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Abstract

A recurring problem in many ontology based applications is delivering a huge
result set for user’s query causing an information overload. The reasons for
this could be in-accurateness of the query provided by the user, a naive user who
is not familiar with ontologies, or existence of a huge knowledge base. Though
various techniques to reduce information overload are developed for web based
search and Database querying, Description Logic knowledge bases are in need
of customized techniques to solve this problem.

In this thesis, we present two approaches to solve the problem of information
overload of conjunctive query result sets over EL++-KBs. The first approach
is based on the minimal query intensification such that the new queries (called
specializations) obtained are syntactically similar to the original query. The
second approach is based on clustering of query results. We also implemented
our two approaches in Java on top of Pellet reasoner and tested them for their
effectiveness using an extended LUBM benchmark ontology.
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Chapter 1

Motivation

With the development and potential usage capabilities of the Semantic Web
and Semantic Technologies, ontologies are becoming one of the most prominent
paradigms for knowledge representation and reasoning. “Description Logics are
knowledge representation formalisms that provide, for example, the logical un-
derpinning of the W3C OWL1 standards” [Glimm and Rudolph, 2010]. The
rise in the popularity of Description Logics (DLs) and semantic web is mainly
due to their ability to perform reasoning and at the same time provide results
to a query in reasonable time. However in few cases, the set of results obtained
by the user’s query to the DL knowledge bases are mostly unintended (and ir-
relevant to the user). Due to this, the user has to analyse the results to obtain
the intended information which is a tedious task. This problem of extracting
the indented data amongst the results is called information overload. Though
in web documents based querying and Database querying considerable research
is done on how to reduce information overload, there isn’t any significant work
done for DL Knowledge bases querying. There exists numerous DLs and pro-
viding a common solution is not intended here. So, before we look into this
problem more deeply we first restrict the DLs that we investigate.

Among the DLs, the EL family [Baader et al., 2005] has a nice combination
of reasonable-expressiveness and acceptable complexity. Real-world ontologies
like The Gene Ontology2, NCI3 and SNOMED CT4 [Corent and Keizer, 2008]
can be expressed with-in EL++. OWL 2 EL5 profile is a subset of OWL 2 DL6

and is based on DL EL++and it aims at applications that employ large ontolo-
gies. This profile is sufficiently expressive for many biomedical ontologies like
GALEN [Rector and Horrocks, 1997] also. So, from now we restrict ourselves to

1http://www.w3.org/2004/OWL/
2http://www.geneontology.org/
3http://ncit.nci.nih.gov/
4http://www.ihtsdo.org/snomed-ct/
5http://www.w3.org/TR/owl2-profiles/
6http://www.w3.org/TR/owl2-overview/
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CHAPTER 1. MOTIVATION 2

the knowledge bases in the EL family. Conjunctive queries (CQs), which is the
most common query language used in databases, is also being considered as the
most suitable language for querying DL KBs as CQs can sufficiently express the
queries over DL KBs. Moreover, answering conjunctive queries has been studied
extensively and its results corresponding to various DLs are available [Rosati,
2007][Kroetzsch and Rudolph, 2007]. In this thesis, a query always refers to a
conjunctive query.

To reduce the information overload of query results, we need to withhold the
unintended data and present a subset of the query results containing the rele-
vant data. This can be achieved by specializing the query which is the aim of
our thesis i.e.

To reduce the information overload by specializing the conjunctive query q
w.r.t. an EL++-knowledge base K.

and is focused on the naive users who

1. don’t have a good understanding of the knowledge base (ontology)

2. are not familiar with description logics

3. are interested in the reduction of the query result set.

1.1 Introduction

As in DL KB, database query results (or result set) and web document search
results also face the problem of information overload. Considerable research has
been done in database querying and web document search to avoid information
overload. The three primary techniques devised to reduce information overload
involve use of ranking, categorization, or clustering. Ranking returns the re-
sults as a list which are ordered based on some metrics, where the most relevant
results as placed first and the least relevant results are placed last. For web doc-
ument searches, tools like Google7, Bing8 perform ranking of the search results
and are constantly used. A specialized result set is obtained by just selecting
the first k results from the ranked list [Agarwal et al., 2003].

Categorization assigns results to pre-defined categories which allows the user to
select the relevant categories only. A word Cricket can refer either to an insect,
or to a sport. So, results related to Cricket can be placed in the pre-defined
categories Insect or Sport. Clustering groups items based on some similar-
ity measure which often depends on the contents of the clusters. A cluster is
identified using labels which helps in the selection of the relevant clusters. En-
gines like Carrot29 and Clusty10 are developed for clustering web search results.

7www.google.com
8www.bing.com
9http://search.carrot2.org/stable/search

10www.clusty.com
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[Daniels, 2006] clusters database query results.

However, research on how to reduce the information overload of a query re-
sult set over a DL KB is still in an early phase. In this thesis, we propose two
approaches to solve our problem, (1) a syntactic approach based on (minimal)
query intensification [Bosc et al., 2008], (2) an approach based on clustering
of query results. The two approaches differ on the following issues, (a) level
of specialization, (b) the usage of the result tuples of the query, and (c) user-
dependency.

The syntactic approach computes queries (which yield a specialized results) by
intensifying the original query using the knowledge base. These queries, called
specializations, are also syntactically similar to the original query. Due to the
existence of a TBox and RBox, this intensification step can be performed conve-
niently and systematically. Since the approach is unsupervised, the new queries
generated may omit some of the relevant results. For this reason only minimal
intensifications are computed, and presenting the user with the set of all min-
imal specializations gives him/her the sufficient choices to generate the query
which reduces (or even avoids) the information overload by a significant amount.

The cluster based approach clusters the query result tuples into n clusters (of
approximately the same size), where n is a number provided by the user. To
provide better understandability to the user, we also generate n queries, called
c-specializations (whose results form the clusters), corresponding to each clus-
ter using their labels. Among the various types of clustering structures, and
extended form of divisive hierarchical clustering [Manning et al., 2008] is a clear
choice as it can be computed easily using a DL knowledge base. The result vari-
ables of the query are used to obtain the required features for clustering. The
stopping criteria for the divisive hierarchical clustering is based on the number
of clusters requested by the user.

In Section 1.2, we present the work done on clustering of query results, and
introduce the DLs (related to EL-family) to which CQ answering is decidable.
Since, CQ answering is not decidable in full EL++, we need to use a fragment of
EL++ which is expressive enough for well-known ontologies and at the same time
decidable w.r.t. CQ answering. In Chapter 2, we present some basic concepts
and notions related to description logics (especially EL family) and conjunc-
tive queries. In Chapter 3, we present the syntactic approach for minimal query
intensification. In Section 3.1, we identify and define the interesting query inten-
sifications as specializations of the query and present the various ways to obtain
these specializations w.r.t. a EL++-KB. We also define minimal specializations
and argue why it is sufficient to compute only the minimal specializations of
a query to solve our problem. In section 3.2, we present methods to compute
minimal specializations w.r.t. each kind of specialization and in Section 3.3, we
present the complete algorithm to compute all the minimal specializations of
a query and prove the completeness and soundness of our method. We also
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investigate the complexity of our method.

In Chapter 4, we introduce the clustering based approach and argue how we
can overcome difficulties of the previous approach. In Section 4.1, we intro-
duce clustering and some of the sub-tasks in a clustering algorithm like feature
selection, optimal cluster count. In section 4.2, we show how a query can be
specialized by clustering the query results. In Section 4.3, we explain the main
steps of our computation method along with the optimizations steps. In Section
4.4, we present the clustering based algorithm to reduce information overload
of query results over a DL KB. In Chapter 5, we present the implementation
details and optimization steps for the two approaches. We also present the ex-
perimentation set-up, the benchmark ontology, sample queries and the results
of the performance evaluation. We evaluate the performance using an effective-
ness measure for the test cases where some of the result tuples are selected as
relevant (or irrelevant) tuples for the user. Finally, we compare the computation
time of each approach to check their scalability with huge KBs.

1.2 Related Work

To the best of our knowledge this is the first attempt to devise methods to
reduce the information overload by specializing a conjunctive query over a DL
knowledge base. One way to accomplish this is to directly alter the query mini-
mally without looking into each result tuple and procure a syntactically similar
query which generates a specialized query result set. Clustering of query results
is another technique that can be used to specialize a query.

Clustering of query results: The problem of reducing information overload
for web document queries using clustering of query results has been studied in
great detail. [Calado et al., 2003] proposes a method which automatically pre-
dicts the categories using Web link structure. [Kang and Kim, 2003] classifies
web document retrieval queries and solves the problem of information overload
caused by small queries. [Hammouda and Kamel, 2004] presented two main
parts to successful document clustering. However, these methods can be used
only for web document search and will be of little use for queries over DL KBs.
The reason is that clustering techniques for web document search results con-
centrates on documents containing huge amounts of unstructured texts while
clustering techniques for query results over DL KBs can only deal with tuples
consisting of small amount of data. As in databases, the query results over
DL KB are also a set of result tuples. Nonetheless, some principles like cluster
structures, cluster labelling, feature selection, calculating the number of clus-
ters, selecting the cluster to split will be transferred.

For clustering of query results over Databases, [Chu et al., 1996] proposed an
error-based conceptual clustering method for identifying high level concepts
of numerical attribute values in DBs. [Chakrabarti et al., 2004] proposed a
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method to automatically categorize SQL query results and incrementally con-
struct a labelled, hierarchical category structure. [Fu et al., 2004] introduces a
hybrid query similarity measure that uses results returned to queries along with
query terms to perform clustering. [Daniels, 2006] shows that users’ information
overload can be minimized by clustering DB query results and a agglomerative
(bottom-up) hierarchical clustering algorithm is used to cluster the query results.
However, none of these techniques developed for Databases can be directly used
for DLs, as in a DL KB there are descriptions with clear semantics (concept
and role inclusion axioms) that can be used for clustering. This makes the tech-
niques for Databases and web documents less efficient for DLs and developing
better approaches suitable for DLs is certainly possible. Recently, the clustering
of query results in Semantic Web or Ontology (or reasoning-) based systems is
being studied.

In [Lawrynowicz, 2009] a framework for clustering results of queries over Se-
mantic Web data is proposed. [Lawrynowicz, 2009a] presented an approach
that extends SPARQL with clustering abilities by introducing a new statement,
CLUSTER BY, into the SPARQL [Prud’hommeaux and Seaborne, 2008] gram-
mar and it also proposes semantics for such an extension. [Amato et al., 2010]
proposes a novel approach which overcomes the shortcomings and drawbacks of
syntactic approaches. Specifically, answers are grouped taking into account the
concept (and role) inclusions available in the underlying knowledge base. We
use a similar grouping technique in our clustering based approach to specialize
a query and we also address various shortcomings of [Amato et al., 2010] like
unavailability of concept and role refinement operators, non-utilization of role
inclusions derived from the KB, and so on.

Conjunctive Query Answering: EL++ is a DL expressive enough for var-
ious ontologies like SNOMED CT11, GO [Gene Ontology, 2010], and at the
same time has PTIME complexity for many reasoning tasks. But, conjunctive
query (CQ) answering in unrestricted EL++ is undecidable and as illustrated
in [Kroetzsch and Rudolph, 2007], the combination of role atoms in queries and
complex role inclusion axioms can indeed make reasoning significantly more dif-
ficult. So, we look into the fragments of EL++ and its related DLs for which
CQ answering is decidable.

It is well-known that CQ answering in EL, ELH and SHIQ is decidable [Glimm
et al., 2007][Rosati, 2007], but is it also decidable for SHION , SHOIQ?
[Glimm and Rudolph, 2010] shows that it holds for SHION and for SHOIQ
knowledge bases also. In addition, they also argued the same for SROIQ under
similar conditions. [Kroetzsch and Rudolph, 2007] introduced a novel algorithm
for answering CQs in EL++-knowledge bases, which is worst-case optimal under
various assumptions and it also identifies the EL++-fragment of SROIQ as a
decidable sub-DL: regular EL++. The authors shows that CQ answering in

11http://www.ihtsdo.org/
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regular EL++ is decidable and is NP-hard w.r.t. data size or size of the KB.
A regular KB contains a partial-ordering among the role names occurring in
the KB and once we obtain this partial-ordering, we will obtain a decidable
algorithm for CQ answering. Therefore, for the fragments regular EL+, regular
EL++ CQ answering is decidable and while presenting our two approaches we
assume a regular EL++-KB.



Chapter 2

Preliminaries

2.1 Description Logics

DLs are a group of knowledge representation formalisms that model a given
domain in terms of individuals (constants), concepts (unary predicates), and
roles (binary predicates) [Baader and Nutt, 2003]. A typical DL Knowledge
Base (KB) contains an assertional component A called the ABox, a termi-
nological component T called the TBox, and an RBox R. We can view the
TBoxs and the RBoxs as conceptual schemas of DBs and ABoxs as (partial)
instantiations of the schemas. As shown in Example 1, a TBox T consists of
general concept inclusions which relate two or more concepts, a RBoxR consists
of role inclusions which relate two or more simple roles and an ABox consists
of assertions which either relate a concept and an individual or a role and a
pair of individuals. The syntax of DLs can be restricted in a variety of ways
to trade-off the expressive power against computational complexity, and thus
obtain a representation language that is suitable for the application at hand.

Example 1. A knowledge base K = (T , R, A) is
T :
{> v mortal t deity t hero
∀hasParent.mortal v mortal
hero v ∃hasAncestor.deity
deity v ∀hasAncestor.deity }
R:
{ hasParent v hasAncestor
hasAncestor◦hasAncestor v hasAncestor }

A :
{ hasParent(Hercules,Zeus)

hasParent(Hercules,Alcmena)
hasParent(Perseus,Zeus)

deity(Zeus)
hero(Perseus)

hasParent(Alcmena,Electryon)}

The main advantage of DL systems is their ability to perform reasoning.
Many applications require reasoning for the KBs and by using an appropri-
ate DL with sufficient expressibility we can perform the reasoning quite effi-
ciently. We use the letters A,B,C,D,E, . . . to present concepts and the letters
r, s, r1, r2, . . . to represent roles. The EL family are identified as DLs having
interesting expressibility and which allow tractable reasoning.

7
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2.2 EL and EL family

Let NI , NC , and NR be countably infinite and disjoint sets of individual names,
concept names, and role names respectively. EL-concepts C are built according
to the syntax rule C := > | A | C u D |∃r.C, where A ranges over NC , r ranges
over NR, and C, D range over EL-concepts. ELH extends EL by allowing a
RBox with simple role inclusions (SRIs) of the form r1 v r2, where r1 and r2 are
role names. EL+ extends EL by also allowing in the RBox role inclusions (RIs)
of the form r1 ◦ · · · ◦ rn v rn+1, where each ri is a role name. Transitive
roles are expressed by r ◦ r v r. Finally, EL++ extends EL+ by allowing the
new concept expressions ⊥, nominals {a} and the concrete domain constructor
p(f1, f2, . . . , fn). The concrete domain constructor is used to refer strings and
integers. In this thesis, we assume that all the knowledge bases and CQs don’t
contain concrete domains.

The semantics of EL++-concepts and roles are defined using an interpretation
I = (∆I , ·I), where the interpretation domain ∆I is a non-empty set, and ·I is
a function mapping each concept name A to a subset AI of ∆I and each role
name rI to a binary relation rI ⊆ ∆I × ∆I . The function ·I is inductively
extended to arbitrary concepts by setting >I := ∆I , ⊥I := ∅, {a}I := aI , (C u
D)I := CI∩ DI , and (∃r.C)I := {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}. The func-
tion ·I is inductively extended to arbitrary roles by setting (r1 ◦ r2)I := {(x, y)
∈ ∆I ×∆I | ∃z ∈ ∆I ∧ (x, z) ∈ rI1 ∧ (z, y) ∈ rI2 }.

An EL++-KB consists of an ABox A, a TBox T and a RBox R. Typically
an ABox A consists of assertions of the form C(a) or r(a, b). In Example 2,
Person(Adam) means Adam is a Person and hasChild(Alcmena,Hercules)
specifies that Alcmena has a child named Hercules. An interpretation I
satisfies an assertion of the form C(a), r(a, b) (i.e. I |= C(a), I |= r(a, b))
if a ∈ CI , (a, b) ∈ rI respectively. I is a model of an ABox A if it satisfies all
the assertions in A. A |= C(a) if every model of A satisfies C(a).

Example 2. ABox assertions in a simple EL++-ABox A1

Women(Mary), Person(Adam), Father(Adam)
Mother(Eve), Son(Hercules), hasChild(Alcmena,Hercules)
hasAncestor(Hercules,Adam) hasHusband(Deianeira,Hercules)

A TBox T is a finite set of general concept inclusions (GCIs) C v D, where
C and D are concepts. Example 3 specifies a simple EL++-TBox. An inter-
pretation I satisfies a GCI C v D (written I |= C v D) if CI ⊆ DI . I is a
model of a TBox T if it satisfies all GCIs in T . Here, D describes necessary
conditions for being a C. A ≡ C is an EL++ concept definition for A ∈ NC

and it expresses the two CGIs A v C and C v A. C describes the necessary
and sufficient conditions for being an A.

Example 3. Concept inclusions in a simple EL++-TBox T1
{ Father ≡ Person u Male u ∃hasChild.> Father v ∃hasChild.>
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Student ≡ Person u ∃is-registered-at.University Father v Person
Human v ∃eats.> Plant v ∃grows-in.Area Vegetarian v Healthy}

A RBox R consists of role inclusions of the form s v r or r1 ◦ · · · ◦ rn @ r,
where s, r, r1, r2, · · · , rn are role names. Example 4 specifies a simple EL++-
RBox. An interpretation I satisfies a simple role inclusion r1 v r2 (written I |=
r1 v r2) if rI1 ⊆ rI2 . I satisfies a role inclusion r1 ◦ · · · ◦ rn v r if rI1 ◦ · · · ◦ rIn ⊆
rI . I is a model of a KB K = (T ,R,A) if I is a model of T , I is a model of R
and I is a model of A.

Example 4. Role inclusions in a simple EL++-RBox R1

hasSon v hasChild isFather v isParent
hasAncestor ◦ hasAncestor v hasAncestor

We write C vK D (or K |= C v D) if every model of K satisfies C v D and
we say C is subsumed by D and D subsumes C w.r.t. K. C ≡K D specifies that
A vK C and C vK A and we say that C is equivalent to D w.r.t. K. Similarly
we write r vK s (or K |= r v s) if every model of K satisfies r v s and we say
that r is subsumed by s and s subsumes r. r ≡K s specifies that r vK s and s
vK r and we say that r is equivalent to s w.r.t. K.

A standard EL++-TBox T is in normal form [Baader et al.,2005] if it con-
sists of concept inclusions of the form:

A v B , where A and B are concept names.
A1 u A2 v B, where A1, A2, B are concept names.
A v ∃r.B, where A, B are concept names and r is a role name.
∃r.A v B, where A, B are concept names and r is a role name.

A standard EL++-RBox R is in normal form if it consists of role inclusions of
the form:

r1 v r, where r1, r are role names.
r1 ◦ r2 v r, where r1, r2, r are role names.

A standard KB K is in normal form if its TBox and RBox are in normal form.
Given an EL++-TBox T and RBox R, one can compute in polynomial time a
TBox T ′ and RBox R′ in normal form as shown in [Baader et al., 2005]. By in-
troducing new concept and role names, any TBox T and RBox R can be turned
into a normalized TBox T ′ and RBox R′ respectively, that is a conservative
extension of T and R. Every model of T ′ (and R′) is also a model of T (and
R), and every model of T (and R) can be extended to a model of T ′ (and R′)
by appropriately choosing the interpretations of the additional concept and role
names.

Definition 2.1. An EL++-RBox in normal form is regular if there is a strict
partial order ≺ on NR such that, for all role inclusion axioms r1 v s and r1 ◦
r2 v s , we find ri ≺ s or ri = s (i = 1, 2). An EL++ knowledge base is regular
if it has a regular RBox.

Accordingly, we define a simple RBox as below.
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Definition 2.2. An RBox is simple whenever, for all axioms of the form r1 ◦ s
v s, s◦ r2 v s, the RBox does not contain a common subrole r of r1 and r2 for
which there is an axiom of the form r ◦ s′ v r

′
or s

′ ◦ r v r
′
. An EL++-KB

is simple if it has a simple RBox.

We consider a KB to be regular when we present a computation method and
we consider a RBox to be also simple whenever we talk about complexity. The
set of concept names and role names occurring in a KB K are represented by
NKC and NKR respectively.

2.3 Conjunctive Queries

Conjunctive Queries (CQs) are restricted forms of the first-order queries which
correspond to the fragment of relational algebra (or SQL) queries, namely plain
select-project-join queries, and UCQs are simply the unions of such queries. CQs
and UCQs are widely studied in databases [Abiteboul et al., 1995], [Chandra
and Merlin, 1977], and due to a good trade-off between expressive power and
nice computational properties, they have been adopted as core query languages
in several contexts, such as query optimization, data integration, and also in
ontology-based data access. Most of the work concerning query answering in
DLs refers in fact to CQs and UCQs.

Definition 2.3. A conjunctive query (CQ) is of the form q(~x)← ∃~y.conj(~x, ~y,~c),
where q(~x) is the head of q, conj(~x, ~y,~c) is the body of q, ~x are distinguished
variables, ~y are non-distinguished variables, ~c are individuals, and conj(~x, ~y,~c)
is a conjunction of terms of the form C(v) or r(v1, v2) for C a (non-atomic) con-
cept, r a (non-atomic) role, and v, v1 and v2 are variables in ~x, ~y or individuals
in ~c. We call C(v) a concept term and r(v1, v2) a role term.

A simplified representation of conjunctive queries is q(~x)← p1∧p2∧· · ·∧pn,
where q(~x) is the head, p1 ∧ p2 ∧ · · · ∧ pn is the body, p1, p2, . . . , pn are the
terms occurring in q. Note that, a term pi can contain a complex concept or
a complex role. Let pi = C1 u C2 u . . . u Cn (x) be a concept term, then we
call C1,C2,. . . ,Cn the conjuncts of the concept term pi. Example 5 provides two
simple conjunctive queries q and q1.

Example 5. CQs for a KB with TBox, RBox from Example 3, 4:
q(x) ← ∃y.Person(x) ∧ hasChild(x, y)
q1(x) ← Father(x) ∧ Student(x).

Here, q returns all the Persons who hasChild while q1 returns all Fathers who
are also Students.

A CQ is called a Boolean conjunctive query (BCQ) if it has no distinguished
variables. A Union of Conjunctive Queries (UCQ) is a disjunction of CQs i.e.
a query q(~x) ← ∃~v.(ϕ1(~x,~v,~c), . . . , ϕn(~x,~v,~c)), where each ϕi(~x,~v,~c) is a con-
junction of terms. The set of variables occurring in the query q and a term tm
is represented by V ar(q) and V ar(tm) respectively. Let I be an interpretation,
q a conjunctive query and π: V ar(q)→ ∆I a total function. We write
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• I |=π C(v) if (π(v)) ∈ CI ;

• I |=π r(v, v
′
) if (π(v), π(v

′
)) ∈ rI ;

If I |=π tm, ∀ tm ∈ q, we write I |=π q and call π a match for I and q. We say
that I satisfies q and write I |= q if there is a match π for I and q. If I |= q for
all models I of a KB K, we write K |= q and say that K entails q. The query
entailment problem is defined as follows:

Given a knowledge base K and a query q, decide whether K |= q.

2.3.1 CQ answering and containment

Let q1 and q2 be two n-ary (having n distinguished variables) conjunctive queries
having the same tuple of distinguished variables and K is a regular EL++ KB.
Let, q(K) represent the result set (a set containing the result tuples) of q over K.

CQ answering problem: given a CQ q and a KB K, compute q(K).

We call a query q an empty query w.r.t. K if q(K) = ∅. A query q1 is contained
in q2 w.r.t. K if q1(K) ⊆ q2(K) i.e. result set of q1 over K is a subset of the
result set of q2 over K. It is represented as q1 ⊆K q2.

CQ containment problem: given two CQs q1 and q2 and a KB K, is q1 ⊆Kq2?

We use q1 ⊂K q2 to express that q1 ⊆K q2 and q1(K) 6= q2(K) and we say q1 is
strictly contained in q2 w.r.t. K. The CQ containment in EL++is undecidable
as it turns out that the CQ containment problem is exactly the same problem
as the CQ answering problem [Rosati, 2007], [Abiteboul et al., 1995]. As we
mentioned in Section 1.2, for regular EL++ both problems are still decidable.



Chapter 3

Minimal Syntactic Query
Intensification

Description Logics are developed to perform reasoning which gives it the abil-
ity to deduce implicitly captured knowledge from the KBs. However, users are
frequently overwhelmed by the huge number of results generated and face much
trouble in selecting the relevant data (i.e. data intended by the user). It can be
due to (1) incomplete understanding of the underlying Ontology, (2) existence
of a huge KB, (3) a naive user providing an inaccurate query, and so on. This
may cause the users to spend lots of time navigating through the results in order
to find the relevant ones. In cases like these, to reduce the information overload,
we can specialize the original query q w.r.t. the KB to obtain one or more new
queries having a reduced result set.

In this chapter, we present a new approach based on query intensification to
reduce information overload of conjunctive query results over a regular EL++-
KB. In Section 3.1, we define a desirable query (i.e. a semantically similar and
non-empty query) obtained from query intensification as a specialization and
present various ways to obtain a specialization. Among the specializations, the
specializations with minimal reduction in their result set are defined as minimal
specializations. We also argue that, computing only the minimal specialization
suffices to considerably reduce information overload. In Section 3.2 we present
the main steps of our method to calculate all the minimal specializations of
a query w.r.t. a KB. Finally, in Section 3.3 we present the complete method
and show the soundness, completeness of our method along with the complexity
results.

3.1 Specialization and Minimal Specialization

Intuitively, a desirable query obtained from query intensification (specialization)
of a conjunctive query q is a conjunctive query

12
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• whose results are a subset of the results of the original query q,

• which is syntactically similar to q.

We are not interested in the queries which are syntactically dissimilar to the
original query q as it is important to eliminate random queries which are not
at all related to the original query, and also for the user understandability on
how the specializations are obtained. Without the second condition, any query
which is contained in the original query q can be a specialization of q. To be a
specialization condition one is fundamental and the reasons are evident.

Before we define a specialization of a query w.r.t. a KB, we introduce the
various syntactic elements of a conjunctive query and we explain what it means
by a syntactically similar query. The syntactic elements in a conjunctive query
are roles, concepts, variables and individuals and these 4 elements can be di-
vided into 3 groups (1) Concepts, (2) Roles, (3) Variable-Individual (the set of
variables and individuals) based on the arity of the elements. Roles, Concepts,
Variable-Individual can be seen as functions with arity two, one, zero respec-
tively. Variables and individuals belong to the same group, because replacing a
variable and an individual in a CQ with each other still generates a conjunctive
query. Replacing a concept in a CQ with a role or an individual won’t generate
a valid conjunctive query.

We say that a query q′ is syntactically similar to a query q if q′ is obtained
by either (a) changing only the syntactic elements of a query i.e. a concept,
role, individual/variable can only be replaced by another concept, role, individ-
ual/variable respectively, or (b) adding a new role term with the same arguments
as any one of the role terms in the query.

Definition 3.1. A conjunctive query q′ in EL++ is called a specialization of a
conjunctive query q(~x) ← p1 ∧ p2 ∧ · · · ∧ pm in EL++ w.r.t. an EL++ KB K if

1. q′(K) ⊂ q(K)

2. q′(K) 6= ∅

3. either (a) q′(~x)← p1∧p2∧pi−1∧p′i∧pi+1∧ · · ·∧pm, where p′i is obtained
by replacing one syntactic element in pi with another of the same type.
or (b) q′(~x)← p1∧p2∧ · · ·∧pm∧pm+1, where ∃i ∈ [1 . . .m]: pi = r(u, v)

and pm+1 = s(u, v).

4. V ar(q′) = V ar(q)

It is represented by q′ ⊂Kq. Here u, v can be variables or individuals.

So, a specialization of a query q is obtained by modifying one of the terms
in q or by adding a new role term (while complying with few conditions). Since,
queries obtained by adding a concept term can be simulated by queries obtain-
ing by replacing a concept, we can exclude adding a new concept term to the
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query. The set of specialization of a CQ q w.r.t. K is represented by SpecK(q).

The specializations in SpecK(q) can belong to various levels depending on how
strongly they are specialized as explained in Example 6. To obtain specializa-
tions in various levels, it is sufficient to change only one syntactic element in a
term occurring in the query or add one new role term satisfying condition 3b in
Definition 3.1.

Example 6. Consider a KB K= (T ,A)
T = { Coach v Father, Father v Man , Man v Person }
A = { GrandFather(a), Father(b), Man(c), Person(d),

livesIn(a,m), livesIn(b, n), livesIn(c, o), livesIn(d, p) },
and a query q(y) ← ∃y.Person(x) ∧ livesIn(x, y)
Specializations of q w.r.t. K:

q1(y) ← ∃y.Man(x) ∧ livesIn(x, y)
q2(y) ← ∃y.Father(x) ∧ livesIn(x, y)
q3(y) ← ∃y.GrandFather(x) ∧ livesIn(x, y)

The result sets for each of the above 4 queries are {m,n, o, p}, {m,n, o},
{m,n}, {m}. Moreover, q3 ⊂K q2 ⊂K q1 ⊂K q. Here, q1 belongs to level 1, q2
belongs to level 2 and q3 belongs to level 3 of the specializations of q w.r.t. K.
Thus, only by changing one syntactic element Person, we can obtain various
levels of specialization. Thus we restrict the number of changes to one.

Specialization of a union of conjunctive queries (UCQs) is obtained by simply
specializing at least one of the disjuncts in the union or by removing a disjunct.
Checking if a query q1 is a specialization of a query q is at least as hard as the
CQ containment checking problem, due to the first condition in Definition 3.1.

Definition 3.2. Let q, q1 be two conjunctive queries in EL++. q1 is called a
minimal specialization of q w.r.t. an EL++ KB K if (1) q1 is a specialization
of q w.r.t. K (i.e. q1 ⊂K q), (2) there is no other specialization q2 in EL++ of
q w.r.t. K such that q1 ⊂K q2 and q2 ⊂K q. It is represented by q1 ⊂minK q.

A set of all minimal specializations of a conjunctive query q w.r.t. K is de-
noted by the set minSpecK(q). In Example 6, only q1 is a minimal specialization
of q w.r.t. K.

3.1.1 Types of Specializations

We now introduce the 6 different types of specializations that can be obtained
for a query q in EL++. They address the various syntactic elements appearing
in the query while following all the 4 conditions in Definition 3.1.

concept specialization: It is obtained when a concept C occurring in a con-
cept term C(v) of query q is specialized w.r.t. K.

We say that a concept C occurring in a query q is specialized w.r.t. K if the
concept C is replaced by a (EL++) concept C ′ where C ′ @K C and we call the
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concept C ′, a specialization of concept C w.r.t. K. The set of specializations of
C w.r.t. K is defined by the set cSpecK(C) and the set of concept specializations
of q w.r.t. K is defined by the set cSpecK(q).

role specialization: It is obtained when a role r occurring in a role term
r(v1, v2) of q is specialized w.r.t. K.

Here, we say that a role r occurring in a query q is specialized w.r.t. K if the
role r is replaced by a (EL++) role r1, where r1 @K r. Here, r1 is called a
specialization of a role r w.r.t. K. The set of role specializations of a query q
w.r.t. K is denoted by the set RSpecK(q) and the set of specializations of a role
r w.r.t. K is defined by the set RSpecK(r).

conjunct specialization: It is a specialization obtained by adding a new role
term to the query q.

The set of conjunct specializations of a query q w.r.t. K is defined by the set
conjSpecK(q). There are many kinds of role terms that can be added to the
query q. To obtain a specialization of q only a role term of the form r1(x, y),
where r(x, y) is a term in q, r1 6vK r, and r 6vK r1 can be added (Condition
3b in Definition 3.1). The restriction r 6vK r1 eliminates queries which have an
equivalent query amongst the role specializations.

variable specialization: When one occurrence of a variable x in q is replaced
by another variable y in q, a variable specialization is obtained.

The set of variable specializations of a query q w.r.t. K is defined by the set
varSpecK(q). Unlike the previous kinds of specialization, replacing one occur-
rence of a variable with another variable can even increase the size of the query
result set. This makes the problem of computing the variable specializations of
a query much more harder (when compared to other types of specializations).

variable individual specialization: Replacing one occurrence of a variable
x in q with an individual a in the ABox generates a (varIndv) variable
individual specialization.

The set of variable individual specializations of a query q w.r.t. K is defined
by the set varIndvSpecK(q). Replacing a variable with all the individuals
in the ABox isn’t efficient. We need to obtain additional information from
the KB regarding the individuals’ ordering w.r.t. each role. For this purpose,
we construct role successor hierarchies and a role predecessor hierarchies corre-
sponding to each role name r occurring in the KB (see Section 3.2.1).

individual specialization: An individual specialization is obtained by replac-
ing an individual a occurring in q with another individual b occurring in
the ABox.

The set of individual specializations of a query q w.r.t. K is defined by the set
indvSpecK(q). Though replacing an individual with another individual rarely
produces a specialization, we can use the role successor and role predecessor
hierarchies to check the interesting cases only.
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3.1.2 Computing the specializations of a query

All specializations in SpecK(q) can be computed by incrementally specializing
the query q in different ways until a set of queries are generated, from which no
new specialization can be generated. Thus, generating all the specializations of
a query is conceptually simple but computationally inefficient as the size of the
set can increase exponentially. Also, we should be cautious when we specialize
a query in an automated way. The specializations generated shouldn’t be too
specific resulting in the omission of some of the relevant result tuples. Moreover,
choosing the appropriate specialization(s) for providing to the user is not an easy
task.

3.1.3 Advantages of computing minimal specializations

Compared to the number of specializations, the number of minimal specializa-
tions of a query are fairly small. Moreover, they can also reduce the informa-
tion overload by a sufficient amount. In cases where the user wants stronger
specializations, he/she can choose the intersection of two or more minimal spe-
cialization. As shown in Example 7, the combined result set of such a stronger
specialization would be the tuples occurring in all the selected minimal spe-
cializations. Alternatively, if all the minimal specializations of a query are too
specific and weaker queries are required, we can take the union of two or more
minimal specializations to obtain a query with a larger subset of result tuples
as shown in Example 7.

Example 7. Consider a KB K having the following inclusions
T = { GraduateStudent v Student, UnderGraduateStudent v Student,

ResearchAssistant v Student, TeachingAssistant v Student }
R = { owns v livesIn }

and a query q(y) ← ∃y.Student(x) ∧ livesIn(x, y)
Minimal specializations of q(y) w.r.t. K:

q1(y) ← ∃y.GraduateStudent(x) ∧ livesIn(x, y)
q2(y) ← ∃y.UnderGraduateStudent(x) ∧ livesIn(x, y)
q3(y) ← ∃y.ResearchAssistant(x) ∧ livesIn(x, y)
q4(y) ← ∃y.TeachingAssistant(x) ∧ livesIn(x, y)
q5(y) ← ∃y.Student(x) ∧ owns(x, y)

As you can see, the above 5 (minimal) specializations can significantly reduce
the size of the result set of q(y). We could even obtain a stronger or weaker
specialization by the intersection or union of 2 or more of these specializations.
q1(K) ∪ q3(K) gives the location of all the GraduateStudents who are also Re-
searchAssistants. To obtain a stronger specialization, we take the common result
tuples of 2 or more specializations. q1(K) ∩ q3(K) gives the location of all the
GraduateStudents who are working as ResearchAssistants, q3(K) ∩ q5(K) gives
the all locations which are owned by a ResearchAssistant.

From Example 7 we can see that it is efficient to provide the user only the
minimal specializations of a query w.r.t. a KB to efficiently solve our problem
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of information overload. Generating all the minimal specializations will provide
us more options to reduce information overload. Hence, we develop a method to
compute all the minimal specializations and show that these specializations are
in fact minimal. We do that by obtaining minimal specializations with respect
to each kind of specializations and then eliminating the specializations which
are not minimal w.r.t. q. In the end, we also perform post-processing steps to
eliminate the additional variables introduced in the intermediate steps.

3.2 Computing the minimal specializations

Before starting the computation of the minimal specializations of query, rewrit-
ing the query into a normal form w.r.t. EL++ (along with the normalization
of the KB [Baader et al., 2005]), can simplify the computation process con-
siderably. We can also extract implicit knowledge from the KB irrespective
of the query as a pre-processing step and utilize it while specializing a query.
We first start by presenting a new normal form for conjunctive queries w.r.t.
EL++, CQNF (Conjunctive Query Normal Form) and then we specify the pre-
processing steps required for our method. In the next sections, we compute the
minimal specializations w.r.t. each type of specialization. From these special-
izations we can easily retrieve the minimal specializations of a query. Before
presenting our final algorithm, we also introduce the post-processing steps (like
removal of new variables, concept and role names, et al.) required for better
user understandability (of the specializations).

3.2.1 Normalization and pre-processing steps

As we are specializing (-the process of generating specializations-) a CQ with
respect to the EL++-KB, it is efficient to convert the CQs to an appropriate
normal form to make the computation process simpler. We can omit the nom-
inals occurring in a query by performing few rewriting steps. Suppose a query
q is of the form q(y) ← C u {a}(x) ∧ r(x, y). Then we can rewrite q into an
equivalent query q′(y) ← C(a)∧ r(a, y). First we remove the variable occurring
in the term tm with nominal from the query, by replacing all its occurrence with
the nominal value (individual). Then we eliminate the nominal from the term
tm. Similarly, we can eliminate all the other nominals occurring in the query.

Even the concepts and roles occurring in the terms of a query can be nor-
malized to compute the specializations easily (i.e. omission of the redundant
conjuncts of a concept and elimination of role compositions in the query).

Definition 3.3. Let C ≡ C1u· · ·uCn. A concept D ≡ Ck1u· · ·uCki is called a
sub-concept of C w.r.t. K if Ck1 , Ck2 , · · · , Cki are i distinct conjuncts in C and
1 ≤ i < n ∧ 1 ≤ ki ≤ n. We call a sub-concept CN of C, a normalized concept
of C w.r.t. K if

• CN ≡K C
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• removing any one of the sub-concepts of CN results in a non-equivalent
concept D (i.e. CN @K D).

The set of all sub-concepts of C is defined by the set SUB(C). A concept
name A do not have any sub-concepts the normalized concept of A is A itself.
and a non-atomic concept C can have more than 1 normalized concepts and the
set of normalized concepts of C w.r.t. K is represented by NORMK(C). Con-
sider, K = {B v A, C ≡ AuB}, then B is the normalized concept of C w.r.t. K.
Here, SUB(C) = {A,B}, NORMK(C) = {B}. Consider, K′ = {B v A, D ≡ B,
C ≡ A uB uD, }, then both B and D are the normalized concepts of C w.r.t.
K. Here, SUB(C) = {A,B,D,A u B,A uD,B uD}, NORMK′(C) = {B,D}
and NORMK′(B) = B. For any concept C we can easily generate its set of
normalized concepts, NORMK(C).

Now we present a new normal form, Conjunctive Query Normal Form (CQNF)
for a conjunctive query in EL++.

Definition 3.4. A conjunctive query q is in CQNF if

1. All nominals are eliminated.

2. ∀x ∈ V ar(q), there exists one and only one concept term.

3. All concepts are normalized.

4. All the conjuncts of a concept term are concept names

5. Each role term consists of role names only.

A conjunctive query q(~x) ← p1 ∧ p2 ∧ · · · ∧ pi ∧ · · · ∧ pn can be converted
into an equivalent conjunctive query q′ in CQNF by recursively applying the
following rules:

1. If pi = (C1 u · · · uCi u {a} u · · · uCn)(x), then replace all the occurrence
of x in q with a and discard conjunct {a} in pi.

2. ∀x ∈ V ar(q), replace
∧n
i=1 pi, where pi = Ci(x) with (

dn
i−1 Ci)(x)

i.e. C(x) ∧D(x) ∧ E(x) C uD u E(x).

3. If ∃ no pi = Ci(x), where 1 ≤ i ≤ n and x ∈ V ar(q), then q′(~x) ←
p1 ∧ p2 ∧ · · · ∧ pi ∧ · · · ∧ pn ∧ pn+1 and pn+1 = >(x) i.e. add >(x) as a new
term to q if x doesn’t occur in any concept term of q.

4. If C 6∈ NORMK(C), where C is a concept in a term, then replace C with
C ′ ∈ NORMK(C).

5. If pi = (C1u· · ·uCi−1u∃r.DuCi+1u· · ·uCn)(x), then q′(~x)← p1∧p2∧
· · ·∧p′i∧p′′i ∧p′′′i ∧· · ·∧pn, where p′i = (C1u· · ·uCi−1uCi+1u . . . Cn)(x),
p′′i = D(y), p′′′i = r(x, y), y is a new variable not occurring in q.
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6. If pi = r1 ◦ r2(x, y), then q′(~x)← p1 ∧ p2 ∧ · · · ∧ p′i ∧ p′′i ∧ · · · ∧ pn, where
p′i = r1(x, z), p′′i = r2(z, y), z is a new variable not occurring in q.

Removing the complex role chains from the role terms results in role terms
consisting of simple role names only. The concepts in a term consists of (con-
junction of) concept names only and in none of the terms, both concept and
role names occur together. Two queries q, q′ are equivalent w.r.t. K if the result
sets of the two queries are the same i.e. q(K) = q′(K). It can also be shown that
every CQ has an equivalent CQ in CQNF, because applying the above rules
always generate an equivalent query. Example 8 contains a set of queries and
their equivalent queries in CQNF.

Example 8. Consider CQs q(x) ← ∃y.C(x) ∧ D(x) ∧ r(x,y),
q1(x) ← E u ∃r.F(x).
q2(x) ← E(x) ∧ F(y) ∧ r1 ◦ r2(x, y).

Then, q3(x) ← ∃y.C u D(x) ∧ r(x,y) ∧>(y) is the CQNF of q(x).
q4(x) ← ∃y.E(x) u F(y) ∧ r(x,y) is the CQNF of q1(x).
q5(x)← ∃z.E(x) u F(y) ∧ r1(x, z)∧r2(z, y) is the CQNF of q2(x).

A set of queries and their equivalent queries in CQNF are provided in Exam-
ple 8. Since every EL++-CQ has an equivalent CQ in CQNF from now, unless
otherwise mentioned we assume that all our CQs are in CQNF. If a query q is in
CQNF, any term tm of q will contain a concept name, a conjunction of concept
names, or a role name. The set of variables introduced by the rewriting rules is
denoted by NormV ar(q). The set of variables in the original query (provided
by the user) is denoted by V aro(q) = V ar(q)�NormV ar(q). While we gener-
ate specializations by replacing a variable, we do not replace the variables in
NormV ar(q) as we eliminate these variables from the queries generated by our
method in the post-processing steps.

Pre-processing steps

Before computing the minimal specialization of a conjunctive query q we can
extract concept hierarchy, role hierarchy, etc. from the KB which doesn’t depend
on the given query. So, it is appropriate to perform pre-processing steps to make
our method more efficient. Since we know that CQ answering is decidable only
for regular EL++, we only consider KBs that are regular and in a normal
form. Our method utilizes the hierarchies which are generated during the pre-
processing steps. The hierarchies computed in the pre-processing steps are:

• A completion graph C along with a concept hierarchy and a role hierarchy
H
We first convert the KB K into a normal form [Baader et al., 2005]. then,
we can easily generate the concept hierarchy from the normalized TBox.
In case of regular EL++, we can also obtain the partial ordering (hierarchy)
H over the role names occurring in the normalized RBox using the role
inclusions available.
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• A role successor hierarchy and role predecessor hierarchy collection F as
explained below.

Computing Collection F

One way to specialize a query is by replacing a variable x or an individual a from
the CQ with another individual b in the ABox. Since the size of the ABox is usu-
ally big, its more useful to compute the ordering of all ABox individuals w.r.t.
set inclusion of their role predecessor/successors for each role r ∈ NKR. For this
purpose, we populate a collection F consisting of directed acyclic graphs (DGs).
Each directed acyclic graph (DG) is a hierarchy among the individuals occurring
in the ABox and corresponds to a role and either to its predecessor or to its
successor. In r(a,b), a is the predecessor and b is the successor. So, if there are
N roles in our KB then we obtain 2*N DGs in the collection F . Let

Succ(r, a) = {b | r(a, b) ∈ A} and Pred(r, a) = {b | r(b, a) ∈ A}.
>i represent the auxiliary topmost level individual that contains all the possible
values i.e. Succ(r,>i) = Pred(r,>i) = {a | a ∈ Indv(A)}, ∀r ∈ NKR.
Let <p, <s represent the ordering relations over individuals occurring in the
ABox such that a <p b if Pred(r, a) ⊂ Pred(r, b) and a <s b if Succ(r, a) ⊂
Succ(r, b) for a, b ∈ A .

Then Gpr = (V pr , E
p
r ), Gsr = (V sr , E

s
r) represent the DGs for a role r and the

nodes (which are ABox individuals) are ordered w.r.t. set inclusion of their set
of role successors, predecessors of role r respectively. Here

Epr = {(a, b) | b <s a}, Esr = {(a, b) | b <p a} and
V pr = V sr = {a ∈ Indv(A)}

In Example 9, the DGs corresponding to a role and an ABox are computed.
As we are considering regular RBoxes, there exists a partial ordering among the
roles occurring in a RBox and we calculate the collection F by taking this role
ordering also into consideration.

Example 9. Consider our ABox has the following axioms.
A = {A(a), B(b), r(a, b), r(a, c), r(b, c)}

The ordering for the DG Gpr is {c <s b <s a}. Here, a is at the top level, and
b is in the second level and c is at the bottom level. Similarly, the ordering for
DG Gsr is {a <p b <p c}. If the ABox has the following axioms also.

r1(c, e) r1(c, f) r1(c, g)
and if the RBox contains the following assertion : r1 v r
Then the ordering for the DG Gpr is {b <s a <s c}.

We assume that the above two preprocessing steps are performed and C, H,
F are readily available when the KB K is accessed. In the following sections,
unless mentioned otherwise a query q refers to an EL++-conjunctive query in
CQNF and K refers to a normalized and regular EL++-KB. The original knowl-
edge base over which the user posed the query is denoted by Ko and the set of
concept and role names occurring in Ko is represented by No

C and No
R.
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Minimal concept specializations, the minimal specializations which are obtained
by changing one of the concepts occurring in the query are those with the high-
est potential of being a minimal specialization of the query and now we present
a method to calculate these specializations.

3.2.2 Minimal concept specialization

One way to specialize a query is to specialize the concept occurring in a term
of the query.

Definition 3.5. A specialization q′ of a query q w.r.t. K is called a concept
specialization of q w.r.t. K if q′ is obtained by replacing a concept C in a (con-
cept) term of q with another concept C ′ ∈ NKC . A concept specialization q′ of a
query q w.r.t. K is called a minimal concept specialization of q w.r.t. K if there
exists no other concept specialization q′′ of q w.r.t. K such that q′ ⊂K q′′ ⊂K q.

Let CSpecK(q) be the set of all concept specializations of a query q w.r.t. K
and minCSpecK(q) be the set of all minimal concept specializations of a query
q w.r.t. K.

A specialization C ′ of a concept C w.r.t. K (defined in Section 3.1.1) is called
minimal specialization of C w.r.t. K if ∃ no other concept C ′′ such that
C ′ @K C ′′ @K C and it is represented by C ′ @minK C. minCSpecK(C) rep-
resents the set of all minimal specializations of a concept C w.r.t. K. However,
replacing a concept C with its minimal specialization w.r.t. K may not generate
a specialization of the query q in every case. Depending on the query q, the new
query obtained by replacing C with C ′ can still have the same set of results and
the condition 1 in Definition 3.1 may or may not be satisfied.

So, we define a minimal specialization of a concept C w.r.t. q and K and a
specialization C ′ of a concept C w.r.t. K is called a minimal specialization w.r.t.
q i.e. C ′ @minK,q C, if

(a) ∃ no concept C
′′

such that C ′ @K C
′′
@K C,

(b) q′(K) 6= q(K), where q′ is obtained by replacing C with C ′.
and minCSpecqK(C) represents the set of all minimal specializations of a con-
cept C w.r.t. K and q. From now, a minimal specialization of a concept C
represents a minimal specialization of C w.r.t. the query q and the KB K.

For a concept C there can be more than one minimal specialization as explained
in Example 10. So, there can be more than one minimal concept specialization
for any given query. Also, if a query q has more than one variable, then any
2 queries (specializations) obtained by replacing two different concepts (in con-
cept terms corresponding to each variable) with their minimal specializations
may not be comparable w.r.t. query containment and both these specializations
will be minimal concept specializations of q.
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Example 10. Assume a TBox T with just the following concept inclusions
T = { Father v Person, Mother v Person }

Then, q1(x) ← ∃y.Father(x) ∧ hasParent(y, x)
q2(x) ← ∃y.Mother(x) ∧ hasParent(y, x) are incomparable w.r.t. query

containment and both are minimal concept specializations of
q(x) ← ∃y.Person(x) ∧ hasParent(x, y)

In EL++ a concept (without concrete domains) is built according to the syn-
tax rule C := > | ⊥ | {a} | A | C u D |∃r.C, where A ranges over NC , r ranges
over NR, a ranges over NI and C, D range over EL++-concepts. Since we con-
vert queries into CQNF, nominals and concepts (conjuncts) of the form ∃r.A do
not occur in the query. As, we are interested only in the queries with non-empty
result sets, ⊥ does not occur in our queries. So, for a query in CQNF only the
concept specializations of concept names or conjunction of concept names need
to be computed.

The concept specialization of a query can be obtained by either adding a new
conjunct or by replacing a conjunct with its specialization. To obtain a minimal
concept specializations, it is evident that a complex concept can’t be added as
a conjunct. We can also make use of ⊥ to avoid generating empty concept spe-
cializations (i.e. specializations with an empty result set). Let C be a concept
that we are specializing and assume that the TBox has the following two GCIs
D vK C and D vK ⊥. Then we don’t have to consider D as a specialization
of C as, the concept specialization obtained will be empty. However, we can
obtain nominals as specializations of a concept in some of the cases and they
can even be minimal specializations.

Computing Minimal Concept Specializations

Now, we devise a computation procedure for generating all the minimal concept
specializations of a query w.r.t. a KB. To this end we introduce few auxiliary
sets. Let, C = C1 u C2 u . . . u Cn be a concept occurring in a term C(x) of a
query, where x is a variable and C1, C2, . . . , Cn are concept names. Let ERCK
be a set which contains all the concepts of the form ∃r.B where r ∈ NKR and B
∈ NKC i.e. ERCK = { ∃r.B | r ∈ NKR, B ∈ NKC}.

Since our KB is in normal form, a minimal specialization of a concept name
C can be a concept D of the form

1. D ∈ NKC ∪ ERCK

2. C uB, where B ∈ NKC ∪ ERCK

3. {a}, where a ∈ IndvK(A).

As, Cu{a} ≡ {a}, we don’t consider adding a nominal as a conjunct to the con-
cept name C to obtain a minimal specialization of C. Here, IndvK(C) = {a ∈A
| A |= C(a)}.
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In addition, a minimal specialization of a concept C is not subsumed by any
other minimal specialization of C, and it wouldn’t generate queries having the
same result set. So, we first compute these concepts which generate queries with
the same result set and eliminate them from the set NKC ∪ ERCK ∪ IndvK(C).
For this purpose we define the set

EQUALqK(C) = {D ∈ NKC ∪ ERCK ∪ IndvK(C) | q′(K) = q(K), where q′ is
obtained from q either by replacing C with D or adding D as a conjunct to C }

It is the set of concepts which either on replacing C or on adding as a conjunct
to C generate queries (non-specializations) that are equivalent to the original
query (see Example 11). Let ICqK = (NKC ∪ ERCK)�EQUALqK(C).

Example 11. Assume a KB K where
T = { Father v Person}
A = { Father(b), Father(c) , Person(a), livesIn(b, e), livesIn(c, b) }

and a query q1(x)← ∃y.Person(x) ∧ livesIn(x, y)
Then, the query q2(x)← ∃y.Father(x)∧ livesIn(x, y)
is obtained by replacing Person with Father. However q1(K) = q2(K) and q2
is not a specialization of q1. Here, Father ∈ EQUALqK(Person).

Computing the 3 forms of minimal specializations of a concept name

From the remaining concepts in NKC ∪ ERCK ∪ IndvK(C), we then select the
minimal specializations (in the above 3 forms) of the concept C. We define

DSqK(C) = {D ∈ ICqK | D @K C ∧ ∃ no E ∈ ICqK: D @K E ∧ E @K C}�
{D ∈ ICqK | D vK ⊥}

It is the set of concepts that (a) are directly subsumed by the concept C and,
(b) generate a concept specialization when C is replaced by them in the query.

NCqK(C) = {D ∈ ICqK | C 6vK D ∧D 6vK C ∧ ∃ no E ∈ ICqK such that
C 6vK E ∧E 6vK C ∧D @K E } � {D ∈ ICqK | D vK ⊥}

It is the set of concepts that neither are subsumed by C nor subsume C w.r.t.
K and when added to C as a conjunct generates a specialization.

DNSqK(C) = {a ∈ IndvK(C) | A 6|= D(a),∀D ∈ DSqK(C) ∪NCqK(C) }
It is the set of nominals which are minimal specializations of C.

Minimal specializations of C, a conjunction of concept name(s):

Finally, we denote minConcSpecqK(C) as the set

minConcSpecqK(C) =


{ D ∈ DSq

K(C) ∪DNSq
K(C) } ∪

{ C u D | D ∈ NCq
K(C) }, C is atomic ;

{C1 u · · · uminConcSpecqK(Ci) u · · · u Cn}, where
C1 u · · · u Ci−1 u Ci+1 · · · u Cn 6≡K minConcSpecqK(Ci).



CHAPTER 3. MINIMAL SYNTACTIC QUERY INTENSIFICATION 24

We considered C = C1 u . . . u Cn if C is not atomic. When we compute
the minimal specializations of a concept C irrespective of the query, the set
EQUALqK(C) = ∅.

We now define the set
minConcSpecK(q) = {q′| q′(K) 6= ∅, where q′ is obtained by replacing a

concept C in q with C ′ ∈ minConcSpecqK(C) }
and Lemma 3.1 shows that the set minConcSpecK(q) contains all the minimal
concept specializations of a query q w.r.t. K.

Lemma 3.1. Given a query q and a KB K,
(1) q′ ∈minConcSpecK(q) ⊇ minCSpecK(q) and
(2) q′ ∈minConcSpecK(q) ⊆ SpecK(q).

Proof. Claim (1)
Since our query q is in CQNF, there exists only one concept term for each vari-
able x ∈ V ar(q). To obtain a minimal concept specialization it is sufficient to
replace a concept C of a concept term in q with its minimal specialization.
i.e. it is sufficient to prove that minConcSpecqK(C) contains all the minimal
specializations of C. (As every other concept can be treated similarly, we can
generate all the minimal concept specializations of q from minConcSpecK(q).)
This implies, if concept Ca 6∈ minConcSpecqK(C) then Ca is not a minimal spe-
cialization of C. We show it with proof by contradiction and induction.

Assume, there exists an arbitrary EL++-concept Ca ∈ minCSpecqK(C) and
Ca 6∈ minConcSpecqK(C). (1)
case (i) Ca = >, > can’t be a minimal specialization and we reach a

contradiction.
case (ii) Ca = ⊥, ⊥ too can’t be a minimal specialization of C and we reach

a contradiction.
case (iii) Ca = A, concept name

(a) If C is a concept name
then Ca ∈ DSqK(C) as both C, Ca are concept names and
Ca ∈ minConcSpecqK(C) which is a contradiction.

(b)If C is of the form C1 u . . . u Ci u . . . u Cn
then Ca @K Ci for some i and C1 u . . . u Ca u . . . u Cn @K C.

Since Ca @K C∧Ca @K Ci, Ca ≡K C1 u . . . u Ca u . . . u Cn @K C
Then, either Ca ∈ minConcSpecK(C) or Ca is not a minimal
concept specialization of C and we obtain a contradiction.

case (iv) Ca = {a}, a nominal
(a) C is a concept name

Since Ca 6∈ minConcSpecqK(C), we have {a} 6∈ DNSqK(C).
So, there exists a concept D ∈ DSqK(C) ∪NCqK(C) such that
A |= D(a)∧{a} @K D @K C∧D ∈ DSqK(C)∪NCqK(C) (2)
From (1) and (2), we obtain a contradiction.

(b) C is non-atomic, as in case (iii)
case (v) Ca = ∃r.A, where r ∈ NKR and A ∈ NKC .
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Similar to case (iii)
case (vi) Ca = D u E (D, E are EL++-concepts)

We assumed that D u E @minK,q C and D u E /∈ minConcSpecqK(C).
Then, D u E ≡K D u E u C @K C u C ≡K C.
Since we are interested only in minimal specializations of C, only
the following are possible: D u C @minK,q C, E u C @minK,q C.

(as D u E u C @K D u C @K C and D u E u C @K E uC @K C)
W.l.o.g. let us assume that Ca ≡ D u C @minK,q C.
We can further divide D into D1 u E1 and continue this
for k steps until the num. of conjuncts in Dk is 1 and Dku C @minK,q C.
HereDk 6vK C, else ifDk @K C, thenDk ∈ DSqK(C) ∈ minConcSpecqK(C)
As Dk doesn’t subsume C we can infer that C 6vK Dk and also Dk 6vKC
Then, Dk u C ∈NCqK(C) ∈minConcSpecqK(C) which is a contradiction.

So, minConcSpecqK(C) contains all the minimal specializations of a concept
C.
Hence, minConcSpecK(q) contains all minimal concept specializations of q
w.r.t. K.

Claim (2): Proof by contradiction.
Assume, ∃ a query q1 ∈minConcSpecK(q) and q1 6∈ SpecK(q).
Then q1 will not satisfy atleast one of the conditions in Definition 3.1.
Condition 1: All the minimal specializations C ′ ∈ minConcSpecqK(C) of a con-
cept C only generate queries which are strictly contained in q. So, condition 1
is always satisfied.
Condition 2: If q′ ∈ minConcSpecK(q) then q′(K) 6= ∅ and the condition is
directly satisfied.
Condition 3: Since we replace only one concept C with its minimal specializa-
tion, we always satisfy condition 3a which is sufficient to satisfy condition 3.
Condition 4: Once again, since we replace only a concept C the number of vari-
ables remain unchanged. So, condition 4 is also satisfied.

Hence, every query q1 ∈minConcSpecK(q) is a specialization of q w.r.t. K.

3.2.3 Minimal role specialization

A role specialization is obtained by replacing a role r with its specialization r′

w.r.t. K. Role specializations of a query can be obtained in a similar way to
concept specializations.

Definition 3.6. A specialization q′ of q w.r.t. K is called a role specialization
of q w.r.t. K if q′ is obtained by replacing a role r of the role term r(v1, v2)
in q with a role r′ ∈ NKR. A role specialization q1 of q w.r.t. K is minimal if
there exists no other role specialization q2 of q w.r.t. K such that q1 ⊂K q2 and
q2 ⊂K q.

We define RSpecK(q) as the set of all role specializations of a query q w.r.t.
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K and minRSpecK(q) as the set of all minimal role specializations of query q
w.r.t. K. Example 12 shows how role specializations w.r.t. some KB can be
obtained.

Example 12. Let the TBox of KB K contain the following SRI
R = {hasFather v hasParent }

Among the queries
q(x) := ∃y.Man(x) ∧ hasParent(x, y)
q2(x) := ∃y.Man(x) ∧ hasFather(x, y)

we can see that q2(x) is a role specialization of q1(x) w.r.t. K.

A specialization r′ of a role r w.r.t. K (defined in Section 3.1.1) is called
a minimal specialization of r w.r.t. K i.e. r′ @minK r if there exists no other
specialization r′′ of r such that r′ @K r′′ @K r. minRSpecK(r) represents the
set of minimal specializations of a role r w.r.t. K. As explain in Section 3.2.2
we also need define minimal specializations of a role w.r.t. K and q.

A specialization r1 of a role r w.r.t. K is a minimal specialization of r w.r.t. q
and K i.e. r1 @minK,q r, if

(a) ∃ no other specialization r′′ of r w.r.t. K such that r′ @K r′′ @K r,
(b) q′ obtained by replacing r with r′ and q′(K) 6= q(K).

and minRSpecqK(r) represents the set of minimal specializations of a role r w.r.t.
K and q.

Since a query (in CQNF) doesn’t have conjuncts of the form ∃r.D in a con-
cept term, we do not have to consider specializing a role in a concept term.
Moreover, since our queries are in CQNF, only simple role names occur in our
queries.

Computing Minimal Role Specializations

Now, we devise a computation procedure for generating all the minimal role
specializations of a query w.r.t. K. To this end we introduce few auxiliary sets.
Since, we normalize the RBox R in the pre-processing steps, all the role inclu-
sions in R are of the from r v s or r1 ◦ r2 v r. The minimal specializations of a
role name r are of the form (a) r1, or (b) r1 ◦r2, where r1, r2 ∈ NKR}. RCK is the
set of all possible binary role compositions in K i.e. RCK = {r1◦r2 | r1, r2 ∈ NKR}.

In addition, a minimal specialization of a role r is not subsumed by any other
specialization of r, and it wouldn’t generate queries having the same result set.
So, we first compute these roles which generate queries with the same result set
and eliminate them from the set NKR ∪RCK. For this purpose we define the set

EQUALqK(r) = {r′ ∈ NKR ∪RCK | q′(K) = q(K), where q′ is obtained
from q by replacing r with r′ }.

This set of roles generates queries (non-specializations) that are equivalent to
the original query if r is replaced in q by an element.
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Let ICRqK = (NKR ∪ RCK)�EQUALqK(r).

From the remaining roles in NKR ∪ RCK we then select the minimal special-
izations of the role r and we define the set minRoleSpecqK(r) as

minRoleSpecqK(r) = {r1 ∈ ICRqK | r1 @K r∧∃ no r2 ∈ ICRqK : r1 @K r2 @K r}.

This set consists of all the minimal specializations of a role name r. When
we compute the minimal specializations of a role r irrespective of the query, the
set EQUALqK(r) = ∅.

The set minRoleSpecK(q) is obtained as
minRoleSpecK(q) = {q′| q′(K) 6= ∅, where q′ is obtained by replacing a

role r in q by a role r1 ∈ minRoleSpecK(r) }
and in Lemma 3.2 we show that minRoleSpecK(q) contains all the minimal
role specializations of q w.r.t. K.

Lemma 3.2. Given a query q and a KB K,
(1) minRoleSpecK(q) ⊇ minRSpecK(q) and,
(2) minRoleSpecK(q) ⊆ SpecK(q).

Proof. Claim (1)
Similar to the argument in Lemma 3.1, we can conclude that, all the mini-
mal role specializations of a query q w.r.t. K are in minRoleSpecK(q) when
minRoleSpecqK(r) contains all the minimal specializations of role r w.r.t. q.

Using proof by contradiction and proof by induction.
Assume, ∃ a minimal specialization r′ of r and r1 6∈ minRoleSpecqK(r) (1)
case(i) r′ be a role name i.e. r′ ∈ NKR.

As r′ 6∈ minRoleSpecqK(r), ∃ a role r
′′ ∈ ICRqK : r′ @K r

′′
@K r. Then,

r′ is not a minimal specialization of role r, and we obtain a contradiction.
case (ii) r′ ≡K r1 ◦ r2 and r1, r2 ∈ NKR i.e. r

′ ∈ ICRqK
As r′ 6∈ minRoleSpecqK(r), ∃ a role r

′′ ∈ ICRqK : r′ @K r
′′
@K r and r′ is

not a minimal specialization of role r which is a contradiction.
case (iii) r′ ≡K r1 ◦ · · · ◦ rn and r1, . . . , rn ∈ NKR, n ≥ 3.

We prove that for any random value of n ≥ 3, r′ is not a minimal
specialization of r.
Let n = k + 1, for some k ≥ 2 i.e. r1 ◦ r2 ◦ · · · ◦ rk ◦ rk+1 @K r.
Since, K is normalized, (w.l.o.g. assume that) ∃ a role r′k ∈ NKR such
that rk ◦ rk+1 @K r′k.
This implies r1 ◦ r2 ◦ · · · ◦ rk ◦ rk+1 @K r1 ◦ r2 ◦ · · · ◦ r′k @K r and
r1 ◦ r2 ◦ · · · ◦ rk ◦ rk+1 6@minK,q r which is a contradiction.
Therefore, when n ≥ 3, r′ cannot be a minimal specialization of r.

i.e. minRoleSpecqK(r) contains all the minimal specializations of role r.
So, minRoleSpec(q,K) contains all the minimal role specializations of a query
q w.r.t. K.
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Claim (2): Proof by contradiction.
Assume, ∃ a query q1 ∈minRoleSpecK(q) and q1 6∈ SpecK(q).
Then q1 will not satisfy atleast one of the conditions in Definition 3.1.
Condition 1: All the minimal specializations r′ ∈ minRoleSpecqK(r) of a role r
only generate queries which are strictly contained in q. So, condition 1 is always
satisfied.
Condition 2: If q′ ∈ minRoleSpecK(q) then q′(K) 6= ∅ and the condition is
directly satisfied.
Condition 3: Since we replace only one role r with its minimal specialization,
we satisfy condition 3a which is sufficient to satisfy condition 3.
Condition 4: Once again, since we replace only a role r the number of variables
remain unchanged. So, condition 4 is also satisfied.

Hence, each query in minRoleSpecK(q) is a specialization of q w.r.t. K.

3.2.4 Minimal conjunct specialization

As described in Section 3.1, we can specialize a query by adding a new role term
to the query. We use the role orderings (hierarchies) in H to add a new role
term to the query. These kinds of specializations obtained by adding a new role
term are called conjunct specializations.

Definition 3.7. A specialization q′ of a query q w.r.t. K is called a conjunct
specialization of q w.r.t. K if q′ is obtained by adding a role term r1(u, v) as
a conjunct to q, where r1 ∈ NR. A conjunct specialization q1 of q w.r.t. K is
minimal if ∃ no other conjunct specialization q2 of q w.r.t. K such that q1 ⊂K
q2 ⊂K q.

The set of all minimal conjunct specializations which are equivalent to none
of the role specializations are defined by set minRConjSpecK(q). The set of all
role terms which on adding to q generate a specialization in minRConjSpecK(q)
are defined by the set minRConjK(q).

Example 13. Let the ABox of KB K contain the following axioms
A = {r(a, b), r1(a, b), r(b, c), r1(b, c), r(d, e), r1(g, e), C(a), C(b)}
and a query q(x) := C(x) ∧ r(x, y)
Then, the query q1(x) := C(x) ∧ r(x, y) ∧ r1(x, y)
is not a specialization of q as q(K) = q1(K) = {a, b}.

Computing Minimal Conjunct Specializations

Now, we devise a computation procedure for generating all the minimal conjunct
specializations of a query w.r.t. K. To this end we introduce few auxiliary sets
InCompRoleK(r) and minConjK(q). RCK introduced in the previous section
is also used here.

As shown in Example 13, we should look out for the terms which do not reduce
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the result set of the new query and omit them in our computation method. For
this purpose, we define
EQUAL CONJqK(r) = {r1 ∈ NKR ∪RCK | q′(K) = q(K), where q′ is

obtained by adding a role term r1(u, v) and ∃ a role term r(u, v) in q}
It is the set of roles which produce non-specializations w.r.t. a role r.
Let INCRqK = (NKR ∪RCK)�EQUAL CONJqK(r)

Then we define the set
InCompRoleqK(r) = {r1 ∈ INCRqK | r1 6vK r and r 6vK r1}

This is the set of roles that neither are subsumed by nor subsume r w.r.t. K

The set minConjK(q) is denoted as
minConjK(q) = {r1(u, v) | r1 ∈ InCompRoleqK(r), where r(u, v) ∈ q

∧ r1(u, v) 6∈ q ∧ ∃ no r2 ∈ InCompRoleqK(r) : r1 @K r2}
and it contains all the role conjuncts which can be added to the query to obtain
a specialization.

The set minConjSpecK(q) is obtained as
minConjSpecK(q) = {q1| q1(K) 6= ∅, where q1 is obtained by adding to q a

role conjunct r(u, v) ∈ minConjK(q)}.
In Lemma 3.3 we show that minConjSpecK(q) contains all the minimal con-
junct specializations of a query q w.r.t. K which are not equivalent to any role
specialization of q w.r.t. K.

Lemma 3.3. Given a query q and a KB K,
(1) minConjSpecK(q) ⊇ minRConjSpecK(q),
(2) minConjSpecK(q) ⊆ SpecK(q).

Proof. Claim (1)
(As in Lemma 3.1 and 3.2) It is sufficient to prove that minConjK(q) contains
all conjuncts required to generate every minimal conjunct specializations of q
w.r.t. K is not equivalent to any role specialization of q w.r.t. K.

i.e. r(u, v) ∈ minRConjK(q)→ r(u, v) ∈ minConjK(q).

Proof by contradiction. Assume, ∃ a term r(u, v) ∈ minRConjK(q) and r(u, v) 6∈
minConjK(q)
case (i) ∃ a role term r1(u, v) in q.

Then adding r(u, v) to q where r1 vK r or r vK r1 would not generate any
new minimal specializations.

(a) r1 vK r. The generated query is not a specialization.
(b) r vK r1, similar to role specialization where r1 is replaced by r.
So, r(x, y) ∈ minRConjK(q) only if r1 6vK r ∧ r 6@K r1 which implies that
r(u, v) ∈ minRoleConjK(q) and we obtain a contradiction.

case (ii) ∃ a no role term r1(u, v) in q.
Even though r(u, v) is a new restriction on the variable(s) u and/or v, the
query obtained by adding r(u, v) as a conjunct isn’t a specialization.
So, r(x, y) 6∈ minRConjK(q) and we obtain a contradiction
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Hence, minConjSpecK(q) contains all the minimal role conjunct specializa-
tions of a query q w.r.t. K which are not equivalent to any role specialization of
q w.r.t. K.

Claim (2): Proof by contradiction.
Assume, ∃ a query q1 ∈minConjSpecK(q) and q1 6∈ SpecK(q).
Then q1 will not satisfy atleast one of the conditions in Definition 3.1.
Condition 1: All the terms r′(x, y) ∈ minConjK(q) only generate queries which
are strictly contained in q. So, condition 1 is always satisfied.
Condition 2: If q′ ∈ minConjSpecK(q) then q′(K) 6= ∅ and the condition is
directly satisfied.
Condition 3: Since we add a role term r′(u, v) only when a role term r(u, v)
exists in q, we satisfy condition 3b which is sufficient to satisfy condition 3.
Condition 4: Once again, since we add a role term r′(u, v) and both u, v already
occur in q the number of variables remain unchanged. So, condition 4 is also
satisfied.

Hence, each query in minConjSpecK(q) is a specialization of q w.r.t. K.

3.2.5 Minimal variable specialization

A query q contains a set of variables represented by V ar(q) and the set of
variables in the query before normalization is represented by the set V aro(q).
NonDistV ar(q), DistV ar(q) represent the set of non-distinguished and distin-
guished variables respectively in the query before normalization i.e. DistV ar(q)∪
NonDistV ar(q) = V aro(q). By replacing a variable x ∈ V aro(q) in query q
with another variable y ∈ V aro(q) we can obtain a specialization.

Definition 3.8. A specialization q′ of a query q w.r.t. K is called a variable
specialization of q w.r.t. K if q′ is obtained from q by replacing a variable x with
another variable y, where x, y ∈ V aro(q). A variable specialization q′ of a query
q is called minimal variable specialization if ∃ no other variable specialization
q
′′

such that q′ ⊂K q
′′ ⊂K q.

The set of all variable specializations is defined as V SpecK(q). The set of
all minimal variable specializations is defined as minV SpecK(q). In addition,
replacing x with an individual a from the ABox can also produce a specialization
which is covered in the next section. Specializations obtained by replacing
more than one occurrences of the variable x are not specializations (since in a
specialization only one syntactic element is changed). But, when only one of
the occurrences of the variable x is replaced with another variable y we can no
longer guarantee that a specialization will be obtained as shown in Example 14.

Example 14. Let ABox contain
A = { isMother(a, b) isFather(b, c) isFather(b, e),

isMother(f, g) isFather(g, h) C(a) C(f) C(c) }
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From q(x) ← ∃y∃z.isMother(x, y) ∧ isFather(y, z) ∧ C(z) ∧ >(x)
q1(x) ← ∃y.isMother(x, y) ∧ isFather(y, x) ∧ C(x)
q2(x) ← ∃y.∃z.isMother(x, y) ∧ isFather(y, z) ∧ C(x).

we can see that query q has 1 result, query q1 has 0 results, but query q2 has 2
results.

Also, we should treat the distinguished and non-distinguished variables dif-
ferently as distinguished variables are of higher importance. Depending on the
KB (especially ABox) considered, a replacement can generate a specialization
or a non-specialization.

Computing Minimal Variable Specialization

We first compute all variable specializations of a query and then eliminate the
ones which are contained in other variable specializations. So, the main step is
the computation of all the variable specializations of a query.

Example 15. Consider a query
q(x, y)← ∃v.C(x) ∧D(y) ∧ E(u) ∧ r(x, y) ∧ r1(y, z) ∧ r2(u, v)

Then, connected(x) = {y}, connected(y) = {x, z}, connected(z) = {y},
connected(u) = {v}, connected(v) = {u}

depends(x, z) = connected(connected(x)) = connected({y}) = 1,
depends(x, y) = 1, depends(x, u) = 0, depends(u, v) = 1.

Type(x) = C u domain(r), T ype(y) = D u range(r) u domain(r2),
T ype(z) = range(r1), T ype(u) = E u domain(r2), T ype(v) = range(r2).

If a query q has a role term r(u, v), then we say that u is connected to
v and vice-versa. For a variable x ∈ V ar(q), connected(x) represents the
set of variables in V ar(q) that are connected to x. x is distantly connected
to y or vice-versa if x ∈ connected(connected(· · ·(n−1)times connected(y) · · · ))
(i.e. x ∈ connectedn(y)), where n ≥ 1 as shown in Example 15. Intuitively,
x is distantly connected to y if restricting the values of x can also restrict
the values of y. depends(x, y) specifies that x is distantly connected to y i.e.
x ∈ connectedn(y), n ≥ 1 and vice versa. If x is distantly connected to y, then
depends(x, y) = 1 else depends(x, y) = 0.

As shown in Example 15, Type(x) is obtained by the conjunction of the con-
cepts C, domain(r) and range(r), where C(x), r(x, v) and r(u, x) are terms in q.

P (x) is the set of possible values of x ∈ V ar(q) in q i.e. P (x) = {a | a ∈ q(x)}.
P (x)′ is the set of possible values of x ∈ V ar(q′) in q′ i.e. P (x)′ = {a | a ∈ q′(x)}.

Let varReplK(q,x,y) be the set that contains only those replacements of x which
satisfy the below conditions.

• if x ∈ DistV ar(q)
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1. x has atleast one other occurrence.

2. ∃ui ∈ connected(x) : depends(ui, y) ∧ P (x) ⊃ P (x)′. P (x)′ is the
possible values of x after replacement.

• if x ∈ NonDist(q)

1. x also occurs in another term tm.

2. ¬depends(ui, z)∨P (z)′ ⊂ P (z), ∀z ∈ DistV ar(q),∀ui ∈ connected(x).

3. q′, the query obtained from the replacement should have a reduced
result set i.e. q′(K)6= q(K).

When the values of x ∈ DistV ar(q) reduces after the replacement, the obtained
query will always be strictly contained in the original query. So, we don’t check
for query containment if x ∈ DistV ar(q).

We generate every variable specialization by performing only the replacements
in varReplK(q,x,y) for each x, y ∈ V aro(q).
VarSpecK(q) = {q1 | q1(K) 6= ∅, where q1 is obtained by the replacement

r ∈ varReplK(q,x,y) ∀x, y ∈ V aro(q)}.

Lemma 3.4. Given a query q and a KB K,
(1) VarSpecK(q) ⊇ V SpecK(q),
(2) VarSpecK(q) ⊆ SpecK(q).

Proof. Claim (1):
Since we are replacing a variable in all possible ways while satisfying some con-
ditions, it is sufficient to prove that the replacements which do not follow the
conditions will not generate variable specializations.

if x ∈ DistV ar(q):
Condition 1: If we replace all the occurrences of a distinguished variable, the
query is no longer valid as a result (distinguished) variable doesn’t occur in the
body of the query. So, we can’t consider these replacements.
Condition 2: Since we are replacing x at one of its occurrences, the number of
restrictions on the variable x are reduced. Thus we could obtain a specialization
only if the possible values of x after the replacement, P (x)′, are less than the
possible values of x before the replacement,P (x). Hence, all those replacements
which do not the follow this condition cannot be a specialization of q w.r.t. K.
The sub-condition ∃ui ∈ connected(x) : depends(ui, y) identifies the replace-
ments which aren’t specializations directly without any membership checks.

if x ∈ NonDistV ar(q):
Condition 1: If the single occurrence of a variable is replaced then the number
of variables in the new query are not equal to |V ar(q)|. Thus, we do not obtain
a specialization as condition 4 in Definition 3.1 is violated.
Condition 2: We can argue similar to the above condition 2 and show that when



CHAPTER 3. MINIMAL SYNTACTIC QUERY INTENSIFICATION 33

the condition is not satisfied, the replacement will not produce any specializa-
tion.
Condition 3: It is essential for obtaining a specialization.

Hence, by the replacements in varSpecK(q,x, y) we can generate all the variable
specializations of q w.r.t. K.

Claim (2): Proof by contradiction.
Assume, ∃ a query q1 ∈ VarSpecK(q) and q1 6∈ SpecK(q).
Then q1 will not satisfy atleast one of the conditions in Definition 3.1.
Condition 1: All the replacements in varReplK(q, x, y) only generate queries
which are strictly contained in q. If x ∈ DistV ar(q) we check for the condition
P (x) ⊃ P (x)′ which ensures that q′ ⊂K q. If x ∈ NonDist(q) we check the
condition for query containment directly. So, condition 1 is always satisfied.
Condition 2: If q′ ∈ VarSpecK(q) then q′(K) 6= ∅ and the condition is directly
satisfied.
Condition 3: Since we replace one occurrence of variable x with another variable
y, where x, y ∈ V aro(q), we satisfy condition 3a which is sufficient to satisfy
condition 3.
Condition 4: Since we use only the variables occurring atleast twice in the query
for our replacements, condition 4 is always satisfied.

Hence, each query in VarSpecK(q) is a specialization of q w.r.t. K.

The minimal variable specializations of a query q w.r.t. K is defined by the
set minVarSpecK(q) = {q′ ∈ VarSpecK(q) | ∃ no other query

q′′ ∈ VarSpecK(q) such that q(K) ⊂ q′(K) }.

3.2.6 Minimal variable individual specialization

Replacing a variable from a query with an individual can also produce a
specialization of the query. For a variable x ∈ V aro(q) we need to replace x
with an individual a at only one of its occurrences.

Definition 3.9. A specialization q′ of a query q w.r.t. K= (T ,R,A) is called
a variable individual specialization (varIndv specialization) of q w.r.t. K if q′

is obtained from q by replacing a variable x with an individual a, where x ∈
V aro(q), a ∈ Indv(A). A varIndv specialization q′ of a query q w.r.t. K is called
minimal varIndv specialization if ∃ no other varIndv specialization q′′ such that
q′ ⊂K q′′ ⊂K q.

The set of all minimal variable individual specializations of q w.r.t. K is
defined by minV IndvSpecK(q) and varIReplK(q,x) defines the set of replace-
ments of variable x in q with an individual a ∈ Indv(A) which generate a
minimal varIndv specialization of q w.r.t. K.

Example 16. Let a KB K contains the following assertions only
A = { Man(a). Man(b). Man(c). Woman(d). Woman(e).
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isBrother(x, y) ≡ isBrother(y, x). isSister(x, y) ≡ isSister(y, x).
isBrother(a, b). isBrother(b, c). isBrother(c,a). isSister(d, e). isSister(e,d).}

Let, q(x) ← ∃y∃z.Man(x) ∧ isBrother(x, y) ∧ >(y)
q1(x) ← ∃y.Man(x) ∧ isBrother(x, b) ∧ >(y) be two CQs. Here we can see

that the result set of q(K) is {a, b, c} but for q1(K) its just {a, c}. Thus q1 is
a varIndv specialization of q. But replacing z with d or e will not produce a
specialization of q.

It is not an efficient way to generate the specializations by replacing a variable
with a random individual in the ABox (and then checking if the new query is a
specialization or not), as most of them don’t generate specializations as shown
in Example 16. So, we should avoid checking as many individuals as possible
while computing the minimal varIndv specializations.

Computing Variable Individual Specializations

Let varIndvReplK(q,x) contain the replacements (of variable x in q with an
individual and) which satisfy the below conditions

• none of the variables in the concept terms are replaced.
- As after the replacement of x in a concept term C(x), the term C(a) ei-
ther has value 0 or value 1 which makes the new query a non-specialization.

• when the variable x in the role term r(v, u) is being replaced and x is at
the predecessor (or successor) position in the term r(v, u), i.e. x = v (or
u), we replace x with the first descendant d ∈ P (x) (Possible values of x
as defined in Section 3.2.6) of >i from each branch in the DG Gpr (Gsr) such
that the new query generated, q′, has a reduced result set, q′(K) 6= q(K).
- Higher level descendants of >i contains the larger subset of succes-
sor/predecessor values.

We can generate all the minimal varIndv specializations by performing only
the replacements in varIndvReplK(q,x), for each x ∈ V aro(q).
minVarIndvSpecK(q) = {q1 | q1(K) 6= ∅, where q1 is obtained by the

replacement r ∈ varIndvReplK(q,x), ∀x ∈ V aro(q)}.

Lemma 3.5. Given a query q and a KB K
(1) minVarIndvSpecK(q) ⊇ minV IndvSpecK(q),
(2) minVarIndvSpecK(q) ⊆ SpecK(q).

Proof. Claim (1):
It is sufficient to prove that the replacements in varIndvSpecK(q,x) contains all
minimal varIndv specializations.

i.e. replacement r ∈ V arIReplK(q, x)→ r ∈ varIndvReplK(q, x,).
It is also sufficient to prove that all the replacements which do not follow the
given conditions will not generate minimal variable specializations.

i.e. for all replacements r 6∈ V arIndvReplK(q, x) → r 6∈ varIReplK(q, x).
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Condition 1: None of the variables occurring in a concept term are replaced
by an individual.

Replacing x in concept term C(x) with an individual a will not produce
even a specialization because after modifying the term C(x) into C(a) either K
|= C(a) or K 2 C(a).

• K |= C(a) ⇒ new query is not a specialization (same set of results).

• K 2 C(a) ⇒ the result set of the new query is zero. So it is also not a
specialization.

Condition 2: If we are replacing x in the term r(x, z) or r(z, x), we just need
to show that (a) replacing x with a as mentioned in the conditions will always
allow the biggest proper subset of initial possible values for z in the ABox A,
where z is the successor or predecessor of x in the role term where x is being
replaced, and (b) the query q′ obtained after the replacement has a reduced
result set i.e. q′(K) 6= q(K).
In the directed graph Gpr (or Gsr) individuals are ordered based on set inclu-
sion. So, the higher level successors of the top individual >i will always allow
bigger proper subset of the possible values for z. Then, none of the remaining
unselected individuals would provide z with more values than the ones at the
topmost level and also generate a specialization. So, all replacements which do
not follow condition 2 will not generate a minimal varIndv specializations.

Hence, the replacements in varIndvReplK(q,x) ∀x ∈ V aro(q) generate all min-
imal varIndv specializations of q w.r.t. K.

Claim (2): Proof by contradiction.
Assume, ∃ a query q1 ∈minVarIndvSpecK(q) and q1 6∈ SpecK(q).
Then q1 will not satisfy atleast one of the conditions in Definition 3.1.
Condition 1: All the replacements in varIndvReplK(q, x) only generate queries
which are strictly contained in q. So, condition 1 is always satisfied.
Condition 2: If q′ ∈ minVarIndvSpecK(q) then q′(K) 6= ∅ and the condition
is directly satisfied.
Condition 3: Since we replace a variable x with an individual a ∈ Indv(A), we
always satisfy condition 3a which is sufficient to satisfy condition 3.
Condition 4: Since we convert our queries into CQNF, each variable occurs in
atleast one concept term and this occurrence is not replaced. So, the number
of variables remain unchanged and condition 4 is always satisfied.

Hence, each query in minVarIndvSpecK(q) is a specialization of q w.r.t. K.

3.2.7 Minimal individual specialization

Specializing a query by replacing an individual with another individual can pro-
duce specializations which are not covered by the earlier sections. But replacing
with any random individual will not generate a specialization in most of the
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cases. Nonetheless, we could obtain specializations in some of the cases like in
Example 17 and they are called individual specializations.

Example 17. Consider an ABox containing the following assertions.
A = { Man(d), Man(e), hasParent(d,a), hasParent(e,a), hasParent(d,b) }

Among the CQs: q(x) ← Man(x) ∧ hasParent(x, a)
q1(x) ← Man(x) ∧ hasParent(x, b)

we can see that q1(x) is a (individual) specialization of q. The results of
q1(x) is 1 while that of q(x) is 2.

Let, Indv(q) represent all the individuals occurring in a query. Then an
individual specialization and a minimal individual specialization of a query w.r.t.
a KB are defined as follows.

Definition 3.10. A specialization q′ of q w.r.t. K= (T ,R,A) is called an
individual specialization of q w.r.t. K if q′ is obtained from q by replacing an
individual a with another individual b, where a ∈ Indv(q), b ∈ A. An individual
specialization q′ of a query q w.r.t. K is called minimal individual specialization
if ∃ no individual specialization q′′ of q w.r.t. K such that q′ ⊂K q′′ ⊂K q.

The set of minimal individual specializations is defined by minISpecK(q).
Like in variable (and varIndv) specialization, we need to replace just one of the
occurrences of the individual. We define indvRK(q,a) as the set of replacements
of an individual a in q with another individual which will generate a minimal
individual specializations.

Computing Minimal Individual Specializations

Let indvReplK(q,a) contain the replacements satisfying the following two con-
ditions.

• None of the individuals in concept terms are replaced.

• when the individual a in a role term r is being replaced and a is the
predecessor (successor) of r, we replace a with the first descendant d of a
from each branch in the sub-DG of Gpr (Gsr) rooted at a such that the new
query generated, q′, has a reduced result set i.e. q′(K) 6= q(K).

We can generate all the minimal individual specializations by performing only
the replacements in indvReplK(q,a), ∀ a ∈ Indv(q).
minIndvSpecK(q) = {q1 | q1(K) 6= ∅, where q1 is obtained by the replacement

r ∈ indvReplK(q,a), ∀ a ∈ Indv(q)}

Lemma 3.6. Given a query q and a KB K= (T ,K,A)
(1) minIndvSpecK(q) ⊇ minISpecK(q),
(2) minIndvSpecK(q) ⊆ SpecK(q).

Proof. Claim (1):
It is sufficient to prove that the replacements in varIndvSpecK(q,a) generates
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all minimal individual specializations.
i.e. replacement r ∈ indvRK(q, a) → r ∈ indvReplK(q, a)

It is also sufficient to prove that all the replacements which do not follow the
given conditions will not generate minimal individual specializations.

i.e. r 6∈ indvReplK(q, a) → r 6∈ indvRK(q, a)

Condition 1: None of the individuals occurring in a concept term are replaced.
Replacing a in concept term C(a) with another individual b will not produce

even a specialization because after rewriting the term C(a) into C(b), either K
|= C(b) or K 2 C(b).

• K |= C(b) ⇒ new query is not a specialization (same set of results).

• K 2 C(b) ⇒ the result set of the new query is zero, not a specialization.

Condition 2: We just need to show that (a) replacing a with b as above will
always allow the biggest proper subset of the possible values for z in the ABox
A, where z is the successor or predecessor of a in the role term where a is being
replaced, and (b) the query q′ obtained after the replacement has a reduced
result set i.e. q′(K) 6= q(K).

In the directed graph Gpr (or Gsr) individuals are ordered based on set in-
clusion. So, the higher level descendants of the individual a in the DGs will
always allow the bigger proper subset of the possible values for z. So, none of
the remaining individuals would provide z with more values and also generate
a specialization. This implies, all replacements which do not follow condition 2
will not generate a minimal individual specialization.

Hence, the replacements in indvReplK(q,a), ∀a ∈ Indv(q) generate all mini-
mal individual specializations of q w.r.t. K.

Claim (2): Proof by contradiction.
Assume, ∃ a query q1 ∈minIndvSpecK(q) and q1 6∈ SpecK(q).
Then q1 will not satisfy atleast one of the conditions in Definition 3.1.
Condition 1: All the replacements in indvReplK(q, a) only generate queries
which are strictly contained in q. So, condition 1 is always satisfied.
Condition 2: If q′ ∈ minIndvSpecK(q) then q′(K) 6= ∅ and the condition is
directly satisfied.
Condition 3: Since we replace an individual a with an individual b, where
a, b ∈ Indv(A), we satisfy condition 3a which is sufficient to satisfy condition 3.
Condition 4: Since we replace only the individuals in the query, the variables
in the query remain unchanged and condition 4 is always satisfied.

Hence, each query in minVarIndvSpecK(q) is a specialization of q w.r.t. K.

3.2.8 Post-processing steps

The queries generated in the previous steps contain concept and role names in-
troduced while normalizing the KB along with variables introduced while con-
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verting the original query into its CQNF. In addition, we can eliminate the
nominals occurring in the specializations to reduce the number of variables in
the specializations to a minimum. Hence, the following three post-processing
steps can be performed recursively before presenting the computed minimal
specializations to the user.

1. Remove the concept and role names introduced while converting the KB
into its normal form.

(a) For every new concept name C introduced ∃ a concept inclusion
C1 u C2 v C, and each occurrence of C is replaced by the EL++-
concept C1 u C2.

(b) For every new role names r introduced ∃ a role inclusion r1 ◦ r2 v r,
and each occurrence of r is replaced by the EL++-role r1 ◦ r2.

2. Eliminate the new variables introduced during the conversion of the query
to CQNF. We perform this using the following rules.

• If ∃r.C(x)  r(x, y) ∧ C(y) and

– r is specialized to r′ then, r′(x, y) ∧ C(y)  ∃r′.C(x)

– C is specialized to C ′ then, r(x, y) ∧ C ′(y)  ∃r.C ′(x)

• r1 ◦ r2(x, y)  r1(x, z) ∧ r2(z, y) and

– r1 is specialized to r′1 then, r′1(x, z) ∧ r2(z, y)  r′1 ◦ r2(x, y)

– r2 is specialized to r′2 then, r1(x, z) ∧ r2(z, y)  r1 ◦ r′2(x, y)

– role term r′1(x, z) is added then,
r1(x, z) ∧ r2(z, y) ∧ r′1(x, z)  r1 ◦ r2(x, y) ∧ r′1 ◦ r2(x, y)

– role term r′2(z, y) is added then,
r1(x, z) ∧ r2(z, y) ∧ r′2(z, y)  r1 ◦ r2(x, y) ∧ r1 ◦ r′2(x, y)

3. Eliminate the nominals in the query, as performed in the conversion steps
of CQNF.

The above post-processing steps also makes the specializations concise increasing
their understandability. The function which recursively performs the above 3
steps until no further reduction is possible is denoted by DenormalizeK(q). It
takes a set of queries as input and generates a set of equivalent (de-normalized)
queries.

3.3 Algorithm: MinSpec

We can generate all the minimal specializations of a query q w.r.t. K by using
the above six methods introduced in the Sections 3.2.2 - 3.2.7. The set of all
minimal specializations of q are contained in T where
T := minIndvSpecK(q) ∪ minVarIndvSpecK(q) ∪ minVarSpecK(q) ∪
minConjSpecK(q) ∪ minRoleSpecK(q) ∪ minConcSpecK(q).
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T contains all the minimal specializations of q, but not all the queries in T
are minimal specializations of q. For example, a varIndv specialization q1 can
be contained in a concept specialization q2 and vice-versa. So, we need to
extract the minimal specializations,minSpecK(q), from the specializations com-
puted from the above methods. The following algorithm, MinSpec, calculates
the set of minimal specializations of a CQ q w.r.t. a KB K. It takes a conjunc-
tive query q as input and we assume that the pre-processing steps described in
Section 3.2.1 are performed. A set of minimal specializations of q w.r.t. K are
provided as an output.

Algorithm MinSpec
Input: EL++-CQ q, EL++-KB K
Output: Q - set of all minimal specializations of q w.r.t. K

if q has an empty result set
then return Q

q′ ← NORMALIZEK(q)
T ←minIndvSpecK(q′) ∪ minVarIndvSpecK(q′) ∪ minVarSpecK(q′)
∪ minConcSpecK(q′) minConjSpecK(q′) ∪ minRoleSpecK(q′).

R ← {q1 ∈ T | ∃ no q2 ∈ T such that q1 ⊂K q2}.
Q ← DenormalizeK(R)
return Q

Q is the set of all minimal specializations of q w.r.t. K.

Now, we present the results of soundness, completeness and termination of
the above proposed algorithm.

3.3.1 Soundness and Completeness

Showing the soundness of the algorithm MinSpec is trivial once we proved the
completeness as we check the containment of a query q2 ∈ T in another query
q1 ∈ T in our algorithm.

Theorem 3.1. Given an EL++-conjunctive query q and an EL++-KB K, a
query q′ ∈ MinSpecK(q) if and only if q′ is a minimal specialization of qw.r.t.
K.

Proof. COMPLETENESS:
q′ is a minimal specialization of q w.r.t. K =⇒ q′ ∈ MinSpecK(q).
To obtain a minimal specialization, we need to specialize a query only once
using any one of the 6 methods. From the Lemma 3.1 - Lemma 3.6 it directly
follows that T contains all the minimal specializations of q w.r.t. K. Since we
do not delete any minimal specializations of q w.r.t. K while generating Q, all
the minimal specializations of q w.r.t. K occur in Q.
Hence, q′ is a minimal specialization of q w.r.t. K =⇒ q′ ∈ MinSpecK(q).
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SOUNDNESS: q′ ∈ MinSpecK(q) =⇒ q′ is a minimal specialization of q.
This is a trivial proof as in our algorithm MinSpec we check and remove the

non-minimal specializations. So, we prove by contradiction.
Assume that there is query q1 ∈ MinSpecK(q) which is not a minimal specializa-
tion of q w.r.t. K. Then this query q1 is contained in another query q2 which is
a minimal specialization. But during our algorithm execution the query q1 will
be removed as it is contained in q2. So, q1 /∈ MinSpecK(q), a Contradiction.
Hence, q′ is a minimal specialization of q w.r.t. K ⇐= q′ ∈ MinSpecK(q).

3.3.2 Termination and Complexity

The maximum number of specializations obtained by minConcSpecK(q),
minRoleSpecK(q)and minConjSpecK(q) is bounded by the number of con-
cept names and role names existing in TBox T , number of terms in the query,
and these values are finite. The maximum number of specializations obtained by
minVarSpecK(q), minVarIndvSpecK(q) and minIndvSpecK(q) is bounded
by the number of variables, individuals and their occurrences in q and also by
the size of the ABox. So, the number of specializations in T is finite. Calculat-
ing Q, the set of minimal specializations, takes at most |T|2 steps. Thus we can
see that the algorithm MinSpec has only finitely many steps which proves that
it will always terminate.

While calculating DSqK(C) for a concept C w.r.t. K, we perform o(|roles| ×
|concept names|) number of subsumption and containment checks to see if a con-
cept in ERCK∪NCK is directly subsumed. Similarly, while calculating NCqK(C)
we perform o(2 × ( |roles| * |concept names| + |concept names|)) number of
subsumption and containment checks. |roles| * |concept names| corresponds
to the concepts in ERCK and |concept names| corresponds to concepts names
which are not comparable to C w.r.t. K. To calculate DNSqK(C), we perform
|DSqK(C)| * |A| number of membership checks. So the number of subsumption,
containment and membership checks required to calculate minConcSpecK(C)
is o( |KB|2 + |KB|), o(|K|*|A|). Moreover, to obtain all the minimal concept
specializations, we have to replace each k conjuncts in n concepts terms in
the query. Let |Q| represent the size of the query. Then, the total number
of (subsumption, containment and membership) checks required to calculate
minConcSpecK(q) is o(|Q|2 × | KB |2).

Similarly to calculate minRoleSpecK(q) requires o(|R| * |R| * | Q |) num-
ber of sumbsumption and containment checks. To calculate InCompRoleK(r)
we require o(|R|2) number of subsumption and containment checks. To calcu-
late minConjSpecK(q) we require additional o(|R|2) number of subsumption
and containment checks. Let n be the number of variable in a query and k
be the number of occurrences of a variable. Then we perform o(n*k*(n-1))
number of replacements for computing minimum variable specializations. Cal-
culating depends(x, y) and connected(x, y) will require |Q|, |Q|2 number of steps
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respectively. Checking the conditions requires |Q|3 + |Q|2 number of contain-
ment checks. The containment checks and replacement required for calculating
minVarSpecK(q) is o(|Q|3). To calculate minVarIndvSpecK(q) we perform
o(|Q|2 × |KB|) number of replacements and containment checks. Here, |KB|
is from the number of individuals with which we replace a variable (size of
ABox). Similarly, the number of replacement and containment checks required
for calculating minIndvSpecK(q) is o(|Q|2 × |KB|). DenormalizeK(q) is also
be performed in PTIME.

We already know that the complexity of subsumption checking in regular EL++

is PTIME and the complexity of CQ containment checking in regular EL++ is
NPTIME. So the combined complexity of the algorithm MinSpec has an upper
bound of NPTIME.



Chapter 4

Clustering of Query Results

The method MinSpec generates the set of all minimal specializations of a query
q w.r.t. a KB K. Each minimal specialization generated reduces the information
overload of the query results. To reduce information overload by a significant
amount, further manual selection (i.e. selecting the union or intersection of some
of the minimal specializations) is required. But, this manual selection is not a
trivial task. So, we developed an alternative method which reduces the informa-
tion overload significantly and at the same time simplifies the selection process.
This approach is based on clustering of the query result tuples i.e. grouping
of similar result tuples and it specializes a conjunctive query q in EL++ w.r.t.
an EL++-KB K by clustering the result tuples of the query result q(K). Unlike
MinSpec, this approach do not perform query containment checks making it
more time-efficient.

Using the concept and role hierarchies obtained from the KB, we can easily
construct a tree (resembling a hierarchical clustering) based on the concepts
and roles appearing in the query. Using this tree, we can group the result tuples
to form clusters. Corresponding to each of these cluster we can also generate
a query using the cluster’s (tree node’s) label. In Section 4.1, we introduce the
basic concepts of clustering and various types of clustering techniques. We also
introduce some of the important subtasks related to hierarchical clustering. In
Section 4.2, we explain how clustering can be used to specialize a query. We
also present the drawbacks of the previous clustering based approach(es) and
illustrate the improvement required to overcome those shortcomings. In Section
4.3, we present the important steps of our method to generate clusters and their
corresponding queries. In Section 4.4, we present our final algorithm along with
complexity results.

42
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4.1 Clustering

“Clustering (or cluster analysis) aims to organize a collection of data items (in
our case result tuples) into clusters, such that items within a cluster are more
‘similar’ to each other than they are to items in the other clusters” [Grira et al.,
2004]. A cluster is a group of the same or similar elements gathered or occur-
ring closely together [TheFreeDictionary, 2011]. Clusters are implicit groupings
in data items and helps the user understand these groups by providing labels.
When provided with appropriate labelling, the user can easily choose one or
more clusters and eliminate the irrelevant data items reducing the information
overload significantly.

Figure 4.1: Partitional Clustering

There are two types of clustering structures: partitional and hierarchical.
Partitional clustering groups the data items into non-overlapping subsets such
that each result tuple belongs to just one cluster (see Figure 4.1). The number
of clusters and partitioning criterion is pre-decided. Examples of partitional
clustering algorithms are k-means and k-medoids.

Hierarchical clustering groups data items into overlapping subsets (resembling a
tree structure) where each data item is in (one or) many clusters (see Figure 4.2).
Hierarchical clustering can be performed in two ways: divisive clustering and
agglomerative clustering. Divisive clustering initially assigns all data items
to one cluster. The cluster is then divided until each result tuple is in a clus-
ter by itself thereby creating a (nested) hierarchical clustering. Agglomerative
clustering begins with each result tuple in its own cluster, and then combines
two (or more) clusters based on some similarity measure until all result tuples
are in one cluster.

At any point in the hierarchical structure a proximity bound can be imposed cre-
ating a partitional clustering of the data. This is known as Partitional Clustering
from a Hierarchical Clustering (see Figure 4.3). A partitional clustering can be
generated from a hierarchical clustering by cutting the tree, and if the hierar-
chical clustering is agglomerative it is also known as constrained hierarchical
clustering. For divisive clustering, we call it constrained divisive clustering.
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Figure 4.2: Hierarchical Clustering

For our purpose, we extend constrained divisive clustering by assigning non-
leaf nodes with tuples which are not assigned to any of their descendants and
we call this structure contrained divisive hierarchical clustering (CDHC).
Constrained Divisive Hierarchical Clustering (CDHC) is the most appropriate
clustering structure in our case, because

1. Using the concept and role refinement operators, we can easily construct
a tree (with a top-down approach) based on some features extracted from
the query and the KB.

2. Each tuples can belong to more than one cluster providing a natural hi-
erarchy among clusters.

3. We need to restrict the number of clusters to be provided to the user.

4. An individual can be a member of a concept C and none of its minimal
specializations w.r.t. the KB. Similarly for a role r the pair of individuals
(a, b) may not be a member of any of its minimal specializations w.r.t. the
KB.

Figure 4.3: Partitional Clustering from a Hierarchical Clustering
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There are few important subtasks in every divisive hierarchical clustering al-
gorithm. We discuss here some of the sub-tasks which are relevant for our
approach.

4.1.1 Feature Selection

Feature selection is a process of selecting a subset of available features using
some criteria [Zhao et al., 2010]. It aims at ignoring the features which are
most irrelevant and unnecessary based on certain evaluation criteria. By this,
(1) the speed of learning process and model interpretability are increased, and
(2) the problem of dimensionality is reduced. A typical feature selection algo-
rithm contains 4 main steps as shown in Figure 4.4 namely, subset creation,
subset evaluation, stopping criterion and result validation.

Figure 4.4: Four key steps of Feature Selection

Feature selection algorithms developed using various strategies fall in one of the
following three categories: filter, wrapper and embedded(hybrid) models.
The filter model algorithms depend on data’s characteristics alone and selects
the features without using any mining or learning algorithm. The wrapper model
algorithms use pre-determined learning algorithms and select the features based
on the features’ performance. Algorithms in hybrid model aim at combining ad-
vantages of both models while overcoming some of the disadvantages. In our
case, feature selection algorithms belonging to the filter category are appropri-
ate, as we can select the features based on the tuples and the KB alone without
using a learning process.

4.1.2 Stopping Criteria

In divisive hierarchical clustering, the number of clusters is not specified a pri-
ori and the clustering continues until each cluster contains only one tuple (data
item). However, for CDHC it is clear that the clustering algorithm should be
stopped much before each tuple is placed in a separate cluster. So, a stopping
criteria can be computed based on which the splitting of the nodes is stopped.
Two ways to compute the stopping criteria are,(1) by selecting the number of
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clusters to be generated, CL, and (2) by selecting the maximum number of tu-
ples that a cluster can contain, S. From one of these two values, an approximate

value for the other can be derived easily using the formula S = |q(K)|∗β
CL , where

β is some constant and β > 1. In our algorithm, we request the user to provide
one of these two values using which we determine the stopping criteria.

4.1.3 Cluster Selection for splitting

A divisive hierarchical clustering recursively splits a cluster into two or more
clusters starting from the original set of result tuples. The selection of the
clusters for splitting can have a remarkable impact on the overall clustering
result. There are three approaches to perform the above task [Savaresi et al.,
2002],

• complete partition: every cluster is split

• cluster containing the maximum number of elements (tuples) is split

• the cluster with the highest variance with respect to its centroid
is split.

In our method, the cluster containing the maximum number of tuples is split
and after each split the fulfilment of the stopping criteria can be checked easily.

4.2 Specializing a query using clustering

Specializing a query q by clustering its results is fairly simple once we have an
efficient clustering algorithm for the result tuples of a query over a DL based
KB. Using the result tuples and the KB K, a constrained divisive hierarchical
clustering can be performed, generating a cluster tree. A cluster tree is the
hierarchy of clusters obtained from a (constrained divisive) hierarchical cluster-
ing. The construction of the cluster tree is halted, when a stopping criteria is
reached (like obtaining the required number of clusters, n). The nodes in the
cluster tree (except the root node) assigned with atleast one tuple are treated
as clusters. Depending on the KB, we may or may not generate clusters, and in
addition, some of the result tuples can be assigned to the root node of the cluster
tree resulting in the exclusion of some of the result tuples from the generated
clusters. Formally, the problem of clustering the query results can be defined
as follows:

Definition 4.1. Given a query q and DL KB K, a clustering algorithm for the
result tuples of q w.r.t. K generates n clusters C1, C2, . . . , Cn where n ≥ 0, C1∪
C2 ∪ · · · ∪ Cn ⊆ q(K) and ∅ ⊂ Ci ⊂ q(K), ∀i ∈ [1...n].

The number of clusters generated is approximately the number of clusters
suggested by the user. From these n clusters, n new non-empty queries which
are strictly contained in q can be generated (using the labelling of the clusters).
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The n new queries generated may no longer be specializations of the query q
w.r.t. K as defined in Definition 3.1.

When it comes to result tuples clustering, we can make use of the knowledge
provided in the knowledge base in terms of concept and role inclusions only.
To use the ordering between individuals from the collection F , we also need to
have role names in the result tuples which is not possible. So, we need to alter
the concepts and roles occurring in the query only.

For this purpose we introduce a new term, c-specialization. A c-specialization
is obtained by changing multiple concepts and roles occurring in the query q as
defined in Definition 4.2.

Definition 4.2. A conjunctive query q′ is called a c-specialization of a con-
junctive query q ← p1 ∧ p2 ∧ · · · ∧ pm w.r.t. K if

1. q′(K) ⊂ q(K)

2. q′(K) 6= ∅

3. q′ ← p′1 ∧ p′2 ∧ · · · ∧ p′m, where either p′i = pi or p′i is obtained by replacing
the concept or role in pi.

It is represented by q′ bK q.

Thus, our task is to generate n c-specializations of a query q w.r.t. K, where
n is approximately the number of clusters requested by the user. From these n
c-specializations, the user can select i ∈ [1 . . . n] clusters to generate the required
specialized result set and the corresponding union of conjunctive queries.

Previous approach(es) and its drawbacks

The method proposed here is based on the work done in [Amato et al., 2010].
The general idea of [Amato et al., 2010] is, instead of aggregating the results
based on values in tuples, aggregation is done based on semantic information
linked to the values in the tuples, i.e. concept and role (inclusions and) mem-
berships inferred from the ontologies. The user first selects the result variables
(i.e. distinguished variables) to be used for the clustering process. Correspond-
ing to each selected result variable, a complex concept is extracted from the
query. These complex concepts are called types of the result variables and can
be considered as features of the clustering algorithm. Corresponding to each
type, a tree can be constructed using the concept hierarchy generate from the
KB. These trees are then combined using a binary tree-product operator to
obtain a combined tree and by assigning each result tuple to one of the nodes
in the combined tree , a set of clusters will be generated. Figure 4.5 gives an
example combined tree obtained by clustering two trees rooted at types A, A′

selected for clustering. There are several drawbacks in the method proposed by
[Amato et al., 2010] w.r.t. an EL++-KB. Some of them are:
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1. It argues that the trees corresponding to each type can be constructed
using the concept hierarchy obtained from the KB. Since the type of a
result variable can be a complex concept, we can’t rely on the concept
hierarchy alone and we need advanced concept refinement operators.

2. The role inclusions available in the RBox are not utilized. Thus, generating
optimal clusters may not be possible. Especially, role inclusions of the form
r ◦ s v r, s ◦ r v r can easily generate a large cluster tree rooted at role r
which can improve the quality of the clusters.

3. In an EL++-KB, we can’t specify the range of a role directly. This is only
a minor drawback in EL++-KBs, however in other DLs like OWL 2 EL
they can be specified easily.

4. Selection of the results variables can be automated to reduce user depen-
dency and improve the efficiency of the clustering. In many cases, the
users are not experienced enough to select the optimal subset of the re-
sult variables which can result in the generation of non-optimal clusters
as shown in Figure 4.5.

5. While generating the trees corresponding to each type, no stopping condi-
tion is provided. This results in the generation of more than the required
number of clusters.

Improvements performed in our approach

Instead of relying on concept hierarchy, a concept refinement operator like
minConcSpecK(C) will be used to construct the trees corresponding to each
type selected for clustering. For each result variable, in addition to a type
which is a concept (called as concept type or ctype) we also extract ≥ 0 roles
from the query and they are called as role types (or rtypes). Using these rtypes
and role inclusions inferred from the KB, we will also construct trees rooted at
these rtypes. Since we use both ctypes and rtypes, it is not necessary to have
domain and range values of each role occurring in the query. Using various
feature selection algorithms, we will directly select the set of types (ctypes and
rtypes) to be used for clustering.

The user can suggest either the number of clusters to be generated or the max-
imum size of a cluster, by which he/she chooses the level of flexibility he/she
needs to obtain the required specialization. This also solves the problem of
too many clusters. Dividing the query results into 2 clusters provides fewer
c-specializations when compared to dividing the query results into 10 clusters.
From the 10 clusters, user can select any 9, 8, . . . , 2 or even 1 cluster as the
specialized result set, giving him/her more options to specialize the query. Our
method also employs optimization techniques (like integration of the steps, (a)
tree construction, and (b) grouping of the result tuples in the cluster tree) and
heuristics to efficiently generate optimal clusters of query results over a DL KB.
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Figure 4.5: Generation of a cluster tree
Consider the query q(x, y, z) ← C(x) ∧ C ′(y) ∧ C ′′(z) ∧ r(x, z). Let A, A′, A′′

be the types of x, y, z i.e. C u Domain(r), C ′, C ′′ u Range(r) respectively.
(a), (b) and (c) are the two cluster trees rooted at A, A′ and A′′ respectively.
We cluster the result tuples using the types of the variables x, y. (d) is the
combined cluster tree obtained by combining the trees in (a) and (b) using
the tree-product operator. Using the tree from (c) to construct the combined
tree can potentially reduce the number of result tuples assigned to the non-root
nodes causing a reduction in the quality of the clusters. So, we avoid utilizing
(c) to construct the combined cluster tree.

In addition, using the generated clusters and its labels, we provide the user
a set of c-specializations (whose result set form each cluster). The user then
selects only the relevant queries, removing the irrelevant result tuples, thus pro-
viding a specialization of the original query result. The corresponding query
is the union of the queries selected by the user. When we say that a query or
result tuple is irrelevant, we mean that the user is not interested in those result
tuples.

4.3 Generating clusters and c-specializations

The following sections describe the main steps of our algorithm for specializing
a query q over a DL KB K by clustering the query result tuples - q(K). As in
Chapter 3, we convert our queries into the normal form CQNF and in the post-
processing steps all newly introduced variables are eliminated. We also assume
that we compute and store the results of minConcSpecK(C), minRoleSpecK(r),
∀C ∈ NKC ,∀r ∈ NKR where K is a normalized and regular EL++-KB. The func-
tions minConcSpecK(C), minRoleSpecK(r) can be seen as concept and role
refinement operators.
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As we have seen earlier, feature selection is the process of selecting a subset
of the available features and is one of the first steps in the clustering process.
Before we perform the selection of the features, we first need to extract the
features (also called as types) from the query.

4.3.1 Getting the types of a result variable

The values of a variable in a query are dependent on the concepts and roles
occurring in the query and changing these concepts and roles alters the set of
possible values of the variable. Thus, we can cluster the result tuples using the
KB, concepts and roles corresponding to the result variables of the query and
these concepts and roles are called types. There are two kinds of types, (1)
ctypes (which are concepts), and (2) rtypes (which are roles). Since in EL++

the constructor u can be used over concepts only, for each result variable has
one concept type (ctype), and ≥ 0 role types (rtypes).

Let Bi be the ctype of the variable vi ∈ DistV ar(q) and Bi is obtained by
combining all the concepts from the concept terms containing vi. Since the
query under consideration is in CQNF, there exists only one concept term for
each result variable. Thus, a ctype Bi of each variable vi ∈ DistV ar(q) can be
obtained directly from a concept term as shown in Example 18.

Example 18. Given query is q(x, y) := C u E(x) ∧D(y)
The ctype of variable x is C u E.
The ctype of variable y is D.

Similarly, by using the role terms occurring in the query, rtypes for each
variable vi ∈ DistV ar(q) can be extracted. If r(u, vi) or r(vi, u) ∈ q and
u ∈ DistV ar(q) then r is a role type of vi. Since both vi and u need to be
in DistV ar(q), the number of rtypes obtained are lower than the number of
role terms in q. However, there can be more than one rtypes for a variable
vi ∈ DistV ar(q) and one role r can be a rtype of more than one result variable.

Example 19. Given a query
q(x, y) := C u E(x) ∧D(y) ∧ r(x, y)

The types obtained from variable x are {C u E, r}.
The types obtained from variable y are {D, r} .
Here, V ar(C, q) = x, V ar(D, q) = y and V ar(r, q) = (x, y)
For the query, q1(x) := C(x) ∧D(y) ∧ E(z) ∧ r(x, y) ∧ s(y, z)
The types obtained from variable x are {C}.
Since, y 6∈ DistV ar(q) we can’t obtain any type corresponding to y.

As shown in Example 19, we can extract the types (both ctypes and rtypes)
of all the result variables quite easily. We define the set of rtypes of a variable
vi ∈ V and q as

RTYPE(vi, q) := {r | r(u, vi) ∨ r(vi, u) ∈ q ∧ u ∈ DistV ar(q)}
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We also define the following sets to define the set of all ctypes, rtypes and
types obtained from the result variables of a query respectively.

CTYPE(q) := {Bi | Bi is a ctype of vi ∈ DistV ar(q)}
RTYPE(q) := {RTYPE(vi, q) | vi ∈ DistV ar(q)}
TYPE(q) := CTYPE(q) ∪RTYPE(q)

The function POS(ti) returns the position of the term from which the type
ti is obtained. A ctype ti is also represented as tci and a rtype tj is also rep-
resented as trj . The variables corresponding to each type are stored using the
function V ar, where

V ar(C, q) = vi, where C is the ctype of variable vi
V ar(r, q) = (vi, vj), where r is the rtype of either vi or vj , r(vi, vj) is a

term in q, and the other variable ∈ DistV ar(q).

The set TYPE(q) is the set of all features which can be used for clustering
the query results. However, only some of these features are relevant for clus-
tering and eliminating the unnecessary features can improve the performance
of the clusters. As a next step, we perform the selection of a subset of features
which will be used in our clustering algorithm.

4.3.2 Selecting the features for clustering

The task of selecting relevant features in clustering or classification problems
can be viewed as one of the most fundamental problems in the field of machine
learning. Corresponding to each result variable we obtain one or more types.
One way to select the features is to ask the user directly and it is a normal
practice in Database aggregate usage (like GROUP-BY) where user provides
the input variables to perform the operation. This makes our algorithm highly
supervised. Instead of obtaining the subset of features from the user or by
(semi-)supervised algorithms, we can select them automatically. As discussed
in Section 1.2, there are several unsupervised feature selection algorithms like
[Dash and Liu, 2000], [Cai et al., 2010] which can be applied to our query result
tuples.

As we perform clustering using our new approach, algorithms with slightly
higher complexity but efficient for further clustering need to be used. We now
present the basic steps of such an algorithm which selects the subset of the
types (features) obtained from the result variables of a query q. Corresponding
to each of the n result variable in q, we extract the n ctypes. From these n
ctypes, we generate n trees rooted at these n ctypes (as explained in Section
4.3.5). These n trees are then compared based on the cluster count, number
of tuples assigned to all the clusters, and the distribution of the result tuples
across all the clusters. Using such a comparison, we rank the result variables
(or the ctypes, or the trees). We then select the first k result variables, where

k = d |DistV ar(q)|+1
2 e. For each of the selected result variables (or ctypes), we
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additionally obtain the corresponding rtypes from the query. These ctypes and
rtypes form the subset of features which will be used by our clustering algorithm.

Nonetheless, we can also employ any other feature selection algorithm which
uses the result tuples alone. [Liu and Yu, 2005] provided a detailed classifi-
cation of different types of feature selection algorithms and we can choose any
another suitable algorithm. Let V ⊆ DistV ar(q) be the set of variables obtained
from the feature selection algorithm. Let FS(q,K, q(K)) be the function which
selects the result variables used for clustering i.e. V = FS(q,K, q(K)). The set
of selected ctypes is denoted by B= {Bi | Bi is a ctype of vi ∈ V}. The set of
selected rtypes is denoted by R = {r ∈ RTY PE(vi, q) | vi ∈ V}. The types B∪R
form the set of features which will be used by our clustering algorithm.

The trees (simulating a sub-hierarchy) of concepts or roles rooted at these types
will be produced in the next step.

4.3.3 Constructing Trees corresponding to each type

For each type ti we can construct a (directed) tree Ti rooted at ti with the
concepts (or roles) subsumed by ti as the nodes. Each tree is defined by the
quadruple (N,E,R, `), where N is the set of nodes, E is the set of directed edges
between nodes; edge (na, nb) represents an edge from na to nb, R ∈ N stands
for the root node and ` is the labelling function assigning each node (having a
list of n identifiers) to a list of n concepts and roles i.e.

`(<p>) = `(p) = C | r.
`(<L>) =< `(<M>), `(<p>)>, if <L>=<M,p>

Here, p is a single identifier. L and M are lists of identifiers with ≥ 2 and ≥ 1
elements respectively. The label of the node Ni is the list of identifiers in the
node Ni.

We can easily generate the tree Ti rooted at type ti using the refinement op-
erators. The nodes of the tree Ti = (Ni, Ei, t

c
i , `i) correspond to the concepts

subsumed by tci (and tci itself). (na, nb) ∈ Ei if `i(nb) ∈ minConcSpec(`i(na)).
Similarly, the nodes of the tree Tj = (Nj , Ej , t

r
j , `j) correspond to the roles sub-

sumed by trj (and trj itself). ∃ e : (na, nb) ∈ Ej if `j(nb) ∈ minRoleSpec(`j(na)).

We also perform few optimization steps while constructing the cluster tree cor-
responding to a single type to improve the performance of our algorithm. This
optimized procedure to generate a tree Ti corresponding to a type ti is intro-
duced in Section 4.3.5. To combine two trees rooted at 2 different types, an
optimized tree-product operator is also introduced in Section 4.3.5. The clus-
ters formed by our algorithm are the non-empty nodes of the combined cluster
tree T (using all the types) which is grouped with the result tuples as described
in the next sections.
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4.3.4 From trees to groups

Having produced a tree T = (N,E,R, `) (which corresponds to hierarchical clus-
ters) the next step is to assign the result tuples to one of the clusters (also called
as grouping). We perform this incrementally. For each result tuple only the
projections of the variables in {vi ∈ V} ∪ {vi, vj | (vi, vj) ∈ V ar(trj , q),∀trj ∈ R, }
are considered. First, starting from the root we perform membership checks of
instances to concepts and roles in the tree nodes to find the (most specific) node
under which we place the result tuple.

The population (or grouping) algorithm proposed in [Amato et al., 2010] can be
adopted and it has the complexity O(nkbm), where n represents the number of
answers, k the number of variables in V, and where b is the branching factor and
m is the maximum depth of the tree. However, other populating approaches
like those using most specific concept can also be applied. To optimize the
performance of the grouping algorithm, the leaf nodes which are not assigned
with at least one result tuple are deleted from the tree. In addition, we mark
the nodes which are assigned with all the result tuples in an intermediate step,
marked(n)← true and these nodes will not be considered while generating the
clusters from the tree.

Let GROUP (T, q(K)) be the function which performs the grouping of the query
results tuples q(K) in the tree T . It also removes the leaf nodes in T which gen-
erate empty clusters. The list of groups obtained from GROUP (T, q(K) are
represented by G = [G1, G2, . . . ]. GET (Gi, T ) returns the corresponding node
of the group Gi in the tree T .

4.3.5 Generation of the Combined Tree and Optimization

To increase the execution time of our algorithm various optimizations are per-
formed. One such optimization is to integrate (a) generation of the combined
tree and (b) grouping of the tree. Moreover, we do not have to perform com-
plete grouping of the extended tree each time and the grouping of the previous
un-extended tree can be utilized.

Cluster Tree for a single type

A basic approach to generate the tree Ti of concepts rooted at a ctype tci ∈ B
is to reproduce (and simulate) a part of the subsumption hierarchy. A similar
approach can also be used for generating trees rooted at a rtype tri ∈ R. In case
of complex concepts and roles, the functions minConcSpec(C), minRolSpec(r)
defined in Section 3.2 will be used as concept, role refinement operators respec-
tively and are employed while constructing the trees.

While generating a tree corresponding to a type t, all the result tuples can be
assigned to a (non-root) node n after grouping the result tuples (as shown in
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Figure 4.6: Sample tree of a single type: Student

Example 20). In such cases, the type t is replaced with the identifier t′ in the
node n and we restart the construction of the tree rooted at t′ .

Example 20. Consider the query
q(x, y) := Student(x) ∧ takesCourse(x, IntroToUnderGraduateStudies)

Suppose, using a KB K the clustering algorithm generated the cluster tree in
Figure 4.6. Only 1 ctype, Student, and no rtypes are obtained from q.
After grouping, all the result tuples can fall into the node Y ear1. Then, we set
Y ear1 as the root of the tree and continue generating the tree.

Consider that DEPTH(T ) gives the depth of the tree T and the function
SUBTREE DEPTH(T, d) constructs the sub-tree of T with depth d, where
1 < d < DEPTH(T ). Let, NODES-IN(T, i) be a function which generates
an ordered list of the nodes, n1, n2, . . . , nk, in the tree T which are connected
to the root of T through (i− 1) nodes i.e. the nodes in T at the depth i, where
1 < i < DEPTH(T ). The ordering is based on the number of tuples assigned
to each node, TUPLES(T, ni) > TUPLES(T, nj), ∀i > j. TUPLES(T, n)
gives the number of result tuples assigned to the node n of T .

Let, CL be the approximate number of clusters requested by the user and
|G| represents the number of clusters (non-root nodes) G1, G2, . . . generated
after grouping. |Gi| represents the number of tuples assigned to the cluster Gi.
REFINE OPR(C,K) generates the concepts (or roles) that are directly sub-
sumed by C i.e. the set of minimal specializations of C w.r.t. K.

Algorithm: STree
input : type ti, q(K)
output : Ti = (Ni, Ei, Ri, `i)
1: Ei ← ∅
2: `i(Ri)← ti
3: Ni ← {Ri}
4: l← 1
5: cont← true
6: while cont
7: l← l + 1
8: cont← false
9: for each node n ∈ NODES-IN(Ti, l − 1)
10: if TUPLES(Ti, n) > M
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11: Nspec ← REFINE OPR(`i(n),K)
12: if Nspec = ∅
13: BREAK
14: for each C ∈ Nspec
15: Ni ← Ni ∪ {m}
16: `i(m)← C
17: Ei ← Ei ∪ {(n,m)}
18: cont← true
19: if cont = true
20: G← GROUP (T, q(K))
21: if CL ≤ |G|
22: return(Ni, Ei, Ri, `i)
23: if |G| = 1 and |G1| = |q(K)|
24: l← 1
25: Ei ← ∅
26: `i(Ri)← `i(G1)
27: Ni ← {Ri}
28: BREAK
29: if |G| > 1 and |Gi| = |q(K)|
30: marked(Get(Gi))← true
31: if(|G| ≥ 1)
32: return (Ni, Ei, Ri, `i)
33: else
34: return NULL

Figure 4.7: Generation of a single Tree

So, we use the algorithm STree from Figure 4.7 to obtain a single tree cor-
responding to each type. We can obtain a tree corresponding to one type by
iterative application of the concept (or role) refinement operator to the nodes
at each level until either (a) we reach the required number of clusters, or (b) we
don’t extend the tree with a new node. If all the result tuples are assigned to
one leaf node t, we rebuild the tree with t as the root as in Steps 23 - 28. Since
in EL++ ∃ no ¬ constructor over concepts and roles, the clusters generated are
not mutually exclusive. If the algorithm returns NULL, then we ignore the
type and continue the tree construction using the next type. If none of the
types generate a tree then we obtain 0 c-specializations.

But, to obtain a combined tree for two or more types additional operators like
tree-product operator should be introduced. In the next section, we propose
the binary operator ‘’⊗” which takes two trees as arguments and gives a new
combined tree as the result.
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Cluster tree for multiple types: tree-product operator

Now, let us consider the case of two types, say ti and tj used for clustering
and their related trees, Ti = (Ni, Ei, Ri, `i) and Tj = (Nj , Ej , Rj , `j). Multiple
types will be processed by iterating the binary product operation presented in
the Figure 4.8. In cases where the length of the tree Ti is greater than the length
of the tree Tj , the leaves in Tj are extended with a dummy node simulating the
tree Ti. Thus, we will be able to perform the cross product and traverse atleast
one leaf in both the trees as shown in Figure 4.9. SWAP(Ti, Tj) assigns Ti to
Tj and Tj to Ti. CHILD(n, T ) = {n′ ∈ N | (n, n′) ∈ E} provides the set of
nodes having a edge from n in the tree T = (N,E,R, `).

⊗(Ti, Tj) : (Nij , Eij , Rij , `ij)
1: Eij ← ∅
2: Rij ← < Ri, Rj >
3: Nij ← {Rij}
4: `ij(Rij)← < `i(Ri), `j(Rj) >
5: if DEPTH(Ti) < DEPTH(Tj)
6: SWAP Ti, Tj
7: d← DEPTH(Ti)
8: for l ∈ [1 · · · d]
9: for each node nij =< ni, nj >,ni ∈ NODES-IN(Ti, l),

nj ∈ NODES-IN(Tj , l)
10: Nspec

i ← CHILD(ni, Ti)
11: Nspec

j ← CHILD(nj , Tj)
12: if Nspec

i ∪Nspec
j = ∅

13: continue
14: if Nspec

i = ∅
15: Nspec

i ← Nspec
i ∪ ni

16: if Nspec
j = ∅

17: Nspec
j ← Nspec

j ∪ nj
18: for each node nk ∈ Nspec

i

19: for each node nl ∈ Nspec
i

20: `ij(nkl)← < `i(nk), `j(nl) >
21: Nij ← Nij ∪ {nkl}
22: Eij ← Eij ∪ {(nij , nkl)}
23: if marked(nk) = true && marked(nl) = true
24: marked(nkl)← true
25: G← Grouping(T ′, q(K)
26: if CL ≤ |G|
27: BREAK
28:
29: return (Nij , Eij , Rij , `ij)

Figure 4.8: Product Operator
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The complexity of the operator is polynomial. Moreover, usage of rtypes
can be made optional. For this reason, we first combine the trees of ctypes and
then combine the trees of rtypes.

Figure 4.9: A Tree obtained by using the cross product operator ⊗.
Here, (a) and (b) contain trees with types Student and Organization. (c)
contains the tree obtained by combining trees in (a) and (b) using the prod-
uct operator using a random KB and some of the nodes are removed in the
intermediate grouping steps.

4.3.6 Obtaining c-specializations

The final step in our algorithm is to generate the c-specializations by using the
labels of the clusters generated. The clusters’ labels are obtained from the nodes
of the combined cluster tree. Let q be the original query and K be the knowl-
edge base. Let, t1, t2, · · · , tn be the types used for clustering the result tuples
q(K) and Lc = < · · · < L1c, L2c >,L3c >,· · · , Lkc >,· · · , L(n−1)c >,Lnc > be
the label of the cluster obtained from a node in the combined tree T , where
0 ≤ k ≤ n and |V| = k. Here, Lic is the ith identifier of the label Lc. In case
some of the types are ignored while generating the combined tree then V is up-
dated accordingly.

LABEL(T ) gives the labels of all the non-empty unmarked (i.e. marked(n) =
false) nodes of the tree T excluding the root node. TERM(q, i) gives the term
at the ith position in the query q.

k SPEC(V, q, T,K) = {qj | qj is obtained by replacing the concept or role F in
TERM(q,POS(ti, q)) with Lij ,∀ti ∈ B ∪ R,∀Lj ∈ LABEL(T )}

Example 21. Consider the query
q(x, y) := Student(x) ∧ Person(y) ∧ teaches(z, x) ∧ knows(z, y)

Suppose, using a KB K the clustering algorithm generated the cluster tree in Fig-
ure 4.9 i.e. both x, y are selected for clustering. There are two ctypes Student,
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Person corresponding to each of the selected result variable. However, we can’t
obtain rtypes from q.
The corresponding c-specializations of q w.r.t. K are

q1(x, y) := UnderGraduate(x)∧Husband(y)∧ teaches(z, x)∧ knows(z, y)
q2(x, y) := UnderGraduate(x)∧SingleMale(y)∧teaches(z, x)∧knows(z, y)
q3(x, y) := UnderGraduate(x) ∧Wife(y) ∧ teaches(z, x) ∧ knows(z, y)
q4(x, y) := UnderGraduate(x)∧SingleFemale(y)∧teaches(z, x)∧knows(z, y)
q5(x, y) := Graduate(x) ∧Husband(y) ∧ teaches(z, x) ∧ knows(z, y)

and so on.

Lemma 4.1. If q′ ∈ k SPEC(V, q, T,K), then q′ is a c-specialization.

Proof. Assume, a query q′ ∈ k SPEC(V, q, T,K).
We prove, q′ is also a c-specialization of q w.r.t. K, by showing that q′ satisfies
all the three condition specified in Definition 5.2.
Condition 1: Amongst all the nodes in the tree T , none of the nodes containing

all the results tuples (at an intermediate step) are considered as clusters.
So, none of the queries obtained from the clusters is equivalent to q.
i.e. q′(K) ⊂ q(K) and condition 1 is satisfied.

Condition 2: We select only the nodes which are non-empty. So, none of
the queries obtained from the node labels has empty result set.
So, q′(K) 6= ∅ and condition 2 is satisfied.

Condition 3: The query q′ is obtained by changing the concepts and roles
occurring in the terms of q. This implies that q′ satisfies condition 3.

Hence, q′ is a c-specialization of q w.r.t. K.

The query results of each of the c-specializations obtained in Example 21
may not be mutually exclusive. Now, we present our complete algorithm which
reduces information overload of query results over a DL KB by clustering the
query results into approximately n clusters.

4.4 Algorithm: CLUSTERR

The main steps required to generate clusters of query results are explained in the
previous sections. CLUSTERR (Contrained divisive hierarchicaL clUSTering
of quERy Results) first clusters the result tuples of q(K) automatically and
produces the corresponding c-specializations. Then, it presents the set of c-
specializations to the user for selection and ultimately provides a specialized
query result. Figure 4.10 contains the algorithm CLUSTERR. A result tuple
is of the form (a1, a2, . . . , ak) where a1, a2, . . . , an ∈ Indv(A) and k ≥ 1. We
assume that for any variable x ∈ DistV ar(q), there exists only one concept
term containing x.

Algorithm: CLUSTERR
input: query q, KB K, q(K)
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output: specialization of the qw.r.t. K.

1 : V = FS(q,K,q(K))
2 : S← ∅
3 : for each vi ∈ V

4 : S = S ∪ {tj | tj ∈ TYPE(vi, q)}
5 : T ← ∅
6 : count ← 1
7 : while ti ∈ S

8 : T
′ ← T

9 : Ti ← ∅
10: Ni ← Ni ∪ {n}
11: `i(n)← ti
12: Ri ← n
13: Ei ← ∅
14: if count = 1
15: T ← STree(Ti, q)
16: else
17: T ← ⊗(T,STree(Ti, q))
18: count = count + 1
19: Q← k SPEC(V, q, T,K)
15 : Obtain the queries q1, . . . ,qk ∈ Q selected by the user
16 : return ∪ki=1 qi(K).

Figure 4.10: Algorithm CLUSTERR

We can also make the algorithm unsupervised by automatically selecting the
clusters (or c-specializations) to be ignored and due to this number of clusters
need not be specified too. But the side effect of possible loss of relevant data
makes it undesirable. The user is provided with n c-specializations to choose
from and once selected, the final specialized query is a union of the selected
c-specializations i.e. a union of conjunctive queries.

4.4.1 Complexity

The complexity of our algorithm mainly depends on the complexity of the con-
cept and role refinement operators which is PTIME (as shown in 3.3.2) as we
do not perform any CQ containment checks. The complexity of the grouping
algorithm is also PTIME and the number of types used for clustering depends
on the size of the query |Q|. However, the number of the nodes of a tree T is
of the order o(2|K| ∗ |Q|). Hence, the worst-case complexity of the algorithm
CLUSTERR is EXPTIME.



Chapter 5

Implementation and
Evaluation

In Chapter 3 and Chapter 4 we have presented two approaches to solve the prob-
lem of information overload of a query result set over a DL KB. However, there
aren’t any previous evaluations of a technique to compare our two approaches.
In this Chapter, we compare our two approaches (MinSpec and CLUSTERR)
along with an approach where no processing is done (NO-PROCESSING) for
their effectiveness. From the results we show that the two approaches reduce
the information overload substantially and we discuss their advantages and lim-
itations if there are any. First, we present the implementation details of the two
approaches. Second, we present the benchmark ontology and the test cases upon
which the evaluation is conducted. For practical reasons we restrict ourselves
to ontologies and queries in regular EL+. In the end, we present the design
and results of the performance evaluation along with the interpretation of the
results.

5.1 Implementation

We implemented the two approaches is Java, on top of Pellet1 reasoner using
Jena2 and OWL API3. The experiments were conducted on a laptop computer
with a 2.20 GHz Intel Core2 Duo processor, 3GB of RAM, running Ubuntu
11.04. We developed a standalone Java swing application to interact with the
user and Figure 5.1 shows the main view of the application.

1http://clarkparsia.com/pellet/
2http://jena.sourceforge.net/
3http://owlapi.sourceforge.net/

60
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Figure 5.1: Main view of the application to specialize a query

5.1.1 Minimal Syntactic Query Intensification

A specialization of a query is obtained by changing just one syntactic element
of the query and the minimal specializations of a query if not avoid information
overload can reduce it by a significant amount. In chapter 3, we have presented
a computation method MinSpec to generate all the minimal specializations
of query. Since, this process is automated we restricted ourselves to minimal
specializations. Even though the complexity of our algorithm is NPTIME, we
could perform various optimizations during implementation for improving the
execution time.

Optimization steps

Some of the optimizations used to reduce the execution time are:

• We incrementally store the minimal specializations of a concept C, a role
r irrespective of the query i.e. minConcSpecK(C), minRoleSpecK(r),
et al., where C ∈ NKC , r ∈ NKR. These specializations can be retrieved
and employed directly while computing the minimal (concept, role, et al.)
specializations of the query.

• Among the experiments performed there were no cases, where a mini-
mal specialization of a query is a variable specialization. So, computing
these specializations is avoided as it reduces the computation time by a
significant amount.



CHAPTER 5. IMPLEMENTATION AND EVALUATION 62

• The search space of concept names and role names for calculating the aux-
iliary sets like RCK (in Section 3.2.3) is reduced by ordering the concept
and role inclusions in the TBox and RBox respectively.

Here, the query emptiness checks are performed as a final step.

5.1.2 Clustering of Query Results

This approach clusters the query results using the DL KB and the clustering is
performed by generating a tree using the features obtained from the query and
the KB. The constructed tree resembles a constrained divisive hierarchical clus-
tering structure. The stopping criteria for the constrained divisive hierarchical
clustering is based on the number of the clusters CL requested by the user. We
stop splitting the nodes of the cluster tree if the required number of clusters are
grouped. We can further reduce the execution time by using few optimization
steps.

Optimization Steps

Major optimization steps of this approach are presented in Section 4.2.6. Further
optimization techniques from implementation point of view are

• When we cluster using 2 or more types, the number of nodes generated
in each type’s tree is decided by using (i) CL, (ii) t, the number of types
being used for clustering, (iii) i, the number of trees already combined.
One such measure to calculate the cluster limit at ith iteration is
CLi = CL ∗ t+i2∗t .

• A second optimization is instead of grouping the cluster tree after gener-
ating it completely, we can just group the intermediate tree accumulated
after splitting a node N . Here, only grouping of the sub-tree rooted at the
node N using tuples assigned to N is sufficient. Due to this, the number of
additional clusters generated and membership checks can be minimized.

• The node selected for splitting is chosen based on the number of tuples
assigned to the node. Moreover, we restrict the nodes available for splitting

to those which have atleast M tuples assigned to it, where M = |q(K)|
2∗CL .

This ensures that the final set of clusters generated are of approximately
the same size.

5.2 Evaluation Test Data

We empirically test our two approaches using the benchmark dataset LUBMEL+

(an extension of Lehigh University Benchmark, LUBM4). We select LUBM be-
cause, first of all, it is quite popular and widely used conjunctive query answer-
ing benchmark. Secondly, most of the other EL+ benchmark ontologies do not

4http://swat.cse.lehigh.edu/projects/lubm/
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Table 5.1: The list of queries used in the evaluation
Names Queries Results

Query 1 q1(x, y)← Faculty(x) ∧ worksFor(x, y) ∧Organization(y) 541

Query 2 q2(x, y, z) ← Student(x) ∧ Faculty(y) ∧ Course(z)
∧advisor(x, y) ∧ takesCourse(x, z) ∧ teacherOf(y, z)

208

Query 3 q3(x, y)← Person(x) ∧ worksFor(x, y) 16666

Query 4 q4(x, y)← Person(x) ∧ publicationAuthor(y, x) ∧Work(y) 30

Query 5 q5(x) ← Person u takesCourse.GraduateCourse(x) ∧
worksFor(x, y) ∧Organization(y)

547

contain ABox assertions, which makes them unsuitable for our purpose. Alter-
natively, LUBM already has an automatic ABox generation mechanism. Last
by not the least, the language of LUBM (ELHID) is quite close to EL+ and we
slightly modify LUBM to meet the EL+ expressive power as shown in [Zhao et
al., 2009] to obtain LUBMEL+ . The ontology we used has 17210 individuals, 25
roles, 43 concepts, 38 concept inclusions, 5 simple role inclusions and 1 complex
role inclusion.

Both the approaches are tested using the 5 queries in Table 5.1. For each query,
we choose 5 subsets of results tuples as relevant (or irrelevant) for the user to test
the 3 approaches (MinSpec, CLUSTERR, NO-PROCESSING). These subsets
can be perceived as the answers to a query obtained by changing the concepts
and roles in the query. For Query 1, a tuple subset T1:[Lecturer,Department]
corresponds to all the result tuples of the query

q(x, y)← Lecturer(x) ∧ worksFor(x, y) ∧Department(y).

i.e. the results of the query obtained by appropriately replacing with Lecturer
and Department in Query 1. This is only one way to obtain the subsets tuples
assuming that the user’s selection of result tuples is based on the concept and
role membership likelihood of the individuals occurring in the tuples. Table 5.2
provides a complete list of all the subset of result tuples selected as relevant (or
irrelevant) for the user in our test cases for each query.

5.3 Evaluation on Quality and Performance

The main goal of this evaluation is to present the use of our two approaches for
reducing information overload of query results over a DL knowledge base. As a
pre-processing step, both the approaches first perform a rewriting of the given
query by converting it into CQNF. The post-processing steps eliminate the new
variables introduced (in the rewriting steps) resulting in a concise query. How-
ever, in MinSpec new role terms are introduced to generate a specialization
which can lead to the increase in the size (number of terms) of a specialization.
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Table 5.2: Result tuple subsets used for each query
Query T1 T2 T3 T4 T5

Query 1 [AP ,Dep] [Lect,Dep] [Prof ] [FP ] [Dean,Dep]

Query 2 [UgS] [AP ] [GC] [Chair,GS] [FP ,UgS]

Query 3 [Std] [GS,mem ◦
sOrg]

[UgS] [TA] [Emp,wrkFr ◦
sOrg]

Query 4 [FP ] [Prof ,Course] [Lect] [AiP ,Rsch] [FP ,Course]
Here, AP is AssociateProfessor, AiP is AssistantProfessor, Dep is Department,
Emp is Employee, FP is FullProfessor, GC is GraduateCourse, GS is
GraduateStudent, Lect is Lecturer, mem is memberOf , Prof is Professor,
Rsch is Research, Std is Student, sOrg is subOrganizationOf , TA is
TeachingAssistant, UgS is UndergraduateStudent, wrkFr is worksFor,
wrkFr ◦ sOrg represents worksFor ◦ subOranizationOf, mem ◦ sOrg repre-
sents memberOf ◦ subOrganizationOf .

The question, “How well does the system works?”, can be investigated at several
levels

(a) Search: Effectiveness of the results
(b) Processing based: Time and space efficiency
(c) System: Satisfaction of the user

Here, we measure the effectiveness of the queries generated by each approach
along with their computing time for each query. By performing various op-
timizations and pre-processing steps like, the calculation of the minimal spe-
cializations of all concept names and role names in the KB, generation of role
predecessor and role successor hierarchy forest, et al. we can reduce the compu-
tation time (of both the methods) substantially. Investigating the satisfaction of
the user requires a real knowledge base (including an ABox) which is not avail-
able. However, the sample subset tuples (in Table 5.2) selected for each query
can be viewed as a simulated input for user’s relevant (or irrelevant) tuples.

5.3.1 Effectiveness measure

The effectiveness of a result depends on how well the problem of information
overload is solved. The amount of reduction in the information overload is
evaluated using an effectiveness measure. Let, T ⊂ q(K), be a set of result
tuples. We calculate the effectiveness measure E using

1. Precision P of the optimal query obtained from the (c-)specializations,
when the set of result tuples T are relevant for the user.

2. Recall R of the optimal query obtained from the (c-)specializations, when
the set of result tuples T are irrelevant for the user.

3. Number of (c-)specializations, k1, k2, required to obtain the values P, R
respectively.

Here, Precision is the probability that the retrieved tuples are relevant and
Recall is the probability that the relevant tuples are retrieved in a search. Since
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each approach can provide more than one (c-)specializations and we can combine
these specializations in various ways to obtain different queries, we represent the
appropriate (and most specific) query containing the result tuple subset T as the
optimal query. Let, n be the number of (c-)specializations available to the user
for selection. The formula for the effectiveness measure is given by:

E = (P + R)/2 ∗
√

2∗n+1−(k1+k2)
2∗n−1 ,

The value of E increases as the precision and recall of a query obtained (c-
)specializations w.r.t. the tuple subset T increases. However, by computing
huge number of clusters (and selecting just some of the clusters) we could also
achieve higher precision and recall. So, to avoid such situations, we also take the
number of (c-)specializations generated, n, and the number of (c-)specializations
utilized k1, k2 into considered. When the values of P, R, k1, k2 are all 1, E is
reaches the value of 1. As the value of E increases the information overload
decrease and when E = 1, the information overload is completely avoided.

The set of tuples which are relevant or irrelevant varies between different users
because of which we use 5 different tuple sets for our evaluation. The evaluation
is performed using the algorithm in Figure 5.2.

Step 1: For each query q ∈ {q1, q2, q3, q4, q5}
Step 2: Generate specializations of q: spec = MinSpecK(q)
Step 3: Generate c-specializations of q: c-spec = CLUSTERR(q, q(K))
Step 4: For each tuple subset T ∈ {T1, T2, T3, T4, T5} w.r.t. q
Step 5: Calculate effectiveness measure Es of spec
Step 6: Calculate effectiveness measure Ec of c-spec
Step 7: Calculate effectiveness measure Eo of q

Figure 5.2: Effectiveness measure algorithm

In addition, we can iterate the computation of MinSpec, CLUSTERR to fur-
ther reduce the information overload. As, the number of such iterations increase,
the effectiveness of the specializations also increase and after few iterations E
reaches 1 when P = 1,R = 1, k1 = 1, k2 = 1. So, we also compare the number of
iterations needed for each approach to obtain an effectiveness measure of 1 for
each tuple subset T.

5.3.2 Results and Interpretation

Now, we provide the results corresponding to each of the first 4 queries consid-
ered. The 3 approaches MinSpec, CLUSTERR, NO-PROCESSING are com-
pared for the queries Query 1, Query 2, Query 3, Query 4 with 5 subset of
relevant (or irrelevant) result tuples.



CHAPTER 5. IMPLEMENTATION AND EVALUATION 66

Figure 5.3: Effectiveness measure of the 4 queries using the 3 approaches

Interpretation of the results of effectiveness measure experiments

In Figure 5.3, the calculated effectiveness measure of Query 1, Query 2, Query 3
and Query 4 is provided (NO-PROC represents NO-PROCESSING approach).
The subset of (relevant/irrelevant) result tuples T1, T2, T3, T4, T5 of each query
are selected randomly (simulating a random choice of users) using the KB. Due
to the limitations of the KB, MinSpec and CLUSTERR may not compute any
specialization and c-specialization respectively for some queries like Query 5. In
cases like these techniques developed for Databases can be adopted.

From Figure 5.3, we can see that MinSpec and CLUSTERR improve the effec-
tiveness of the search (reduce information overload) in virtually every test case.
In some cases, the improvement can be huge as shown in the results acquired
for Query 4. Between MinSpec and CLUSTERR, CLUSTERR provides better
results in most of the test cases. This is not unexpected as CLUSTERR’s c-
specializations can reproduce most of the specializations generated by MinSpec
and it is evident from the results of Query 1, Query 2 and Query 4 where 11
out of 15 times CLUSTERR generates more effective results.

However, in cases where the number of results variables is very small or if some
of the tuples are contained in none of the clusters generated, MinSpec performs
better. For Query 3, CLUSTERR provides better results than MinSpec in one
case only. Moreover, MinSpec can compute various kinds of specializations like
variable individual specialization, individual specializations et al., which is not
possible with CLUSTERR. These specializations can be significant especially
when the KB doesn’t provide sufficient information (concept and role inclu-
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sions) to perform further specialization. However, all these cases are still only
isolated and on an average CLUSTERR provides better results than MinSpec.

One interesting revelation from the experiments is the ability of role compo-
sitions to generate a decent cluster tree from a role (rtype) even with few role
inclusions. For Query 3, a cluster tree with memberOf as root is extended
to several levels. Since the role inclusion memberOf ◦ subOrgnizationOf v
memberOf is added to LUBM to obtain LUBMEL+ and worksFor v memberOf
already exists in LUBM, we can infer the following inclusions

memberOf ◦ subOrganizationOf ◦ subOrganizationOf v memberOf ◦ subOrgnizationOf ,

worksFor ◦ subOrganizationOf v memberOf ◦ subOrgnizationOf v memberOf

and a decent cluster tree can be obtained. However, once groping is performed
empty nodes are eliminated and this restricts the expansion of the cluster tree.

Additional specifics ascertained

The various steps in the clustering algorithm like feature selection are also highly
important. In Query 2, only Student and Faculty are used as features and we
ignored Course as a feature. Since only one concept is subsumed by Course
(GraduateCourse) in our test ontology, using Course as a feature reduces the
number of tuples assigned to the non-root nodes of the cluster tree. This leads
to the formation of non-optimal clusters which can be avoided by careful se-
lection of features. Even though we populate hierarchical clusters, it is not
always plausible to compute the exact number of clusters as specified by the
user. Otherwise in some cases, this can lead to omission of some of the result
tuples having an adverse effect on the effectiveness and quality of the result.
So, our method only forms approximately n number of clusters, where n is the
number of clusters suggested by the user.

For MinSpec, obtaining individual specializations, variable individual special-
izations, et al., which are minimal is certainly possible even for a small KB that
we experimented with. For the query
q(x, y)← Publication(x) ∧ publicationAuthor(x, y) ∧ Employee(y)
we obtained the following query as a minimal specialization
q1(x, y)← Publication(x)∧publicationAuthor(Publication9, y)∧Employee(y),
where Puglication9 is an individual occurring in the KB.

Iterations required to avoid information overload

Even though the effectiveness of the (c-)specializations obtained from MinSpec,
CLUSTERR is improved substantially, the information overload may not be
completely avoided. To obtain the effectiveness measure of 1 (or to avoid infor-
mation overload), we can perform more iterations by specializing the appropriate
(c-)specialization(s). The change in the effectiveness for each query after each
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iteration is shown in the Figure 5.4 (Itr i represents Iteration i). As displayed
in the test results, CLUSTERR once again performs better than MinSpec and
achieves optimal effectiveness with fewer iterations. CLUSTERR requires at
most 2 iterations to obtain effectiveness measure E = 1 in all the test cases,
while MinSpec requires 3 iterations in some of the test cases.

Figure 5.4: Increase in effectiveness after each iteration for the two approaches

In Figure 5.4 only the test cases which didn’t have value 1 for the effectiveness
measure in the first iteration are considered.

5.3.3 Evaluation of Computation Time

To evaluate the time efficiency of our two approaches we measured the amount
of time taken by MinSpec and CLUSTERR to compute the specializations and
c-specializations respectively of each of the above 5 queries. We also included
the time required to normalize the query into CQNF. From the Table 5.3, we
can see that MinSpec takes more time than CLUSTERR as it computes the
complete set of minimal specializations of a query unlike CLUSTERR and it
also performs query equality and emptiness checks to satisfy the conditions 1
and 2 in Definition 3.1. However, if we assume that all the variables in the query
are distinguished variables, then the speed of the algorithm MinSpec increases
substantially as we only perform membership checks.

The values corresponding to MinSpec, CLUSTERR in Table 5.3 are achieved
when the minimal specializations of a concept (irrespective of the query) are
computed either as a pre-processing step or incrementally so that they are read-
ily accessible when requested by our methods. Due to this, the speed of the
algorithm CLUSTERR mainly depends on the number of result tuples of the



Table 5.3: Computation time for MinSpec and CLUSTERR
Query Results Normalize(ms) MinSpec(ms) CLUSTERR(ms)

Query 1 541 1 240 76

Query 2 208 1 192 39

Query 3 16666 1 384 2153

Query 4 30 1 126 35

Query 5 547 2 470 50

original query and not on the size of the knowledge base. In addition, we al-
lowed empty queries to be included in the results obtained from MinSpec. In
case of queries like Query 3 where the size of the result set is 16666, the com-
putation times of MinSpec and CLUSTERR are still around 2 seconds. This
shows that, both MinSpec and CLUSTERR are scalable even for large KBs,
once the minimal specializations of all the concept and role names occurring in
the KB are pre-computed.
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Conclusion

Information overload is one of the main problems which should be effectively
tackled by every search and query engine, be it Databases or DL KBs or the
World Wide Web (WWW). Various studies aimed at avoiding (or reducing) in-
formation overload in web-based search and Database querying resulted in the
development of numerous techniques based on ranking, clustering, classification.
However, employing those techniques directly to DL KBs wouldn’t yield optimal
results. In addition, the increase in the usage of ontologies and Semantic Web
also aggravated the need for new customized techniques for DL KBs to reduce
information overload. In this thesis, we presented two approaches tailored for
DL (especially EL family) KBs to address our problem, reducing information
overload. For better understandability, we assumed that all KBs are in a normal
form [Baader et al., 2005].

In Chapter 3, we presented our first approach which is based on minimal query
intensification such that the newly generated query is syntactically similar to the
original query. These syntactically similar queries obtained after intensification
are called specializations. We have also shown that minimal specializations are
sufficient to attain decent reduction in information overload. We presented var-
ious ways to obtain specializations and provided an algorithm to compute the
set of all minimal specializations of a query. The soundness and completeness
of our method MinSpec is also proved along with termination. It is also shown
that the combined complexity of MinSpec is NPTIME as the most complex
steps, subsumption checking and conjunctive query containment, are performed
polynomial number of times only.

In Chapter 4, we presented our second approach CLUSTERR which is based
on clustering of query results. Unlike MinSpec, CLUSTERR also acquires
queries that are non-minimal. Using the query and the KB, we constructed a
cluster tree which generates hierarchical clusters upon populating it with the
result tuples. From these clusters and their labels we can generate new queries,
called c-specializationss, having these clusters as their result sets. Various
shortcomings of other clustering based approaches like [Amato et al., 2010] e.g.
unavailability of a concept and role refinement operator, non-utilization of the
role inclusions available in the KB are recognised and dealt in our approach.
The main steps of the algorithm like grouping of the tree, tree product opera-
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tion are performed within PTIME, but the generation of a single tree requires
EXPTIME. So,the complexity of the algorithm CLUSTERR is EXPTIME.

We also implemented the above two algorithms MinSpec, CLUSTERR in Java
on top of Pellet reasoner using Jena and OWL APIs. We evaluated the two
approaches based on the effectiveness of the (c-)specializations computed by
each method using an extended LUBM benchmark ontology. The experiments
clearly show that both methods reduce the information overload by a signif-
icant amount. Between MinSpec and CLUSTERR, on an average the later
performs better. The processing time of each method is improved immensely
by pre-computing the minimal specializations of the concept and role names
occurring in the KB. Even though the complexity of our methods MinSpec
and CLUSTERR is NPTIME and EXPTIME respectively, after performing the
pre-processing steps and optimizations MinSpec and CLUSTERR are scalable
even for large KBs. The EXPTIME complexity of CLUSTERR is acceptable,
because in most of the KBs the ratio of concept (or role) inclusions to concepts
(or roles) is very low.

Open Issues

The method MinSpec is highly efficient when all the variables occurring in the
query are distinguished variables as instead of query equivalence and empti-
ness checks, it is sufficient to perform membership checks only. However, in
the presence of non-distinguished variables, checking if a concept is a minimal
specialization w.r.t. the query becomes a harder problem as query equivalence
and emptiness has to be checked to avoid inclusion of non-specializations. Addi-
tionally, when variable specializations are also employed we might also perform
query containment checks and optimized solutions can be developed as a future
work.

The number of terms in the specializations of a query can be higher when com-
pared to the original query. This is understandable as conjunct specializations
are also utilized. In this thesis, we assumed that concrete domains do not occur
in our KBs and their inclusion makes our problem slightly harder. We also
limited ourselves to regular-EL++ KBs, and as a future work, MinSpec and
CLUSTERR can be extended and implemented for KBs which are expressed
using unrestricted EL++. Extending CLUSTERR to other DLs is fairly simple
once we compute the concept and role refinement operators. However, extend-
ing MinSpec to other DLs requires much more work but it is still possible.

The clusters (and c-specializations) generated by CLUSTERR form a hierar-
chical clustering structure with the root of the cluster tree containing all the
result tuples. However, in few cases some of the result tuples might be assigned
to the root node only and these result tuples belong to the result set of none
of the c-specializations computed. Moreover, in some cases our two approaches

71



may not generate any (c-)specializations and using the techniques developed for
Database technologies is more appropriate.

Automating the calculation of the optimal number of clusters is a first-step
towards an unsupervised method for clustering query results. As a next step,
we can select the clusters automatically to generate the specialized query (and
result set). A similar step can also be performed in MinSpec by automatically
selecting one or more minimal specializations to generate the specialized query.
The techniques developed for Databases and WWW can be directly utilized here
and further extensions to our approaches can be done. In the method CLUS-
TERR, we only introduced the idea of selecting the result variables for clustering
w.r.t. a DL KB using a naive technique (Section 4.3.1). More advanced tech-
niques to perform this selection, FS(q,K, q(K)), needs to be developed.
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