
Pushing theEL Envelope

Franz Baader and Sebastian Brandt and Carsten Lutz
Intitute for Theoretical Computer Science

TU Dresden, Germany
lastname@tcs.inf.tu-dresden.de

Abstract

Recently, it has been shown that the small descrip-
tion logic (DL) EL, which allows for conjunction
and existential restrictions, has better algorithmic
properties than its counterpartFL0, which allows
for conjunction andvalue restrictions. Whereas the
subsumption problem inFL0 becomes already in-
tractable in the presence of acyclic TBoxes, it re-
mains tractable inEL even with general concept
inclusion axioms (GCIs). On the one hand, we ex-
tend the positive result forEL by identifying a set
of expressive means that can be added toEL with-
out sacrificing tractability. On the other hand, we
show that basically all other additions of typical
DL constructors toEL with GCIs make subsump-
tion intractable, and in most cases even EXPTIME-
complete. In addition, we show that subsumption
in FL0 with GCIs is EXPTIME-complete.

1 Introduction
The quest for tractable (i.e., polynomial-time decidable) de-
scription logics (DLs), which started in the 1980s after the
first intractability results for DLs were shown[Brachman and
Levesque, 1984; Nebel, 1988], was until recently restricted
to DLs extending the basic languageFL0, which allows for
conjunction (u) and value restrictions (∀r.C). The main rea-
son was that, when clarifying the logical status of property
arcs in semantic networks and slots in frames, the decision
was taken that arcs/slots should be read as value restrictions
rather than existential restrictions (∃r.C).

For subsumption between concept descriptions, the trac-
tability barrier was investigated in detail in the early 1990s
[Donini et al., 1991]. However, as soon as terminologies
(TBoxes) were taken into consideration, tractability turned
out to be unattainable: even with the simplest form of acyclic
TBoxes, subsumption inFL0 (and thus in all languages ex-
tending it) is coNP-hard[Nebel, 1990]. Subsumption inFL0

is PSPACE-complete w.r.t. cyclic TBoxes[Baader, 1996;
Kazakov and de Nivelle, 2003], and we show in this pa-
per that it becomes even EXPTIME-complete in the presence
of general concept inclusion axioms (GCIs), which are sup-
ported by all modern DL systems.

For these reasons, and also because of the need for expres-
sive DLs supporting GCIs in applications, from the mid 1990s
on the DL community has mainly given up on the quest of
finding tractable DLs. Instead, it investigated more and more
expressive DLs, for which reasoning is worst-case intractable.
The goal was then to find practical subsumption algorithms,
i.e., algorithms that are easy to implement and optimize,
and which—though worst-case exponential or even worse—
behave well in practice (see, e.g.,[Horrockset al., 2000]).
This line of research has resulted in the availability of highly
optimized DL systems for expressive DLs[Horrocks, 1998;
Haarslev and M̈oller, 2001], and successful applications:
most notably the recommendation by the W3C of the DL-
based language OWL[Horrockset al., 2003] as the ontology
language for the Semantic Web.

Recently, the choice of value restrictions as a sine qua non
of DLs has been reconsidered. On the one hand, it was shown
that the DLEL, which allows for conjunction and existential
restrictions, has better algorithmic properties thanFL0. Sub-
sumption inEL stays tractable w.r.t. both acyclic and cyclic
TBoxes[Baader, 2003b], and even in the presence of GCIs
[Brandt, 2004]. On the other hand, there are applications
where value restrictions are not needed, and where the ex-
pressive power ofEL or small extensions thereof appear to
be sufficient. In fact, SNOMED, the Systematized Nomen-
clature of Medicine, employsEL [Spackman, 2000] with an
acyclic TBox. Large parts of the Galen medical knowledge
base can also be expressed inEL with GCIs and transitive
roles[Rector and Horrocks, 1997]. Finally, the Gene Ontol-
ogy [Consortium, 2000] can be seen as an acyclicEL TBox
with one transitive role.

Motivated by the positive complexity results cited above
and the use of extensions ofEL in applications, we start with
the DLEL with GCIs, and investigate the effect on the com-
plexity of the subsumption problem that is caused by the ad-
dition of standard DL constructors available in ontology lan-
guages like OWL. We prove that the subsumption problem
remains tractable when adding the bottom concept (and thus
disjointness statements), nominals (i.e., singleton concepts), a
restricted form of concrete domains (e.g., references to num-
bers and strings), and a restricted form1 of role-value maps

1Adding arbitrary role-value maps toEL is known to cause un-
decidability[Baader, 2003a].



Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
nominal {a} {aI}
conjunction C uD CI ∩DI

existential
restriction ∃r.C {x ∈∆I | ∃y ∈ ∆I :

(x, y) ∈ rI ∧ y ∈ CI}

concrete
domain

p(f1, . . . , fk)

for p ∈ PDj
{x ∈∆I | ∃y1, . . . , yk ∈ ∆Dj :

fIi (x) = yi for 1 ≤ i ≤ k ∧
(y1, . . . , yk) ∈ pDj}

GCI C v D CI ⊆ DI

RI r1 ◦ · · · ◦ rk v r rI1 ◦ · · · ◦ rIk ⊆ rI

Table 1: Syntax and semantics ofEL++.

(which can express transitivity and the right-identity rule re-
quired in medical applications[Spackman, 2000]). We then
prove that, basically, all other additions of standard DL con-
structors lead to intractability of the subsumption problem,
and in most cases even to EXPTIME-hardness. Proofs and
further technical details can by found in the accompanying
technical report[Baaderet al., 2005].

2 The Description LogicEL++

In DLs, concept descriptionsare inductively defined with the
help of a set ofconstructors, starting with a setNC of concept
names, a setNR of role names, and (possibly) a setNI of
individual names. In this section, we introduce the extension
EL++ of EL, whose concept descriptions are formed using
the constructors shown in the upper part of Table 1. There
and in general, we usea andb to denote individual names,
r and s to denote role names, andC,D to denote concept
descriptions.

The concrete domain constructor provides an interface to
so-called concrete domains, which permits reference to, e.g.,
strings and integers. Formally, aconcrete domainD is a pair
(∆D,PD) with ∆D a set andPD a set ofpredicate names.
Eachp ∈ P is associated with an arityn > 0 and an exten-
sion pD ⊆ (∆D)n. To provide a link between the DL and
the concrete domain, we introduce a set offeature namesNF.
In Table 1,p denotes a predicate of some concrete domain
D and f1, . . . , fk are feature names. The DLEL++ may
be equipped with a number of concrete domainsD1, . . . ,Dn
such that∆Di ∩∆Dj = ∅ for 1 ≤ i < j ≤ n. If we want to
stress the use of particular concrete domainsD1, . . . ,Dn, we
write EL++(D1, . . . ,Dn) instead ofEL++.

The semantics ofEL++(D1, . . . ,Dn)-concept descrip-
tions is defined in terms of aninterpretationI = (∆I , ·I).
Thedomain∆I is a non-empty set of individuals and thein-
terpretation function·I maps each concept nameA ∈ NC to
a subsetAI of ∆I , each role namer ∈ NR to a binary rela-
tion rI on ∆I , each individual namea ∈ NI to an individual
aI ∈ ∆I , and each feature namef ∈ NF to a partial function
fI from ∆I to

⋃
1≤i≤n ∆Di . The extension of·I to arbitrary

concept descriptions is inductively defined as shown in the
third column of Table 1.

An EL++ constraint box (CBox)is a finite set ofgeneral
concept inclusions (GCIs)and role inclusions (RIs), whose

syntax can be found in the lower part of Table 1. Note that a
finite set of GCIs would commonly be called ageneral TBox.
We use the term CBox due to the presence of RIs. An inter-
pretationI is a modelof a CBoxC if, for each GCI and RI
in C, the conditions given in the third column of Table 1 are
satisfied. In the definition of the semantics of RIs, the symbol
“◦” denotes composition of binary relations.

The main inference problem considered in this paper is
subsumption. Given twoEL++-concept descriptionsC,D
we say thatC is subsumed byD w.r.t. the CBoxC (C vC D)
iff CI ⊆ DI for all modelsI of C.

Some remarks regarding the expressivity ofEL++ are in
order. First, though we restrict the attention to subsump-
tion, EL++ is expressive enough to reduce all other standard
reasoning tasks (concept satisfiability, ABox consistency, in-
stance problem) to the subsumption problem and vice versa
[Baaderet al., 2005]. Second, our RIs generalize three means
of expressivity important in ontology applications:role hier-
archiesr v s; transitive roles, which can be expressed by
writing r ◦ r v r; and so-calledright-identity rulesr ◦ s v
s, which are important in medical applications[Spackman,
2000; Horrocks and Sattler, 2003]. Third, the bottom concept
in combination with GCIs can be used to expressdisjointness
of complex concept descriptions:C uD v ⊥ says thatC,D
are disjoint. Finally, theunique name assumptionfor individ-
ual names can be enforced by writing{a} u {b} v ⊥ for all
relevant individual namesa andb.

3 Tractability of EL++

Before we can describe a polynomial-time subsumption al-
gorithm forEL++, we must introduce an appropriate normal
form for CBoxes. Given a CBoxC, we useBCC to denote
the smallest set of concept descriptions that contains the top
concept>, all concept names used inC, and all concept de-
scriptions of the form{a} or p(f1, . . . , fk) appearing inC.
Then,C is in normal formif

1. all GCIs have one of the following forms, where
C1, C2 ∈ BCC andD ∈ BCC ∪ {⊥}:

C1 v D, C1 v ∃r.C2,
C1 u C2 v D, ∃r.C1 v D.

2. all role inclusions are of the formr v s or r1 ◦ r2 v s.
By introducing new concept and role names, any CBoxC can
be turned into a normalized CBoxC′ that is aconservative
extensionof C, i.e., every model ofC′ is also a model ofC,
and every model ofC can be extended to a model ofC′ by
appropriately choosing the interpretations of the additional
concept and role names. In[Baaderet al., 2005] it shown
that this transformation can actually be done in linear time,
yielding a normalized CBoxC′ whose size islinear in the
size ofC.
Lemma 1 Subsumption w.r.t. CBoxes inEL++ can be re-
duced in linear time to subsumption w.r.t. normalized CBoxes
in EL++.

In the following, all CBoxes are assumed to be normalized.
When developing the subsumption algorithm for normalized
EL++ CBoxes, we can restrict our attention to subsumption



CR1 If C′ ∈ S(C), C′ v D ∈ C, andD 6∈ S(C)
thenS(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 u C2 v D ∈ C, andD 6∈ S(C)
thenS(C) := S(C) ∪ {D}

CR3 If C′ ∈ S(C), C′ v ∃r.D ∈ C, and(C,D) /∈ R(r)
thenR(r) := R(r) ∪ {(C,D)}

CR4 If (C,D) ∈ R(r),D′ ∈ S(D), ∃r.D′ v E ∈ C,
andE /∈ S(C)

thenS(C) := S(C) ∪ {E}

CR5 If (C,D) ∈ R(r),⊥ ∈ S(D), and⊥ /∈ S(C),
thenS(C) := S(C) ∪ {⊥}

CR6 If {a} ∈ S(C) ∩ S(D), C  R D, andS(D) 6⊆ S(C)
thenS(C) := S(C) ∪ S(D)

CR7 If conj(S(C)) is unsatisfiable inDj and⊥ /∈ S(C),
thenS(C) := S(C) ∪ {⊥}

CR8 If conj(S(C)) impliesp(f1, . . . , fk) ∈ BCC in Dj
andp(f1, . . . , fk) /∈ S(C),

thenS(C) := S(C) ∪ {p(f1, . . . , fk)}

CR9 If p(f1, . . . , fk), p′(f ′1, . . . , f
′
k′) ∈ S(C), p ∈ PDj ,

p′ ∈ PD` , j 6= `, fs = f ′t for somes, t, and⊥ /∈ S(C),
thenS(C) := S(C) ∪ {⊥}

CR10 If (C,D) ∈ R(r), r v s ∈ C, and(C,D) /∈ R(s)
thenR(s) := R(s) ∪ {(C,D)}

CR11 If (C,D) ∈ R(r1), (D,E) ∈ R(r2), r1 ◦ r2 v r3 ∈ C,
and(C,E) /∈ R(r3)

thenR(r3) := Ri(r3) ∪ {(C,E)}

Table 2: Completion Rules

between conceptnames. In fact,C vC D iff A vC′ B, where
C′ = C∪{A v C,D v B}withA andB new concept names.
Our subsumption algorithm not only computes subsumption
between two given concept names w.r.t. the normalized input
CBoxC; it ratherclassifiesC, i.e., it simultaneously computes
the subsumption relationships betweenall pairs of concept
names occurring inC.

Now, letC be a CBox in normal form that is to be classified.
We useRC to denote the set of all role names used inC. The
algorithm computes

• a mappingS from BCC to a subset ofBCC∪{>,⊥}, and

• a mappingR from RC to a binary relation onBCC .

The intuition is that these mappings make implicit subsump-
tion relationships explicit in the following sense:

(I1) D ∈ S(C) implies thatC vC D,

(I2) (C,D) ∈ R(r) implies thatC vC ∃r.D.

In the algorithm, these mappings are initialized as follows:

• S(C) := {C,>} for eachC ∈ BCC ,

• R(r) := ∅ for eachr ∈ RC .

Then the setsS(C) andR(r) are extended by applying the
completion rules shown in Table 2 until no more rule applies.

Some of the rules use abbreviations that still need to be
introduced. First,CR6 uses the relation R ⊆ BCC ×

BCC , which is defined as follows:C  R D iff there are
C1, . . . , Ck ∈ BCC such that

• C1 = C orC1 = {b} for some individual nameb,

• (Cj , Cj+1) ∈ R(rj) for somerj ∈ RC (1 ≤ j < k),

• Ck = D.

Second, rulesCR7 andCR8 use the notionconj(Si(C)), and
satisfiability and implication in a concrete domain. Ifp is a
predicate of the concrete domainDj , then theEL++-concept
descriptionp(f1, . . . , fn) can be viewed as an atomic first-
order formula with variablesf1, . . . , fn. Thus, it makes sense
to consider Boolean combinations of such atomic formulae,
and to talk about whether such a formula is satisfiable in (the
first-order interpretation)Dj , or whether inDj one such for-
mula implies another one. For a setΓ of EL++(D1, . . . ,Dn)-
concept descriptions and1 ≤ j ≤ n, we define

conj(Γ) :=
∧

p(f1,...,fk)∈Γ with p∈PDj

p(f1, . . . , fk).

For the rulesCR7 and CR8 to be executable in polynomial
time, satisfiability and implication in the concrete domains
D1, . . . ,Dn must be decidable in polynominal time. How-
ever, for our algorithm to be complete, we must impose an
additional condition on the concrete domains. The concrete
domainD is p-admissibleiff

1. satisfiability and implication inD are decidable in poly-
nominal time;

2. D is convex: if a conjunction of atoms of the form
p(f1, . . . , fk) implies a disjunction of such atoms, then
it also implies one of its disjuncts.

Let us now show that the rules of Table 2 indeed yield a poly-
nomial algorithm for subsumption inEL++(D1, . . . ,Dn)
provided that the concrete domainsD1, . . . ,Dn are p-
admissible.

The following lemma is an easy consequence of the facts
that (i) each rule application adds an element to one of the
setsS(C) ⊆ BCC ∪ {>,⊥} or R(C,D) ⊆ BCC × BCC ,
(ii) the cardinality ofBCC is polynomial in the size ofC, and
(iii) the relation R can be computed using (polytime) graph
reachability, and (iv) the concrete domains are p-admissible.

Lemma 2 For a normalized CBoxC, the rules of Table 2 can
only be applied a polynomial number of times, and each rule
application is polynomial.

The next lemma shows how all subsumption relationships
between concept names occurring inC can be determined
once the completion algorithm has terminated.

Lemma 3 LetS be the mapping obtained after the applica-
tion of the rules of Table 2 for the normalized CBoxC has
terminated, and letA,B be concept names occurring inC.
ThenA vC B iff one of the following two conditions holds:

• S(A) ∩ {B,⊥} 6= ∅,
• there is an{a} ∈ BCC such that⊥ ∈ S({a}).

The if-direction of this lemma (soundness) immediately fol-
lows from the fact that (I1) and (I2) are satisfied for the initial



definition ofS,R, and that application of the rules preserves
(I1) and (I2). This is trivial for most of the rules. We consider
CR6 in more detail. If{a} ∈ S(C) ∩ S(D), thenC,D vC
{a}. Now, C  R D implies thatC vC ∃r1. · · · ∃rk−1.D
or {b} vC ∃r1. · · · ∃rk−1.D for some individual nameb. In
the second case, this implies thatD cannot be empty in any
model ofC, and in the first case it implies thatD is non-empty
in any model ofC for whichC is non-empty. Together with
C,D vC {a}, this implies thatC vC D, which shows that
the ruleCR6 is sound since it preserves (I1).

To show the only-if-direction of the lemma, we assume that
the two conditions do not hold, and then use the computed
mappingsS,R to construct a modelI of C such thatAI 6⊆
BI . Basically, the domain∆I of this model consists of all
elementsC ∈ BCC such thatA R C. However, we identify
elementsC,D of BCC if there is an individual namea such
that{a} ∈ S(C) ∩ S(D). The interpretation of concept and
role names is determined byS,R: if D ∈ BCC is a concept
name, thenDI = {C ∈ BCC | D ∈ S(C)}, and if r is a
role name, then(C,D) ∈ rI iff (C,D) ∈ R(r). Finally,
the interpretation of the feature names is determined by the
the assignments satisfying the conjunctionsconj(S(C)) (see
[Baaderet al., 2005] for a more detailed description of this
construction, and a proof that it indeed yields a countermodel
to the subsumption relationshipA vC B).

To sum up, we have shown the following tractability result:

Theorem 4 Let D1, . . . ,Dn be p-admissible concrete do-
mains. Then subsumption inEL++(D1, . . . ,Dn) w.r.t.
CBoxes can be decided in polynomial time.

P-admissibile and non-admissible concrete domains
In order to obtain concrete DLs of the form
EL++(D1, . . . ,Dn) for n > 0 to which Theorem 4 ap-
plies, we need concrete domains that are p-admissible. In
the following, we introduce two concrete domains that are
p-admissible, and show that small extensions of them are no
longer p-admissible.

The concrete domainQ = (Q,PQ) has as its domain the set
Q of rational numbers, and its set of predicatesPQ consists
of the following predicates:

• a unary predicate>Q with (>Q)Q = Q;

• unary predicates=q and>q for eachq ∈ Q;

• a binary predicate=;

• a binary predicate+q, for eachq ∈ Q, with
(+q)Q = {(q′, q′′) ∈ Q2 | q′ + q = q′′}.

The concrete domainS is defined as(Σ∗,PS), whereΣ is
the ISO 8859-1 (Latin-1) character set andPS consistes of
the following predicates:

• a unary predicate>S with (>S)S = Σ∗;
• a unary predicate=w, for eachw ∈ Σ∗;
• a binary predicate=;

• a binary predicateconcw, for eachw ∈ Σ∗, with
concQ

w = {(w′, w′′) | w′′ = w′w}.
Polynomiality of reasoning inQ can be shown by a reduction
to linear programming, and polynomiality of reasoning inS

Name Syntax Semantics

negation ¬C ∆I \ CI

disjunction C tD CI ∪DI

value restriction ∀r.C {x | ∀y : (x, y) ∈ rI → y ∈ CI}
at-least restriction(> n r) {x | #{y ∈ ∆I | (x, y) ∈ rI} ≥ n}
at-most restriction(6 n r) {x | #{y ∈ ∆I | (x, y) ∈ rI} ≤ n}
inverse roles ∃r−.C {x | ∃y : (y, x) ∈ rI ∧ y ∈ CI}

Table 3: The additional constructors.

has been proved in[Lutz, 2003]. Moreover, we can show
[Baaderet al., 2005] that bothQ andS are convex.

Proposition 5 Q andS are p-admissible.

Both Q andS are interesting concrete domains since they
allow us to refer to concrete numbers and strings in concepts,
and use the properties of the concrete predicates when rea-
soning. However, the predicates available in these concrete
domains are rather restricted. Unfortunately, p-admissibility
is a fragile property, i.e., we cannot extendQ andS by other
interesting predicates without losing p-admissibility. As an
illustration, we consider one extension ofQ and one ofS.

The concrete domainQ≤q,>q extendsQ by the additional
unary predicates(≤q)q∈Q. Then theQ≤q,>q -conjunction
>0(f ′) implies the disjunction≤0(f) ∨ >0(f) without im-
plying one of its disjuncts. Thus,Q≤q,>q is not convex.

Next, consider any concrete domainS∗ with domainΣ∗
for some finite alphabetΣ and, for everys ∈ Σ∗, the unary
predicatesprefs andsuffs with the semantics

prefS∗

s := {s′ ∈ Σ∗ | s is a prefix ofs′}
suffS∗

s := {s′ ∈ Σ∗ | s is a suffix ofs′}.

Let Σ = {a1, . . . , an}. Then theS∗-conjunctionsuffa1(f)
implies the disjunctionprefa1

(f) ∨ . . . ∨ prefan(f) without
implying any of its disjuncts.

4 Intractable extensions ofEL with GCIs
In this section we consider the sublanguageEL of EL++

and restrict the attention to general TBoxes, i.e., finite sets of
GCIs. Recall thatEL is obtained fromEL++ by dropping all
concept constructors except conjunction, existential restric-
tion, and top. We will show that the extension ofEL with
basically any typical DL constructor not present inEL++ re-
sults in intractability of subsumption w.r.t. general TBoxes.
Syntax and semantics of the additional constructors used in
this section can be found in Table 3, where#S denotes the
cardinality of a setS.

In addition to the subsumption problem, we will sometimes
also consider thesatisfiability problem: the concept descrip-
tion C is satisfiable w.r.t. the general TBoxT iff there exists
a modelI of T with CI 6= ∅. As in the previous section,
we can restrict the attention to satisfiability/subsumption of
conceptnamesw.r.t. general TBoxes.

Atomic negation
Let EL¬ be the extension ofEL with negation, and letEL(¬)

be obtained fromEL¬ by restricting the applicability of nega-
tion to concept names (atomicnegation). SinceEL¬ is a no-
tational variant of the DLALC, EXPTIME-completeness of



satisfiability and subsumption inALC w.r.t. general TBoxes
[Schild, 1991] carries over toEL¬. EXPTIME-completeness
even carries over toEL(¬) since¬C with C complex can be
replaced with¬A for a new concept nameA if we add the
two GCIsA v C andC v A.

Theorem 6 In EL(¬), satisfiability and subsumption w.r.t.
general TBoxes isEXPTIME-complete.

Disjunction
Let ELU be the extension ofEL with disjunction. Subsump-
tion in ELU w.r.t. general TBoxes is in EXPTIME sinceELU
is a fragment ofALC. To obtain a matching EXPTIME lower
bound, we reduce satisfiability inEL(¬) w.r.t. general TBoxes
to subsumption inELU w.r.t. general TBoxes. To this end, let
A0 be a concept name andT a generalEL(¬) TBox. For each
concept nameA occurring inT , we take anewconcept name
A′ (i.e., one not occurring inT ). Also fix an additional new
concept nameL. Then the general TBoxT ∗ is obtained from
T by replacing each subconcept¬A withA′, and then adding
the following GCIs:

• > v A tA′ andA uA′ v L for eachA ∈ NC in T ;

• ∃r.L v L.

Note that∃r.L v L is equivalent to¬L v ∀r.¬L. It thus
ensures thatL acts as the bottom concept in connected coun-
termodels ofA0 vT ∗ L. Using this observation, it is not hard
to verify thatA0 is satisfiable w.r.t.T iff A0 6vT ∗ L.

Theorem 7 In ELU , subsumption w.r.t. general TBoxes is
EXPTIME-complete.

At-least restrictions
Let EL≥2 be the extension ofEL with at-least restrictions
of the form (> 2 r). Subsumption inEL≥2 w.r.t. general
TBoxes is in EXPTIME sinceEL≥2 is a fragment ofALC
extended with number restrictions[De Giacomo and Lenz-
erini, 1994]. We establish a matching lower bound by reduc-
ing subsumption inELU w.r.t. general TBoxes. LetA0 and
B0 be concept names andT a generalELU TBox. Without
loss of generality, we may assume that all concept inclusions
in T have one of the following forms:

C v D, ∃r.C v D, C v ∃r.D,
C1 u C2 v C, C v C1 t C2,

whereC, D, C1, andC2 are concept names or>. Call the
resulting TBoxT ∗. To convertT into anEL≥2 CBox, we
simulate each GCIC v C1 t C2 by introducing two new
concept namesA andB and a new role namer, and putting

C v ∃r.A u ∃r.B,
C u ∃r.(A uB) v C1, C u (> 2 r) v C2.

It is easy to see thatA0 vT B0 iff A0 vT ∗ B0.

Theorem 8 In EL≥2 , subsumption w.r.t. general TBoxes is
EXPTIME-complete.

The interested reader may note that similar reductions can be
used to show EXPTIME-completeness forEL extended with
one of the role constructors negation, union, and transitive
closure.

Non-p-admissible concrete domains
P-admissibility of the concrete domains is not only a suffi-
cient condition for polynomiality of reasoning inEL++, but
also a necessary one: ifD is a non-convex concrete domain,
then subsumption inEL(D) is EXPTIME-hard, whereEL(D)
is the extension ofEL with the concrete domainD. The
proof uses a stronger version of Theorem 7: we can show that
subsumption of concept names w.r.t.restrictedELU TBoxes
is EXPTIME-complete, where a restrictedELU TBox is a
generalEL TBox extended with asingle GCI of the form
A v B1 tB2 [Baaderet al., 2005].

The subsumption problem for such restrictedELU TBoxes
can be reduced to subsumption inEL++(D) as follows. Let
A0 andB0 be concept names andT a restrictedELU TBox.
SinceD is not convex, there is a satisfiable conjunctionc of
atoms of the formp(f1, . . . , fk) that implies a disjunction
a1 ∨ . . . ∨ am of such atoms, but none of its disjuncts. If
we assume that this is a minimal such counterexample (i.e.,
m is minimal), then we also know thatc does not imply
a2 ∨ . . . ∨ am, and that each of theai is satifiable. Then
we have (i) each assignment of values fromD that satisfiesc
satisfiesa1 ora2∨. . .∨am; (ii) there is an assignment satisfy-
ing c anda1, but nota2∨ . . .∨am; (iii) there is an assignment
satisfyingc anda2 ∨ . . .∨ am but nota1. Now, letT ∗ be ob-
tained fromT by replacing the single GCIA v B t B′ by
A v c, a1 v B, andai v B′ for i = 2, . . . ,m. It is easy to
see thatA0 vT B0 iff A0 vT ∗ B0.

Theorem 9 For any non-convex concrete domainD, sub-
sumption inEL(D) w.r.t. general TBoxes isEXPTIME-hard.

For example, this theorem applies to the non-convex concrete
domains introduced in Section 3.

Inverse roles
Let ELI be the extension ofEL with inverse roles. We show
that subsumption inELI w.r.t. general TBoxes is PSPACE-
hard by reducing satisfiability inALE w.r.t.primitive TBoxes:
ALE extendsELwith value restrictions and atomic negation;
primitive TBoxes are finite sets of GCIs whose left-hand side
is a conceptname. This satisfiability problem is known to be
PSPACE-complete[Calvanese, 1996].

Let A0 be a concept name andT a primitiveALE TBox.
We assume without loss of generality thatT contains only
concept inclusions of the following forms:

A v B, A v ¬B, A v ∃r.B, A v ∀r.B,
whereA, B, andB′ are concept names. We take a new con-
cept nameL and define the generalELI TBox T ∗ to consist
of the following GCIs:

• A v D for all A v D ∈ T
if D is a concept name or of the form∃r.B;

• ∃r−.A v B for all A v ∀r.B ∈ T ;

• A uB v L for all A v ¬B ∈ T ;

• ∃r.L v L.

As in the case ofELU , the concept inclusion∃r.L v L is
equivalent to¬L v ∀r.¬L and ensures thatL acts as the
bottom concept in connected countermodels ofA0 vT ∗ L.
Additionally, ∃r−.A v B is clearly equivalent toA v ∀r.B.



Thus, it is not hard to verify thatA0 is satisfiable w.r.t.T iff
A0 6vT ∗ L.

Theorem 10 Subsumption inELI w.r.t. general TBoxes is
PSPACE-hard.

The exact complexity of this problem is still open (the best
upper bound we know of is EXPTIME, stemming from results
for the DLALCI [De Giacomo and Lenzerini, 1994]).

At-most restrictions/functional roles/FL0

Let EL≤1 be the extension ofEL with at-most restrictions
of the forn(6 1 r). As in the case ofEL≥2 , subsumption
in EL≤1 w.r.t. general TBoxes is in EXPTIME sinceEL≤1

is a fragment ofALC with number restrictions. We prove a
matching lower bound by reducing subsumption in the DL
FLtf0 w.r.t. general TBoxes.FLtf0 offers only the concept
constructors conjunction and value restriction and requires all
roles to be interpreted as total functions. Subsumption in this
DL w.r.t. general TBoxes was proved EXPTIME-complete in
[Toman and Weddell, 2005].

Let A0 andB0 be concept names andT a generalFLtf0
TBox. We convertT into a generalEL≤1 TBox T ∗ by re-
placing each subconcept∀r.C with ∃r.C in GCI left-hand
sides, and with(6 1 r)u∃r.C in GCI right-hand sides. Then
A0 vT B0 in FLtf0 iff A0 vT ∗ B0 in EL≤1 .

Theorem 11 Subsumption inEL≤1 w.r.t. general TBoxes is
EXPTIME-complete.

Interestingly, the result of Toman and Weddell can also be
used to prove EXPTIME-completeness of subsumption in
FL0 w.r.t. general TBoxes. Recall thatFL0 isFLtf0 without
the restriction that roles be total functions. In[Baaderet al.,
2005] we show thatA0 vT B0 in FL0 iff A0 vT B0 in
FLtf0 , i.e., subsumption inFL0 andFLtf0 coincides.

Theorem 12 Subsumption inFL0 w.r.t. general TBoxes is
EXPTIME-complete.

5 Conclusion
We believe that the results of this paper show that—in con-
trast to the negative conclusions drawn from early complex-
ity results in the area—the quest for tractable DLs that are
expressive enough to be useful in practice can be successful.
Our DLEL++ is tractable even w.r.t. GCIs, and it offers many
constructors that are important in ontology applications.

This is in strong contrast to its counterpart with value
restrictions: FL0 is tractable without TBoxes[Brachman
and Levesque, 1984], co-NP-complete for acyclic TBoxes
[Nebel, 1990], PSPACE-complete for cyclic TBoxes[Baader,
1996; Kazakov and de Nivelle, 2003], and EXPTIME-
complete for general TBoxes (as shown above, and, indepen-
dently, in[Hofmann, 2005] ).
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