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Abstract. In the area of Description Logic (DL) based knowledge
representation, research on reasoning w.r.t. general terminologies has
mainly focused on very expressive DLs. Recently, though, it was
shown for the DLEL, providing only the constructors conjunction
and existential restriction, that the subsumption problem w.r.t. cyclic
terminologies can be decided in polynomial time, a surprisingly low
upper bound. In this paper, we show that even admitting general con-
cept inclusion (GCI) axioms and role hierarchies inEL terminologies
preserves the polynomial time upper bound for subsumption. We also
show that subsumption becomes co-NP hard when adding one of the
constructors number restriction, disjunction, and ‘allsome’, an op-
erator used in the DLK-REP. One implication of the first result is
that reasoning over the widely used medical terminology SNOMED

is possible in polynomial time.

1 MOTIVATION

In the area of Description Logic (DL) based knowledge representa-
tion, intensional knowledge of a problem domain is represented in
the form of a terminology (TBox) which declares general properties
of concepts relevant to the domain [17]. In its most basic form, a
TBox contains conceptdefinitionsof the formA

.
= C which define

a conceptnameA by a conceptdescriptionC. Concept descriptions
are terms built from primitive concepts by means of language con-
structors provided by the DL. The meaning ofA w.r.t. the TBox is
defined by interpreting the TBox w.r.t. a model-theoreticsemantics,
which allows formally well-defined reasoning over the terminology.

In addition,generalTBoxes can contain universally true implica-
tions, so-calledgeneral concept inclusion (GCI)axioms of the form
C v D, where bothC andD are arbitrary concept descriptions. A
model respects a GCIC v D iff the extension ofC is a subset of the
extension ofD. Hence,D is implied wheneverC holds.

From an application point of view, the utility of general TBoxes
for DL knowledge bases has long been observed. For instance, in
the context of the medical terminology GALEN [22], GCIs are used
especially for two purposes [20]:

• indicate the status of objects: instead of introducing several con-
cepts for the same concept in different states, e.g.,normal insulin

secretion, abnormal but harmless insulin secretion, and pathological

insulin secretion, only insulin secretion is defined while the status,
i.e., normal, abnormal but harmless, and pathological is implied by
GCIs of the form. . . v ∃has status.pathological.
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• to bridge levels of granularity and add implied meaning to con-
cepts. A classical example [13] is to use a GCI like

ulcer u ∃has loc.stomach

v ulcer u ∃has loc.(lining u ∃is part of.stomach)

to render the description of ‘ulcer of stomach’ more precisely to
‘ulcer of lining of stomach’ if it is known that ‘ulcer of stomach’
is specific of the lining of the stomach.

It has been argued that the use of GCIs facilitates the re-use of data in
applications of different levels of detail while retaining all inferences
obtained from the full description [22]. Hence, to examine reasoning
w.r.t. general TBoxes has a strong practical motivation.

There is also a strong motivation to consider the DLEL, provid-
ing only the constructors conjunction and existential restriction. The
widely used medical terminology SNOMED [7] corresponds to anEL-
TBox [23]. The representation language underlying the medical ter-
minology GALEN [22] in which GCIs are used extensively, similarly
can be represented by a generalEL TBox, requiring additional con-
structs for roles, though.

Research on reasoning w.r.t. general TBoxes has been mainly fo-
cused on very expressive DLs, reaching as far as, e.g.,ALCNR [6]
andSHIQ [14], in which deciding subsumption of concepts w.r.t.
general TBoxes is EXPTIME hard. Fewer results exist for DLs below
ALC. In [11] the problem is shown to remain EXPTIME complete
for a DL providing only conjunction, value restriction and existential
restriction. The same holds for the small DLAL which allows for
conjunction, value and unqualified existential restriction, and primi-
tive negation [9]. Even for the simple DLFL0, which only allows for
conjunction and value restriction, subsumption w.r.t. cyclic TBoxes
with descriptive semantics is PSPACE hard [16], implying hardness
for general TBoxes.

Recently, however, it was shown for the DLEL that the subsump-
tion problem w.r.t. cyclic terminologies can be decided in polynomial
time [4]. Given the practical utility of general TBoxes on the one
hand and this surprisingly low upper bound on the other, the present
paper aims to explore how far the polynomial time bound reaches
when extending cyclicEL-TBoxes further.

The paper is organized as follows. Section 2 introduces basic no-
tions essential to study the DLs under consideration. We show in
Section 3 that admitting both GCIs and simple role inclusion axioms
at the same time preserves the upper bound for subsumption. We also
show that the standard technique to decide subsumption inEL w.r.t.
general TBoxes, a tableaux algorithm forALC, does not guarantee
this upper bound. In Section 4 we show that subsumption becomes
co-NP hard whenEL is extended by one of the constructors number
restriction, disjunction, and allsome. All details and full proofs of the
results can be found in our technical report [5].



2 DESCRIPTION LOGICS

Concept descriptionsare inductively defined with the help of a set
of conceptconstructors, starting with a setNcon of concept names
and a setNrole of role names. In this paper, we consider concept
descriptions built from the constructors shown in Table 1. All con-
cept descriptions under consideration provide the constructors top-
concept (>) and conjunction (C uD) but otherwise differ from one
another. Our point of departure will be the DLEL which also allows
for existential restrictions (∃r.C). The DL ELU extendsEL by dis-
junction (t) while ELN extendsEL by number restrictions(≥ n r)
and(≤ n r). The DL EL∀∃ extendsEL by the constructor allsome
(∀∃r.C). The DL L∀∃ is obtained by removing existential restric-
tions fromEL∀∃, see Table 1.

Table 1. Syntax and semantics of concept descriptions.

Syntax Semantics

> ∆I

C uD CI ∩DI

C tD CI ∪DI

∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI ⇒ y ∈ CI}
∀∃r.C ∀r.C u ∃r.C
(≤ n r), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≤ n}
(≥ n r), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≥ n}

As usual, the semantics of concept descriptions is defined in terms
of an interpretationI = (∆I , ·I). The domain∆I of I is a non-
empty set and the interpretation function·I maps each concept name
P ∈ Ncon to a subsetP I ⊆ ∆I and each role namer ∈ Nrole to
a binary relationrI ⊆ ∆I×∆I . The extension of·I to arbitrary
concept descriptions is defined inductively, as shown in Table 1.

For a given the DLL, anL-terminology (calledL-TBox) is a finite
setT of axioms of the formC v D (calledGCI) orA

.
= D (called

definition) or r v s (calledsimple role inclusion axiom(SRI)), where
C andD are concept descriptions defined inL, A ∈ Ncon, and
r, s ∈ Nrole. A concept nameA ∈ Ncon is calleddefined inT iff
T contains one or more axioms of the formA v D or A

.
= D.

Thesizeof T is defined as the sum of the sizes of all axioms inT .
Denote byNTcon the set of all concept names occurring inT and by
NTrole the set of all role names occurring inT . A TBox that contains
GCIs is calledgeneral. Denote byELH the DLEL admitting SRIs in
TBoxes.

An interpretationI is amodelof T iff for every GCIC v D ∈ T
it holds thatCI ⊆ DI , for every definitionA

.
= D it holds that

AI = DI , and for every SRIr v s it holds thatrI ⊆ sI . A
concept descriptionC is satisfiablew.r.t. T iff there exists a model
I such thatCI 6= ∅. A concept descriptionC subsumesa concept
descriptionD w.r.t.T (C vT D) iff CI ⊆ DI in every modelI of
T .C andD areequivalentw.r.t.T (C ≡T D) iff they subsume each
other w.r.t.T . This semantics for TBoxes is usually calleddescriptive
semantics[18]. In case of an empty TBox, we writeC v D instead
of C v∅ D and analogouslyC ≡ D instead ofC ≡∅ D.

Example 1 As an example of what can be expressed with anELH-
TBox, consider the TBox shown in Figure 1, representing in an ex-
tremely simplified fashion a part of a medical terminology.

The TBox contains four GCIs and one SRI, stating, e.g., that Peri-
cardium is tissue contained in the heart and that a disease located in
a component of the heart is a heart disease and requires treatment.

Pericardium v Tissue u ∃cont in.Heart

Pericarditis v Inflammation

u ∃has loc.Pericardium

Inflammation v Disease u ∃acts on.Tissue

Disease u ∃has loc.∃comp of.Heart v HeartDisease

u ∃is state.NeedsTreatment

cont in v comp of

Figure 1. ExampleELH-terminology

Without going into detail, one can check that Pericarditis would be
classified as a heart disease requiring treatment because, as stated in
the TBox, Pericarditis is a disease located in the Pericardium con-
tained in the heart, and everything contained in something is a com-
ponent of it.

3 REASONING IN ELHWITH GCIS

We aim to show that subsumption ofELH-concepts w.r.t. general
TBoxes can be decided in polynomial time. A natural question is
whether we may not simply utilize an existing decision procedure
for a more expressive DL which might exhibit polynomial time com-
plexity when applied toELH-TBoxes. Using the standard tableaux
algorithm deciding consistency of generalALC-TBoxes [2] as an ex-
ample, one can show that this approach in general does not bear fruit.
In [5] we give an exampleEL-TBox for which the tableaux algorithm
takes exponentially many steps in the worst case.

Hence, new techniques are required exploiting the simpler struc-
ture of generalELH-TBoxes better. The first step in our approach
is to transform TBoxes into a normal form which limits the use of
complex concept descriptions to the most basic cases.

Definition 2 (NormalizedELH-TBox) LetT be anELH-TBox over
Ncon andNrole. T is normalizediff (i) T contains only GCIs and
SRIs, and, (ii) all of the GCIs have one of the following forms:

A v B
A1 uA2 v B

A v ∃r.B
∃r.A v B.

whereA,A1, A2, B represent concept names fromNcon or >.

Such a normal form can easily be computed in polynomial time
and does not increase the size of the TBox more than polynomially.
An appropriate normalization function is defined in [5]. Our strategy
is now, for every concept nameA ∈ NTcon and>, to compute a set of
concept namesS∗(A) with the following property: whenever in some
point x in a model ofT the conceptA holds then every concept in
S∗(A) necessarily also holds inx. Similarly, for every roler we want
to represent byS∗(r) the set of all roles included inr. The simple
structure of GCIs in normalized TBoxes allows us to define such sets
as follows. To simplify Notation, letNT ,>con := N>con ∪ {>}.

Definition 3 (Implication set) LetT denote a normalizedELH-
TBoxT overNTcon andNTrole. For everyA ∈ NT ,>con (r ∈ NTrole)
and everyi ∈ N, the setSi(A) (Si(r)) is defined inductively, start-
ing byS0(A) := {A,>} (S0(r) := {r}). For everyi ≥ 0, Si+1(A)
(Si+1(r)) is obtained by extendingSi(A) (Si(r)) by exhaustive ap-
plication of the extension rules shown in Figure 2. Theimplication set
S∗(A) of A is defined as the infinite unionS∗(A) :=

⋃
i≥0 Si(A).

Analogously,S∗(r) :=
⋃
i≥0Si(r).



Note that the successorSi+1(A) of someSi(A) is generally not
the result of only asinglerule application.Si+1(A) is complete only
if no more rules are applicable to anySi(B) or Si(r). Implication
sets induce a reflexive and transitive but not symmetric relation on
NT ,>con andNTrole, sinceB ∈ S∗(A) does not implyA ∈ S∗(B).

ISR If s ∈ Si(r) ands v t ∈ T andt 6∈ Si+1(r)
thenSi+1(r) := Si+1(r) ∪ {t}

IS1 If A1 ∈ Si(A) andA1 v B ∈ T andB 6∈ Si+1(A)
thenSi+1(A) := Si+1(A) ∪ {B}

IS2 If A1, A2 ∈ Si(A) andA1 uA2 v B ∈ T
andB 6∈ Si+1(A) thenSi+1(A) := Si+1(A) ∪ {B}

IS3 If A1 ∈ Si(A) andA1 v ∃r.B ∈ T
andB1 ∈ Si(B) ands ∈ Si(r) and∃s.B1 v C ∈ T
andC 6∈ Si+1(A) thenSi+1(A) := Si+1(A) ∪ {C}

Figure 2. Rules for implication sets

We have to show that the idea underlying implication sets is indeed
correct. Hence, the occurrence of a concept nameB in S∗(A) implies
thatA vT B and vice versa.

Lemma 4 For every normalizedELH-TBox overNcon andNrole,
(i) for everyr, s ∈ NTrole, s ∈ S∗(r) iff r vT s, and (ii) for every
A,B ∈ NT ,>con it holds thatB ∈ S∗(A) iff A vT B.

Due to space limitations , we can only give a proof sketch. The full
proof is shown in [5]. Claim (i) is trivial. For the direction(⇒) of
Claim (ii), assumex ∈ AI for some modelI of T andB ∈ S∗(A).
Proof by induction over the minimaln with B ∈ Sn(A). Forn = 0,
B ∈ {A,>}, implying x ∈ BI . For i > 0, we distinguish the
rule which caused the inclusion ofB in the ith step. In each case
the induction hypothesis for the precondition of RuleIS1 to IS3 im-
plies the semantical consequencex ∈ BI . For instance, ifB has
been included inSn(A) as a result of RuleIS3 then there exist
concept namesA1, A2, A3 ∈ NT ,>con such that, on the one hand,
A1 ∈ Sn−1(A) andG := A1 v ∃r.A2 ∈ T , and on the other hand,
A3 ∈ Sn−1(A2) andH := ∃s.A3 v B ∈ T with s ∈ Sn−1(r). By
induction hypothesis,r vT s, implying byG thatx ∈ (∃r.A2)I .
SinceA3 ∈ Sn−1(A2) the induction hypothesis impliesx ∈ AI1 and
x ∈ (∃s.A3)I , yielding byH thatx ∈ BI .

The reverse direction(⇐) is more involved. We show that ifB 6∈
S∗(A) then there is a modelI of T with a witnessxA ∈ AI \ BI .
We construct a canonical modelI forA starting from a single vertex
xA ∈ AI , iteratively applying generation rules which extendI so
as to satisfy all GCIs inT . As T is normalized, one rule for each
type of GCI suffices. For instance, a GCIA v ∃r.B induces for
x ∈ AI the creation of anr-successor labeledB. For the canonical
modelI we show by induction over the construction ofI that the
following property holds for every vertexx. If A is the first concept
name to whose interpretationx was added and if alsox ∈ BI then
B ∈ S∗(A). Note that this holds in general only ifA is the ‘oldest’
concept withx ∈ AI . The induction step exploits the fact that if a
generation rule forI forcesx into the extension ofB then one of
the RulesIS1 to IS3 includesB into someSm(A). For instance, in
the most simple case, ifx ∈ BI because of a GCIC v B then at
some point previous,x ∈ CI , implying C ∈ S∗(A) by induction
hypothesis, yieldingB ∈ S∗(A) by RuleIS1, see [5].

To show decidability in polynomial time it suffices to show that,
(i) T can be normalized in polynomial time (see above), and, (ii) for

all A ∈ NT ,>con and r ∈ NTrole, the setsS∗(A) andS∗(r) can be
computed in polynomial time in the size ofT . EverySi+1(A) and
Si+1(r) depends only on sets with indexi. Hence, onceSi+1(A) =
Si(A) andSi+1(r) = Si(r) holds for allA and r the complete
implication sets are obtained. This happens after a polynomial num-
ber of steps, sinceSi(A) ⊆ Ncon andSi(r) ⊆ Nrole. To compute
Si+1(A) andSi+1(r) from theSi(B) andSi(s) costs only polyno-
mial time in the size ofT .

Theorem 5 Subsumption inELH w.r.t. general TBoxes can be de-
cided in polynomial time.

4 CO-NP HARD EXTENSIONS

The surprisingly low upper bound for the subsumption problem in
ELH w.r.t. general TBoxes gives rise to the question whether it
might be possible to extendELH by other constructors without losing
polynomiality. From a knowledge representation perspective, partic-
ularly useful constructors might be number restrictions (≤ n r) and
(≥ n r), and disjunction (t). The DL K-REP [8] provides the con-
structor ‘allsome’ (∀∃) to capture the meaning often associated with
‘for all’ statements in natural language. A concept∀∃.C is equivalent
to ∀.C u∃r.C. A value restriction∀.C alone cannot be expressed by
means of allsome.

In the following sections we show that adding one of the con-
structors number restriction, disjunction, and allsome makes the sub-
sumption problem co-NP hard—even without GCIs. In case of num-
ber restriction and disjunction (Sections 4.1 and 4.2, resp.), co-NP
hardness holds even for subsumption w.r.t. the empty TBox. In case
of allsome (Section 4.3), the lower bound holds already for acyclic
TBoxes without GCIs or SRIs.

4.1 EL+ number restriction

We show co-NP hardness of the subsumption problem inELN by
reducingBIN-PACKING to consistency ofELN -concepts. SinceELN
can express inconsistency as(≤ 0 r)u (≥ 1 r), inconsistency can be
reduced to non-subsumption ofELN -concepts, yielding the desired
reduction.

Definition 6 (BIN-PACKING) Let U be a nonempty finite set. Let
s : U → N

+ and letb, k ∈ N+. Then,P := (U, s, b, k) is a Bin-
Packingproblem. Asolutionto P is a partition ofU into k pairwise
disjoint setsU1, . . . , Uk such that for alli ∈ {1, . . . , k} it holds that
Σu∈Uis(u) ≤ b.

BIN-PACKING is an NP-complete problem in the strong sense [10,
p. 226], implying that we may assume unary encoding for the num-
bers inP . GivenP , we construct a conceptCP which is satisfiable
iff P has a solution.

The intuition behindCP is to use a concept description of fixed
depth2 and, (i) express on top-level that at mostk bins, i.e.,k pair-
wise disjoint setsU1, . . . , Uk, exist, (ii) express on the first role level
that every bin weighs at mostb, and (iii) use the second role level
to represent the weightss(u) of the objectsu ∈ U . The following
definition formalizes this notion.

Definition 7 (Bin-packing concept) LetP = (U, s, b, k) be a Bin-
Packing problem. Let̀ := dlg(Σu∈Us(u))e. DefineNP

prim := ∅ and
NP

role := {r} ∪ {r1, . . . , r`}. Let

CP :=

{
`u
i=1

Ci

∣∣∣ Ci ∈ {(≤ 0 ri), (≥ 1 ri)}

}



Let fP : {(u, i) | u ∈ U, 1 ≤ i ≤ s(u)} → CP be an injective
mapping. TheELN -concept descriptionCP is defined as follows:

CP := (≤ k r) u u
u∈U
∃r.

(
(≤ b r) u

s(u)

u
i=1
∃r.fP (u, i)

)

The above definition is well-defined only w.r.t. the mappingfP

of which in general many different ones exist. Nevertheless, for our
purpose an arbitrary but fixed instance offP suffices. Note that one
instance offP can be computed easily in polynomial time.

Lemma 8 LetP = (U, s, b, k) be a Bin-Packing problem andCP

the corresponding concept description overNP
prim andNP

role. Then,
P has a solution iffCP is satisfiable.

The concept descriptions inCP correspond to binary numbers
from 0 to Σu∈Us(u) =: w, the overall weight of allu ∈ U . The
injectivity of fP over CP enforces thatfP (u, i) u fP (v, j) is in-
consistent iffu 6= v or i 6= j, implying at leastw vertices on role
level 2 in every model ofCP . On top-level,CP requires one exis-
tential successor for everyu ∈ U . Hence,CP is satisfiable iff these
|U | r-successors, which do not have to be distinct in a model, can
be represented byk r-successors of the root vertex such that each
successor has at mostb distinctr-successors. Hence, satisfiability is
equivalent toP being solvable. For the full proof, see [5]. As satis-
fiability of ELN -concepts can be reduced to non-subsumption, i.e.,
C satisfiable iffC 6v (≤ 0 r) u (≥ 1 r), we immediately obtain the
hardness results for subsumption.

Corollary 9 Deciding satisfiability inELN w.r.t. the empty TBox is
NP-hard. Deciding subsumption inELN w.r.t. the empty TBox is co-
NP-hard.

4.2 EL+ disjunction

We show co-NP hardness of the subsumption problem inELU by
reducingMONOTONE 3SATto non-subsumption ofELU-concept de-
scriptions. The monotone problem differs from3SAT only in that ev-
ery clause contains either only negated or only unnegated literals.

Definition 10 (MONOTONE 3SAT) Let U be a set of variables and
S+, S− be two sets of clauses overU such that everys ∈ S+ con-
tains exactly 3 un-negated variables and everys ∈ S− exactly 3
negated ones. Then,P := (U,S+, S−) is called aMonotone 3Sat
problem. Asolutionto P is a truth assignmentt : U → {0, 1} satis-
fyingS+ ∪ S−.

MONOTONE 3SATis an NP-complete problem [10, p. 259]. We can
immediately represent the clauses inS+ andS− in ELU¬, an exten-
sion of ELU by atomic negation. The conjunction over all clauses
is then split intoC u D, C containing all positive clauses andD
all negative ones. Satisfiability ofC u D is reduced toELU-non-
subsumption by decidingC 6v nnf(¬D), wherennf(¬D) denotes
the negation normal form of¬D. Note thatnnf(¬D) is in fact an
ELU-concept description. (See [5] for details.)

Corollary 11 Deciding subsumption ofELU-concept descriptions
w.r.t. the empty TBox is co-NP-hard.

The above reduction implies co-NP-hardness of the subsumption
problem even for the very small description logic providing only con-
junction and disjunction.

4.3 EL+ allsome

We show co-NP hardness of subsumption inEL∀∃ by reduction of
the subsumption problem inFL0 w.r.t. acyclic simple terminologies
to the analogous problem inL∀∃, a sublanguage ofEL∀∃ without
existential restrictions. The first problem is known to be co-NP hard.

Our aim is to translate acyclic simpleFL0-TBoxes, i.e., containing
no GCIs or SRIs, into subsumption-preserving equivalent ones over
L∀∃, thereby reducing the subsumption problem from one DL to the
other. To this end, we introduce a normal form forFL0-TBoxes that
simplifies the translation.

Definition 12 (Translation function) LetT be an arbitraryFL0-
TBox overNcon, andNrole. T is called reducediff none of the fol-
lowing transformation rules can be applied to any concept descrip-
tionD withC

.
= D ∈ T or any of its subdescriptions:

∀r.> −→ >
E −→ > iff E

.
= > ∈ T

F u > −→ F ,

wherer ∈ Nrole, E represents an arbitrary defined concept, andF
an arbitrary concept description overNcon, andNrole. For a reduced
TBoxT , the translated TBoxtrans(T ) is defined by syntactically
replacing all∀-quantors by∀∃-quantors:trans(T ) := T {∀/∀∃}.

Note that the above definition is correct only in the sense that all
subsumption relations are preserved. While a model oftrans(T ) can
always be shown to be model ofT , the reverse neednot hold.

To prove correctness of the translation we first devise a formal-
language characterization of subsumption forL∀∃-concept descrip-
tions. Note that we may restrict our attention to subsumption w.r.t.
the empty TBox since acyclic TBoxes can be expanded until no de-
fined concepts occur on right-hand sides of concept definitions. In
FL0, the equivalence∀r.(C u D) ≡ ∀r.C u ∀r.D gives rise to
a particularly simple representation of concept descriptions, called
unfolding in [19] or concept centered normal formin [1]. Given a
concept descriptionC, the idea is to exploit the above equivalence
from left to right until conjunction inC occurs only on top-level, im-
plying that all value restrictions are of the form∀r1.∀r2. · · · ∀rn.A
with A ∈ Nprim. The wordr1r2 . . . rn can then be used to represent
the corresponding restrictionC imposes w.r.t.A.

The same principle holds forL∀∃: a concept description∀∃r.(Cu
D) by definition equals∀r.(C uD) u ∃r.(C uD). Because of the
propagation from value to existential restrictions, replacing∃r.(C u
D) by ∃r.> preserves equivalence. Duplicating∃r.>, the propaga-
tion argument in the reverse direction yields∀∃r.C u∀∃r.D. There-
fore, the following definition is justified.

Definition 13 (Role languages) LetC be anL∀∃-concept descrip-
tion. Then, forA ∈ Nprim ∪ {>} the formal languageLA(C) ⊂
N∗prim is inductively defined by:

LA(B) := {ε | A = B}
LA(C uD) := LA(C) ∪ LA(D)

LA(∀∃r.C) := {r} · LA(C),

whereB is an arbitrary concept nameB ∈ Nprim or B = >.

The languageLA(C) contains all wordsr1 . . . rn overNrole with
C v ∀∃r1. · · · ∀∃rn.A. This fact can be exploited for a a role-
language characterization of subsumption ofL∀∃-concept descrip-
tions w.r.t. the empty TBox.



Lemma 14 LetC,D beL∀∃-concept descriptions overNprim and
Nrole. Then,C v D iff

1. LA(C) ⊇ LA(D) for all A ∈ Nrole; and
2. L>(C) ∪

⋃
A∈Nprim

LA(C) ∪ {ε} ⊇ L>(D).

To show (⇒) we assume that one of the subset relations is vi-
olated and construct an appropriate model where the subsumption
C v D does not hold. The reverse direction (⇐) utilizes the equiva-
lence∀∃r.(C uD) ≡ ∀∃r.C u ∀∃r.D to rewriteC syntactically to
the formC = DuR, implying the subsumption. (See [5] for details.)
The above characterization of subsumption allows a straightforward
proof of correctness of the translation fromFL0 toL∀∃.

Lemma 15 LetT be an acyclic reducedFL0-TBox overNcon, and
Nrole. LetA,B ∈ Ndef . Then,A vT B iff A vtrans(T ) B.

Denote byÃ, B̃ the descriptions ofA,B fully expanded w.r.t.T ,
and analogously bỹAtr, B̃tr those expanded w.r.t.trans(T ). As T
andtrans(T ) have the same structure,LC(Ã) equalsLC(Ãtr) for
everyC ∈ Nprim (and analogously forB). Condition 1 of Lemma 14
characterizes subsumption ofFL0-concept descriptions [19], imply-
ing for the proof direction (⇒) that it suffices to show Condition 2.
Condition 2 holds because differences w.r.t. the top concept seman-
tically ‘vanish’ under translation fromL∀∃ to FL0, where always
∀r.> ≡ >. For the reverse direction (⇐) we show by induction on
the number of definitions inT that the role languageL>(B̃) is either
empty or equals{ε}, satisfying Lemma 14. (See [5] for details.)

Corollary 16 Deciding subsumption inL∀∃ w.r.t. acyclic TBoxes
without GCIs or SRIs is co-NP hard.

5 CONCLUSION

We have seen how subsumption inELH w.r.t. general TBoxes can
be decided in polynomial time. Moreover, it has been shown that the
polynomial upper bound does not reach as far as to the DLsELN ,
ELU , andEL∀∃, where the subsumption problem is co-NP hard even
without GCIs. The attractive complexity and relatively simple struc-
ture of the subsumption algorithm naturally motivates the question
of how efficient an implementation might be. Even more so, since
(i) real-world terminologies such as SNOMED exist which can be
classified by our algorithm, and, (ii) the DL systems usually em-
ployed for general terminologies implement—highly optimized—
EXPTIME algorithms [15, 12].

Two directions of future investigation suggest themselves: firstly,
to study other inference problems w.r.t. generalELH-TBoxes; and
secondly, to extendELH by additional constructors. Regarding the
first direction, the instance problem might be interesting. The prob-
lem is solvable in polynomial time w.r.t. cyclicEL terminologies with
descriptive semantics [3]. As we have just seen that the subsumption
problem remains polynomial under the transition from cyclic to gen-
eral terminologies, the same might hold for the instance problem.
For the second direction, desirable constructors might be features,
inverse roles, or probably even complex role inclusion axioms. This
(far reaching) extension would enable one to reason over the repre-
sentation language underlying the GALEN [21] terminology. While
the polynomial upper bound would undoubtedly be exceeded by this
extension, still a complexity better than EXPTIME might be feasible.
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