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Abstract

Methods for computing the least common subsumer (lcs) are usually restricted
to rather inexpressive DLs whereas existing knowledge bases are written in very
expressive DLs. In order to allow the user to re-use concepts defined in such
terminologies and still support the definition of new concepts by computing the
lcs, we extend the notion of the lcs of concept descriptions to the notion of the
lcs w.r.t. a background terminology.

1 Introduction and problem definition

Non-standard inferences such as computing the least common subsumer can be used
to support the bottom-up construction of DL knowledge bases, as introduced in [4, 5]:
instead of directly defining a new concept, the knowledge engineer introduces several
typical examples as objects, which are then automatically generalized into a concept
description by the system. This description is offered to the knowledge engineer as a
possible candidate for a definition of the concept. The task of computing such a con-
cept description can be split into two subtasks: computing the most specific concepts
of the given objects, and then computing the least common subsumer of these con-
cepts. The most specific concept (msc) of an object o (the least common subsumer (lcs)
of concept descriptions C1, . . . , Cn) is the most specific concept description C express-
ible in the given DL language that has o as an instance (that subsumes C1, . . . , Cn).
The problem of computing the lcs and (to a more limited extent) the msc has already
been investigated in the literature [11, 12, 4, 5, 21, 20, 19, 3, 9].

The methods for computing the least common subsumer are restricted to rather
inexpressive descriptions logics not allowing for disjunction (and thus not allowing
for full negation). In fact, for languages with disjunction, the lcs of a collection of
concepts is just their disjunction, and nothing new can be learned from building it. In
contrast, for languages without disjunction, the lcs extracts the “commonalities” of
the given collection of concepts. Modern DL systems like FaCT [18] and Racer [17]
are based on very expressive DLs, and there exist large knowledge bases that use this
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expressive power and can be processed by these systems [22, 23, 16]. In order to allow
the user to re-use concepts defined in such existing knowledge bases and still support
the user during the definition of new concepts with the bottom-up approach sketched
above, we propose the following extended bottom-up approach.

Consider a background terminology T defined in an expressive DL L2. When
defining new concepts, the user employs only a sublanguage L1 of L2, for which
computing the lcs makes sense. However, in addition to primitive concepts and roles,
the concept descriptions written in the DL L1 may also contain names of concepts
defined in T . Let us call such concept descriptions L1(T )-concept descriptions.

Definition 1 Given an L2-TBox T and a collection C1, . . . , Cn of L1(T )-concept
descriptions, the least common subsumer (lcs) of C1, . . . , Cn w.r.t. T is the most
specific L1(T )-concept description C that subsumes C1, . . . , Cn w.r.t. T , i.e., it is an
L1(T )-concept description D such that

1. Ci vT D for i = 1, . . . , n; D is a common subsumer.

2. if E is an L1(T )-concept description satisfying
Ci vT E for i = 1, . . . , n, then D vT E. D is least.

Depending on the DLs L1 and L2, least common subsumers of L1(T )-concept
descriptions w.r.t. an L2-TBox T may exist or not.

Note that the lcs only uses concept constructors from L1, but may also contain
concept names defined in the L2-TBox. This is the main distinguishing feature of
this new notion of a least common subsumer w.r.t. a background terminology. Let us
illustrate this by a small example.

Example 2 Assume that L1 is the DL EL (allowing for conjunction, existential re-
strictions, and the top concept) and L2 isALC (extending EL by negation, disjunction,
and value restrictions). Consider the ALC-TBox

T := {A ≡ P tQ},

and assume that we want to compute the lcs of the EL(T )-concept descriptions P and
Q. Obviously, A is the lcs of P and Q w.r.t. T . If we were not allowed to use the
name A defined in T , then the only common subsumer of P and Q in EL would be
the top concept >.

In the following we always assume that DLs L1 and L2 and an L2-TBox are given,
and if we talk about (least) common subsumers we mean the ones in L1(T ), and not
in L1 or L2. In the next section, we consider the case where L1 is EL and L2 is ALC
in more detail. We show the following two results:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of EL(T )-concept descriptions
always exists;

• If T is a general ALC-TBox allowing for general concept inclusion axioms
(GCIs), then the lcs w.r.t. T of EL(T )-concept descriptions need not exist.



At first sight, one might assume that the first result can be shown using results on
approximation of DLs [10]. In fact, given an acyclic ALC-TBox T and EL(T )-concept
descriptions C1, . . . , Cn, one can first unfold C1, . . . , Cn into ALC-concept descriptions
C ′1, . . . , C

′
n, then build the ALC-concept description C := C ′1 t . . . t C ′n, and finally

approximate C from above by an EL-concept description E. However, E then does
not contain concept names defined in T , and thus it is not necessarily the least EL(T )-
concept description subsuming C1, . . . , Cn w.r.t. T (see Example 2 above). One might
now assume that this can be overcome by applying known results on rewriting concept
descriptions w.r.t. a terminology [6]. However, in Example 2, the concept description
E obtained using the approach based on approximation sketched above is >, and this
concept cannot be rewritten using the TBox T := {A ≡ P tQ}.

The result on the existence and computability of the lcs w.r.t. a background ter-
minology shown in the next section is theoretical in the sense that it does not yield a
practical algorithm. In Section 3 we follow a more practical approach. Assume that
L1 is a DL for which least common subsumers (without background TBox) always
exist. Given L1(T )-concept descriptions C1, . . . , Cn, one can compute a common sub-
sumer w.r.t. T by just ignoring T , i.e., by treating the defined names in C1, . . . , Cn as
primitive and computing the lcs of C1, . . . , Cn in L1. In Section 3 we sketch practical
methods for computing “good” common subsumers w.r.t. background TBoxes, which
may not be the least common subsumers, but which are better than the common
subsumers computed by just ignoring the TBox.

2 Two exact theoretical results

In this section, we assume that L1 is EL and L2 is ALC. In addition, we assume
that the sets of concept and role names available for building concept descriptions are
finite. First, we consider the case of acyclic TBoxes.

Theorem 3 Let T be an acyclic ALC-TBox. The lcs of EL(T )-concept descriptions
w.r.t. T always exists and can effectively be computed.

The theorem is an easy consequence of the following facts:

1. If D is an EL(T )-concept description of role depth k, then there are (not neces-
sarily distinct) roles r1, . . . , rk such that D v ∃r1.∃r2. . . .∃rk.>

2. Let C be an EL(T )-concept description, and assume that the ALC-concept
description C ′ obtained by unfolding C w.r.t. T is satisfiable and has the role
depth ` < k. Then C ′ 6v ∃r1.∃r2. . . .∃rk.>, and thus C 6vT ∃r1.∃r2. . . .∃rk.>.
In fact, the standard tableau-based algorithm for ALC applied to C ′ constructs
a tree-shaped interpretation of depth at most ` whose root individual belongs
to C ′, but not to ∃r1.∃r2. . . .∃rk.>.

3. For a given bound k on the role depth, there is only a finite number of inequiv-
alent EL-concept descriptions of role depth at most k. This is a consequence of
the fact that we have assumed that the sets of concept and role names are finite,
and can be shown by induction on k.



To show that these facts imply Theorem 3 consider the EL(T )-concept descriptions
C1, . . . , Cn. If all of them are unsatisfiable w.r.t. T , then one of them (e.g., C1) can
be taken as their lcs w.r.t. T . Otherwise, assume that Ci is satisfiable w.r.t. T . Let
C ′i be the ALC-concept description obtained by unfolding Ci w.r.t. T , and assume
that its role depth is `. Now, take an arbitrary EL(T )-concept description E that is
a common subsumer of C1, . . . , Cn w.r.t. T . Then, the role depth of E is at most `.
Otherwise, Ci vT E would be in contradiction to the above facts 1. and 2. Thus, fact
3. implies that, up to equivalence, there are only finitely many common subsumers of
C1, . . . , Cn in EL(T ). The least common subsumer is simply the conjunction of these
finitely many EL(T )-concept descriptions.

It is not hard to see that the above proof is effective in the sense that one can effec-
tively compute (representatives of the equivalence classes of) all common subsumers
of C1, . . . , Cn, and then build their conjunction. However, this brute-force algorithm
is probably not useful in practice.

Second, we consider the case of TBoxes allowing for GCIs.

Theorem 4 Let T := {A v ∃r.A, B v ∃r.B}. Then, the lcs of the EL(T )-concept
descriptions A,B w.r.t. T does not exist.

Proof. Let En denote the EL-concept description ∃r.∃r. . . .∃r.> of role depth n. For
all n ≥ 0, En is a common subsumer of A and B w.r.t. T . Assume that D is a least
common subsumer of A and B, and let ` be the role depth of D. If D contains neither
A nor B, then D 6vT En for all n > `, which is a contradiction. However, if D contains
A, then it is easy to see that D cannot be a subsumer of B, and if D contains B,
then it cannot be a subsumer of A. Consequently, such a least common subsumer D
cannot exist.

Note that this example is very similar to the one showing non-existence of the lcs
in EL with cyclic terminologies interpreted with descriptive semantics [2]. However,
the proof of the result in [2] is more complicated since there one is allowed to extend
the terminology in order to build the lcs.

3 A practical approximative approach

We have seen above that the lcs w.r.t. general background TBoxes need not exist. In
addition, even in the case of acyclic TBoxes, where the lcs always exists, we do not
have a practical algorithm for computing the lcs. In the bottom-up construction of
DL knowledge bases, it is not really necessary to use the least common subsumer,1

a common subsumer that is not too general can also be used. In this section, we
introduce an approach for computing such “good” common subsumers w.r.t. a back-
ground TBox. In order to explain this approach, we must first recall how the lcs of
EL-concept descriptions can be computed.

1Using it may even result in over-fitting.



The lcs of EL-concept descriptions

Since the lcs of n concept descriptions can be obtained by iterating the application
of the binary lcs, we describe how to compute the lcs lcsEL(C,D) of two EL-concept
descriptions C,D.

In order to describe this algorithm, we need to introduce some notation. Let
C be an EL-concept description. Then names(C) denotes the set of concept names
occurring in the top-level conjunction of C, roles(C) the set of role names occurring
in an existential restriction on the top-level of C, and restrictr(C) denotes the set of
all concept descriptions occurring in an existential restriction on the role r on the
top-level of C.

Now, let C,D be EL-concept descriptions. Then we have

lcsEL(C,D) = u
A∈names(C)∩names(D)

A u

u
r∈roles(C)∩roles(D)

u
E∈restrictr(C),F∈restrictr(D)

∃r.lcsEL(E,F )

Here, the empty conjunction stands for the top concept >. The recursive call of
lcsEL is well-founded since the role depth of the concept descriptions in restrictr(C)
(restrictr(D)) is strictly smaller than the role depth of C (D).

A good common subsumer in EL w.r.t. a background TBox

Let T be a background TBox (acyclic or general) in some DL L2 extending EL such
that subsumption in L2 w.r.t. this class of TBoxes is decidable. Let C,D be EL(T )-
concept descriptions. If we ignore the TBox, then we can simply apply the above
algorithm for EL-concept descriptions to compute a common subsumer. However, in
this context taking

u
A∈names(C)∩names(D)

A

is not the best we can do. In fact, some of these concept names may be constrained
by the TBox, and thus there may be relationships between them that we ignore by
simply using the intersection.

Instead, we propose to take the smallest (w.r.t. subsumption w.r.t. T ) conjunction
of concept names that subsumes (w.r.t. T ) both

u
A∈names(C)

A and u
B∈names(D)

B.

We modify the above lcs algorithm in this way, not only on the top level of the input
concepts, but also in the recursive steps. It is easy to show that the EL(T )-concept
description computed by this modified algorithm still is a common subsumer of A,B
w.r.t. T . In general, this common subsumer will be more specific than the one obtained
by ignoring T , though it need not be the least common subsumer.



As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,

NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female t (Doctor u Rich))
DaughterHappyDoctor ≡ ∀has-child.(¬Female t (Doctor u Happy))

ChildrenDoctor ≡ ∀has-child.Doctor

and the EL-concept descriptions

C := ∃has-child.(NoSon u DaughterHappyDoctor),
D := ∃has-child.(NoDaughter u SonRichDoctor).

If we ignore the TBox, then we obtain the EL-concept description ∃has-child.> as
common subsumer of C,D. However, if we take into account that both NoSon u
DaughterHappyDoctor and NoDaughter u SonRichDoctor are subsumed by the concept
ChildrenDoctor, then we obtain the more specific common subsumer

∃has-child.ChildrenDoctor.

Computing the subsumption lattice of conjunctions of concept names

In order to obtain a practical lcs algorithm realizing the approach described above,
we must be able to compute in an efficient way the smallest conjunction of concept
names that subsumes two such conjunctions w.r.t. T . We propose to precompute this
information using methods from formal concept analysis (FCA) [15]. In FCA, the
knowledge about an application domain is given by means of a formal context.

Definition 5 A formal context is a triple K = (O,P,S), where O is a set of objects,
P is a set of attributes (or properties), and S ⊆ O×P is a relation that connects each
object o with the attributes satisfied by o.

Let K = (O,P,S) be a formal context. For a set of objects A ⊆ O, A′ is the set of
attributes that are satisfied by all objects in A, i.e.,

A′ := {p ∈ P | ∀a ∈ A: (a, p) ∈ S}.

Similarly, for a set of attributes B ⊆ P, B′ is the set of objects that satisfy all
attributes in B, i.e.,

B′ := {o ∈ O | ∀b ∈ B: (o, b) ∈ S}.

A formal concept is a pair (A,B) consisting of an extent A ⊆ O and an intent
B ⊆ P such that A′ = B and B′ = A. Such formal concepts can be hierarchically
ordered by inclusion of their extents, and this order (denoted by ≤ in the following)
induces a complete lattice, called the concept lattice of the context. Given a formal
context, the first step for analyzing this context is usually to compute the concept
lattice.



In many applications, one has a large (or even infinite) set of objects, but only a
relatively small set of attributes. Also, the context is not necessarily given explicitly
as a cross table; it is rather “known” to a domain “expert”. In such a situation,
Ganter’s attribute exploration algorithm [13, 15] has turned out to be an efficient
approach for computing an appropriate representation of the concept lattice. This
algorithm is interactive in the sense that at certain stages it asks the “expert” certain
questions about the context, and then continues using the answers provided by the
expert. Once the representation of the concept lattice is computed, certain questions
about the lattice (e.g. “What is the supremum of two given concepts?”) can efficiently
be answered using this representation.

Recall that we are interested in the subsumption lattice2 of conjunctions of concept
names (some of which may occur in GCIs or concept definitions of an L2-TBox T ).
In order to apply attribute exploration to this task, we define a formal context whose
concept lattice is isomorphic to the subsumption lattice we are interested in. This
problem was first addressed in [1], where the objects of the context were basically all
possible counterexamples to subsumption relationships, i.e., interpretations together
with an element of the interpretation domain. The resulting “semantic context” has
the disadvantage that an “expert” for this context must be able to deliver such coun-
terexample, i.e., it is not sufficient to have a simple subsumption algorithm for the
DL in question. One needs one that, given a subsumption problem “C v D?”, is able
to compute a counterexample if the subsumption relationship does not hold, i.e., an
interpretation I and an element d of its domain such that d ∈ CI \DI .

To overcome this problem, a new “syntactic context” was recently defined in [8]:

Definition 6 The context KT = (O,P,S) is defined as follows:

O := {E | E is an L2 concept description};
P := {A1, . . . , An} is the set of concept names occurring in T ,
S := {(E,A) | E vT A}.

The following is shown in [8]:

Theorem 7 (1) The concept lattice of the context KT is isomorphic to the subsump-
tion hierarchy of all conjunctions of subsets of P w.r.t. T .
(2) Any decision procedure for subsumption w.r.t. TBoxes in L2 functions as an expert
for the context KT .

It should be noted that formal concept analysis and attribute exploration has
already been applied in a different context to the problem of computing the least
common subsumer. In [7], the following problem is addressed: given a finite collection
C of concept descriptions, compute the subsumption hierarchy of all least common sub-
sumers of subsets of C. Again, this extended subsumption hierarchy can be computed
by defining a formal context whose concept lattice is isomorphic to the subsumption

2In general, the subsumption relation induces a partial order, and not a lattice structure on con-
cepts. However, in the case of conjunctions of concept names, all infima exist, and thus also all
suprema.



lattice we are interested in, and then applying attribute exploration (see [7] for de-
tails). In [8], it is shown that this approach and the one sketched above can be seen
as two instances of a more abstract approach.

Extension to DLs more expressive than EL

For the DL ALE (which extends EL by value restrictions and atomic negation), an
lcs algorithm similar to the one described for EL exists [5]. The main differences
are that (i) the concept descriptions must first be normalized (which may lead to
an exponential blow-up); (ii) the recursive calls also deal with value restrictions, and
not just existential restrictions; and (iii) on the top level, one has to deal with a
conjunction of concept names and negated concept names. In the lcs algorithm, the
conjunctions mentioned in (iii) are treated similarly to the case of EL (unless they are
contradictory): one separately computes the intersections of the positive and of the
negative concept names.

When adapting this algorithm to one that computes “good” common subsumers in
ALE w.r.t. a background TBox, all we have to change is to compute a conjunction of
concept names and negated concept names that is the most specific such conjunction
subsuming the given conjunctions w.r.t. the TBox, rather than building the intersec-
tions. It is easy to see that attribute exploration can again be used to precompute
the necessary information. Basically, the only change is that now both concept names
and negated concept names are attributes in the formal context.

4 Future work

The attributes of the formal contexts introduced in our approach (concept names and
possibly negated concept names) are not independent of each other. For example, the
name A and its negation ¬A are disjoint, i.e., it is not possible for an object (other
than ⊥) of the context to satisfy both A and ¬A. In addition, the TBox induces
subsumption relationships between the attributes (and this information may already
be precomputed for the given TBox during classification). Thus, one can try to apply
a modified version of attribute exploration that can use such background knowledge
[14] to speed up the exploration process.
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