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Abstract. Computing the least common subsumer (lcs) is one of the
most prominent non-standard inference in description logics. Baader,
Küsters, and Molitor have shown that the lcs of concept descriptions in
the description logic EL always exists and can be computed in polyno-
mial time. In the present paper, we try to extend this result from concept
descriptions to concepts defined in a (possibly cyclic) EL-terminology
interpreted with descriptive semantics, which is the usual first-order se-
mantics for description logics. In this setting, the lcs need not exist.
However, we are able to define possible candidates Pk (k ≥ 0) for the
lcs, and can show that the lcs exists iff one of these candidates is the
lcs. Since each of these candidates is a common subsumer, they can also
be used to approximate the lcs even if it does not exist. In addition, we
give a sufficient condition for the lcs to exist, and show that, under this
condition, it can be computed in polynomial time.

1 Introduction

Computing the least common subsumer of concepts can be used in the bottom-up
construction of description logic (DL) knowledge bases. Instead of defining the
relevant concepts of an application domain from scratch, this methodology allows
the user to describe the concept to be defined by examples, which are themselves
given as concepts.1 These examples are then generalized into a new concept by
computing their least common subsumer (i.e., the least concept description in the
available description language that subsumes all these concepts). The knowledge
engineer can then use the computed concept as a starting point for the concept
definition. Another application of the least common subsumer computation is
structuring of DL knowledge bases. In fact, in many cases these knowledge bases
are rather “flat” in the sense that their subsumption hierarchy is not deep and
that a given concept may have a huge number of direct descendants in this
hierarchy. To support browsing such hierarchies, one would like to introduce
meaningful intermediate concepts, and this can again be facilitated by computing
1 If the examples are not given as concepts, but as individuals in a DL ABox, then one

must first generalize the individuals into concepts by computing their most specific
concept [4, 8].



the lcs of subsets of the direct descendants of concepts with many descendants.
These applications (and how formal concept analysis can be employed in this
context) are described in more detail in [3].

The least common subsumer (lcs) in DLs with existential restrictions was
investigated in [5]. In particular, it was shown there that the lcs in the small
DL EL (which allows conjunctions, existential restrictions, and the top-concept)
always exists, and that the binary lcs can be computed in polynomial time. In
the present paper, we try to extend this result from concept descriptions to con-
cepts defined in a (possibly cyclic) EL-terminology interpreted with descriptive
semantics, which is the usual first-order semantics for description logics.

The report [2] considers cyclic terminologies in EL w.r.t. the three types of
semantics (greatest fixpoint (gfp), least fixpoint (lfp), and descriptive seman-
tics) introduced by Nebel [9], and shows that the subsumption problem can be
decided in polynomial time in all three cases. This is in strong contrast to the
case of DLs with value restrictions. Even for the small DL FL0 (which allows
conjunctions and value restrictions only), adding cyclic terminologies increases
the complexity of the subsumption problem from polynomial (for concept de-
scriptions) to PSPACE. The main tool in the investigation of cyclic definitions
in EL is a characterization of subsumption through the existence of so-called
simulation relations, which can be computed in polynomial time [7].

The characterization of subsumption in EL w.r.t. gfp-semantics through the
existence of certain simulation relations on the graph associated with the termi-
nology can be used to characterize the lcs via the product of this graph with itself
[1]. This shows that, w.r.t. gfp-semantics, the lcs always exists, and the binary
lcs can be computed in polynomial time. (The n-ary lcs may grow exponentially
even in EL without cyclic terminologies [5].)

In the present paper, we concentrate on the lcs w.r.t. cyclic terminologies in
EL with descriptive semantics. Here things are not as rosy as for gfp-semantics.
We will show that, in general, the lcs need not exist (Section 4.1). We then
introduce possible candidates Pk (k ≥ 0) for the lcs, and show that the lcs exists
iff one of these candidates is the lcs (Section 4.2). Finally, we give a sufficient
condition for the lcs to exist, and show that, under this condition, it can be
computed in polynomial time (Section 4.3).

Before we can start presenting the new results, we must first introduce EL
with cyclic terminologies as well as the lcs (Section 2), and recall the important
definitions and results from [2] (Section 3). Full proofs for the results presented
in this paper can be found in [1].

2 Cyclic TBoxes and least common subsumers in EL

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set NC of concept names and a set NR of role names. The
constructors determine the expressive power of the DL. In this report, we restrict
the attention to the DL EL, whose concept descriptions are formed using the
constructors top-concept (>), conjunction (C u D), and existential restriction



name of constructor Syntax Semantics

concept name A ∈ NC A AI ⊆ ∆I

role name r ∈ NR r rI ⊆ ∆I ×∆I

top-concept > ∆I

conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ D AI = DI

Table 1. Syntax and semantics of EL-concept descriptions and TBox definitions.

(∃r.C). The semantics of EL-concept descriptions is defined in terms of an in-
terpretation I = (∆I , ·I). The domain ∆I of I is a non-empty set of individuals
and the interpretation function ·I maps each concept name A ∈ NC to a subset
AI of ∆I and each role r ∈ NR to a binary relation rI on ∆I . The extension of
·I to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.

A terminology (or TBox for short) is a finite set of concept definitions of
the form A ≡ D, where A is a concept name and D a concept description.
In addition, we require that TBoxes do not contain multiple definitions, i.e.,
there cannot be two distinct concept descriptions D1 and D2 such that both
A ≡ D1 and A ≡ D2 belongs to the TBox. Concept names occurring on the left-
hand side of a definition are called defined concepts. All other concept names
occurring in the TBox are called primitive concepts. Note that we allow for
cyclic dependencies between the defined concepts, i.e., the definition of A may
refer (directly or indirectly) to A itself. An interpretation I is a model of the
TBox T iff it satisfies all its concept definitions, i.e., AI = DI for all definitions
A ≡ D in T .

The semantics of (possibly cyclic) EL-TBoxes we have just defined is called
descriptive semantic by Nebel [9]. For some applications, it is more appropriate
to interpret cyclic concept definitions with the help of an appropriate fixpoint
semantics. However, in this paper we will restrict our attention to descriptive
semantic (see [1] for a treatment of subsumption in EL w.r.t. greatest fixpoint,
least fixpoint, and descriptive semantics, and [2] for a treatment of the lcs w.r.t.
greatest fixpoint semantics).

Definition 1. Let T be an EL-TBox and let A,B be defined concepts occurring
in T . Then, A is subsumed by B w.r.t. descriptive semantics (A vT B) iff
AI ⊆ BI holds for all models I of T .

On the level of concept descriptions, the least common subsumer of two
concept descriptions C,D is the least concept description E that subsumes both
C and D. An extensions of this definition to the level of (possibly cyclic) TBoxes
is not completely trivial. In fact, assume that A1, A2 are concepts defined in the
TBox T . It should be obvious that taking as the lcs of A1, A2 the least defined
concept B in T such that A1 vT B and A2 vT B is too weak since the lcs would
then strongly depend on other defined concepts that are already present in T .
However, a second approach (which might look like the obvious generalization



of the definition of the lcs in the case of concept descriptions) is also not quite
satisfactory. We could say that the lcs of A1, A2 is the least concept description
C (possibly using defined concepts of T ) such that A1 vT C and A2 vT C.
The drawback of this definition is that it does not allow us to use the expressive
power of cyclic definitions when constructing the lcs.

To avoid this problem, we allow the original TBox to be extended by new
definitions when constructing the lcs. We say that the TBox T2 is a conservative
extension of the TBox T1 iff T1 ⊆ T2 and T1 and T2 have the same primitive
concepts and roles. Thus, T2 may contain new definitions A ≡ D, but then D
does not introduce new primitive concepts and roles (i.e., all of them already
occur in T1), and A is a new concept name (i.e., A does not occur in T1). The
name “conservative extension” is justified by the fact that the new definitions
in T2 do not influence the subsumption relationships between defined concepts
in T1.

Lemma 1. Let T1, T2 be EL-TBoxes such that T2 is a conservative extension of
T1, and let A,B be defined concepts in T1 (and thus also in T2). Then A vT1 B
iff A vT2 B.

Definition 2. Let T1 be an EL-TBox containing the defined concepts A,B, and
let T2 be a conservative extension of T1 containing the new defined concept E.
Then E in T2 is a least common subsumer of A,B in T1 w.r.t. descriptive
semantics (lcs) iff the following two conditions are satisfied:

1. A vT2 E and B vT2 E.
2. If T3 is a conservative extension of T2 and F a defined concept in T3 such

that A vT3 F and B vT3 F , then E vT3 F .

In the case of concept descriptions, the lcs is unique up to equivalence, i.e.,
if E1 and E2 are both least common subsumers of the descriptions C,D, then
E1 ≡ E2 (i.e., E1 v E2 and E2 v E1). In the presence of (possibly cyclic)
TBoxes, this uniqueness property also holds (though its formulation is more
complicated).

Proposition 1. Let T1 be an EL-TBox containing the defined concepts A,B.
Assume that T2 and T ′2 are conservative extensions of T1 such that

– the defined concept E in T2 is an lcs of A,B in T1;
– the defined concept E′ in T ′2 is an lcs of A,B in T1;
– the sets of newly defined concepts in respectively T2 and T ′2 are disjoint.

For T3 := T2 ∪ T ′2 , we have E ≡T3 E
′ (i.e., E vT3 E

′ and E′ vT3 E).

3 Characterizing subsumption in EL with cyclic
definitions

In this section, we recall the characterizations of subsumption w.r.t. descriptive
semantics developed in [2]. To this purpose, we must represent TBoxes by de-
scription graphs, and introduce the notion of a simulation on description graphs.



3.1 Description graphs and simulations

Before we can translate EL-TBoxes into description graphs, we must normalize
the TBoxes. In the following, let T be an EL-TBox, Ndef the defined concepts
of T , Nprim the primitive concepts of T , and Nrole the roles of T . We say that
the EL-TBox T is normalized iff A ≡ D ∈ T implies that D is of the form

P1 u . . . u Pm u ∃r1.B1 u . . . u ∃r`.B`,

for m, ` ≥ 0, P1, . . . , Pm ∈ Nprim, r1, . . . , r` ∈ Nrole, and B1, . . . , B` ∈ Ndef . If
m = ` = 0, then D = >.

As shown in [2], one can (without loss of generality) restrict the attention
to normalized TBox. In the following, we thus assume that all TBoxes are nor-
malized. Normalized EL-TBoxes can be viewed as graphs whose nodes are the
defined concepts, which are labeled by sets of primitive concepts, and whose
edges are given by the existential restrictions. For the rest of this section, we fix
a normalized EL-TBox T with primitive concepts Nprim, defined concepts Ndef ,
and roles Nrole.

Definition 3. An EL-description graph is a graph G = (V,E, L) where
– V is a set of nodes;
– E ⊆ V ×Nrole × V is a set of edges labeled by role names;
– L: V → 2Nprim is a function that labels nodes with sets of primitive concepts.

The TBox T can be translated into the following EL-description graph GT =
(Ndef , ET , LT ):
– the nodes of GT are the defined concepts of T ;
– if A is a defined concept and A ≡ P1 u . . . u Pm u ∃r1.B1 u . . . u ∃r`.B` its

definition in T , then
• LT (A) = {P1, . . . , Pm}, and
• A is the source of the edges (A, r1, B1), . . . , (A, r`, B`) ∈ ET .

Simulations are binary relations between nodes of two EL-description graphs
that respect labels and edges in the sense defined below.

Definition 4. Let Gi = (Vi, Ei, Li) (i = 1, 2) be two EL-description graphs. The
binary relation Z ⊆ V1 × V2 is a simulation from G1 to G2 iff

(S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and
(S2) if (v1, v2) ∈ Z and (v1, r, v

′
1) ∈ E1, then there exists a node v′2 ∈ V2 such that

(v′1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

We write Z: G1
⇀∼ G2 to express that Z is a simulation from G1 to G2.

It is easy to see that the set of all simulations from G1 to G2 is closed under
arbitrary unions. Consequently, there always exists a greatest simulation from
G1 to G2. If G1,G2 are finite, then this greatest simulation can be computed in
polynomial time [7]. As an easy consequence of this fact, the following proposition
is proved in [2].

Proposition 2. Let G1,G2 be two finite EL-description graphs, v1 a node of G1

and v2 a node of G2. Then we can decide in polynomial time whether there is a
simulation Z: G1

⇀∼ G2 such that (v1, v2) ∈ Z.



B = B0
r1→ B1

r2→ B2
r3→ B3

r4→ · · ·
Z↓ Z↓ Z↓ Z↓

A = A0
r1→ A1

r2→ A2
r3→ A3

r4→ · · ·

Fig. 1. A (B,A)-simulation chain.

B = B0
r1→ B1

r2→ · · ·
rn−1→ Bn−1

rn→ Bn
Z↓ Z↓ Z↓

A = A0
r1→ A1

r2→ · · ·
rn−1→ An−1

Fig. 2. A partial (B,A)-simulation chain.

3.2 Subsumption w.r.t. descriptive semantics

W.r.t. gfp-semantics, A is subsumed by B iff there is a simulation Z: GT
⇀∼ GT

such that (B,A) ∈ Z (see [2]). W.r.t. descriptive semantics, the simulation Z
must satisfy some additional properties for this equivalence to hold. To define
these properties, we must introduce some notation.

Definition 5. The path p1: B = B0
r1→ B1

r2→ B2
r3→ B3

r4→ · · · in GT is Z-
simulated by the path p2: A = A0

r1→ A1
r2→ A2

r3→ A3
r4→ · · · in GT iff (Bi, Ai) ∈ Z

for all i ≥ 0. In this case we say that the pair (p1, p2) is a (B,A)-simulation
chain w.r.t. Z (see Figure 1).

If (B,A) ∈ Z, then (S2) of Definition 4 implies that, for every infinite path
p1 starting with B0 := B, there is an infinite path p2 starting with A0 := A such
that p1 is Z-simulated by p2. In the following we construct such a simulating
path step by step. The main point is, however, that the decision which concept
An to take in step n should depend only on the partial (B,A)-simulation chain
already constructed, and not on the parts of the path p1 not yet considered.

Definition 6. A partial (B,A)-simulation chain is of the form depicted in Fig-
ure 2. A selection function S for A,B and Z assigns to each partial (B,A)-
simulation chain of this form a defined concept An such that (An−1, rn, An) is
an edge in GT and (Bn, An) ∈ Z.

Given a path B = B0
r1→ B1

r2→ B2
r3→ B3

r4→ · · · and a defined concept A such
that (B,A) ∈ Z, one can use a selection function S for A,B and Z to construct
a Z-simulating path. In this case we say that the resulting (B,A)-simulation
chain is S-selected.

Definition 7. Let A,B be defined concepts in T , and Z: GT
⇀∼ GT a simulation

with (B,A) ∈ Z. Then Z is called (B,A)-synchronized iff there exists a selection
function S for A,B and Z such that the following holds: for every infinite S-
selected (B,A)-simulation chain of the form depicted in Figure 1 there exists an
i ≥ 0 such that Ai = Bi.



We are now ready to state the characterization of subsumption w.r.t. descrip-
tive semantics proved in [2].

Theorem 1. Let T be an EL-TBox, and A,B defined concepts in T . Then the
following are equivalent:

1. A vT B.
2. There is a (B,A)-synchronized simulation Z: GT

⇀∼ GT such that (B,A) ∈ Z.

In [2] it is also shown that, for a given EL-TBox T and defined concepts
A,B in T , the existence of a (B,A)-synchronized simulation Z: GT

⇀∼ GT with
(B,A) ∈ Z can be decided in polynomial time.

Corollary 1. Subsumption w.r.t. descriptive semantics in EL can be decided in
polynomial time.

4 The lcs w.r.t. descriptive semantics

Deriving a characterization of the lcs (w.r.t. descriptive semantics) from Theo-
rem 1 is not straightforward. First, we will show that, w.r.t. descriptive seman-
tics, the lcs of two concepts defined in an EL-TBox need not exist. Subsequently,
we will introduce possible “candidates” Pk (k ≥ 0) for the lcs, and show that the
lcs exists iff one of these candidates is the lcs. Finally, we will give a sufficient
condition for the existence of the lcs.

4.1 The lcs need not exist

Theorem 2. Let T1 := {A ≡ ∃r.A, B ≡ ∃r.B}. Then, A,B in T1 do not have
an lcs.

Proof. Assume to the contrary that T2 is a conservative extension of T1 and that
the defined concept E in T2 is an lcs of A,B in T1. Let G2 = (V2, E2, L2) be the
description graph induced by T2.

First, we show that there cannot be an infinite path in G2 starting with E.
In fact, assume that

E = E0
r1→ E1

r2→ E2
r3→ · · ·

is such an infinite path. Since A vT1 E, there is an (E,A)-synchronized sim-
ulation Z1: G2

⇀∼ G2 such that (E,A) ∈ Z1. Consequently, the corresponding
selection function S1 can be used to turn the above infinite chain issuing from E
into an (E,A)-simulation chain. Since the only edge with source A is the edge
(A, r,A), this simulation chain is actually of the form

E = E0
r→ E1

r→ E2
r→ E3

r→ · · ·
Z1↓ Z1↓ Z1↓ Z1↓
A

r→ A
r→ A

r→ A
r→ · · ·



Since Z1 is (E,A)-synchronized with selection function S1, this implies that
there is an index j1 such that Ej1 = A, and thus Ei = A for all i ≥ j1.

Analogously, we can show that there is an index j2 such that Ej2 = B, and
thus Ei = B for all i ≥ j2. Since A 6= B, this is a contradiction. Thus, we know
that there is a positive integer n0 such that every path in G2 starting with E
has length ≤ n0.

Second, we define conservative extensions T ′n (n ≥ 1) of T2 such that the
defined concept Fn in T ′n is a common subsumer of A,B:

T ′n := T2 ∪ {Fn ≡ ∃r.Fn−1, ..., F1 ≡ ∃r.F0, F0 ≡ >}.

It is easy to see that A vT ′n Fn and B vT ′n Fn.
Third, we claim that, for n > n0, E 6vT ′n Fn. In fact, the path

Fn
r→ Fn−1

r→ Fn−2
r→ · · · r→ F0

has length n, and thus it cannot be simulated by any path starting with E. This
shows that E 6vT ′n Fn, and thus contradicts our assumption that E in T2 is the
lcs of A,B in T1.

4.2 Characterizing when the lcs exists

Given an EL-TBox T1 and defined concepts A,B in T1, we will define for each
k ≥ 0 a conservative extension T (k)

2 of T1 containing a defined concept Pk, and
show that A,B have an lcs iff there is a k such that Pk is the lcs of A,B. To
prove this result, we will need a slight modification of Theorem 1. However, this
modified theorem follows easily from the the proof of Theorem 1 given in [2].

Definition 8. (i) We call a selection function S nice iff it satisfies the following
two conditions:

1. It is memoryless, i.e., its result An depends only on Bn−1, An−1, rn, Bn, and
not on the other parts of the partial (B,A)-simulation chain.

2. If Bn−1 = An−1, then its result An is just Bn.

(ii) The simulation relation Z is called strongly (B,A)-synchronized iff there
exists a nice selection function S for A,B and Z such that the following holds: for
every infinite S-selected (B,A)-simulation chain of the form depicted in Figure 1
there exists an i ≥ 0 such that Ai = Bi.

Corollary 2. Let T be an EL-TBox, and A,B be defined concepts in T . Then
the following are equivalent:

1. A vT B.
2. There is a strongly (B,A)-synchronized simulation Z: GT

⇀∼ GT such that
(B,A) ∈ Z.

Strongly (B,A)-synchronized simulations satisfy the following property:



Lemma 2. Let T be an EL-TBox containing at most n defined concepts, A,B
be defined concepts in T , and Z: GT

⇀∼ GT be a strongly (B,A)-synchronized
simulation relation. Consider an infinite S-selected (B,A)-simulation chain of
the form depicted in Figure 1. Then there exists an m < n2 such that Bm = Am.

Obviously, the lemma also holds for finite S-selected (B,A)-simulation chains,
provided that they are long enough, i.e., of length at least n2.

Now, let T1 be an EL-TBox, let GT1 = (Ndef , ET1 , LT1) be the corresponding
description graph, and let A,B be defined concepts in T1 (i.e., elements of Ndef ).
W.r.t. gfp-semantics, the node (A,B) in the product G := GT1 ×GT1 of GT1 with
itself yields the lcs of A,B [1]. The nodes of G are pairs (u, v) of nodes of GT1 ;
there is an edge ((u, v), r, (u′, v′)) in G iff (u, r, u′) ∈ ET1 and (v, r, v′) ∈ ET1 ;
and the label of (u, v) in G is LT1(u) ∩ LT1(v).

W.r.t. descriptive semantics, the product graph G as a whole cannot be part
of the lcs of A,B since it may contain cycles reachable from (A,B), which would
prevent the subsumption relationship between A and (A,B) to hold. Neverthe-
less, the lcs must “contain” paths in G starting with (A,B) up to a certain length
k. In order to obtain these paths without also getting the cycles in G, we make
copies of the nodes in G on levels between 1 and k. Actually, we will not need
nodes of the form (u, u) since they are represented by the nodes u in GT1 .

To be more precise, we define

Pk := {(A,B)0} ∪ {(u, v)n | u 6= v, (u, v) ∈ Ndef ×Ndef and 1 ≤ n ≤ k}.

For p = (u, v)n ∈ Pk we call (u, v) the node of p and n the level of p.
The edges of G induce edges between elements of Pk. To be more precise, we

define the set of edges EPk as follows: (p, r, q) ∈ EPk iff the following conditions
are satisfied:

– p, q ∈ Pk;
– p = (u, v)n for some n, 0 ≤ n ≤ k;
– q = (u′, v′)n+1;
– (u, r, u′) ∈ ET1 and (v, r, v′) ∈ ET1 ;

Note that the graph (Pk, EPk) is a directed acyclic graph. The only element on
level 0 is (A,B)0.

The label of an element of Pk is the label of its node in the product graph
G, i.e., if p = (u, v)n ∈ Pk, then

LPk(p) = LT1(u) ∩ LT1(v).

We are now ready to define an EL-description graph G(k)
2 whose correspond-

ing TBox T (k)
2 is a conservative extension of T1, and which contains a defined

concept Pk that is a common subsumer of A,B.

Definition 9. For all k ≥ 0, we define G(k)
2 := (V (k)

2 , E
(k)
2 , L

(k)
2 ) where

– V
(k)
2 := Ndef ∪ Pk;



– L
(k)
2 = LT1 ∪ LPk , i.e.

L
(k)
2 (v) :=

{
LT1(v) if v ∈ Ndef

LPk(v) if v ∈ Pk

– E
(k)
2 consists of the edges in ET1 and EPk , extended by some additional edges

from Pk to Ndef :

E
(k)
2 := ET1 ∪ EP ∪ {(p, r, w) | p = (u, v)n ∈ Pk, w ∈ Ndef , and

(u, r, w) ∈ ET1 and (v, r, w) ∈ ET1}.

Let T (k)
2 be the EL-TBox such that G(k)

2 = GT (k)
2

. It is easy to see that T (k)
2

is a conservative extension of T1.

Lemma 3. A vT (k)
2

(A,B)0 and B vT (k)
2

(A,B)0.

Proof. To prove A vT (k)
2

(A,B)0, it is enough to show that there exists an

((A,B)0, A)-synchronized simulation Z: GT (k)
2

⇀∼ GT (k)
2

such that ((A,B)0, A) ∈
Z. We define the relation Z as follows:

Z := {(p, u) | p ∈ Pk, u ∈ Ndef , and the node of p is of the form (u, v)} ∪
{(u, u) | u ∈ Ndef}.

In [1] it is shown that Z is indeed an ((A,B)0, A)-synchronized simulation such
that ((A,B)0, A) ∈ Z.

What we want to show next is that every common subsumer of A,B also
subsumes (A,B)0 in T (k)

2 for an appropriate k. To make this more precise, assume
that T2 is a conservative extension of T1, and that F is a defined concept in T2

such that A vT2 F and B vT2 F . For GT2 = (V2, E2, L2), this implies that there
is

– an (F,A)-synchronized simulation relation Y1: GT2

⇀∼ GT2 with selection func-
tion S1 such that (F,A) ∈ Y1, and

– an (F,B)-synchronized simulation relation Y2: GT2

⇀∼ GT2 with selection func-
tion S2 such that (F,B) ∈ Y2.

By Corollary 2 we may assume without loss of generality that the selection
functions S1, S2 are nice. Consequently, if k = |V2|2, then Lemma 2 shows that
the selection functions S1, S2 ensure synchronization after less than k steps.

In the following, let k := |V2|2. In order to have a subsumption relationship
between (A,B)0 in T (k)

2 and F , both must “live” in the same TBox. For this, we
simply take the union T3 of T (k)

2 and T2. Note that we may assume without loss
of generality that the only defined concepts that T (k)

2 and T2 have in common
are the ones from T1. In fact, none of the new defined concepts in T (k)

2 (i.e., the
elements of Pk) lies on a cycle, and thus we can rename them without changing



the meaning of these concepts. (Note that the characterization of subsumption
given in Theorem 1 implies that only for defined concepts occurring on cycles
their actual names are relevant.) Thus, T3 is a conservative extension of both
T (k)

2 and T2.

Lemma 4. (A,B)0 vT3 F

Proof. We must show that there is an (F, (A,B)0)-synchronized simulation rela-
tion Y : GT3

⇀∼ GT3 such that (F, (A,B)0) ∈ Y . The definition of this simulation
is based on the “product” of Y1 and Y2:

Y := {(u, p) | (u, v1) ∈ Y1 and (u, v2) ∈ Y2

where (v1, v2) is the node of p ∈ Pk } ∪
{(u, v) | v ∈ Ndef and (u, v) ∈ Y1}.

In [1] it is shown that Y is indeed an (F, (A,B)0)-synchronized simulation such
that (F, (A,B)0) ∈ Y .

In the following, we assume without loss of generality that the TBoxes T (k)
2

(k ≥ 0) are renamed such that they share only the defined concepts of T1. For
example, in addition to the upper index describing the level of a node in Pk we
could add a lower index k. Thus, (u, v)nk denotes a node on level n in Pk. For
k ≥ 0, we denote (A,B)0

k by Pk.

Theorem 3. Let T1 be an EL-TBox and A,B defined concepts in T1. Then A,B
in T1 have an lcs iff there is a k such that Pk in T (k)

2 is the lcs of A,B in T1.

Proof. The direction from right to left is trivial. Thus, assume that T2 is a
conservative extension of T1 and that P in T2 is the lcs of A,B. We define
k := n2 where n is the number of defined concepts in T2. Let T3 be the union of
T2 and T (k)

2 , where we assume without loss of generality that the only defined
concepts shared by T2 and T (k)

2 are the ones in T1. Then Lemma 4 shows that
Pk vT3 P .

Since Pk is a common subsumer of A,B by Lemma 3, the fact that P is the
least common subsumer of A,B implies that subsumption in the other direction
holds as well: P vT3 Pk. Thus, P and Pk are equivalent, and this implies that
Pk is also an lcs of A,B.

In [1] it is also shown that the concepts Pk form a decreasing chain w.r.t. sub-
sumption, and that Pk is the lcs of A,B iff it is equivalent to Pk+i for all i ≥ 1.

Example 1. Let us reconsider the TBox T1 defined in Theorem 2. In this case,
the TBoxes T (k)

2 are basically of the form2

T1 ∪ {Pk ≡ ∃r.(A,B)1
k, (A,B)1

k ≡ ∃r.(A,B)2
k, . . . , (A,B)k−1

k ≡ ∃r.(A,B)kk},

and it is easy to see that there always is a strict subsumption relationship between
Pk and Pk+1 (since Pk+1 requires an r-chain of length k + 1 whereas Pk only
requires one of length k).
2 We have restricted the attention to elements of Pk that are reachable from Pk.



The following is an example where the lcs exists.

Example 2. Let us consider the following TBox

T1 := {A ≡ ∃r.A u ∃r.C, B ≡ ∃r.B u ∃r.C, C ≡ ∃r.C}.

In this case, k = 0 does the job, and thus the lcs of A,B is P0:

T (0)
2 := T1 ∪ {P0 ≡ ∃r.C}.

In fact, it is easy to see that the path P0
r→ C

r→ C
r→ · · · can simulate any path

starting with some P` for ` ≥ 1. Since the infinite paths starting with P` must
eventually also lead to C (after at most ` steps), this really yields a synchronized
simulation relation.

4.3 A sufficient condition for the existence of the lcs

If we want to use the results from the previous subsection to compute the lcs,
we must be able to decide whether there is an index k such that Pk is the lcs of
A,B, and if yes we must also be able to compute such a k. Though we strongly
conjecture that this is possible, we have not yet found such a procedure. For this
reason, we must restrict ourself to give a sufficient condition for the lcs of two
concepts defined in an EL-TBox to exist.

As before, let T1 be an EL-TBox, let GT1 = (Ndef , ET1 , LT1) be the corre-
sponding description graph, and let A,B be defined concepts in T1 (i.e., ele-
ments of Ndef ). We consider the product G := GT1 × GT1 of GT1 with itself. Let
G = (V,E, L).

Definition 10. We say that (A,B) is synchronized in T1 iff, for every infinite
path (A,B) = (u0, v0) r1→ (u1, v1) r2→ (u2, v2) r3→ · · · in G, there exists an index
i ≥ 0, such that ui = vi.

For example, in the TBox T1 introduced in Theorem 2, (A,B) is not synchro-
nized. The same is true for the TBox defined in Example 2. As another example,
consider the TBox T ′1 := {A′ ≡ ∃r1.A

′u∃r.C, B′ ≡ ∃r2.B
′u∃r.C, C ≡ ∃r.C}.

In this TBox, (A′, B′) is synchronized.

Lemma 5. Assume that (A,B) is synchronized in T1, and let k := |Ndef |2.
Then, for every path (A,B) = (u0, v0) r1→ (u1, v1) r2→ (u2, v2) r3→ · · · rk→ (uk, vk) in
G of length k, there exists an index i, 0 ≤ i ≤ k such that ui = vi.

As an easy consequence of this lemma we obtain that k = |Ndef |2 is such
that Pk is the lcs of A,B (see [1] for the proof). Thus, the lcs of A,B in T1

always exists, provided that (A,B) is synchronized in T1. Our construction of
the TBox T (k)

2 is obviously polynomial in k and the size of T1. Since k is also
polynomial in the size of T1, the size of T (k)

2 is polynomial in the size of T1.



Theorem 4. Let T1 be an EL-TBox, and let A,B be defined concepts in T1 such
that (A,B) is synchronized in T1. Then the lcs of A,B in T1 always exists, and
it can be computed in polynomial time.

Example 2 shows that the lcs may exist even if (A,B) is not synchronized
in T1. Thus, this is a sufficient, but not necessary condition for the existence of
the lcs. We close this section by showing that this sufficient condition can be
decided in polynomial time.

Proposition 3. Let T1 be an EL-TBox, and let A,B be defined concepts in T1.
Then it can be decided in polynomial time whether (A,B) is synchronized in T1.

Proof. As before, consider the product G := GT1 × GT1 of GT1 with itself. Let
G = (V,E, L). We define

W0 := {(u, u) | (u, u) ∈ V },
Wi+1 := Wi ∪ {(u, v) | (u, v) ∈ V and all edges with source (u, v) in G

lead to elements of Wi}, and

W∞ :=
⋃
i≥0

Wi.

Obviously, W∞ can be computed in time polynomial in the size of G. In [1]
it is shown that (A,B) is synchronized in T1 iff (A,B) ∈ W∞. From this, the
proposition immediately follows.

5 Related and future work

Cyclic definitions in EL w.r.t. the three types of semantics introduced by Nebel
[9] were investigated in [2]. (A short version of this paper is submitted for pub-
lication at another conference.) It was shown that the subsumption problem re-
mains polynomial in all three cases. The main tool in the investigation of cyclic
definitions in EL is a characterization of subsumption through the existence of
so-called simulation relations on the graph associated with an EL-terminology.

The characterization of subsumption in EL w.r.t. gfp-semantics was used
in [1] to characterize the lcs w.r.t. gfp-semantics via the product of this graph
with itself. This shows that, w.r.t. gfp semantics, the lcs always exists, and that
the binary lcs can be computed in polynomial time. The characterization of
subsumption w.r.t. gfp-semantics can also be extended to the instance problem
in EL. This was used in [1] to show that the most specific concept in EL with
cyclic terminologies interpreted with gfp-semantics always exists, and can be
computed in polynomial time. (These results on the lcs and msc in EL w.r.t.
gfp-semantics are submitted for publication at another conference.)

Subsumption is also polynomial w.r.t. descriptive semantics [2]. For the lcs,
descriptive semantics is not that well-behaved: the lcs need not exist in general.
In addition, we could only give a sufficient condition for the existence of the



lcs. If this condition applies, then the lcs can be computed in polynomial time.
Thus, one of the main technical problems left open by the present paper is the
question how to characterize the cases in which the lcs exists w.r.t. descriptive
semantics, and to determine whether in these cases it can always be computed in
polynomial time. Another problem that was not addressed by the present paper
is the question of how to characterize and compute the most specific concept
w.r.t. descriptive semantics.

It should be noted that there are indeed applications where the expressive
power of the small DL EL appears to be sufficient. In fact, SNOMED, the Sys-
tematized Nomenclature of Medicine [6] uses EL [10, 11].
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