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Abstract. In the area of Description Logic (DL) based knowledge e to bridge levels of granularity and add implied meaning to con-
representation, research on reasoning w.r.t. general terminologies hasCepts. A classical example [13] is to use a GCl like

mainly focused on very expressive DLs. Recently, though, it was ulcer A Shas.loc.stomach

shown for the DLEL, providing only the constructors conjunction C ulcer M Shas.loc. (lining 1 Jis_part_of.stomach)

and existential restriction, that the subsumption problem w.r.t. cyclic

terminologies can be decided in polynomial time, a surprisingly low to render the description of ‘ulcer of stomach’ more precisely to
upper bound. In this paper, we show that even admitting general con- ‘ulcer of lining of stomach’ if it is known that ‘ulcer of stomach’
ceptinclusion (GCI) axioms and role hierarchieg€ihterminologies is specific of the lining of the stomach.

preserves the polynomial time upper bound for subsumption. We also

show that subsumption becomes co-NP hard when adding one of tEhas been argued that the use of GCls facilitates the re-use of data in

constructors number restriction, disjunction, and ‘allsome’, an op_appllcatlons of different levels of detail while retaining all inferences

erator used in the DIK-REP. One implication of the first result is obtained from the full description [22]. Hence, to examine reasoning

that reasoning over the widely used medical terminology8ED w.r.t. gen_eral TBoxes has a s’Fron_g practical _motlvatlon. )
is possible in polynomial time There is also a strong motivation to consider the &1, provid-

ing only the constructors conjunction and existential restriction. The

widely used medical terminologyN®MED [7] corresponds to afL-

1 MOTIVATION TBox [23]. The representation language underlying the medical ter-

minology GALEN [22] in which GCls are used extensively, similarly

In the area of Description Logic (DL) based knowledge representacan be represented by a genefdlTBox, requiring additional con-

tion, intensional knowledge of a problem domain is represented irstructs for roles, though.

the form of a terminology (TBox) which declares general properties Research on reasoning w.r.t. general TBoxes has been mainly fo-

of concepts relevant to the domain [17]. In its most basic form, acysed on very expressive DLs, reaching as far aSyAWR [6]

TBox contains conceptefinitionsof the form A = C which define  and SHZQ [14], in which deciding subsumption of concepts w.r.t.

a concephameA by a conceptiescriptionC. Concept descriptions  general TBoxes is EXPTIME hard. Fewer results exist for DLs below

are terms built from primitive concepts by means of language con:4cC. In [11] the problem is shown to remain EXPTIME complete

structors provided by the DL. The meaning4fw.rt. the TBox is  for a DL providing only conjunction, value restriction and existential
defined by interpreting the TBox w.r.t. a model-theorstitnantics  restriction. The same holds for the small DAL which allows for
which allows formally well-defined reasoning over the terminology. conjunction, value and unqualified existential restriction, and primi-
In addition,generalTBoxes can contain universally true implica- tive negation [9]. Even for the simple DEL,, which only allows for
tions, so-callegyeneral concept inclusion (GC8xioms of the form  conjunction and value restriction, subsumption w.r.t. cyclic TBoxes

C C D, where bothC' and D are arbitrary concept descriptions. A with descriptive semantics is PSPACE hard [16], implying hardness

model respects a GCI C D iff the extension o’ is a subset of the  for general TBoxes.

extension ofD. Hence,D is implied wheneve€' holds. Recently, however, it was shown for the BY. that the subsump-
From an application point of view, the utility of general TBoxes tion problem w.r.t. cyclic terminologies can be decided in polynomial

for DL knowledge bases has long been observed. For instance, iime [4]. Given the practical utility of general TBoxes on the one

the context of the medical terminologyAGEN [22], GCls are used  hand and this surprisingly low upper bound on the other, the present
especially for two purposes [20]: paper aims to explore how far the polynomial time bound reaches
L . . . . when extending cycli€L-TBoxes further.

o indicate the status of objects: instead of introducing several con- 4 paper is organized as follows. Section 2 introduces basic no-
cepts for the same concept in different states, edgmal insulin  {jons essential to study the DLs under consideration. We show in
secretion, abnormal but harmless insulin secretion, and pathological Section 3 that admitting both GCls and simple role inclusion axioms
insulin secretion, only insulin secretion is defined while the status, . the same time preserves the upper bound for subsumption. We also
i.€., normal, abnormal but harmless, and pathological is implied by ghqy that the standard technique to decide subsumptis im.r.t.
GCls of the form... C 3has status.pathological. general TBoxes, a tableaux algorithm fdrC, does not guarantee

this upper bound. In Section 4 we show that subsumption becomes

1 Theoretical Computer Science, TU Dresden, D-01062 Dresden, Germanﬁo'NP hard whe’Z is extended by one of the constructors number
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2 DESCRIPTION LOGICS

Concept descriptionare inductively defined with the help of a set
of conceptconstructors starting with a sefV.,, of concept names

and a setV,.1. Of role namesIn this paper, we consider concept
descriptions built from the constructors shown in Table 1. All con-

cept descriptions under consideration provide the constructors top-

concept () and conjunction@ M D) but otherwise differ from one
another. Our point of departure will be the B which also allows
for existential restrictionsgr.C). The DL ELU extendsEL by dis-
junction (U) while ELA extendsEL by number restriction§> nr)
and(< nr). The DL ELys extendsEL by the constructor allsome
(V3r.C). The DL Ly3 is obtained by removing existential restric-
tions from&Lv3, see Table 1.

Table 1. Syntax and semantics of concept descriptions.

| Syntax Semantics \
T A*
CrnD ctnp*
cuDbD ctup*
Ir.C {z e AT | Jy: (z,y) e rf Ay e CF}
vr.C {z e AT |Vy: (z,y) el =y e CT}
V3ar.C vr.C'113r.C
(<nr),neNN {ze AT |#{y]| (z,y) €’} <n}
Gnr)neN| {ze A |[#yl(ey) et >n}

As usual, the semantics of concept descriptions is defined in ter
of aninterpretationZ = (AZ,.%). The domainA® of 7 is a non-
empty set and the interpretation functidnmaps each concept name
P € N_on to a subseP? C AT and each role name € N,o1o tO
a binary relation” C AZ x AZ. The extension of? to arbitrary
concept descriptions is defined inductively, as shown in Table 1.

For a given the DLZ, anL-terminology (calledC-TBox) is a finite
set7 of axioms of the fornrC' C D (calledGCl) or A = D (called
definition) orr C s (calledsimple role inclusion axior(SRI)), where
C and D are concept descriptions defineddh A € Ngon, and
r,8 € Niole. A CONcept named € N, is calleddefined in7 iff
7 contains one or more axioms of the forh T D or A = D.
Thesizeof 7T is defined as the sum of the sizes of all axiomgin
Denote byNZ , the set of all concept names occurringZinand by
NZ,. the set of all role names occurring A TBox that contains
GClsis calledyeneral Denote byeLH the DL EL admitting SRIs in
TBoxes.

An interpretatior is amodelof 7 iff forevery GCIC C D € T
it holds thatC? C DZ, for every definitionA = D it holds that
AT = DZ, and for every SRI* C s it holds thatr? C s%. A
concept descriptiod” is satisfiablew.r.t. 7 iff there exists a model
7 such thatC% # (. A concept descriptioi’ subsumes concept
descriptionD w.r.t. 7 (C Cr D) iff C* C D7 in every modell of
7T.C andD areequivalenw.r.t. 7 (C' =7 D) iff they subsume each
other w.r.t.7". This semantics for TBoxes is usually cal@escriptive
semanticg18]. In case of an empty TBox, we writé C D instead
of C Cy D and analogously' = D instead ofC =y D.

Example 1 As an example of what can be expressed witt€AH-

Pericardium C Tissue r 3cont_in.Heart
Pericarditis C Inflammation
M Jhas_loc.Pericardium
Inflammation C Disease M Jacts_on.Tissue
Disease M 3has_loc.3comp_of.Heart C HeartDisease
M Jis_state.NeedsTreatment
cont.in C comp_of

Figure 1. ExampleELH-terminology

Without going into detail, one can check that Pericarditis would be
classified as a heart disease requiring treatment because, as stated in
the TBox, Pericarditis is a disease located in the Pericardium con-
tained in the heart, and everything contained in something is a com-
ponent of it.

3 REASONING IN ECH WITH GCIS

We aim to show that subsumption 6£H-concepts w.r.t. general
TBoxes can be decided in polynomial time. A natural question is
whether we may not simply utilize an existing decision procedure
for a more expressive DL which might exhibit polynomial time com-
plexity when applied t&€LH-TBoxes. Using the standard tableaux
algorithm deciding consistency of genelC-TBoxes [2] as an ex-
ample, one can show that this approach in general does not bear fruit.
In [5] we give an exampl€L-TBox for which the tableaux algorithm
takes exponentially many steps in the worst case.

Hence, new techniques are required exploiting the simpler struc-

MRire of generallLH-TBoxes better. The first step in our approach

is to transform TBoxes into a normal form which limits the use of
complex concept descriptions to the most basic cases.

Definition 2 (Normalized€LH-TBox) Let7 be anELH-TBox over
Neon and Nyole. 7 is normalizediff (i) 7 contains only GCls and
SRIs, and, (ii) all of the GClIs have one of the following forms:

ACB
A1MAC B
AC 3Ir.B
dr.AC B.

whereA, A1, A2, B represent concept names fraW,, or T.

Such a normal form can easily be computed in polynomial time
and does not increase the size of the TBox more than polynomially.
An appropriate normalization function is defined in [5]. Our strategy
is now, for every concept namé € N2 and T, to compute a set of
concept names.. (A) with the following property: whenever in some
point z in a model of7 the conceptd holds then every concept in
S« (A) necessarily also holds in Similarly, for every role- we want
to represent bys, (r) the set of all roles included in. The simple
structure of GCls in normalized TBoxes allows us to define such sets
as follows. To simplify Notation, leNZ;" := N., U {T}.

Definition 3 (Implication set) Let7 denote a normalizedLH-
TBox7 over NI and N2, . ForeveryA € NZ." (r € NZ,)
and everyi € IN, the setS;(A) (S;(r)) is defined inductively, start-

TBox, consider the TBox shown in Figure 1, representing in an exing by So(A) := {A, T} (So(r) := {r}). Forevery: > 0, S;+1(A)

tremely simplified fashion a part of a medical terminology.
The TBox contains four GCls and one SRI, stating, e.g., that Peri
cardium is tissue contained in the heart and that a disease located

(Si+1(r)) is obtained by extending; (A) (S;(r)) by exhaustive ap-
plication of the extension rules shown in Figure 2. Thelication set
i (A) of A is defined as the infinite uniofi. (A) := U, Si(4).

a component of the heart is a heart disease and requires treatmeAnalogously S (r) := U, 5: (7).



Note that the successst1(A) of somesS;(A) is generally not  all A ¢ NZ," andr € NZ,., the setsS.(A) and S.(r) can be
the result of only &inglerule applicationS;1(A) is complete only  computed in polynomial time in the size @f. Every S;41(A) and
if no more rules are applicable to ay(B) or S;(r). Implication Si+1(r) depends only on sets with indéxHence, onceS; 1 (A) =

sets induce a reflexive and transitive but not symmetric relation org;(A) and S;;1(r) = Si(r) holds for all A andr the complete

NG andN,., sinceB € 5.(A) does notimplyA € S.(B). implication sets are obtained. This happens after a polynomial num-
ber of steps, sincg;(A) C Neon andS;(r) C Nyoe. TO COMpute
ISR If s € S;(r)ands C ¢t € T andt & Sy 1(r) Sit+1(A) andS;1(r) from theS;(B) andS;(s) costs only polyno-
thensS; 1 (r) := Sita1(r) U {t} mial time in the size of/".
Ist If Ay € Si(A)andA; C B € 7 andB ¢ Sit1(A) Theorem 5 Subsumption iELH w.r.t. general TBoxes can be de-
thenSi1(A) := Siy1(A) U {B} cided in polynomial time.
1s2 If A1, Az € Si(A)andA, MA, CBeT
andB ¢ Si+1(A) thenSit1(4) := Si1(4) U {B} 4 CO-NP HARD EXTENSIONS
153 gnﬁle g’éﬁ);;n:nﬁz% Ej(f) injd—ﬂs,Bl CoeT The surprisingly low upper bqund fpr the subsumpti_on problem ip
andC ¢ Siy1(A) thenSiy1(A) i= Spsi(A) U{C} €£_H w.r.t. ge_neral TBoxes gives rise to the questlpn whether it
might be possible to exterilCH by other constructors without losing

Figure 2. Rules for implication sets polynomiality. From a knowledge representation perspective, partic-
ularly useful constructors might be number restrictiodsr(r) and
We have to show that the idea underlying implication sets is indeed> n7), and disjunctioni(). The DL K-REP [8] provides the con-
correct. Hence, the occurrence of a concept n&nmes, (A) implies  Structor ‘allsome’ {3) to capture the meaning often associated with

thatA T+ B and vice versa. ‘for all’ statements in natural language. A concegtC is equivalent
toV.C'M3r.C. A value restrictior.C' alone cannot be expressed by

Lemma 4 For every normalized&LH-TBox overN.o, and Ny, ~ Means of allsome.

(i) for everyr,s € NI, s € S.(r)iff r Cr s, and (ii) for every In the following sections we show that adding one of the con-

A,B e NZ,T itholds thatB € S.(A) iff A Cr B. structors number restriction, disjunction, and allsome makes the sub-

sumption problem co-NP hard—even without GCIs. In case of hum-

Due to space limitations , we can only give a proof sketch. The fullber restriction and disjunction (Sections 4.1 and 4.2, resp.), co-NP
proof is shown in [5]. Claim (i) is trivial. For the directiop=) of hardness holds even for subsumption w.r.t. the empty TBox. In case
Claim (ii), assumer € AZ for some modef of 7 andB € S.(A). of allsome (Section 4.3), the lower bound holds already for acyclic
Proof by induction over the minimal with B € S,,(A). Forn =0,  TBoxes without GCls or SRis.

B ¢ {A, T}, implying z € B%. Fori > 0, we distinguish the
rule which caused the inclusion @ in the ith step. In each case 4.1 &L 4 number restriction
the induction hypothesis for the precondition of Ride to 1S3 im-

plies the semantical consequencez BZ. For instance, ifB has . ; " .
been included inS, (A) as a result of Ruless then there exist €JUCINGBIN-PACKING to consistency af LA-concepts. SinceLA

concept namesl;, Az, As € NZ;' such that, on the one hand, Can eXpress inconsistency(@s 0r) M (> 1r), inconsistency can be
Ay € Sn_i(A) andG — = HL;I.]AQ cT and on the other hand. "éduced to non-subsumption &£A/-concepts, yielding the desired
As € Su_1(Ay) andH = 3s.A4; C B € T withs € S,_(r). By ~ reduction.

induction hypothesis; C7 s, implying by & thatz < (37"-/1‘2)1- Definition 6 (BIN-PACKING) Let U be a nonempty finite set. Let
SinceAs € %n,.l(A_g) the induction hypIotheS|s implies€ A7 and 5.y — Nt and letb, k € N*. Then,P := (U, s, b, k) is aBin-

z € (3s.43)", yielding by H thatz € B~. Packingproblem. Asolutionto P is a partition ofU into k pairwise

The reverse directiofk=) is more involved. We show that® ¢ gjsjoint setd/y, . .., U, such that for alli € {1, ..., k} it holds that
S.(A) then there is a moddl of T with a witnessea € A* \ B. 55,/ s(u) < b.

We construct a canonical modefor A starting from a single vertex

x4 € AT, iteratively applying generation rules which exteficdo BIN-PACKING is an NP-complete problem in the strong sense [10,
as to satisfy all GCls irf. As 7 is normalized, one rule for each P.226], implying that we may assume unary encoding for the num-
type of GCI suffices. For instance, a G@l C 3r.B induces for ~ bers inP. Given P, we construct a conce(ilr which is satisfiable

x € A the creation of am-successor labeleB. For the canonical  iff P has a solution.

We show co-NP hardness of the subsumption proble@CiN by

modelZ we show by induction over the construction Bithat the The intuition behindC'p is to use a concept description of fixed
following property holds for every vertex. If A is the first concept ~ depth2 and, (i) express on top-level that at mésbins, i.e. k pair-
name to whose interpretatiqnwas added and if alse BI then wise dlSJOlnt setéd/q, ..., Uk, exist, (ll) express on the first role level

B € S.(A). Note that this holds in general only.f is the ‘oldest’  that every bin weighs at most and (iii) use the second role level
concept withz € A”. The induction step exploits the fact that if a to represent the weightsu) of the objectsu € U. The following
generation rule fofZ forcesz into the extension of3 then one of definition formalizes this notion.
the Ruless_l to 1S3 mclgdesBImto somesS,, (A). For instance, in Definition 7 (Bin-packing concept) LeP — (U, s, b, k) be a Bin-
the most simple case, if € B~ because of a GQU' C B thenat i o S

. : T - . . . acking problem. Lett := [1g(Zuevs(u))]. DefineN, ., := 0 and
some point previousy € C*, implying C € S.(A) by induction NE. = {r} U {r re}. Let
hypothesis, yielding? € S.(A) by Ruleisi, see [5]. role * LyeeooTes

£
To show decidability in polynomial time it suffices to show that, ch.=!Tg
(i) 7 can be normalized in polynomial time (see above), and, (ii) for =1

Cie{(£0m),(>1 Ti)}}



4.3 &L + allsome

We show co-NP hardness of subsumptior€itys by reduction of

the subsumption problem iRL, w.r.t. acyclic simple terminologies

to the analogous problem ifvs, a sublanguage ofLv3 without

existential restrictions. The first problem is known to be co-NP hard.

o ] ) Our aimis to translate acyclic simpfeC,-TBoxes, i.e., containing
The above definition is well-defined only w.r.t. the mappifld o GCls or SRIs, into subsumption-preserving equivalent ones over

of which in general many different ones exist. Nevertheless, for ourz, - thereby reducing the subsumption problem from one DL to the

purpose an arbitrary but fixed instance/fdt suffices. Note that one  giher. To this end, we introduce a normal form $6£,-TBoxes that
instance off” can be computed easily in polynomial time. simplifies the translation.

Let fF: {(u,i) | w € U,1 < i < s(u)} — C*¥ be an injective
mapping. TheLN -concept descriptiod” is defined as follows:

s(w)

P =(<kryn 1 3 ((g br)m i|:|1 Hr.fp(w))

uelU

Lemma8 Let P = (U, s, b, k) be a Bin-Packing problem an@”
the corresponding concept description O\féfrim andNZ,.. Then,

P has a solution ifiC'* is satisfiable.

Definition 12 (Translation function) LetZ be an arbitrary FLo-
TBOX overNeon, and N1 7 is calledreducedff none of the fol-
lowing transformation rules can be applied to any concept descrip-
tion D with C' = D € T or any of its subdescriptions:

ole*

The concept descriptions ii” correspond to binary numbers

from 0 to X,cvs(u) =: w, the overall weight of al. € U. The Vr. T — T
injectivity of f* overC” enforces thatf* (u, i) 1 f¥ (v, 5) is in- E-—T ifE=TeT
consistent iffu # v ori # j, implying at leastw vertices on role FAT — F

level 2 in every model ofCT. On top-level,C'*” requires one exis-

tential successor for every € U. HenCE,CP is satisfiable iff these wherer € Nyole, E represents an arbitrary defined concept, afid
|U| r-successors, which do not have to be distinct in a model, camn arbitrary concept description ové¥eon, andN.1c. For a reduced
be represented by r-successors of the root vertex such that eachTgox 7, the translated TBoxrans(T) is defined by syntactically

successor has at mdstlistinctr-successors. Hence, satisfiability is replacing allV-quantors byv3-quantors:trans(7) := T{V/v3}.
equivalent toP being solvable. For the full proof, see [5]. As satis-

fiability of ELA-concepts can be reduced to non-subsumption, i.e., Note that the above definition is correct only in the sense that all

C satisfiable iffC [Z (< 0r) M (> 17), we immediately obtain the
hardness results for subsumption.

Corollary 9 Deciding satisfiability in€CA w.r.t. the empty TBox is
NP-hard. Deciding subsumption &N w.r.t. the empty TBox is co-
NP-hard.

4.2 &L + disjunction

We show co-NP hardness of the subsumption probler@ilit1 by
reducingMONOTONE 3SATto non-subsumption &L/-concept de-
scriptions. The monotone problem differs frasaT only in that ev-
ery clause contains either only negated or only unnegated literals.

Definition 10 (MONOTONE 3SAT) Let U be a set of variables and
ST, S be two sets of clauses ovErsuch that every € S+ con-
tains exactly 3 un-negated variables and everg S~ exactly 3
negated ones. The®, := (U, S*,S™) is called aMonotone 3Sat
problem. Asolutionto P is a truth assignment: U — {0, 1} satis-
fyingSt U S™.

MONOTONE 3SATis an NP-complete problem [10, p. 259]. We can
immediately represent the clausesSin and.S ™~ in L4, an exten-

subsumption relations are preserved. While a modetofs(7') can
always be shown to be model @, the reverse neeubt hold.

To prove correctness of the translation we first devise a formal-
language characterization of subsumption fer-concept descrip-
tions. Note that we may restrict our attention to subsumption w.r.t.
the empty TBox since acyclic TBoxes can be expanded until no de-
fined concepts occur on right-hand sides of concept definitions. In
FLo, the equivalenc&r.(C 11 D) = Vr.C 1 Vr.D gives rise to
a particularly simple representation of concept descriptions, called
unfoldingin [19] or concept centered normal forin [1]. Given a
concept descriptiod, the idea is to exploit the above equivalence
from left to right until conjunction irC' occurs only on top-level, im-
plying that all value restrictions are of the fov; .Vrs. - - - Vr,. A
with A € Nprim. The wordri7 . .., can then be used to represent
the corresponding restrictiafi imposes w.r.tA.

The same principle holds fays: a concept descriptiori3r.(C'T
D) by definition equal&r.(C 1 D) 1 3r.(C M D). Because of the
propagation from value to existential restrictions, replacingC' 11
D) by 3r.T preserves equivalence. Duplicatifig. T, the propaga-
tion argument in the reverse direction yielddr.C 11 Vv3r.D. There-
fore, the following definition is justified.

Definition 13 (Role languages) Lat’ be anLv3-concept descrip-

sion of E£U by atomic negation. The conjunction over all clausestion. Then, forA € Nprim U {T} the formal languagd. 4 (C) C

is then split intoC' M D, C containing all positive clauses ard

all negative ones. Satisfiability @' M D is reduced taSLi{-non-

subsumption by deciding’ [Z nnf(—D), wherennf(—D) denotes
the negation normal form of.D. Note thatnnf(—D) is in fact an
ELU-concept description. (See [5] for details.)

Corollary 11 Deciding subsumption afLl{-concept descriptions
w.r.t. the empty TBox is co-NP-hard.

*
prim

is inductively defined by:

La(B) = {z| A= B}
LA(Cl_l D) = LA(C) @] LA(D)
La(V3r.C) :={r}- La(C),

whereB is an arbitrary concept nam® € Npyim OF B = T.

The languagéd. 4 (C) contains all words: . . . r,, over Nyo1e With

The above reduction implies co-NP-hardness of the subsumptio® T V3r;.---V3r,.A. This fact can be exploited for a a role-
problem even for the very small description logic providing only con-language characterization of subsumptionfef-concept descrip-
junction and disjunction. tions w.r.t. the empty TBox.



Lemma 14 LetC, D be Ly3-concept descriptions ove¥,.im and
Nyole. Then,C' C D iff

1. La(C) D La(D)forall A € Nyole; and
2. LT(C) UUAGN ) LA(C) U {E} D) LT(D).

prim

(1]

[2]
To show &) we assume that one of the subset relations is vi-
olated and construct an appropriate model where the subsumptio&?]

C C D does not hold. The reverse directica] utilizes the equiva-
lencev3r.(C M D) = V3r.C N V3r.D to rewriteC syntactically to

the formC = DMR, implying the subsumption. (See [5] for details.) [4]
The above characterization of subsumption allows a straightforward
proof of correctness of the translation fraRt, to Lv3.

[5]
Lemma 15 Let7 be an acyclic reduce@#L,-TBox overNcon, and
Nyole. LetA, B € Nger. Then,A Cr B iff A Etrans('f) B. [6]
Denote byA, B the descriptions oft, B fully expanded w.r.tT
and analogously byl.., Bi. those expanded w.r.trans(T). As T 7]
andtrans(7) have the same structurb¢ (A) equalsLc (As.) for
everyC' € N,im (and analogously foB). Condition 1 of Lemma 14
characterizes subsumption 8t o-concept descriptions [19], imply- (8]

ing for the proof direction=£-) that it suffices to show Condition 2.
Condition 2 holds because differences w.r.t. the top concept seman-

tically ‘vanish’ under translation fronys to Lo, where always  [9]
Vr. T = T. For the reverse direction=) we show by induction on
the number of definitions iff” that the role languagk (B) is either
empty or equalge}, satisfying Lemma 14. (See [5] for details.) [10]
Corollary 16 Deciding subsumption ify5 w.r.t. acyclic TBoxes [11]
without GCls or SRIs is co-NP hard.

[12]
5 CONCLUSION 13

We have seen how subsumption88H w.r.t. general TBoxes can

be decided in polynomial time. Moreover, it has been shown that thﬁ4]
polynomial upper bound does not reach as far as to the J3U¢,

ELU, andELy3, where the subsumption problem is co-NP hard even
without GCls. The attractive complexity and relatively simple struc-
ture of the subsumption algorithm naturally motivates the questiof5]
of how efficient an implementation might be. Even more so, since
(i) real-world terminologies such asN®MED exist which can be [16]
classified by our algorithm, and, (ii) the DL systems usually em-
ployed for general terminologies implement—highly optimized—
EXPTIME algorithms [15, 12].

Two directions of future investigation suggest themselves: firstly,[17]
to study other inference problems w.r.t. gene#8H-TBoxes; and
secondly, to extendCH by additional constructors. Regarding the
first direction, the instance problem might be interesting. The probf18]
lem is solvable in polynomial time w.r.t. cycl&C terminologies with
descriptive semantics [3]. As we have just seen that the subsumpti%]
problem remains polynomial under the transition from cyclic to gen-
eral terminologies, the same might hold for the instance probleny20]
For the second direction, desirable constructors might be features,
inverse roles, or probably even complex role inclusion axioms. This
(far reaching) extension would enable one to reason over the reerz-ll
sentation language underlying theAGEN [21] terminology. While
the polynomial upper bound would undoubtedly be exceeded by this
extension, still a complexity better than EXPTIME might be feasible.[22]
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