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ABSTRACT
Motivated by the need for semantically well-founded and al-
gorithmically managable formalisms for describing the func-
tionality of Web services, we introduce an action formalism
that is based on description logics (DLs), but is also firmly
grounded on research in the reasoning about action com-
munity. Our main contribution is an analysis of how the
choice of the DL influences the complexity of standard rea-
soning tasks such as projection and executability, which are
important for Web service discovery and composition.

1. INTRODUCTION
Description logics [3] play an important rôle in the Seman-

tic Web since they are the basis of the W3C-recommended
Web ontology language OWL [4, 13], which can be used to
create semantic annotations describing the content of Web
pages [32].

In addition to this static information, the Web also of-
fers services, which allow their users to effect changes in the
world, such as buying a book or opening a bank account.
As in the case of static information, annotations describing
the semantics of the service should facilitate discovery of the
right service for a given task. Since services create changes
of the world, a faithful representation of its functionality
should deal with this dynamic aspect in an appropriate way.

The OWL-S initiative [31] uses OWL to develop an ontol-
ogy of services, covering different aspects of Web services,
among them functionality. To describe their functionality,
services are viewed as processes that (among other things)
have pre-conditions and effects. However, the faithful repre-
sentation of the dynamic behaviour of such processes (what
changes of the world they cause) is beyond the scope of a
static ontology language like OWL.

In AI, the notion of an action is used both in the plan-
ning and the reasoning about action communities to denote
an entity whose execution (by some agent) causes changes
of the world (see e.g. [27, 33]). Thus, it is not surprising
that theories developed in these comunities have been ap-
plied in the context of Semantic Web services. For example,
[18, 19] use the situation calculus [27] and GOLOG [15] to
formalize the dynamic aspects of Web services and to de-
scribe their composition. In [30], OWL-S process models
are translated into the planning language of the HTN plan-
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ning system SHOP2 [20], which is then used for automatic
Web service composition.

The approach used in this paper is in a similar vein. We
are interested in the faithful description of the changes to the
world induced by the invocation of a service. To this pur-
pose, we describe services as actions that have pre-conditions
and post-conditions (its effects). These conditions are ex-
pressed with the help of description logic assertions, and the
current state of the world is (incompletely) described using
a set of such assertions (a so-called ABox). In addition to
atomic services, we also consider simple composite services,
which are sequences of atomic services. The semantics of
a service is defined using the possible models approach de-
veloped in the reasoning about action community [38, 39,
37, 6, 9], and is fully compatible with the usual DL seman-
tics. However, we will also show that this semantics can be
viewed as an instance of Reiter’s approach [26, 24, 14, 27] for
taming the situation calculus. In particular, our semantics
solves the frame problem in precisely the same way.

Then, we concentrate on two basic reasoning problems for
(possibly composite) services: executability and projection.
Executability checks whether, given our current and possi-
bly incomplete knowledge of the world, we can be sure that
the service is executable, i.e., all pre-conditions are satis-
fied. Projection checks whether a certain condition always
holds after the successful execution of the service, given our
knowledge of the current state of the world. Both tasks are
relevant for service discovery. It is obviously preferable to
choose a service that is guaranteed to be executable in the
current (maybe incompletely known) situation. In addition,
we execute the service to reach some goal, and we only want
to use services that achieve this goal. Though these reason-
ing tasks may not solve the discovery problem completely,
they appear to be indispensable subtasks.

The main contribution of this paper is an analysis of how
the choice of the DL influences the complexity of these two
reasoning tasks for services. For the DLs L considered here,
which are all sublanguages of the DL ALCQIO, the com-
plexity of executability and projection for services expressed
in this DL coincides with the complexity of standard DL rea-
soning in L extended with so-called nominals (i.e., singleton
concepts). The reason is that we can reduce both tasks for
services to the standard DL task of checking consistency
of an ABox w.r.t. an acyclic TBox, provided that we can
use nominals within concept descriptions. This reduction is
optimal since our hardness results show that the complex-
ity increase (sometimes) caused by the addition of nominal



Name Syntax Semantics

inverse role s− {(y, x) | (x, y) ∈ sI}
conjunction C uD CI ∩DI
negation ¬C ∆I \ CI
at-least number
restriction

(> n r C)
{x | card({y | (x, y) ∈ rI ∧

y ∈ CI}) ≥ n}
nominal {a} {aI}

Table 1: Syntax and semantics of ALCQIO.

cannot be avoided. We also motivate the restrictions we im-
pose: we discuss the semantic and the computational prob-
lems that arise when these restrictions are loosened. Most
importantly, we prove that allowing for complex concepts in
post-conditions not only yields semantic problems, but also
the undecidability of the two service reasoning problems.

Because of the space constraints, all proofs and a more de-
tailed discussion of the relationship to the situation calculus
must be omitted. They can be found in [2].

2. DESCRIPTION LOGICS
The framework for reasoning about Web services proposed

in this paper is not restricted to a particular description
logic, but can be instantiated with any description logic
that seems appropriate for the application domain at hand.
For our complexity results, we consider the DL ALCQIO
and a number of its sublanguages. The reason for choos-
ing ALCQIO is that it forms the core of OWL-DL, the
description logic variant of OWL. The additional OWL-DL
constructors could be easily added, with the exception of
transitive roles which are discussed in Section 6.

In DL, concepts are inductively defined with the help of a
set of constructors, starting with a set NC of concept names,
a set NR of role names, and a set NI of individual names.
The constructors determine the expressive power of the DL.
Table 1 shows a minimal set of constructors from which
all constructors of ALCQIO can be defined. The first row
contains the only role constructor: in ALCQIO, a role is
either a role name s ∈ NR or the inverse s− of a role names.
Concepts of ALCQIO are formed using the remaining con-
structors shown in Table 1, where r is a role, n a positive
integer, and a an individual name. Using these constructors,
several other constructors can be defined as abbreviations:

• C tD := ¬(¬C u ¬D) (disjunction),

• > := A t ¬A for a concept name A (top-concept),

• ∃r.C := (> 1 r C) (existential restriction),

• ∀r.C := ¬∃r.¬C (value restriction),

• (6 n r C) := ¬(> (n+ 1) r C) (at-most restriction).

The DL that allows for negation, conjunction, and value re-
strictions is called ALC. The availability of additional con-
structors is indicated by concatenation of a corresponding
letter: Q stands for number restrictions; I stands for inverse
roles, andO for nominals. This explains the nameALCQIO
for our DL, and also allows us to refer to sublanguages as
indicated in Table 2.

The semantics of ALCQIO-concepts and roles is defined
in terms of an interpretation I = (∆I , ·I). The domain ∆I

of I is a non-empty set of individuals and the interpretation
function ·I maps

• each concept name A ∈ NC to a subset AI of ∆I ,

• each role name s ∈ NR to a binary relation sI on ∆I ,
and

• each individual name a ∈ NI to an element aI ∈ ∆I .

The extension of ·I to arbitrary concepts and roles is in-
ductively defined, as shown in the third column of Table 1.
Here, the function card yields the cardinality of the given
set.

A concept definition is an identity of the form

A ≡ C,

where A is a concept name and C an ALCQIO-concept. A
TBox T is a finite set of concept definitions with unique left-
hand sides. Concept names occurring on the left-hand side
of a definition of T are called defined in T whereas the others
are called primitive in T . The TBox T is acyclic iff there
are no cyclic dependencies between the definitions, i.e., the
recursive substitution of defined concepts by their definitions
always terminates. This process is called expansion of the
TBox.

The semantics of TBox definitions is defined in the obvi-
ous way: the interpretation I is a model of the TBox T iff
it satisfies all its definitions, i.e.,

AI = CI holds for all A ≡ C in T .

Any interpretation of the primitive concepts and of the role
names can uniquely be extended to a model of the acyclic
TBox T . This is an easy consequence of the fact that acyclic
TBoxes can be expanded [21].

An ABox assertion is of the form

C(a), s(a, b), or ¬s(a, b),

where a, b ∈ NI, C is a concept, and s a role name.1 To
improve readability, we will sometimes write the assertion
C(a) in the form a : C. An ABox is a finite set of ABox
assertions. The interpretation I is a model of the ABox A
iff it satisfies all its assertions, i.e., aI ∈ CI ((aI , bI) ∈ sI ,
(aI , bI) /∈ sI) for all assertions C(a) (s(a, b), ¬s(a, b)) in A.
If ϕ is an assertion, then we write I |= ϕ iff I satisfies ϕ.

Various reasoning problems are considered for DLs. For
the purpose of this paper, it suffices to introduce concept
satisfiability and ABox consistency:

• the concept C is satisfiable w.r.t. the TBox T iff there
exists a model I of T such that CI 6= ∅;

• the ABox A is consistent w.r.t. the TBox T iff there
exists an interpretation I that is a model of both T
and A.

3. SERVICE DESCRIPTIONS
We now introduce the formalism for reasoning about Web

services. For simplicity, we concentrate on ground services,
i.e., services where the input parameters have already been
instantiated by individual names. Parametric services, which
contain variables in place of individual names, should be

1Negated role assertions are usually not considered in DL,
but they are very useful as pre- and post-conditions. Disal-
lowing inverse roles in ABox assertions is not a restriction
since s−(a, b) can be expressed by s(b, a).



Symbol Constructor ALC ALCO ALCQ ALCI ALCQO ALCIO ALCQI
Q (6 n r C) x x x

(> n r C)
I r− x x x
O {a} x x x

Table 2: Fragments of ALCQIO.

viewed as a compact representation of all its ground in-
stances. The handling of such parametric services takes
place “outside” of our formalism and is not discussed in
detail in the current paper. We may restrict ourselves to
ground services since all the reasoning tasks considered in
this paper presuppose that parametric services have already
been instantiated. For other tasks, such as planning, it may
be more natural to work directly with parametric services.

Definition 1 (Service). Let T be an acyclic TBox. An
atomic service S = (pre, occ, post) for an acyclic TBox T
consists of

• a finite set pre of ABox assertions, the pre-conditions;

• a finite set occ of occlusions of the form A(a) or r(a, b),
with A a primitive concept name w.r.t. T , r a role
name, and a, b ∈ NI;

• a finite set post of conditional post-conditions of the
form ϕ/ψ, where ϕ is an ABox assertion and ψ is a
primitive literal for T , i.e., an ABox assertion A(a),
¬A(a), s(a, b), or ¬s(a, b) with A a primitive concept
name in T and s a role name.

A composite service for T is a finite sequence S1, . . . , Sk of
atomic services for T . A service is a composite or an atomic
service.

Intuitively, the pre-conditions specify under which condi-
tions the service is applicable. The conditional post-condi-
tions ϕ/ψ say that, if ϕ is true before executing the service,
then ψ should be true afterwards. If ϕ is tautological, e.g.
>(a) for some individual name a, then we write just ψ in-
stead of ϕ/ψ. By the law of inertia, only those facts that are
forced to change by the post-conditions should be changed
by applying the service. However, it is well-known in the
reasoning about action community that enforcing this min-
imization of change strictly is sometimes too restrictive [16,
28]. The rôle of occlusions is to describe those primitive
literals to which the minimization condition does not apply.

To illustrate the definition of services, consider a Web
site offering services for people who move from Continental
Europe to the United Kingdom. Among its services are
getting a contract with an electricity provider, opening a
bank account, and applying for child benefit. Obtaining an
electricity contract b for customer a does not involve any
pre-conditions. It is described by the service S1, which has
an empty set of pre-conditions, an empty set of occlusions,
and whose post-conditions are defined as follows:

post1 = {holds(a, b), electricity contract(b)}.

Suppose the pre-condition of opening a bank account is that
the customer c is eligible for a bank account in the UK
and holds a proof of address. Moreover, suppose that, if a
letter from the employer is available, then the bank account
comes with a credit card, otherwise not. This service can be

formalised by the service description S2, which has an empty
set of occlusions and the following pre- and post-conditions:

pre2 = {Eligible bank(a),∃holds.Proof address(a)}
post2 = {holds(a, c),

∃holds.Letter(a)/B acc credit(c),
¬∃holds.letter(a)/B acc no credit(c)}

Suppose that one can apply for child benefit in the UK if
one has a child and a bank account. The service S3 that
offers this application then has the following pre- and post-
conditions, and again an empty set of occlusions:

pre3 = {parent of(a, d),∃holds.B acc(a)}
post3 = {receives c benef for(a, d)}

The meaning of the concepts used in S1, S2, and S3 are
defined in the following acyclic TBox T :

T = {Eligible bank ≡ ∃permanent resident.{UK},
Proof address ≡ Electricity contract,

B acc ≡ B acc credit t B acc no credit}

To define the semantics of services, we must first define how
the application of an atomic service changes the world, i.e.,
how it transforms a given interpretation I into a new one I′.
Our definition follows the possible models approach (PMA)
initially proposed in [38] and further elaborated e.g. in [39,
37, 6, 9]. Equivalently, we could have translated description
logic into first-order logic and then define executability and
projection within Reiter’s framework for reasoning about
deterministic actions [27]. We discuss this approach in Sec-
tion 3. The idea underlying PMA is that the interpretation
of atomic concepts and roles should change as little as pos-
sible while still making the post-conditions true. Since the
interpretation of defined concepts is uniquely determined by
the interpretation of primitive concepts and role names, it
is sufficient to impose this minimization of change condition
on primitive concepts and roles names. We assume that
neither the interpretation domain nor the interpretation of
individual names is changed by the application of a service.

Formally, we define a precedence relation 4I,S,T on inter-
pretations, which characterizes their “proximity” to a given
interpretation I. We use M1OM2 to denote the symmetric
difference between the sets M1 and M2.

Definition 2 (Preferred Interpretations). Let T be an
acyclic TBox, S = (pre, occ, post) a service for T , and I a
model of T . We define the binary relation 4I,S,T on models
of T by setting I′ 4I,S,T I′′ iff

• ((AIOAI
′
) \ {aI | A(a) ∈ occ}) ⊆ AIOAI

′′
;

• ((sIOsI
′
) \ {(aI , bI) | s(a, b) ∈ occ}) ⊆ sIOsI

′′
.

for all primitive concepts A, all role names s, and all domain
elements d, e ∈ ∆I . When T is empty, we write aber preceq
sieht anders aus 4I,S instead of 4I,S,∅.



Intuitively, applying the service S transforms the interpre-
tation I into the interpretation I′ if I′ satisfies the post-
conditions and is closest to I (as expressed by4I,S,T ) among
all interpretations satisfying the post-conditions. Since we
consider conditional post-conditions, defining when they are
satisfied actually involves both I and I′. We say that the
pair of interpretations I, I′ satisfies the set of post-conditions
post (I, I′ |= post) iff the following holds for all post-condi-
tions ϕ/ψ in post: I′ |= ψ whenever I |= ϕ.

Definition 3 (Service Application). Let T be an acyclic
TBox, S = (pre, occ, post) a service for T , and I, I′ models
of T sharing the same domain and interpretation of all indi-
vidual names. Then S may transform I to I′ (I ⇒TS I′) iff

1. I, I′ |= post, and

2. there does not exist a model J of T such that I,J |=
post, J 6= I′, and J 4I,S,T I′.

The composite service S1 . . . , Sk may transform I to I′
(I ⇒TS1,...,Sk

I′) iff there are models I0, . . . , Ik of T with

I = I0, I′ = Ik, and Ii−1 ⇒TSi Ii for 1 ≤ i ≤ k. If T is

empty, we write ⇒S1,...,Sk instead of ⇒TS1,...,Sk
.

Note that this definition does not check whether the service
is indeed executable, i.e., whether the pre-conditions are sat-
isfied. It just says what the result of applying the service is,
irrespective of whether it is executable or not.

Because of our restriction to acyclic TBoxes and primitive
literals in the consequence part of post-conditions, services
without occlusions are deterministic, i.e., for any model I
of T there exists at most one model I′ such that I ⇒TS I′.
First note that there are indeed cases where there is no suc-
cessor model I′. In this case, we say that the service is
inconsistent with I . It is easy to see that this is the case
iff there are post-conditions ϕ1/ψ, ϕ2/¬ψ ∈ post such that
both ϕ1 and ϕ2 are satisfied in I. Second, assume that S is
consistent with I. The fact that there is exactly one model
I′ such that I ⇒TS I′ is an easy consequence of the next
lemma, whose proof we leave as an easy exercise.

Lemma 4. Let T be an acyclic TBox, S = (pre, ∅, post) a
service for T , and I ⇒TS I′ for models I, I′ of T . If A is a
primitive concept and s a role name, then

AI
′

:=
(
AI ∪ {bI | ϕ/A(b) ∈ post and I |= ϕ}

)
\

{bI | ϕ/¬A(b) ∈ post and I |= ϕ},

sI
′

:=
(
sI ∪ {(aI , bI) | ϕ/s(a, b) ∈ post and I |= ϕ}

)
\

{(aI , bI) | ϕ/¬s(a, b) ∈ post and I |= ϕ}.

Since the interpretation of the defined concepts is uniquely
determined by the interpretation of the primitive concepts
and the role names, it follows that there cannot exist more
than one I′ such that I ⇒TS I′.

In principle, we could have started with this more trans-
parent definition of the relation I ⇒TS I′ (with some adapta-
tions to deal with occlusions). However, in Section 6 we will
discuss possible extensions of our approach: for example, to
cyclic TBoxes or post-conditions ϕ/ψ with more complex
ABox assertions ψ. In these cases, services are no longer de-
terministic, and thus the above lemma does not hold. The
PMA approach even yields a well-defined semantics for these
services (though not necessarily a satisfactory one).

Reasoning about Services
Assume that we want to apply a composite service S1, . . . , Sk
for the acyclic TBox T . Usually, we do not have complete
information about the world (i.e., the model I of T is not
known completely). All we know are some facts about this
world, i.e., we have an ABox A, and all models of A together
with T are considered to be possible states of the world.

Before trying to apply the service, we want to know whether
it is indeed executable, i.e., whether all pre-conditions are
satisfied. If the service is executable, we may want to know
whether applying it achieves the desired effect, i.e., whether
an assertion that we want to make true really holds after
executing the service. These problems are basic inference
problems considered in the reasoning about action commu-
nity, see e.g. [27]. In our setting, they can formally be de-
fined as follows:

Definition 5 (Reasoning Services). Let T be an acyclic
TBox, S1, . . . , Sk a service for T with Si = (prei, occi, posti),
and A an ABox.

• Executability: S1, . . . , Sk is executable in A w.r.t. T
iff the following conditions are true in all models I of
A and T :

– I |= pre1 and

– for all i with 1 ≤ i < k and all interpretations I′
with I ⇒TS1,...,Si

I′, we have I′ |= prei+1.

• Projection: an assertion ϕ is a consequence of applying
S1, . . . , Sk in A w.r.t. T iff, for all models I of A and
T , and all I′ with I ⇒TS1,...,Sk

I′, we have I′ |= ϕ.

If T is empty, we simply drop the phrase “w.r.t. T ” instead
of writing “w.r.t. the empty TBox ∅”.

Note that executability alone does not guarantee that we
cannot get stuck while executing a composite service. It may
also happen that the service to be applied is inconsistent
with the current interpretation. This cannot happen if we
additionally know that all services Si are consistent with
T in the following sense: Si is not inconsistent with any
model I of T . Summing up, to achieve an effect ϕ (an
ABox assertion) starting from a world description A and
given a TBox T , we need a service S1, . . . , Sk such that
S1, . . . , Sk is executable in A w.r.t T , Si is consistent with T
for 1 ≤ i ≤ k, and ϕ is a consequence of applying S1, . . . , Sk
in A w.r.t. T .

We do not view consistency with the considered TBox T
as a reasoning task, but rather as a condition that we gener-
ally expect to be satisfied by all well-formed services. Still,
we should be able to decide whether a service is consistent
with a TBox. This can be done by a reduction to standard
DL reasoning: given the characterization of consistency with
a model stated above Lemma 4, it is not difficult to see that
an atomic service S with post-conditions posti is consistent
with a TBox T iff {ϕ1/ψ, ϕ2/¬ψ} ⊆ posti implies that the
ABox {ϕ1, ϕ2} is inconsistent w.r.t. T .

In our example, all three services are consistent with T .
Given the ABox

A = {parent(a, d), permanent resident(a, UK)},

it is easily checked that the composite service S = S1, S2, S3

is executable, and that receives c benef for(a, d) is a con-
sequence of applying S in A w.r.t. T . Note that the presence
of the TBox is crucial for this result.



The main aim of this paper is to show how the two rea-
soning tasks executability and projection can be computed,
and how their complexity depends on the description logic
used within our framework. There is one particularly simple
case: for atomic services S, computing executability boils
down to standard DL reasoning: S is executable in A w.r.t.
T iff A ∪ {¬ϕ} is inconsistent w.r.t. T for all ϕ ∈ pre. Exe-
cutability for composite services is less trivial, and the same
holds for projection of both atomic and composite services.
We show now that the two reasoning services can be mu-
tually polynomially reduced to each other. This allows us
to concentrate on projection when proving decidability and
complexity results.

Lemma 6. Executability and projection can be reduced to
each other in polynomial time.

Proof. Let S1, . . . , Sk with Si = (prei, occi, posti) be a com-
posite service for the acyclic TBox T . This service is exe-
cutable in the ABox A iff

(i) pre1 is satisfied in every model of A and T and, for
1 ≤ i < k,

(ii) all assertions in prei+1 are consequences of applying
S1, . . . , Si in A w.r.t. T .

Condition (ii) is obviously a projection problem. Condi-
tion (i) can also be seen as a projection problem for the
empty service (∅, ∅, ∅).

Conversely, assume that we want to know whether ϕ is
a consequence of applying S1, . . . , Sk in A w.r.t. T . We
consider the composite service S′1, . . . , S

′
k, S

′, where S′i =
(∅, occi, posti) for 1 ≤ i ≤ k, and S′ = ({ϕ}, ∅, ∅). Then
ϕ is a consequence of applying S1, . . . , Sk in A w.r.t. T iff
S′1, . . . , S

′
k, S

′ is executable.

Relationship with SitCalc
We have chosen a possible models approach to define the
effects of our services. More established and widely used
in the reasoning about action community is the situation
calculus [27]. In contrast to the PMA, the situation calculus
uses an axiomatic approach to define the effects of actions.
However, if we consider services without occlusions, then
our approach can be seen as an instance of the situation
calculus.

Suppose an ABox A, an acyclic TBox T , and a compos-
ite service S1, . . . , Sk are given. First, we can get rid of
the TBox by expanding it and then replacing in A and the
services S1, . . . , Sk the defined concepts with their defini-
tions.2 Consider now the simple description of the relation
⇒TS given in Lemma 4. By taking the standard translation
of ALCQIO into first-order logic [3], we can easily trans-
late this description into action pre-conditions and successor
state axioms in the sense of [27]. In this setting, primitive
concepts and role names are regarded as fluents. We take
the first-order translation of the ABox as the initial state,
and then we can show that our notions of executability and
projection are instances of Reiter’s definitions (see [2] for
details).

The translation of our approach into a situation calcu-
lus axiomatization à la Reiter shows that our formalism is

2Alternatively, we could handle the TBox as state con-
straints.

firmly based on research on reasoning about action. How-
ever, this does not mean that the inference problems intro-
duced above can be solved using an implemented system for
reasoning about action, such as GOLOG [15]. In fact, in
Reiter’s approach, regression [27] is used to solve the exe-
cutability and the projection problem. However, when ap-
plied to (the translation of) our services, regression yields a
standard first-order theory, which is not in the scope of what
GOLOG can handle without calling a general first-order the-
orem prover. Thus, the translation into situation calculus
does not directly provide us with decidability or complexity
results for our reasoning problems.

4. DECISION PROCEDURES
We develop reasoning procedures for the reasoning ser-

vices introduced in Section 3 and analyze the computational
complexity of executability and projection of different frag-
ments of ALCQIO. Throughout this section, we assume
that all services are consistent with their TBox, and that
TBoxes are acyclic.

By Lemma 6, we can restrict the attention to the projec-
tion problem. We solve this problem by an approach that
is similar to the regression operation used in the situation
calculus approach [27]: the main idea is to reduce projec-
tion, which considers sequences of interpretations I0, . . . , Ik
obtained by service application, to standard reasoning tasks
for single interpretations I. Concerning the standard rea-
soning tasks, we consider two options:

Firstly, we show that the theory we obtain can again be ex-
pressed by a description logic TBox and ABox. This way,
projection is reduced to the inconsistency of DL ABoxes,
from which we obtain decidability results and upper com-
plexity bounds. Interestingly, when taking this approach,
we cannot always stay within the DL we started with since
we need to introduce nominals in the reduction. We prove
lower complexity bounds for projection showing that the
increase in complexity that is sometimes obtained by intro-
ducing nominals cannot be avoided.

Secondly, we show that we can express the resulting theory
in C2, the two-variable fragment of first-order logic extended
with counting quantifiers. This way, projection is reduced to
satisfiability in C2. We obtain a simpler reduction, but less
sharp complexity results since satisfiability in C2 is NExp-

Time-complete [23, 25], and thus quite costly from a com-
putational perspective. However, there are two exceptional
cases where we obtain a tight upper bound using the second
translation, but not the first: ALCQI and ALCQIO with
numbers in number restrictions coded in binary, i.e., the size
of (> n r C) and (6 n r C) is assumed to be log(n) + 1 plus
the size of C.

The following results are proved in this section:

Theorem 7. Executability and projection of composite ser-
vices w.r.t. acyclic TBoxes are

1. PSpace-complete for ALC, ALCO, ALCQ, and ALCQO
if numbers in number restrictions are coded in unary;

2. ExpTime-complete for ALCI and ALCIO;

3. co-NExpTime-complete for ALCQI and ALCQIO,
regardless of whether numbers in number restrictions
are coded in unary or binary.



Thus, in all cases considered, the complexity of executability
and projection for a description logic L coincides with the
complexity of inconsistency of ABoxes in LO, the extension
of L with nominals.

Reduction to DL Reasoning
We reduce projection in fragments L of ALCQIO to ABox
(in)consistency in the extension LO of L with nominals.
Here, we assume unary coding of numbers in number re-
strictions, i.e., the size of (6 n r C) and (> n r C) is
assumed to be n+ 1 plus the size of C.

Theorem 8. Let L ∈ {ALC,ALCI,ALCO,ALCIO,ALCQ,
ALCQO,ALCQI,ALCQIO}. Then projection of compos-
ite services formulated in L can be polynomially reduced to
ABox inconsistency in LO w.r.t. acyclic TBoxes.

Let L be one of the languages listed in Theorem 8, and let
A be an ABox, S1, . . . , Sn a composite service with Si =
(prei, occi, posti), T an acyclic TBox, and ϕ0 an assertion,
all formulated in L. We are interested in deciding whether
ϕ0 is a consequence of applying S1, . . . , Sn in A0 w.r.t. T .
Without loss of generality, we assume that ϕ0 is of the form
A0(a0), for a concept name A0:

1. Assertions r(a, b) and ¬r(a, b) can be replaced with
(∃r.{b})(a) and (∀r.¬{b})(a), respectively. This pre-
supposes nominals, but nominals will be used in our
reduction, anyway.

2. If ϕ = C(a) with C not a concept name, we add a
concept definition A0 ≡ C to the TBox T , and then
consider ϕ = A0(a).

In the following, we call A, T , S1, . . . , Sn, and ϕ0 the input.
We devise a reduction ABox Ared, an (acyclic) reduction
TBox Tred, and a reduction assertion ϕred such that

ϕ0 is a consequence of applying S1, . . . , Sn in A
w.r.t. T iff Ared is inconsistent w.r.t. Tred.

The main idea of the reduction is to define Ared and Tred such
that each single model of them encodes a sequence of inter-
pretations I0, . . . , In obtained by applying S1, . . . , Sn in A
(and all such sequences are encoded by reduction models).
To ensure this, we use the following intuitions:

• The reduction ABox states that (i) the “I0-part” of
a reduction model I is a model of A, and that (ii)
the Ii-part of I satisfies the post-conditions posti, for
1 ≤ i ≤ n.

• The reduction TBox states that the Ii-part of I is a
model of T , for each i ≤ n.

• We need to describe the law of inertia, i.e., the fact that
we want to minimize the changes that are performed
when applying a service. This task is split among the
reduction ABox and TBox.

To understand the splitting mentioned in the third item, it
is important to distinguish two kinds of elements in inter-
pretations: we call an element d ∈ ∆I named if aI = d for
some individual a used in the input, and unnamed otherwise.
Intuitively, the minimization of changes on named elements
can be described in a direct way through the ABox Ared,
while the minimization of changes on unnamed elements is

achieved through a suitable encoding of T in Tred. Indeed,
minimizing changes on unnamed elements boils down to en-
forcing that changes in concept (non)membership and role
(non)membership involving (at least) one unnamed domain
element never occur: due to the restriction to primitive con-
cept names in post-conditions, our services are not expres-
sive enough to enforce such changes.

In the reduction, we use the following concept names, role
names, and individual names:

• The smallest set that contains all concepts appearing
in the input and is closed under taking subconcepts is
denoted with Sub. For every C ∈ Sub and every i ≤ n,

we introduce a concept name T
(i)
C . It will be ensured

by the TBox Tred that the concept name T
(i)
C stands for

the interpretation of C in the i-th interpretation Ii.

• We use a concept name A(i) for every primitive concept
name A used in the input and every i ≤ n. Intuitively,
A(i) represents the interpretation of the concept name
A in Ii, but only with respect to the named domain
elements. Since concept membership of unnamed el-
ements never changes, the “unnamed part” of the in-
terpretation of A in Ii can be found in A(0), for any
i ≤ n.

• We use a role name r(i) for every role name r used in
the input and every i ≤ n. Similarly to concept names,
r(i) stands for the interpretation of r in Ii but only
concerning those role relationships where both involved
domain elements are named. All other role relation-
ships never change and are stored in r(0).

• We use a concept name N to denote named elements
of interpretations.

• The set of individual names used in the input is de-
noted with Obj. For every a ∈ Obj, we introduce an
auxiliary role name ra.

• Finally, we use an auxiliary individual name ahelp /∈
Obj.

The reduction TBox Tred consists of several components.
The first component simply states that N denotes exactly
the named domain elements:

TN :=
{
N ≡ t

a∈Obj
{a}
}
.

The second component Tsub contains one concept definition
for every i ≤ n and every concept C ∈ Sub that is not a
defined concept name in T . These concept definitions ensure

that T
(i)
C stands for the interpretation of C in Ii as desired.

Details are given in Figure 1, where r−
(i)

denotes (r(i))−

in the concept definitions for number restrictions. The first
concept definition reflects the fact that concept names A(i)

only represent the extension of A in Ii for named domain

elements. To get T
(i)
A , the full extension of A in Ii, we

use A(i) for named elements and A(0) for unnamed ones. A
similar splitting of role relationships into a named part and
an unnamed part is reflected in the translation of number
restrictions given in the last two concept definitions.

Now we can assemble the reduction TBox Tred:

Tred := Tsub ∪ TN ∪ {T (i)
A ≡ T (i)

E | A ≡ E ∈ T , i ≤ n}.



T
(i)
A ≡ (N uA(i)) t (¬N uA(0)) A primitive in T

T
(i)
¬C ≡ ¬T

(i)
C

T
(i)
CuD ≡ T

(i)
C u T

(i)
D

T
(i)
CtD ≡ T

(i)
C t T

(i)
D

T
(i)

(>m r C) ≡
(
N u t

0≤j≤m

(
(> j r(i) (N u T (i)

C ))u

(> (m− j) r(0) (¬N u T (i)
C ))

))
t
(
¬N u (> m r(0) T

(i)
C )
)

T
(i)

(6m r C) ≡
(
N u t

0≤j≤m

((
(6 j r(i) (N u T (i)

C ))u

(6 (m− j) r(0) (¬N u T (i)
C ))

))
t
(
¬N u (6 m r(0) T

(i)
C )
)

Figure 1: The TBox Tsub.

The last summand of Tred ensures that all definitions from
the input TBox T are satisfied by I0, . . . , In.

The reduction ABox Ared also consists of several compo-
nents. The first component ensures that, for each individual
a occurring in the input, the auxiliary role ra connects each
individual (including ahelp) with a, and only with a. This
construction will simplify the definition of the other compo-
nents of Ared:

Aaux :=
{
a :
(
∃rb.{b} u ∀rb.{b}

)
|a ∈ Obj ∪ {ahelp}, b ∈ Obj

}
.

To continue, we first introduce the following abbreviations,
for i ≤ n:

pi(C(a)) := ∀ra.T (i)
C

pi(r(a, b)) := ∀ra.∃r(i).{b}
pi(¬r(a, b)) := ∀ra.∀r(i).¬{b}.

The next component of Ared formalizes satisfaction of the
post-conditions. Note that its formulation relies on Aaux.
For 1 ≤ i ≤ n, we define

A(i)
post :=

{
ahelp :

(
pi−1(ϕ)→ pi(ψ)

)
| ϕ/ψ ∈ posti

}
.

We now formalize the minimization of changes on named

elements. For 1 ≤ i ≤ n the ABox A(i)
min contains

– the following assertions for every a ∈ Obj and every prim-
itive concept name A with A(a) /∈ occi:

a:
((
A(i−1) u u

ϕ/¬A(a)∈posti

¬pi−1(ϕ)
)
→ A(i)

)
a:
((
¬A(i−1) u u

ϕ/A(a)∈posti

¬pi−1(ϕ)
)
→ ¬A(i)

)
;

– the following assertions for all a, b ∈ Obj and every role
name r with r(a, b) /∈ occi:

a:
((
∃r(i−1).{b} u u

ϕ/¬r(a,b)∈posti

¬pi−1(ϕ)
)
→ ∃r(i).{b}

)
a:
((
∀r(i−1).¬{b} u u

ϕ/r(a,b)∈posti

¬pi−1(ϕ)
)
→ ∀r(i).¬{b}

)
.

The ABox Aini ensures that the first interpretation of the
encoded sequence is a model of the input ABox A:

Aini := {T (0)
C (a) | C(a) ∈ A} ∪

{r(0)(a, b) | r(a, b) ∈ A} ∪
{¬r(0)(a, b) | ¬r(a, b) ∈ A}.

We can now assemble Ared:

Ared := Aini ∪ Aaux ∪
A(1)

post ∪ · · · ∪ A
(n)
post∪

A(1)
min ∪ · · · ∪ A

(n)
min ∪

{¬T (n)
A0

(a0)}.

The proof of the following lemma can be found in [2].

Lemma 9. A0(a0) is a consequence of applying S1, . . . , Sn
in A w.r.t. T iff Ared is inconsistent w.r.t. Tred.

Since the size of Ared, Tred, and ϕred are clearly polynomial
in the size of the input (recall that we assume unary coding
of numbers in number restrictions), Lemma 9 immediately
yields Theorem 8. Thus, for the DLs L considered in The-
orem 8, upper complexity bounds for ABox inconsistency
in LO carry over to projection in L. Many such upper
bounds are available from the literature. Indeed, there is
only one case where we cannot draw upon existing results:
the complexity of ABox consistency inALCQO w.r.t. acyclic
TBoxes. For the sake of completeness, we prove that this
problem is PSpace-complete in Appendix A of [2]. Lower
complexity bounds carry over from ABox inconsistency in
a DL L to projection in the same DL: A is not consistent
w.r.t. T iff a : ⊥ is a consequence of applying the empty ser-
vice (∅, ∅, ∅) in A w.r.t. T . Thus, we obtain tight bounds for
projection in those DLs L that allow for nominals or where
the addition of nominals does not increase the complexity
of reasoning.

Corollary 10. Executability and projection w.r.t. acyclic
TBoxes are

1. PSpace-complete for ALC, ALCO, ALCQ, ALCQO;

2. in ExpTime for ALCI;

3. ExpTime-complete for ALCIO;

4. in co-NExpTime for ALCQI;

5. co-NExpTime-complete for ALCQIO.

Points 1, 4, and 5 presuppose that numbers in number re-
strictions are coded in unary.

Proof. The corollary is a consequence of Theorem 8 and the
following results: ABox (in)consistency in

• ALC w.r.t. acyclic TBoxes is PSpace-hard [29] (yields
lower bounds of Point 1);

• ALCQO w.r.t. acyclic TBoxes is in PSpace, which is
proved in Appendix A of [2] (yields upper bounds of
Point 1);

• ALCIO w.r.t. acyclic TBoxes is ExpTime-complete,
as follows from results in [1] (yields Points 2 and 3);



• ALCQIO is co-NExpTime-complete as follows from
results in [35] and [23] (yields Points 4 and 5).

The bounds for executability are then obtained by the re-
ductions of executability to projection and vice versa.

In Section 5, we prove matching lower bounds for Points 2
and 4 of Corollary 7.

Reduction to C2
Alternatively to reducing to standard DL reasoning, we can
reduce projection to satisfiability in C2. This yields a sim-
pler translation and a co-NExpTime upper bound for pro-
jection in ALCQI and ALCQIO with numbers in number
restrictions coded in binary—in contrast to the reduction
given in the previous section which requires unary coding to
yield co-NExpTime upper bounds (otherwise, the last two
lines of Figure 1 yield an exponential blow-up). However,
we cannot get any PSpace or ExpTime upper bounds from
the C2-translation since satisfiability in C2 is NExpTime-
complete [23, 25].

The intuitions underlying the reduction to C2 are very
similar to those given in the previous section, apart from one
significant simplification: since C2 is more expressive than
ALCQIO, it is not necessary to split the interpretations of
concept and role names into a named part and an unnamed
part. Full details are given in [2]. We obtain the following
result:

Theorem 11. Projection of composite services formulated
in ALCQIO can be polynomially reduced to satisfiability
in C2.

Together with the reduction from executability to projec-
tion, this yields the following result, which sharpens Points 4
and 5 of Corollary 10 to cover also the case of binary coding
of numbers inside number restrictions.

Corollary 12. Executability and projection w.r.t. acyclic
TBoxes are in co-NExpTime for ALCQIO even if the num-
bers in number restrictions are coded in binary.

A matching lower bound for ALCQIO is obtained from
Point 5 of Corollary 10. As shown in the following sec-
tion, Corollary 12 also yields a tight upper bound for the
fragment ALCQI of ALCQIO.

5. HARDNESS RESULTS
We show that the upper bounds for executability and pro-

jection obtained in the previous two sections cannot be im-
proved. In Section 4, we have already obtained matching
lower bounds for DLs L where the complexity of ABox in-
consistency coincides in L and LO (L’s extension with nom-
inals). It thus remains to consider cases where ABox incon-
sistency in LO is harder than in L: we prove an ExpTime

lower bound for projection in ALCI and a co-NExpTime
lower bound for projection in ALCQI with numbers coded
in unary. By Lemma 6, these bounds carry over to ex-
ecutability, thus matching Points 2 and 4 of Corollary 7.
The results established in this section show that the addi-
tional complexity that is obtained by introducing nominals
in the reduction of projection to ABox consequence cannot
be avoided.

The idea for proving the lower bounds is to reduce, for
L ∈ {ALCI,ALCQI}, unsatisfiability of LO concepts to

projection in L. In the case of ALCQI, we can even obtain
a slightly stronger result by reducing concept unsatisfiabil-
ity in ALCFIO to projection in ALCFI, where ALCFIO
is ALCQIO with numbers occurring in number restrictions
limited to {0, 1}, and ALCFI is obtained from ALCFIO
by dropping nominals.3 Observe that the coding of num-
bers, i.e. unary vs. binary, is not an issue in ALCFIO and
ALCFI, and thus a lower bound for projection in ALCFI
implies the same bound for projection inALCQI with unary
coding of numbers. Our aim is to prove the following.

Theorem 13. There exists an ABox A and an atomic ser-
vice S formulated in ALCI (ALCFI) such that the follow-
ing tasks are ExpTime-hard (co-NExpTime-hard): given
an ABox assertion ϕ,

• decide whether ϕ is a consequence of applying S in A;

• decide whether S, ({ϕ}, ∅, ∅) is executable in A.

Note that we cannot obtain the same hardness results for ex-
ecutability of atomic services: (i) executability of atomic ser-
vices in any DL L can be trivially reduced to ABox (in)con-
sistency in L, and (ii) the complexity of ABox consistency is
identical to the complexity of concept satisfiability in ALCI
and ALCFI.

For the proof of Theorem 13, let L ∈ {ALCIO,ALCFIO}
and C an L-concept whose unsatisfiability is to be decided.
For simplicity, we assume that C contains only a single nom-
inal {n}. This can be done w.l.o.g. since the complexity of
unsatisfiability in ALCIO (resp. ALCFIO) is already Exp-

Time-hard (resp. co-NExpTime-hard) if only a single nomi-
nal is available and TBoxes are not admitted [1, 35, 36]. For
the reduction, we reserve a new concept name O and a role
name u that do not occur in C. Let

rol(C) := {r, r− | r ∈ NR used in C}

and let C[O/{n}] denote the result of replacing each occur-
rence of the nominal {n} in C with the concept name O.
We define an ABox A, an atomic service S = (∅, ∅, postS),
and a concept DC as follows:

AC := {a : (¬O u ∀u.¬O u ∀u. u
r∈rol(C)

∀r.∃u−.¬O)}

postS := O(a)

DC := ∃u.C[O/{n}] u (∀u. u
r∈rol(C)

∀r.∀u−.O)

Let I and I′ be models witnessing that ¬DC(a) is not a
consequence of S, i.e., I |= AC , I ⇒S I′, and I′ |= DC(a).
The reduction rests on the following ideas:

• By the first conjunct of (the concept in) AC , the post-
condition, and Lemma 4, the only difference between

I and I′ is that aI = aI
′
∈ OI

′
\OI ;

• By the first conjunct of (the concept in) AC and the
post-condition, the only difference between I and I′ is

that aI = aI
′
∈ OI

′
\OI ;

• Using the first and third conjunct of AC together with
the post-condition and the second conjunct of DC , it

can be shown that (aI , x) ∈ uI = uI
′

for each x from

3We admit the number 0 to preserve the abbreviation ∀r.C
that stands for (6 0 r ¬C).



the relevant part rel of ∆I , where rel is defined as the
smallest set that contains aI and is closed under taking
successors for the roles from rol(C);

• Thus, the second conjunct of AC ensures that OI ∩
rel = ∅ and OI

′
∩ rel = {aI}.

• Due to the first conjunct of DC , C[O/{n}] is satisfied
in the relevant part of I′. By the previous item, the
concept name O behaves like a nominal.

In [2], we prove the following lemma, which immediately
yields Theorem 13.

Lemma 14. The following statements are equivalent:

1. C is satisfiable.

2. ¬DC(a) is not a consequence of applying S in AC .

3. the composite service S, ({¬DC(a)}, ∅, ∅) is not exe-
cutable in AC .

6. PROBLEMATIC EXTENSIONS
In the DL framework for reasoning about services pro-

posed in this paper, we have adopted several syntactic re-
strictions:

1. we do not allow for transitive roles, which are available
in OWL-DL;

2. we only allow for acyclic TBoxes rather than arbitrary
(also cyclic) ones or even so-called general concept in-
clusions (GCIs), which are also available in OWL-DL;

3. in post-conditions ϕ/C(a), we require C to be a prim-
itive concept or its negation, rather than admitting
arbitrary, complex concepts.

The purpose of this section is to provide a justification for
these restrictions: we show that removing the first restric-
tion leads to semantic problems, while removing the second
and third restriction leads to both semantic and computa-
tional problems.

Transitive Roles
Transitive roles are offered by most modern DL systems [10,
8], and also by the ontology languages OWL, DAML+OIL,
and OIL [13, 11, 7]. They are added to ALCQIO by reserv-
ing a subset of roles NtR of NR such that all r ∈ NtR are in-
terpreted as transitive relations rI in all models I. We show
that admitting the use of transitive roles in post-conditions
yields semantic problems.

By Lemma 4, services without occlusions S = (pre, ∅, post)
are deterministic in the sense that I ⇒TS I′, and I ⇒TS
I′′ implies I′ = I′′. This is not any more the case for
services referring to transitive roles: consider the service
S = (∅, ∅, {has-part(car, engine)}) that adds an engine to a
car. Let has-part be a transitive role and take the model

∆I := {car, engine, valve}
has-partI := {(engine, valve)}

zI := z for z ∈ ∆I .

Then we have both I ⇒S I′ and I ⇒S I′′, where I′ is
obtained from I by setting

has-partI
′

:= {(car, engine), (engine, valve), (car, valve)}

and I′′ is obtained from I by setting

has-partI
′′

:= {(car, engine)}.

Observe that, in I′′, the valve is no longer part of the en-
gine since adding only (car, engine) to has-partI violates the
transitivity of has-part. Hence, in contrast to our intuition,
has-part(engine, valve) is not a cosequence of applying S in
{has-part(engine, valve)}.

In the area of reasoning about actions, it is well-known
that non-determinism of this kind requires extra effort to ob-
tain sensible consequences of action/service executions [17,
34]. Thus, we need a mechanism for eliminating unwanted
outcomes or preferring the desired ones. We leave such ex-
tensions as future work.

Cyclic TBoxes and GCIs
Assume that we admit arbitrary (also cyclic) TBoxes as
defined in Section 2. Then semantic problems arise due
to a crucial difference between cyclic and acyclic TBoxes:
for acyclic TBoxes, the interpretation of primitive concepts
uniquely determines the extension of the defined ones, while
this is not the case for cyclic ones. Together with the fact
that the preference relation between interpretations 4I,S,T
only takes into account primitive concepts, this means that
the minimization of changes induced by service application
does not work as expected. To see this, consider the follow-
ing example:

A := {Dog(a)}
T := {Dog ≡ ∃parent.Dog}

post := {Cat(b)}

Then, Dog(a) is not a consequence of applying S = (∅, ∅, post)
in A w.r.t. T , as one would intuitively expect. This is due
to the following countermodel. Define an interpretation I
as follows:

∆I := {b} ∪ {d0, d1, d2, . . .}
DogI := {d0, d1, d2, . . .}
CatI := ∅

parentI := {(di, di+1) | i ∈ N}
aI := d0

bI := b

The interpretation I′ is defined as I, with the exception

that CatI
′

= {b} and DogI
′

:= ∅. Using the fact that Dog is
a defined concept and thus not considered in the definition
of 4I,S,T , it is easy to see that I |= A, I ⇒TS I′, and
I′ 6|= Dog(a).

There appear to be two possible ways to solve this prob-
lem: either include defined concepts in the minimization of
changes, i.e., treat them in the definition of 4I,S,T in the
same way as primitive concepts, or use a semantics that
regains the “definitorial power” of acyclic TBoxes, namely
that an interpretation of the primitive concepts uniquely de-
termines the interpretation of defined concepts. The first
option is infeasible since minimizing a defined concept A



with TBox definition A ≡ C corresponds to minimizing the
complex concept C, and it is well-known that even the mini-
mization of arbitrary Boolean concepts (in particular of dis-
junctions) induces technical problems and counterintuitive
results [16]. The second option seems more feasible: if we
adopt the least or greatest fixpoint semantics for TBoxes as
first proposed by Nebel [22], it is indeed the case that prim-
itive concepts uniquely determine defined concepts. Thus,
it may be interesting to analyze services with cyclic TBoxes
under fixpoint semantics as future work.

Even more general than admitting cyclic TBoxes is to al-
low general concept inclusions (GCIs). A GCI is an expres-
sion C v D, with C and D (possibly complex) concepts. An
interpretation I satisfies a GCI C v D iff CI ⊆ DI . As we
can rewrite a concept equation A ≡ C as two GCIs A v C
and C v A, it should be obvious that (sets of) GCIs strictly
generalize (also cyclic) TBoxes. When admitting GCIs in
connection with services, we thus run into the same prob-
lems as with cyclic TBoxes. However, the problems are even
more serious in the case of GCIs: first, GCIs do not allow an
obvious partitioning of concept names into primitive and de-
fined ones. Thus, in the definition of 4I,S,T , the only choice
is to minimize all concept names, which corresponds to the
problematic minimization of complex concepts mentioned
above. Second, the missing distinction between primitive
and defined concepts means that we can no longer restrict
concepts C in post-conditions ϕ/C(a) to literals over prim-
itive concept names. The best we can do is to restrict such
concepts to literals over arbitrary concept names. However,
together with the two GCIs A v C and C v A with C a
complex concept, the literal post-condition ϕ/A(a) is equiv-
alent to the complex one ϕ/C(a). Thus, it seems that GCIs
cannot be admitted without simultaneously admitting ar-
bitrarily complex concepts in post-conditions. As we will
discuss in the following section, this step induces additional
semantic problems as well as computational problems.

Complex Concepts in Post-Conditions
Let a generalized service be a service where post-conditions
are of the form ϕ/ψ for arbitrary assertions ϕ and ψ. In
other words, ψ is no longer restricted to be a literal over
primitive concepts. For simplicity, further assume that oc-
clusions are disallowed and that neither TBoxes nor GCIs
are admitted. As we shall discuss in the following, there are
both semantic and computational problems with generalized
services: firstly, they offer an expressivity that is difficult to
control and often yields unexpected consequences. Secondly,
reasoning with generalized services easily becomes undecid-
able.

Semantic Problems
Clearly, generalized services such as S = (∅, ∅, {a : A tB})
are not deterministic and thus introduce similar complica-
tions as discussed for transitive roles. However, disjunction
is not the only constructor to introduce non-determinism
when allowed in post-conditions:

• If a post-condition contains a : ∃r.A and this assertion
was not already satisfied before the execution of the
service, then the non-determinism lies in the choice
of a witness object, i.e., any domain element x ∈ ∆I

may be chosen to satisfy (aI , x) ∈ rI and x ∈ AI after
execution of the service.

The fact that any domain element is a potential wit-
ness object implies that, e.g., Female(mary) is not a
consequence of applying the service

(∅, ∅, {mary : ∃has-child.¬Female})

in the ABox {Female(mary)}.

• If a post-condition contains a : ∀r.A and this assertion
was not already satisfied before the execution of the
service, we also have a non-deterministic situation: for
each object x ∈ ∆I such that (aI , x) ∈ rI and x 6∈ AI
holds before the execution of the service, we have to
decide whether (aJ , x) /∈ rJ or x ∈ AJ should be
satisfied after execution of the service.4

Similarly to the existential case, we may obtain sur-
prising results due to the fact that any domain ele-
ment x ∈ ∆I may satisfy (aI , x) ∈ rI and x ∈ AI
unless explicitly stated otherwise. This means that,
e.g., Filled(tire2) is not a consequence of applying the
service

(∅, ∅, {car1:∀tire.Filled})
in the ABox {tire(car2, tire2), ¬Filled(tire2)}.

Complex concepts with many nested operators may obvi-
ously introduce a rather high degree of non-determinism.
While simple non-determinism such as the one introduced
by transitive roles or post-conditions a : C t D may be
dealt with in a satisfactory way [17, 34], none of the main-
stream action formalisms allows arbitrary formulas in post-
conditions. Indeed, most formalisms such as the basic situa-
tion calculus restrict themselves to literals in post-conditions
[27, 33]—just as our non-generalized services do.

Computational Problems
Executability and projection for generalized services easily
become undecidable. To illustrate this, we prove undecid-
ability of these reasoning tasks for the DL ALCFI that has
been introduced in Section 5.5 This result should be con-
trasted with the fact that, by Theorem 7, reasoning with
non-generalized services is decidable even for powerful ex-
tensions of ALCFI. Note that ALCFI may be viewed as a
fragment of OWL light, the weakest OWL dialect [12].

Theorem 15. There exists a generalized atomic service S
and an ABox A formulated in ALCFI such that the follow-
ing problems are undecidable: given a concept C,

• decide whether the assertion C(a) is a consequence of
applying S in A;

• decide whether the composite service S, S′ is executable
in A, where S′ = ({C(a)}, ∅, ∅).

The proof of Theorem 15 is by reduction of the domino
problem to non-consequence and non-executability.

Definition 16. Let D = (T,H, V ) be a domino system,
where T is a finite set of tile types and H,V ⊆ T × T
represent the horizontal and vertical matching conditions.
We say that D tiles the plane iff there exists a mapping
τ : Z× Z→ T such that, for all (x, y) ∈ Z× Z, we have
4There may even be cases where it is intended that both con-
ditions are satisfied after service execution; this is, however,
not justified by the PMA semantics of generalized services.
5Recall that ALCFI is obtained from ALCQI by limiting
numbers occurring in number restrictions to {0, 1}.



A = { a : ¬A (1)

a : ∀u.( u
r∈{x,y,u,x−,y−,u−}

∀r.¬A) (2)

a : ∀u.¬B } (3)

post = { a : ∀u.A (4)

a : ∀u.((∀x−.∀y−.¬Q) tB) } (5)

with Q := ∀x.∀y.B → ∃y.∃x.B (6)

CD = A u (7)

∀u.( u
r∈{x,y,u,x−,y−,u−}

∀r.A) u (8)

∀u.B u (9)

∀u.(∃x.> u ∃y.> u ∃x−.> u ∃y−.>) u (10)

∀u.((≤ 1 x) u (≤ 1 y)) u (11)

∀u.((≤ 1 x−) u (≤ 1 y−)) u (12)

∀u. u
t,t′∈T

with t6=t′

¬(Dt uDt′) u (13)

∀u. t
(t,t′)∈H

(Dt u ∀x.Dt′) u (14)

∀u. t
(t,t′)∈V

(Dt u ∀y.Dt′) (15)

Figure 2: The Reduction Ingredients.

• if τ(x, y) = t and τ(x+ 1, y) = t′, then (t, t′) ∈ H

• if τ(x, y) = t and τ(x, y + 1) = t′, then (t, t′) ∈ V
Such a mapping τ is called a solution for D.

It is well-known that the existence of a solution for a domino
system is an undecidable problem [5]. For a domino system
D = (T,H, V ), the ABox A, the service S = (∅, ∅, post) and
the concept CD are defined in Figure 2, where A,B,B′, C,
and C′ are concept names, Dt is a concept name for each t ∈
T , and x, y, and u are role names. For a better readibility,
we write (6 1 r) instead of (6 1 r >). As the proof is
slightly involved, we only provide some core intuitions. To
this end, let I and I′ be interpretations such that I |= A,
I ⇒S I′, and I′ |= CD(a). Then we have the following:

• Lines (1), (2), (4), (7), and (8) ensure that u connects

aI = aI
′

to every relevant domain element in both
I and I′, similar to what was done in the reduction
presented in Section 5;

• Lines (10), (11), and (12) enforce that the roles x and
y, which describe a grid structure encoding Z × Z,
are interpreted in I′ as total functions with functional
inverses;

• Lines (3), (5), and (9) guarantee that the concept Q is
valid on the frame (in a modal logic sense) underlying
I′. Together with the previous item, this implies that,
in I′, the x◦y-successor of any relevant object coincides
with the y ◦ x-successor;

• Lines (13) to (14) describe the existence of a tiling on
the grid structure in I′ that satisfies the horizontal
and vertical matching conditions.

In [2], we prove the following lemma which immediately
yields Theorem 15.

Lemma 17. The following statements are equivalent:

1. The domino system D has a solution.

2. ¬CD(a) is not a consequence of applying S in A.

3. the composite service S, ({¬CD(a)}, ∅, ∅) is not exe-
cutable in A.

7. CONCLUSION
The main technical result of this paper is that standard

problems in reasoning about action (projection, executabil-
ity) become decidable if one restricts the logic for describing
pre- and post-conditions as well as the state of the world
to certain decidable description logics L. The complexity of
these inferences is determined by the complexity of standard
DL reasoning in L extended by nominals.

This is only a first proposal for a formalism describing
the functionality of Web services, which must be extended
in several directions. First, instead of using an approach
similar to regression to decide the projection problem, one
could also try to apply progression, i.e., to calculate a suc-
cessor ABox that has, as its models, all the successors of
the models of the original ABox. Second, the expressive-
ness of the basic action formalism introduced by Reiter has
been extended in several directions, and we need to check
for which of these extensions our results still hold. Third,
we have used only composition to construct composite ser-
vices, whereas OWL-S proposes also more complex opera-
tors. These could, for example, be modeled by appropriate
GOLOG programs. Finally, to allow for automatic compo-
sition of services, one would need to look at how planning
can be done in our formalism.
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