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Abstract. Previous results for combining decision procedures for the
word problem in the non-disjoint case do not apply to equational theories
induced by modal logics—whose combination is not disjoint since they
share the theory of Boolean algebras. Conversely, decidability results
for the fusion of modal logics are strongly tailored towards the special
theories at hand, and thus do not generalize to other equational theories.
In this paper, we present a new approach for combining decision proce-
dures for the word problem in the non-disjoint case that applies to equa-
tional theories induced by modal logics, but is not restricted to them.
The known fusion decidability results for modal logics are instances of
our approach. However, even for equational theories induced by modal
logics our results are more general since they are not restricted to so-
called normal modal logics.

1 Introduction

The combination of decision procedures for logical theories arises in many areas
of logic in computer science, such as constraint solving, automated deduction,
term rewriting, modal logics, and description logics. In general, one has two first-
order theories T1 and T2 over the signatures Σ1 and Σ2, for which validity of a
certain type of formulae (e.g., universal, existential positive, etc.) is decidable.
The question is then whether one can combine the decision procedures for T1 and
T2 into one for their union T1 ∪ T2. The problem is usually much easier (though
not at all trivial) if the theories do not share symbols, i.e., if Σ1∩Σ2 = ∅. For non-
disjoint signatures, the combination of theories can easily lead to undecidability,
and thus one must find appropriate restrictions on the theories to be combined.
In automated deduction, the Nelson-Oppen combination procedure [17, 16] as

well as the problem of combining decision procedures for the word problem [19,
21, 18, 6] have drawn considerable attention. The Nelson-Oppen method com-
bines decision procedures for the validity of quantifier-free formulae in so-called
stably infinite theories. If we restrict the attention to equational theories,1 then

? Partially supported by DFG under grant BA 1122/3–3.
1 Equational theories are stably infinite if one adds the axiom ∃x, y. x 6≈ y [6].



it is easy to see that the validity of arbitrary quantifier-free formulae can be
reduced to the validity of formulae of the form s1 ≈ t1 ∧ . . . ∧ sn ≈ tn → s ≈ t

where s1, . . . , t are terms. Thus, in this case the Nelson-Oppen method com-
bines decision procedures for the conditional word problem (i.e., for validity of
conditional equations of the above form). Though this may at first sight seem
surprising, combining decision procedures for the word problem (i.e., for validity
of equations s ≈ t) is a harder task: the known combination algorithms for the
word problem are more complicated than the Nelson-Oppen method, and the
same applies to their proofs of correctness. The reason is that the algorithms for
the component theories are then less powerful. For example, if one applies the
Nelson-Oppen method to a word problem s ≈ t, then it will generate as input
for the component procedures conditional word problems, not word problems
(see [6] for a more detailed discussion). Both the Nelson-Oppen method and
the methods for combining decision procedures for the word problem have been
generalized to the non-disjoint case [11, 24, 7, 12]. The main restriction on the
theories to be combined is that they share only so-called constructors.

In modal logics, one is interested in whether properties (like decidability,
finite axiomatizability) of uni-modal logics transfer to multi-modal logics that
are obtained as the fusion of uni-modal logics. For the decidability transfer, one
usually considers two different decision problems, the validity problem (Is the
formula ϕ a theorem of the logic?) and the relativized validity problem (Does the
formula ϕ follow from the global assumption ψ?). There are strong combination
results that show that in many cases decidability transfers from two modal logics
to their fusion [15, 23, 25, 4]. Again, transfer results for the harder decision prob-
lem, relativized validity,2 are easier to show than for the simpler one, validity.
In fact, for validity the results only apply to so-called normal modal logics,3

whereas this restriction is not necessary for relativized validity.

There is a close connection between the (conditional) word problem and the
(relativized) validity problem in modal logics. In fact, in so-called classical modal
logics (which encompass most well-known modal logics), modal formulae can be
viewed as terms, on which equivalence of formulae induces an equational theory.
The fusion of modal logics then corresponds to the union of the corresponding
equational theories, and the (relativized) validity problem to the (conditional)
word problem. The union of the equational theories corresponding to two modal
logics is over non-disjoint signatures since the Boolean operators are shared.
Unfortunately, in this setting the Boolean operators are not shared constructors
in the sense of [24, 7] (see [12]), and thus the decidability transfer results for
modal logics cannot be obtained as special cases of the results in [24, 7, 12].

Recently, a new generalization of the Nelson-Oppen combination method
to non-disjoint theories was developed in [13, 14]. The main restriction on the
theories T1 and T2 to be combined is that they are compatible with their shared
theory T0, and that their shared theory is locally finite (i.e., its finitely generated

2 This is in fact a harder problem since in modal logics the deduction theorem typically
does not hold.

3 An exception is [4], where only the existence of “covering normal terms” is required.



models are finite). A theory T is compatible with a theory T0 iff (i) T0 ⊆ T ; (ii)
T0 has a model completion T

∗
0 ; and (iii) every model of T embeds into a model

of T ∪ T ∗0 . It is well-known that the theory BA of Boolean algebras is locally
finite and that the equational theories induced by classical modal logics are
compatible with BA (see [2] for details). Thus, the combination method in [14,
13] applies to (equational theories induced by) classical modal logics. However,
since it generalizes the Nelson-Oppen method, it only yields transfer results
for decidability of the conditional word problem (i.e., the relativized validity
problem).
In the present paper, we address the harder problem of designing a combina-

tion method for the word problem in the non-disjoint case that has the known
transfer results for decidability of validity in modal logics as instances.
In fact, we will see that our approach strictly generalizes these results since

it does not require the modal logics to be normal. The question of whether such
transfer results hold also for non-normal modal logics was a long-standing open
problem in modal logics. In addition to the conditions imposed in [13, 14], our
method needs the shared theory T0 to have local solvers. Roughly speaking, this
is the case if in T0 one can solve an arbitrary equation with respect to any of its
variables (see Definition 3 for details).
In the next section, we introduce some basic notions for equational theories,

and define the restrictions under which our combination approach applies. In
Section 3, we describe the new combination procedure, and show that it is sound
and complete. Section 4 shows that the restrictions imposed by our procedure
are satisfied by all classical modal logics. In particular, we show there that the
theory of Boolean algebras has local solvers. In this section, we also comment
on the complexity of our combination procedure if applied to modal logics, and
illustrate the working of the procedure on an example.
For space constraints we must forgo most of the proofs of the results presented

here. The interested reader can find them in [2].

2 Preliminaries

In this paper we will use standard notions from equational logic, universal algebra
and term rewriting (see, e.g., [5]). We consider only first-order theories (with
equality ≈) over a functional signature. We use the letters Σ,Ω, possibly with
subscripts, to denote signatures. Throughout the paper, we fix a countably-
infinite set V of variables and a countably-infinite set C of free constants, both
disjoint with any signature Σ and with each other. For any X ⊆ V ∪C, T (Σ,X)
denotes the set of Σ-terms over X, i.e., first-order terms with variables and
free constants in X and function symbols in Σ.4 First-order Σ-formulae are
defined in the usual way, using equality as the only predicate symbol. A Σ-
sentence is a Σ-formula without free variables, and a ground Σ-formula is a Σ-
formula without variables. An equational theory E over Σ is a set of (implicitly

4 Note that Σ may also contain constants.



universally quantified) Σ-identities of the form s ≈ t, where s, t ∈ T (Σ,V ). As
usual, first-order interpretations of Σ are called Σ-algebras. We denote algebras
by calligraphic letters (A, B, . . . ), and their carriers by the corresponding Roman
letter (A,B, . . . ). AΣ-algebraA is amodel of a set T ofΣ-sentences iff it satisfies
every sentence in T . For a set Γ of sentences and a sentence ϕ, we write Γ |=E ϕ
if every model of E that satisfies Γ also satisfies ϕ. When Γ is the empty set,
we write just |=E ϕ, as usual. We denote by ≈E the equational consequences
of E, i.e., the relation ≈E = {(s, t) ∈ T (Σ,V ∪ C)× T (Σ,V ∪ C) | |=E s ≈ t}.
The word problem for E is the problem of deciding the relation ≈E .
If A is an Ω-algebra and Σ ⊆ Ω, we denote by AΣ the Σ-reduct of A, i.e.,

the algebra obtained from A by ignoring the symbols in Ω \ Σ. An embedding
of a Σ-algebra A into a Σ-algebra B is an injective Σ-homomorphism from A
to B. If such an embedding exists then we say that A can be embedded into
B. If A is Σ-algebra and B is an Ω-algebra with Σ ⊆ Ω, we say that A can
be Σ-embedded into B if there is an embedding of A into BΣ . We call the
corresponding embedding a Σ-embedding of A into B. If this embedding is the
inclusion function, then we say that A is a Σ-subalgebra of B.
Given a signature Σ and a set X disjoint with Σ∪V , we denote by Σ(X) the

signature obtained by adding the elements of X as constant symbols to Σ. When
X is included in the carrier of a Σ-algebra A, we can view A as a Σ(X)-algebra
by interpreting each x ∈ X by itself. The Σ-diagram ∆ΣX(A) of A (w.r.t. X)
consists of all ground Σ(X)-literals that hold in A. We write just∆Σ(A) whenX
coincides with the whole carrier of A. By a result known as Robinson’s Diagram
Lemma [9] embeddings and diagrams are related as follows.

Lemma 1. Let A be a Σ-algebra generated by a set X, and let B be an Ω-
algebra for some Ω ⊇ Σ(X). Then A can be Σ(X)-embedded into B iff B is a
model of ∆ΣX(A).

A consequence of the lemma above, which we will use later, is that if two Σ-
algebras A, B are both generated by a set X and if one of them, say B, satisfies
the other’s diagram w.r.t. X, then they are isomorphic.
Ground formulae are invariant under embeddings in the following sense.

Lemma 2. Let A be a Σ-algebra that can be Σ-embedded into an algebra B. For
all ground Σ(A)-formulae ϕ, A satisfies ϕ iff B satisfies ϕ where B is extended
to a Σ(A)-algebra by interpreting a ∈ A by its image under the embedding.

Given equational theories E1, E2 over their respective signatures Σ1, Σ2, we
want to define conditions under which the decidability of the word problem for
E1 and E2 implies the decidability of the word problem for their union.

First restriction: We will require that both E1 and E2 be compatible with a
shared subtheory E0 over the signature Σ0 := Σ1∩Σ2. The definition of compat-
ibility depends on the notion of a model completion. A first-order Σ-theory E∗

is a model completion of an equational Σ-theory E iff it extends E and for every
model A of E (i) A can be embedded into a model of E∗, and (ii) E∗∪∆Σ(A) is a



complete Σ(A)-theory, i.e., E∗∪∆Σ(A) is satisfiable and for any Σ(A)-sentence
ϕ, either ϕ or its negation follows from E∗ ∪∆Σ(A).

Definition 1 (Compatibility). Let E be an equational theory over the signa-
ture Σ, and let E0 be an equational theory over a subsignature Σ0 ⊆ Σ. We say
that E is E0-compatible iff (1) ≈E0

⊆ ≈E; (2) E0 has a model completion E∗0 ;
(3) every model of E embeds into a model of E ∪ E∗0 .

Examples of theories that satisfy this definition can be found in [2, 13, 14] and
in Section 4. Here we just show two consequences that will be important when
proving completeness of our combination procedure.

Lemma 3. Assume that E1 and E2 are two equational theories over the re-
spective signatures Σ1 and Σ2 that are both E0-compatible for some equational
theory E0 with signature Σ0 = Σ1 ∩Σ2. For i = 0, 1, 2, let Ai be a model of Ei
such that A0 is a Σ0-subalgebra of both A1 and A2. Then there are a model A
of E1∪E2 and Σi-embeddings fi of Ai into A whose restrictions to A0 coincide.

In the following, we call conjunctions of Σ-identities e-formulae. We will
write ϕ(x) to denote an e-formula ϕ all of whose variables are included in the
tuple x. If x = (x1, . . . , xn) we will write ϕ(a) to denote that a is a tuple of free
constants of the form (a1, . . . , an) and ϕ(a) is the formula obtained from ϕ by
replacing every occurrence of xi by ai for i = 1, . . . , n.

Lemma 4. Let E1 be E0-compatible where E1 and E0 are equational theories
over the respective signatures Σ1 and Σ0 with Σ1 ⊇ Σ0. Let ψ1(x,y) be an e-
formula in the signature Σ1 and ψ2(y, z) an e-formula in the signature Σ0 such
that ψ1(a1,a0) |=E1

ψ2(a0,a2), where a1, a0 and a2 are pairwise disjoint tuples
of fresh constants. Then, there is an e-formula ψ0(y) in the signature Σ0, such
that ψ1(a1,a0) |=E1

ψ0(a0) and ψ0(a0) |=E0
ψ2(a0,a2).

Second restriction: We will require that all the finitely generated models of E0

be finite. From a more syntactical point of view this means that if C0 is a finite
subset of C, then there are only finitely many E0-equivalence classes of terms
in T (Σ0, C0). For our combination procedure to be effective, we must be able to
compute representatives of these equivalence classes.

Definition 2. An an equational theory E0 over the signature Σ0 is effectively
locally finite iff for every (finite) tuple c of constants from C we can effectively
compute a finite set of terms RE0

(c) ⊆ T (Σ0, c) such that

1. s 6≈E0
t for all distinct s, t ∈ RE0

(c);
2. for all terms s ∈ T (Σ0, c), there is some t ∈ RE0

(c) such that s ≈E0
t.

Example 1. A well-known example of an effectively locally finite theory is the
usual (equational) theory BA of Boolean algebras over the signature ΣBA :=
{∩,∪, ( ), 1, 0}. In fact, if c = (c1, . . . , cn), every ground Boolean term over the
constants in c is equivalent in BA to a term in “conjunctive normal form,” a
meet of terms of the kind d1 ∪ · · · ∪ dn, where each di is either ci or ci. It is easy
to see that the set RBA(c) of such normal forms is isomorphic to the powerset
of the powerset of c, which is effectively computable and has cardinality 22

n

.



Third restriction: We will require that E1 and E2 be each a conservative exten-
sions of E0, i.e., for i = 1, 2 and for all s, t ∈ T (Σ0, V ), s ≈E0

t iff s ≈Ei
t.

Fourth restriction: Finally, we will require the theory E0 to have local solvers,
in the sense that any finite set of equations can be solved with respect to any of
its variables.

Definition 3 (Gaussian). The equational theory E0 is Gaussian iff for every
e-formula ϕ(x, y) it is possible to compute an e-formula C(x) and a term s(x, z)
with fresh variables z such that

|=E0
ϕ(x, y)⇔ (C(x) ∧ ∃z.(y = s(x, z))) (1)

We call the formula C the solvability condition of ϕ w.r.t. y, and the term s a
(local) solver of ϕ w.r.t. y in E0.

There is a close connection between the above definition and Gaussian elim-
ination, which is explained in the following example.

Example 2. Let K be a fixed field (e.g., the field of rational or real numbers).
We consider the theory of vector spaces over K whose signature consists of a
symbol for addition, a symbol for additive inverse and, for every scalar k ∈ K,
a unary function symbol k · (−). Axioms are the usual vector spaces axioms
(namely, the Abelian group axioms plus the axioms for scalar multiplication).
In this theory, terms are equivalent to linear homogeneous polynomials (with
non-zero coefficients) over K. Every e-formula ϕ(x, y) can be transformed into
a homogeneous system t1(x, y) = 0 ∧ · · · ∧ tk(x, y) = 0 of linear equations with
unknowns x, y. If y does not occur in ϕ, then ϕ is its own solvability condition and
any fresh variable z is a local solver of ϕ w.r.t. y.5 If y occurs in ϕ, then (modulo
easy algebraic transformations) we can assume that ϕ contains an equation of the
form y = t(x); this equation gives the local solver, which is t(x) (the sequence of
existential quantifiers ∃z in (1) is empty), whereas the solvability condition is the
e-formula obtained from ϕ by eliminating y, i.e., replacing y by t(x) everywhere
in ϕ.

In Section 4 we will see that the theory of Boolean algebras introduced in
Example 1 is not only Gaussian but also satisfies our other restrictions.

3 The combination procedure

In the following, we assume that E1, E2 are equational theories over the signa-
tures Σ1, Σ2 with decidable word problems, and that there exists an equational
theory E0 over the signature Σ0 := Σ1 ∩Σ2 such that

– E0 is Gaussian and effectively locally finite;

5 Note that ϕ is trivially equivalent to ϕ ∧ ∃z.(y = z).



– for i = 1, 2, Ei is E0-compatible and a conservative extension of E0.

Abstraction rewrite systems. Our combination procedure works on the fol-
lowing data structure (where C is again a set of free constants disjoint with Σ1

and Σ2).

Definition 4. An abstraction rewrite system (ARS) is a finite ground rewrite
system R that can be partitioned into R = R1 ∪R2 so that

– for i = 1, 2, the rules of Ri have the form a→ t where a ∈ C, t ∈ T (Σi, C),
and every constant a occurs at most once as a left-hand side in Ri;

– R = R1 ∪R2 is terminating.

The ARS R is an initial ARS iff every constant a occurs at most once as a
left-hand side in the whole R.

In particular, for i = 1, 2, Ri is also terminating, and the restriction that every
constant occurs at most once as a left-hand side in Ri implies that Ri is confluent.
We denote the unique normal form of a term s w.r.t. Ri by s↓Ri

.
Given a ground rewrite system R, an equational theory E, and an e-formula

ψ, we write R |=E ψ to express that {l ≈ r | l→ r ∈ R} |=E ψ.

Lemma 5. Let R = R1∪R2 be an ARS, and s, t ∈ T (Σi, C) for some i ∈ {1, 2}.
Then Ri |=Ei

s ≈ t iff s↓Ri
≈Ei

t↓Ri
.

If we want to decide the word problem in E1 ∪E2, it is sufficient to consider
ground terms with free constants, i.e., terms s, t ∈ T (Σ1 ∪ Σ2, C). Given such
terms s, t we can employ the usual abstraction procedures that replace subterms
by new constants in C (see, e.g., [7]) to generate terms u, v ∈ T (Σ0, C) and an
initial ARS R = R1 ∪ R2 such that s ≈E1∪E2

t iff R |=E1∪E2
u ≈ v. Thus, to

decide ≈E1∪E2
, it is sufficient to devise a procedure that can solve problems of

the form “R |=E1∪E2
u ≈ v?” where R is an initial ARS and u, v ∈ T (Σ0, C).

The combination procedure. The input of the procedure is an initial ARS
R = R1 ∪ R2 and two terms u, v ∈ T (Σ0, C). Let > be a total ordering of the
left-hand side (lhs) constants of R such that for all a → t ∈ R, t contains only
lhs constants smaller than a (this ordering exists since R is terminating). Given
this ordering, we can assume that R = {ai → ti | i = 1, . . . , n} for some n ≥ 0
where an > an−1 > · · · > a1.
Note that u, v and each ti may also contain free constants from C that are

not left-hand side constants. In the following, we use c to denote a tuple of all

these constants. Furthermore, for j = 1, 2 and i = 0, . . . , n, we denote by R
(i)
j

the restriction of Rj to the rules whose left-hand sides are smaller or equal to

ai—where, by convention, R
(0)
j is the empty system.

The combination procedure is described in Figure 1. First, note that all
of the steps of the procedure are effective. Step 1 of the for loop is trivially
effective; Step 2 is effective because E0 is effectively locally finite by assumption.

Step 3 is effective because the test that R
(i)
j |=Ej

t ≈ t′ can be reduced by



Input: an initial ARS R = R1 ∪R2 = {ai → ti | i = 1, . . . , n} and
terms u, v ∈ T (Σ0, C).

Let c collect the free constants in R, u, v that are not in {a1, . . . , an}.

for i = 1 to n do

1. Let j be such that ai → ti ∈ Rj and k such that {j, k} = {1, 2}.

2. Let T = RE0(a1, . . . , ai, c) (see Definition 2).

3. For each pair of distinct terms t, t′ ∈ T , test whether R
(i)
j |=Ej t ≈ t

′.

4. Let ϕ(a1, . . . , ai, c) be the conjunction of those identities
t ≈ t′ for which the test succeeds.

5. Let s(a1, . . . , ai−1, c,d) be a local solver of ϕ w.r.t. ai in E0.

6. Add to Rk the new rule ai → s(a1, . . . , ai−1, c,d).

done

Output: “yes” if R1 |=E1 u ≈ v, and “no” otherwise.

Fig. 1. The combination procedure.

Lemma 5 to testing that t↓
R

(i)
j

≈Ej
t′↓
R

(i)
j

. The latter test is effective because,

(i) the word problem in Ej is decidable by assumption and (ii) R
(i)
j is confluent

and terminating at each iteration of the loop. In Step 4 the formula ϕ can be
computed because T is finite and the local solver in Step 5 can be computed by
the algorithm provided by the definition of a Gaussian theory. Step 6 is trivial
and for the final test after the loop, the same observations as for Step 3 apply.

A few more remarks on the procedure are in order. In the fifth step of the
loop, d is a tuple of new constants introduced by the solver s. In the definition
of a local solver, we have used variables instead of constants, but this difference
will turn out to be irrelevant since free constants behave like variables. One may
wonder why the procedure ignores the solvability condition for the local solver.
The reason is that this condition follows from both R1 and R2, as will be shown
in the proof of completeness.

Adding the new rule to Rk in the sixth step of the loop does not destroy the
property of R1 ∪R2 being an ARS—although it will make it non-initial. In fact,
s(a1, . . . , ai−1, c,d) contains only lhs constants smaller than ai, and Rk before
did not contain a rule with lhs ai because the input was an initial ARS.

The test after the loop is performed using R1, E1. The choice R1 and E1

versus R2 and E2 is arbitrary (see Lemma 6).

The correctness proof. Since the combinations procedure obviously termi-
nates on any input, it is sufficient to show soundness and completeness. In the
proofs, we will use R1,i, R2,i to denote the updated rewrite systems obtained af-
ter step i in the loop (R1,0 and R2,0 are the input systems R1 and R2). Soundness
is not hard to show (see [2]).



Proposition 1 (Soundness). If the combination procedure answers “yes”, then
R1 ∪R2 |=E1∪E2

u ≈ v.

The following lemma, which is used in the completeness proof, depends on
our definition of a Gaussian theory (see [2] for details).

Lemma 6. For every ground e-formula ψ in the signature Σ0 ∪ {a1, .., an} ∪ c,
R1,n |=E1

ψ iff R2,n |=E2
ψ.

Proposition 2 (Completeness). If R1 ∪ R2 |=E1∪E2
u ≈ v, then the combi-

nation procedure answers “yes”.

Proof. Since the procedure is terminating, it is enough to show that R1,0 ∪
R2,0 6|=E1∪E2

u ≈ v whenever the combination procedure answers “no”. We
do that by building a model of R1,0 ∪ R2,0 ∪ E1 ∪ E2 that falsifies u ≈ v. Let
a := (a1, . . . , an) and let k ∈ {1, 2}. Where c is defined as in Figure 1 and dk
is a tuple collecting all the new constants introduced in the rewrite system Rk
during execution of the procedure (see Step 4 of the loop), let Ak,0 be the initial
model (see, e.g., [5] for a definition) of Ek over the signature Σk ∪ c ∪ dk.
Observe that the final rewrite system Rk,n contains (exactly) one rule of the

form ai → ui for all i = 1, . . . , n. This is because either the rule ai → ti was
already in Rk,0 to begin with (then ui = ti), or a rule of the form ai → si for
some solver si was added to Rk,i−1 at step i to produce Rk,i (in which case
ui = si). Thus, we can use the rewrite rules of Rk,n to define by induction on
i = 1, . . . , n an expansion Ak,i of Ak,0 to the constants a1, . . . , ai. Specifically,

Ak,i is defined as the expansion of Ak,i−1 that interprets ai as u
Ak,i−1

i where ui

is the term such that ai → ui ∈ Rk,n. Note that u
Ak,i−1

i is well defined because
ui does not contain any of the constants ai, . . . , an.
By induction on i it is easy to show (see [2]) for every ground e-formula

ϕ(a1, . . . , ai, c,dk) in the signature Σk ∪ {a1, . . . , ai} ∪ c ∪ dk, that

Ak,i satisfies ϕ(a1, . . . , ai, c,dk) iff R
(i)
k,n |=Ek

ϕ(a1, . . . , ai, c,dk). (2)

Let Ak = A
Ωk

k,n where Ωk = Σk ∪ a ∪ c. As a special case of (2) above, we
have that for every ground e-formula ϕ(a, c) in the signature Σ0 ∪ a ∪ c,

Ak satisfies ϕ iff Rk,n |=Ek
ϕ. (3)

For k = 1, 2 let Bk be the subalgebra of A
Σ0

k generated by (the interpretations
in Ak of) the constants a∪c. We claim that the algebras B1 and B2 satisfy each
other’s diagram. To see that, let ψ be a ground identity of signature Σ0 ∪a∪ c.
Then, ψ ∈ ∆Σ0

a∪c(Bk) iff Bk satisfies ψ (by definition of ∆
Σ0
a∪c(Bk)) iff Ak satisfies

ψ (by construction of Bk and Lemma 2) iff Rk,n |=Ek
ψ (by (3) above).

By Lemma 6, we can conclude that ψ ∈ ∆Σ0
a∪c(B1) iff ψ ∈ ∆

Σ0
a∪c(B2). It follows

from the observation after Lemma 1 that B1 and B2 are Σ0-isomorphic, hence
they can be identified with no loss of generality. Therefore, let A0 = B1 = B2 and
observe that (i) AΣk

k is a model of Ek by construction; (ii) A0 is a Σ0-subalgebra



of AΣk

k ; and (iii) A0 is a model of E0 because A
Σ0

k is a model of E0 and the set
of models of an equational theory is closed under subalgebras.
By Lemma 3 it follows that there is a model A of E1 ∪ E2 such that there

are Σk-embeddings fk of A
Σk

k into A (i = 1, 2) satisfying f1(c
A1) = f2(c

A2) for
all c ∈ a∪ c. Let then A′ be the expansion of A to the signature Σ1 ∪Σ2 ∪a∪ c

such that cA
′

= f1(c
A1) for every c ∈ a ∪ c. It is not difficult to see that fk is

an Ωk-embedding of Ak into A
′ for k = 1, 2. Observe that A′, which is clearly a

model of E1 ∪E2, is also a model of R1,0 ∪R2,0. In fact, by construction of R1,n

and R2,n, for all a→ t ∈ R1,0∪R2,0, there is a k ∈ {1, 2} such that a→ t ∈ Rk,n.
It follows immediately that Rk,n |=Ek

a ≈ t, which implies by (3) above that Ak
satisfies a ≈ t. But then A′ satisfies a ≈ t as well by Lemma 2.
In conclusion, we have that A′ is a model of R1,0 ∪ R2,0 ∪ E1 ∪ E2. Since

the procedure returns “no” by assumption, it must be that R1,n 6|=E1
u ≈ v.

We then have that A1 falsifies u ≈ v by (3) above and A′ falsifies u ≈ v by
Lemma 2. ut

From the total correctness of the combination procedure, we then obtain the
following modular decidability result.

Theorem 1. Let E0, E1, E2 be three equational theories of respective signature
Σ0, Σ1, Σ2 such that

– Σ0 = Σ1 ∩Σ2;
– E0 is Gaussian and effectively locally finite;
– for i = 1, 2, Ei is E0-compatible and a conservative extension of E0.

If the word problem in E1 and in E2 is decidable, then the word problem in
E1 ∪ E2 is also decidable.

4 Fusion decidability in modal logics

First, we define the modal logics to which our combination procedure applies.
Basically, these are modal logics that corresponds to equational extensions of the
theory of Boolean algebras. A modal signature ΣM is a set of operation symbols
endowed with corresponding arities; fromΣM propositional formulae are built up
using countably many propositional variables, the operation symbols in ΣM , the
Boolean connectives, and the constant > for truth and ⊥ for falsity. We use let-
ters x, x1, . . . , y, y1, . . . for propositional variables and letters t, t1, . . . , u, u1, . . .

as metavariables for propositional formulae. The following definition is adapted
from [22].

Definition 5. A classical modal logic L based on a modal signature ΣM is a set
of propositional formulae that (i) contains all classical tautologies; (ii) is closed
under uniform substitution of propositional variables by propositional formulae;
(iii) is closed under the modus ponens rule (from t and t⇒ u infer u); (iv) for
each n-ary o ∈ ΣM , is closed under the following replacement rule:

from t1 ⇔ u1, . . . , tn ⇔ un infer o(t1, . . . , tn)⇔ o(u1, . . . , un).



As classical modal logics (based on a given modal signature) are closed under
intersections, it makes sense to speak of the least classical modal logic [S] con-
taining a certain set of propositional formulae S. If L = [S], we say that S is a
set of axiom schemata for L and write S ` t for t ∈ [S].
We say that a classical modal logic L is decidable iff L is a recursive set

of propositional formulae; the decision problem for L is just the membership
problem for L.
A classical modal logic L is said to be normal iff for every n-ary modal oper-

ator o in the signature of L and every argument position i = 1, . . . , n, L contains
the formulae o(x,>,x′) and o(x, (y ⇒ z),x′)⇒ (o(x, y,x′)⇒ o(x, z,x′)). The
least normal (classical modal, unary, unimodal) logic is the modal logic usually
called K [8]. Most well-known modal logics considered in the literature (both
normal and non-normal) fit Definition 5 (see [2] for some examples).
Let us call an equational theory Boolean-based if its signature includes the

signature ΣBA of Boolean algebras and its axioms include the Boolean algebras
axioms BA (see Example 1). For notational convenience, we will assume that
ΣBA also contains the binary symbol ⊃, defined by the axiom x ⊃ y ≈ x ∪ y.
Given a classical modal logic L we can associate with it a Boolean-based

equational theory EL. Conversely, given a Boolean-based equational theory E
we can associate with it a classical modal logic LE . In fact, given a classical
modal logic L with modal signature ΣM , we define EL as the theory having as
signature ΣM ∪ΣBA and as a set of axioms the set BA∪{tBA ≈ 1 | t ∈ L} where
tBA is obtained from t by replacing t’s logical connectives (¬,∧,∨,⇒) by the
corresponding Boolean algebra operators (( ),∩,∪,⊃), and the logical constants
> and ⊥ by 1 and 0, respectively. Vice versa, given a Boolean-based equational
theory E over the signature Σ, we define LE as the classical modal logic over the
modal signature Σ \ ΣBA axiomatized by the formulae {tL | |=E t ≈ 1} where
tL is obtained from t by the inverse of the replacement process above.
Classical modal logics (in our sense) and Boolean-based equational theories

are equivalent formalisms, as is well-known from algebraic logic [20]. In particu-
lar, for our purposes, the following standard proposition is crucial, as it reduces
the decision problem for a classical modal logic L to the word problem in EL.

Proposition 3. For every classical modal logic L and for every propositional
formula t, we have that t ∈ L iff |=EL

tBA ≈ 1.

Given two classical modal logics L1, L2 over two disjoint modal signatures
Σ1
M , Σ

2
M , the fusion of L1 and L2 is the classical modal logic L1 ⊕ L2 over

the signature Σ1
M ∪ Σ2

M defined as [L1 ∪ L2]. As EL1⊕L2
is easily seen to be

deductively equivalent to the theory EL1
∪ EL2

(i.e., ≈EL1⊕L2
= ≈EL1

∪EL2
),

it is clear that the decision problem L1 ∪ L2 ` t reduces to the word problem
EL1

∪EL2
|= tBA ≈ 1. Our goal in the remainder of this section is to show that,

thanks to the combination result in Theorem 1, this combined word problem for
EL1

∪ EL2
reduces to the single word problems for EL1

and EL2
, and thus to

the decision problems for L1 and L2.
Note that, although the modal signatures Σ1

M and Σ2
M are disjoint, the sig-

natures of EL1
and EL2

are no longer disjoint, because they share the Boolean



operators. To show that our combination theorem applies to EL1
and EL2

, we
thus must establish that the common subtheory BA of Boolean algebras matches
the requirements for our combination procedure. To this end, we will restrict our-
selves to component modal logics L1 and L2 that are consistent, that is, do not
include ⊥, (or, equivalently, do not contain all modal formulae over their signa-
ture). This restriction is without loss of generality because when either L1 or L2

are inconsistent L1 ⊕ L2 is inconsistent as well, which means that its decision
problem is trivial.

We have already shown in Section 2 that BA satisfies one of our requirements,
namely effective local finiteness. As for the others, for every consistent classical
modal logic L, the theory EL is guaranteed to be a conservative extension of
BA. The main reason is that there are no non-trivial equational extensions of the
theory of Boolean algebras. In fact, as soon as one extends BA with an axiom
s ≈ t for any s and t such that s 6≈BA t, the equation 0 ≈ 1 becomes valid.6 By
Proposition 3, this entails that if an equational theory EL induced by a classical
modal logic L is not a conservative extension of BA then L ` ⊥. Hence L cannot
be consistent.

Thus, it remains to be shown that BA is Gaussian and that EL is BA-
compatible for every consistent classical modal logic L. For space constraints we
cannot do this here, but we refer the interested reader to [2] for complete proofs.
Here, we just point out how the local solver looks like for BA. For each e-formula
of the form u(x, y) ≈ 1 (and fresh variable z), the term

s(x, z) := (u(x, 1) ⊃ u(x, z)) ⊃ (z ∩ (u(x, 0) ⊃ u(x, z))) (4)

is a local solver for u(x, y) ≈ 1 in BA w.r.t. y. Note that s(x, z) can be computed
in linear time from u(x, y) and that the restriction to formulae of the form
u(x, y) ≈ 1 can be made with no loss of generality because every Boolean e-
formula can be (effectively) converted in linear time into a BA-equivalent e-
formula of that form.

Combining Theorem 1 with the results above on the theories BA and EL, we
get the following general modular decidability result.

Theorem 2. If L1, L2 are decidable classical modal logics, so is L1 ⊕ L2.

In [2] we also show that the complexity upper-bounds for the combined de-
cision procedures obtained by applying our combination procedure to classical
modal logics are not worse than the ones given in [4] for the case of normal modal
logics. If the decision procedures for L1 and for L2 are in PSPACE, we get an
EXPSPACE combined decision procedure for L1⊕L2. If instead the procedures
are in EXPTIME, we get a 2EXPTIME combined decision procedure.

We close this section by giving an examples of our combination procedure at
work.

6 This is can be shown by a proper instantiation of the variables of s ≈ t by 0 and 1,
followed by simple Boolean simplifications.



Example 3. Consider the classical modal logic KT with modal signature {¤}
and obtained by adding to K the axiom schema ¤x ⇒ x. Now let KT1 and
KT2 be two signature disjoint renamings of KT in which ¤1 and ¤2, respec-
tively, replace ¤, and consider the fusion logic KT1 ⊕ KT2. We can use our
combination procedure to show that KT1 ⊕ KT2 ` ¤2x ⇒ ♦1x (where as
usual ♦1x abbreviates ¬¤1 ¬x). For i = 1, 2, let Ei be the equational theory
corresponding to KTi. It is enough to show that

|=E1∪E2
(¤2(x) ⊃ ♦1(x)) ≈ 1

where now ♦1x abbreviates ¤1(x). After the abstraction process, we get the
two rewrite systems R1 = {a1 → ♦1(c)} and R2 = {a2 → ¤2(c)} and the goal
equation (a2 ⊃ a1) ≈ 1 where a1, a2 and c are fresh constants.
As explained in [2], for the test in Step 3 of the procedure’s loop we need to

consider only identities of the form t ≈ 1 where t is a term-clause over the set
of constants under consideration.7 During the first execution of the procedure’s
loop the constants in question are a1 and c, therefore there are only four identities
to consider: a1 ∪ c ≈ 1, a1 ∪ c ≈ 1, a1 ∪ c ≈ 1, and a1 ∪ c ≈ 1. The only identity
for which the test is positive is a1 ∪ c. In fact, a1 ∪ c rewrites to ♦1(c)∪ c, which
is equivalent to c ⊃ ♦1(c). This is basically the contrapositive of (the translation
of) the axiom schema ¤1(c) ⊃ c.8

Using the formula (4) seen earlier, we can produce a solver for that identity,
which reduces to c∪d1 after some simplifications, where d1 is a fresh free constant.
Hence, the following rewrite rule is added to R2 in Step 6 of the loop: a1 → c∪d1.

Continuing the execution of the loop with the second—and final—iteration,
we get the following. Among the eight term-clauses involving a1, a2, c, the test
in Step 3 is positive for four of them. The conjunction of such term-clauses gives
a Boolean e-formula that is equivalent to (a2 ⊃ c) ∩ (c ⊃ a1) ≈ 1. This e-
formula, once solved with respect to a2, gives (after simplifications) the rewrite
rule a2 → d2 ∩ ((c ⊃ a1) ⊃ (d2 ⊃ c)), which is added to R1 before quitting
the loop. Using this R1, the final test of the procedure (R1 |=E1

a2 ⊃ a1 ≈ 1)
succeeds because the modal formula d2 ∧ ((c ⇒ ♦1c) ⇒ (d2 ⇒ c)) ⇒ ♦1c is a
theorem of KT1.

5 Conclusion

In this paper, we have described a new approach for combining decision proce-
dures for the word problem in equational theories over non-disjoint signatures.
Unlike the previous combination methods for the word problem [7, 12] in the

7 For a given set of constants c1, . . . , cm, a term-clause is a term of the form b1∪· · ·∪bm
where each bj is either cj or cj .

8 Another approach for checking this, and also that the tests for the other term-clauses
are negative, is to translate the rewritten term-clauses into the corresponding modal
formulae, and then check whether their complement is unsatisfiable in all Kripke
structures with a reflexive accessibility relation (see [10], Fig. 5.1).



non-disjoint case, this approach has the known decidability transfer results for
validity in the fusion of modal logics [15, 25] as consequences. Our combination
result is however more general than these transfer results since it applies also
to non-normal modal logics—thus answering in the affirmative a long-standing
open question in modal logics—and to equational theories not induced by modal
logics (see, e.g., Example 2). Nevertheless, for the modal logic application, the
complexity upper-bounds obtained through our approach are the same as for
the more restricted approaches [25, 4].

Our results are not consequences of combination results for the conditional
word problem (the relativized validity problem) recently obtained by generalizing
the Nelson-Oppen combination method [13, 14]. In fact, there are modal logics
(obtained by translating certain description logics into modal logic notation) for
which the validity problem is decidable, but the relativized validity problem is
not. This is, e.g, the case for description logics with feature agreements [1] or
with concrete domains [3].

Our new combination approach is orthogonal to the previous combination
approaches for the word problem in equational theories over non-disjoint sig-
natures [7, 12]. On the one hand, the previous results do not apply to theories
induced by modal logics [12]. On the other hand, there are equational theories
that (i) satisfy the restrictions imposed by the previous approaches, and (ii) are
not locally finite [7], and thus do not satisfy our restrictions. Both the approach
described in this paper and those in [7, 12] have the combination results for the
case of disjoint signatures as a consequence. For the previous approaches, this
was already pointed out in [7, 12]. For our approach, this is not totally obvious
since some minor technical problems have to be overcome (see [2] for details).
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