object-oriented, platform-independent,
multithreaded programming environment. The object-oriented design of this algorithm brings a very
low coupling, since each rule can be changed separately. It also bringshigh cohesion because all the
logic of the completion rule is only in the rule itself.

It is implemented using 4 modules:

• jcel-core : it is the reasoner itself; it uses integer numbers in the internal representation for
concepts and roles, instead of special Java classes

• jcel-owlapi : transforms objects from the OWL API 3.2.2 to the internal representation used by
the core

• jcel-adapter : is an adapter from the OWL API 2.2.0 to the OWL API 3.2.2

• jcel-protege : is a module to usejcel as a Prot́eǵe plug-in, either with the OWL API 3.2.2 or
the OWL API 2.2.0

The interconnection of these modules is shown in Figure 6.1. The diagram shows how the problem
of compatibility with the OWL API 2.2.0 and the OWL API 3.2.2 is solved. The rectangles are the
modules or libraries, and each arrow indicates adependency, i.e. there is a class or interface in one
library (the arrow end) that is used by the other library (the arrow start).

6.2 Successful improvements

In this section we discuss successful improvements that played an importantrole in the implementa-
tion.

31

http://jcel.sourceforge.net

32 CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

jcel-protege

jcel-adapter jcel-owlapi

OWL API 2.2.0 OWL API 3.2.2 jcel-core

Figure 6.1: Use of modules in the implementation.

6.2.1 Use of collections

When we talk about the representation ofS, we often refer to it as a set. However, it is actually
implemented by a map of array lists. At an abstract level, these lists are seen ascollections, which do
not differ much from sets.

The sets in Java, for exampleHashSet or TreeSet, are implemented using extra information
to make efficient the membership test. This extra information, used in all the elements of S andR,
makes a very important use of memory. In addition, the Java structures require the use of classes (like
Integer), but the primitive type for integer numbers,int, is kept to make operations faster and
simpler.

Replacing these sets by arrays ofint of exponential growth in the internal representation ofS,
changed drastically the use of memory and therefore the use of the garbage collector and the total
execution time.

6.2.2 Use of two sets of entries

On the one hand, the algorithm presented by [Suntisrivaraporn(2009)] has a structure that is a list of
queues, having one queue for each concept name. On the other hand,in this thesis we talk about one
single setQ which has all the entries.

In the real implementation there are two sets, oneQS for S-entries and oneQR for R-entries.
These sets are processed in order to have a balanced size. Thus, the algorithm chooses the set with
more entries, and takes one entry from that set. In the tested ontologies this was faster than having
one single set, and faster than processing first one set and then the other one.

6.2.3 Individualized modification of rules

Since every rule is independent, we used a profiler to detect how much time they required. Following
the specification, we modified each rule to make it faster. Some of the successful changes were to
place theif instruction before thefor each instruction, and to get the axioms in the ontology before
taking the elements inS orR.

6.3. DISCARDED IMPLEMENTATIONS 33

6.2.4 Integers as identifiers

In the jcel-core module every identifier for concepts or roles is anInteger. The mapping is done
by the jcel-owlapi module. Storing integer numbers and comparing them became more efficient in
memory and time than usingString or other more complex structure. The clear disadvantage de-
rives from the fact of not having types for them. Thus, an extra care must be taken to avoid misplacing
the order of parameters in methods and constructors due to the absence ofdistinctive types.

6.3 Discarded implementations

During the development of the implementation, many different approaches were considered. The
main restriction was the memory. The system was developed using a 32-bit Java Virtual Machine.
The ontology used to test these approaches was SNOMED CT.

In this section, we discuss the different alternative implementations we tried and why we discarded
them.

6.3.1 Shared references

In order to save memory, the idea was to share references for sets that were equal. Java internally
works mainly with pointers to objects. If two sets are known to be equivalent, they can share the same
pointer. Instead of storing the set twice, only one instance is needed.

SetS is formed by sets of subsumers. Many elements may share the same set of subsumers. Some
of these sets can be considerably big. Taking this idea into account, the implementation had a set of
references. Using hash maps, having a set as key and a reference toitself as value, the system was
able to avoid duplication of sets.

The inconvenience of this approach, beyond the overhead of the look-up method for finding the
proper pointer, was to keep updated these sets. In the process of completing setS, two sets may be
the same, but differ afterwards. For example,

S = {(1, 3), (1, 4), (2, 3), (2, 4)}

In the representation,

S(1) = {3, 4}, S(2) = {3, 4}

so they can be

S(1) = ptr1, S(2) = ptr1, ptr1 = {3, 4}

but when adding{(2, 5)}, the pointers need to differ, in order to avoid adding{(1, 5)}.
The problem could be overcome by keeping the backlinks, this is, keeping the links to the keys

using these sets.
The final result considering time and memory was unfavorable, and therefore this approach was

discarded.

6.3.2 Binary compression

Trying to solve the problem of storing setS, a possible approach was to store the data using some
compression. SetS is actually a map, where the key is the subsumee and the value is the set of

34 CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

subsumers. Since eachInteger in Java (in 32-bit platform) uses 32 bits, and considering that the
identifiers were much less than224 = 16777216, the idea was to take advantage of the remaining
8 bits. Hence, 3 numbers, using 32 bits each, use 96 bits. Using the 24-bit approach, it is possible
to encode 4 numbers of 24 bits using 3 numbers of 32 bits. Although this gain seems to be small,
reducing the use of memory, let us say by20%, would have been enough to make the classification
process much faster.

In all these process of compression and decompression, a considerable time was needed. Hav-
ing the algorithm in mind, this decompression was needed for every time a check(x,A) ∈ S was
considered. The consumed time and the small gain of memory made us discard thisapproach.

6.3.3 List compression

A list compression algorithm was considered. With the following set:

S = {(1, 3), (1, 5), (1, 7)}

This set can be stored as

S(1) = {3, 5, 7}

whereS(x) refers to all the elementsy such that(x, y) ∈ S.
It is possible to store the elements in a list. Although lists could contain repeated elements, in the

algorithm there is a check of membership that avoids repetition. But, if we storea list and we consider
the differences (starting with 0), we have

S(1) = [+3,+2,+2]

Assuming that we have less than one million identifiers (in fact, less than220), the differences between
them during the execution may be smaller. Using 15 bits for the number and 1 bit for the sign, we can
store the numbers in 16 bits using their differences.

For example:

S(1) = [+3,+32000,−10000]

would be

S(1) = {3, 32003, 22003}

Considering the bits, the first representation can use 16-bit integers (withpositive and negative
values), while the second one uses 32-bit integers, with only non-negative numbers.

Since the list represents a set, there is no need to repeat any number. Then,0 can be used as escape
code, to force a 32-bit representation, without using the differences.Thus,

S(1) = {3, 720918}

would be

S(1) = [+3, 0, 11, 22]

because11 · 216 + 22 = 720918.

6.3. DISCARDED IMPLEMENTATIONS 35

Like in the case of the binary compression, this approach took too much execution time, and the
difference in the use of memory was negligible. For those reasons, we discarded this approach.

6.3.4 External storage

The 32-bit Java Virtual Machine has a limit of 2600 MB. Even if we considerthis as a big number,
storing numbers uses a big amount of memory. Even for less than one million concepts, the quadratic-
style approach of storingS needs an important amount of memory. However, this number is not that
big when using an external storage, for example, using files or local sockets.

Sockets opened locally can communicate very fast. However, their communication speed was not
fast enough. The big number of operations required for a classificationmade the transmitted amount
of data too much, and hence too slow. For the file, the access was too slow aswell. For these reasons,
these approaches were discarded.

6.3.5 Transitive data structure

The algorithm we use for classification works saturating two sets,S andR, using a set of entriesQ
while Q is not empty. SetS basically stores a transitive closure of a reachability graph, whereis
reachable frommeansis subsumer of. Having this idea in mind, we implemented a “slim” graph, a
graph where the transitivity is not explicit but implicit.

In this way,St = {(1, 2), (2, 3)} actually meansS = {(1, 2), (2, 3), (1, 3)}, whereSt is the
implicit representation. The algorithm works completingS in a progressive fashion, though. Thus, it
was needed to representS = {(1, 2), (2, 3)} without really representingS = {(1, 2), (2, 3), (1, 3)}.

For solving this, two possibilities were considered. One was to store “negative edges”. For exam-
ple,S = {(1, 2), (2, 3)} would be represented asSt = {(1, 2), (2, 3)} andSm = {(1, 3)}, whereSm
stores the negative edges. This approach needed an explicit representation ofSm bringing an almost
identical case as the initial one.

Another possibility was to process the different edges first. In this approach, the negative edges
were not really stored, but processed first to avoid the inconsistency.Unfortunately this approach did
not work either, since the temporary use of memory was too high.

The post processing was not skipped either because of the auxiliary entities. After the normal-
ization, a number of auxiliary entities are created, and become part of the graph structure. Removing
them without creating false direct subsumers was much slower than just running the standard algo-
rithm. For these reasons, we discarded this approach.

6.3.6 Horn-style completion

To determine which rules were consuming more execution time, a profiler was developed. This pro-
filer uses some execution time, and because of that, the total execution time is greater. In Table 6.1,
we can see a comparison of the consumed time in the execution, and how it was used. The rule that
consumed the most wasCR-2.

This characteristic gave us the idea of improvingCR-2, which is described in Table 6.2.
In Prolog, each rule has a counter of the number of satisfied preconditions. When this counter

reaches 0, the rule is triggered. Adapting an idea of how Prolog works, this rule would be triggered
only when all the conditions are satisfied. This means that a counter is kept, and every time it is
informed that(x,Ai) ∈ S for somex and someAi, the counter is decreased. Reaching zero means
that allA1 . . . An are satisfied and necessarilyS := S ∪ {(x,B)} is triggered.

36 CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

rule accepted suggested total time
CR-1 5461356 139813430 55121 ms
CR-2CR-2CR-2 2875912 139813430 149232 ms149232 ms149232 ms
CR-3 2803075 139813430 46201 ms
CR-4-S 15462923 139813430 74227 ms
CR-4-R 1102649 3226022 58358 ms

Table 6.1: Used times for each rule when classifying SNOMED CT.

CR-2 if A1 ⊓ . . . ⊓Ai ⊓ . . . ⊓An ⊑ B ∈ T , (x,A1) ∈ S, . . ., (x,Ai) ∈ S, . . ., (x,An) ∈ S

then S := S ∪ {(x,B)}

Table 6.2: Completion ruleCR-2.

The idea was implemented using the algorithm described in Table 6.3. In this algorithm we use
“maps”, which formally could be considered as set of pairsM , where for eachx (calledkey) there is
at most oney (calledvalue) such that(x, y) ∈ M . When there is no suchy, we say that the value is
undef. A map has the following function:

get(m,x) :=

{

y if (x, y) ∈ m
undef otherwise

In the algorithm,countersis a map of maps, where the key isx (the samex of CR-2). Each map
m has an axiom of type GCI 1 (which isA1 ⊓ . . . ⊓ An ⊑ B) as key, and the value is the number of
Ai that are already satisfied.

It is important to remark that in our experiments the maps were hash maps (HashMap), and every
axiom had an appropriate hash function, although not necessarily optimal.

The algorithm was tested with the Gene Ontology, since the use of memory was very important.
Using around the double of memory, and being slower, we discarded this implementation ofCR-2.
However, we consider that some extra experiments could be performed trying to reduce the used
memory, or improving the accessing time to the maps.

6.3.7 Multithreaded processing

The nature of having independent rules sparked the idea of a distributedexecution. Even for a short
time, and using some overhead, assuming the processing execution can be distributed in several cores,
most of the execution would be distributed and the total time would be smaller. This simple idea is
actually compatible with the model. To implement this idea, we needed a protocol to communicate the
threads themselves and a monitor to avoid inconsistencies. Java provides many high-level elements to
manage this in an elegant fashion.

The first approach was to follow exactly the dynamics shown in Figure 5.1. This means, for
each entry, eitherS-entry orR-entry, to branch the execution among the different completion rules.
Each completion rule would have an image of the status. Just when all the threads are finished,
the modifications to the status are performed. Considering the correctness,this is equivalent to the

6.4. IMPLEMENTATION QUALITY 37

function CR-2-Horn(x,A) → ret
ret := ∅
m := get(counters, x)
if m = undef
m := ∅
counters:= counters∪ {(x,m)}

for eachk ∈ getGCI1(A)
k = A1 ⊓ . . . ⊓An ⊑ B
c := get(m, k)
if c = undef
c := n

m := m \ {(k, c)}
c := c− 1
m := m ∪ {(k, c)}
if c = 0
ret := ret ∪ {(x,B)}
m := m \ {(k, c)}
if m = ∅

counters:= counters\ {(x,m)}

Table 6.3: Algorithm CR-2 using a Horn-style completion.

sequential processing. There is a small exception, and it is that some rulesmodify setV during their
execution. In the way the rules run, the new elements added toV do not interfere with other rules.

Despite of the fact that this model looked perfect, each step needed the creation of all the threads
(one for each completion rule) and a join (of all the threads) after processing each entry. In the case
of SNOMED CT, this is run more than 100 million times. Although the functions provided by Java
are very fast, if each one takes 1 ms, the execution time can take more than 27 hours. Unfortunately,
the execution time provided by Java was not fast enough, which led us to thesecond approach.

The second approach was designed having all the completion rules already running. This means,
no object creation time was needed, and the join was managed using monitors. This second approach
made the protocol very complicated. The critical data was prone to enter in inconsistent states very
easily. As a result, the only correct execution was a much slower executionthat practically put the
completion rules in sequential execution, wasting all the advantages of the multithreaded processing.
For the reasons above, we discarded this approach.

6.4 Implementation quality

The implementation includes features of quality. These features added some internal redundancy,
which according to the tests did not affect the execution time nor the use of memory. These features
brought stability and maintainability to the system, and made it more resilient.

38 CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

6.4.1 No null pointers

A null pointer or a null reference is a reserved value for a variable indicating that it does not refer to
any object. Null pointers were invented in 1965 for ALGOL W by C.A.R. Hoare, and since then they
have been used in many languages such as C, C++ and Java. In 2009, he referred to his invention as
“The Billion Dollar Mistake”1.

The main problem of using null pointers is that theintendedmeaning can be different in different
parts of the source code. In languages like C there is no difference between 0, NULL andfalse.
Projecting the same idea in Java, if a variable of typeList is null , this could be interpreted as an
empty list; if a variable of typeInteger is null , this could be interpreted as a value “0”; if a variable
of typeBoolean is null , this could be interpreted as afalse. However, in Java executing a method of
a variable with null pointer throws an exception (NullPointerException). This brings the idea
of consideringnull as anundefinedobject.

In the implementation, public and protected methods do not accept null pointersas parameters
nor return null pointers as result. In Table 6.4, there is a comparison of thedifferent meanings of null
pointers. In the C-like case,null is the same as 0, and the minimum between 3 and 0 is 0. Ifnull is
accepted as an undefined object, the minimum between 3 andnothing elseis 3. If null is considered
an undefined object such that the result is also an undefined object, the minimum between 3 andnull
is null . Finally, the exception approach refuses to continue the execution, sinceit assumes that this
computation is due to an error. This latter criterion was adopted for all public or protected methods of
every class in the implementation, and they do not accept null pointers as a parameter. Every object
sent as a parameter needs to be an instance. As a counterpart, methods never return null pointers.

case expression value
C-like min(3, null) 0
undefined accepting min(3, null) 3
undefined rejecting min(3, null) null
exception min(3, null) −

Table 6.4: Compared meanings of null pointers.

6.4.2 Unmodifiable collections

In Java,Integer andString are types with unmodifiable elements. However, this is not the case
with collections (Collection), like List, Set andMap, which are modifiable. This means that
if a public method returns a set, the caller can modify the set. This does not lookharmful unless we
consider what happens if the returned set is an internal set. In this case, the caller can actually modify
the set and violate the invariant of the called object.

If a defective piece of code tries to modify a set assumed immutable, this shouldbe stopped to
avoid a wrong computation. This is exactly the purpose of unmodifiable collections. These collec-
tions are returned by public and protected methods, giving simplicity in operations to read them, but
impeding their modification. Clearly, the methods to modify each collection is availablein the object
containing it, if the object allows the modification.

1http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake

http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake

6.5. EXPERIMENTS 39

6.4.3 No cyclic dependencies of packages

A package in Java is a set of classes and interfaces. Each of the mentioned modules has several pack-
ages. Each package has several classes and interfaces. One packagea depends on another packageb
when at least one class or interface ina depends on at least one class or interface inb.

Avoiding cyclic dependencies facilitates maintenance, since modifications on one package do not
alter any other package that does not depend on the former.

6.4.4 Javadoc

Implementation documentation has been specially considered. Every package, every class and every
interface has their corresponding javadoc information. All public and protected methods have javadoc
unless their function is inherited (liketoString()).

6.5 Experiments

The implementation of the presented algorithm was tested with ontologies presented in Chapter 2. The
experiments were run on a computer with 2 cores Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz,
with processors at 1998 MHz, and using 4 GB of RAM memory.

6.5.1 Experiments inELHR+

In Table 6.7 we compare the sizes of the different ontologies mentioned in Chapter 1. The numbers
of concepts and roles do not includeTOP andBOTTOM of concepts and roles. From left to right,
the columns show the ontology name, the description logic used by the ontology,the number of
axioms, the number of normalized axioms, the number of concepts, the number of roles, the number
of auxiliary concepts, and the number of auxiliary roles.

ontology logic axioms norm. ax. concepts roles aux. concepts aux. roles
NCI EL 74662 47080 27652 70 0 0
GO ELR+ 49363 28900 20465 1 0 0
FMA ELR+ 150282 119570 75139 2 0 2
SNOMED CT ELH 962796 1127193 378569 61 354774 56
NotGalen ELHR+ 7540 15089 2748 413 3417 413
CELGalen ELHR+ 60637 102742 23141 950 24704 950

Table 6.5: Ontologies usingELHR+ .

In order to compare this implementation with other reasoners, the execution times were compared
with the CEL system. CEL is one of the fastest reasoners in the community and also known to
have correct results [Mendez and Suntisrivaraporn(2009)]. It isrelevant to mention that the generated
inferred ontology is identical in both classifications. The results are shownin Table 6.6.

6.5.2 Experiments inELHIfR+

The full version of GALEN is one of the most challenging ontologies since almost no reasoner can
classify it. Two GALEN ontologies were considered. One is the original version of GALEN (referred
as GALEN-A), and the other one is a newer version of GALEN (referred as GALEN-B).

40 CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

ontology entries jcel 0.13.0 CEL Plug-in 0.5.0 quotient
NCI 346887 8.9 s 10.2 s 0.87
GO 154489 4.4 s 3.5 s 1.26
FMA 9576858 149 s 2388 s 0.06
SNOMED CT 143039451 1108 s 705 s 1.57
NotGalen 224565 2.9 s 5.2 s 0.56
CELGalen 6836237 52 s 134 s 0.39

Table 6.6: Compared times of classification betweenjcel and CEL.

ontology logic axioms norm. ax. concepts roles aux. concepts aux. roles
GALEN-A ELHIfR+ 8140 12930 2748 413 3458 0
GALEN-B ELHIfR+ 61787 95789 23143 950 24704 0

Table 6.7: Ontologies usingELHIfR+ .

For GALEN-A, jcel took 1093 s and CB less than 1 s.
For the case of GALEN-B,jcel could not finish due to lack of memory. CB classified this ontology

in 5 s.
Although GALEN-B was not classified, classifying GALEN-A is already considered a successful

achievement.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We presented not only a classification algorithm forELHIfR+ , but also a meta-algorithm that allows
the extension of expressivity in a direct way. The presented algorithm is an efficient generalized
cohesive modular algorithm with very low coupling. This general algorithm was presented in a multi-
level view, going from the more abstract and general aspects to the implementation details. We also
presented an effective way of developing efficient completion rules.

In the experimental results the implementation showed an excellent performance. The implemen-
tation is modular, resilient and highly extensible. Implemented in a state-of-the-art technology, it
is portable and brings an optimal interface with other technologies of the Semantic Web. We have
presented a particular configuration of this algorithm for the logicELHIfR+ .

7.2 Future work

7.2.1 Different order for different ontologies

The presented algorithm and implementation are based on the fact that each rule executes the com-
mands in a particular order. A possible extension to this work would be to develop the rules finding
the elements in a different order. In fact, different implementations for each rule can be dynamically
loaded according to the properties of the ontology. An ontology with many concepts, but a minimal
use of roles, may need a different implementation of rules from an ontology with a deep role hierarchy
but relatively few concepts. A diagnose test could be run in advance and a set of rules expected to be
optimal could be choosen for each ontology.

7.2.2 More expressivity

The general algorithm does not prevent from having rules managing more expressive logics. Every
constructor that can be processed using a rule-based algorithm, like concrete domains [Lutz(2002)],
could be added without interfering with the other rules. A good extension would be to complete the
constructor set to be completely compliant with the OWL 2 EL profile.

41

42

Bibliography

[Baader et al.(2003)Baader, Calvanese, McGuinness, Nardi, and Patel-Schneider] Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003. ISBN 0521781760.

[Baader et al.(2005)Baader, Brandt, and Lutz] Franz Baader, Sebastian Brandt, and Carsten Lutz.
Pushing the EL envelope. InProceedings of the Nineteenth International Joint Conference on
Artificial Intelligence IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

[Baader et al.(2006)Baader, Lutz, and Suntisrivaraporn] Franz Baader, Carsten Lutz, and Boontawee
Suntisrivaraporn.CEL—a polynomial-time reasoner for life science ontologies. In Ulrich Fur-
bach and Natarajan Shankar, editors,Proceedings of the 3rd International Joint Conference on
Automated Reasoning (IJCAR’06), volume 4130 ofLecture Notes in Artificial Intelligence, pages
287–291. Springer-Verlag, 2006.

[Baader et al.(2008)Baader, Brandt, and Lutz] Franz Baader, Sebastian Brandt, and Carsten Lutz.
Pushing the EL envelope further. In Kendall Clark and Peter F. Patel-Schneider, editors,In
Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.

[Haarslev and M̈oller(2001)] Volker Haarslev and Ralf M̈oller. Racer system description. In Ra-
jeev Goŕe, Alexander Leitsch, and Tobias Nipkow, editors,International Joint Conference on
Automated Reasoning, IJCAR’2001, June 18-23, Siena, Italy, pages 701–705. Springer-Verlag,
2001.

[Kazakov(2009)] Yevgeny Kazakov. Consequence-driven reasoning for HornSHIQ ontologies. In
Proceedings of the 21st International Conference on Artificial Intelligence IJCAI 2009, 2009.

[Lutz(2002)] Carsten Lutz. Description logics with concrete domains — a survey. In Advances in
Modal Logic, volume 4. Wold Scientific Publishing Co. Pte. Ltd., 2002.

[Mendez and Suntisrivaraporn(2009)] Julian Mendez and Boontawee Suntisrivaraporn. Reintroduc-
ing CEL as an OWL 2 EL reasoner. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and
Ulrike Sattler, editors,Proceedings of the 2009 International Workshop on Description Logics
(DL2009), volume 477 ofCEUR-WS, 2009.

[Motik et al.(2007)Motik, Shearer, and Horrocks] Boris Motik, Rob Shearer, and Ian Horrocks. A
Hypertableau Calculus for SHIQ. In Diego Calvanese, Enrico Franconi, Volker Haarslev,
Domenico Lembo, Boris Motik, Sergio Tessaris, and Anni-Yasmin Turhan, editors, Proc. of
the 20th Int. Workshop on Description Logics (DL 2007), pages 419–426, Brixen/Bressanone,
Italy, June 8–10 2007. Bozen/Bolzano University Press.

43

44 BIBLIOGRAPHY

[Suntisrivaraporn(2009)] Boontawee Suntisrivaraporn.Polynomial-Time Reasoning Support for De-
sign and Maintenance of Large-Scale Biomedical Ontologies. PhD thesis, Dresden University
of Technology, 2009.

[Tsarkov and Horrocks(2006)] Dmitry Tsarkov and Ian Horrocks.FaCT++ description logic rea-
soner: System description. InProc. of the Int. Joint Conf. on Automated Reasoning (IJ-
CAR 2006), volume 4130 ofLecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

[Vu(2008)] Quoc Huy Vu. Subsumption in the description logicELHIfR+ w.r.t. general TBoxes.
Master’s thesis, Dresden University of Technology, 2008.

	Abstract
	Acknowledgements
	Introduction
	Overview
	Ontologies
	Organization of the thesis

	Medical Ontologies
	The GALEN ontology
	The SNOMED CT ontology
	Smaller ontologies
	Reasoners
	Classification of large ontologies

	Description Logics
	Syntax of ELHIfR+
	Semantics of ELHIfR+
	Example of ELHIfR+
	Less expressive logics
	Semantic Web terminology

	Normalization and Completion Rules
	Normal form
	Normalization rules
	Normalized TBox
	Completion rules
	Start conditions
	Original completion rules
	Optimized completion rules
	Observations

	Algorithm
	General description
	Completion rules
	Correctness and Complexity
	Direct subsumers

	Implementation and Experiments
	Implementation
	Successful improvements
	Use of collections
	Use of two sets of entries
	Individualized modification of rules
	Integers as identifiers

	Discarded implementations
	Shared references
	Binary compression
	List compression
	External storage
	Transitive data structure
	Horn-style completion
	Multithreaded processing

	Implementation quality
	No null pointers
	Unmodifiable collections
	No cyclic dependencies of packages
	Javadoc

	Experiments
	Experiments in ELHR+
	Experiments in ELHIfR+

	Conclusion and Future Work
	Conclusion
	Future work
	Different order for different ontologies
	More expressivity

	Bibliography

