
A New n-ary Existential Quantifier in

Description Logics

Franz Baader, Carsten Lutz,
Eldar Karabaev

TU Dresden, Germany

Manfred Theißen
RWTH Aachen

Germany

Abstract

Motivated by a chemical process engineering application, we introduce
a new concept constructor in Description Logics (DLs), an n-ary variant
of the existential restriction constructor, which generalizes both the usual
existential restrictions and so-called qualified number restrictions. We
show that the new constructor can be expressed in ALCQ, the extension
of the basic DL ALC by qualified number restrictions. However, this rep-
resentation results in an exponential blow-up. By giving direct algorithms
for ALC extended with the new constructor, we can show that the com-
plexity of reasoning in this new DL is actually not harder than the one of
reasoning in ALCQ. Moreover, in our chemical process engineering appli-
cation, a restricted DL that provides only the new constructor together
with conjunction, and satisfies an additional restriction on the occurrence
of roles names, is sufficient. For this DL, the subsumption problem is
polynomial.

1 Introduction

For the inference services of a DL system to be feasible, the underlying infer-
ence problems (like the subsumption problem) must at least be decidable, and
preferably of low complexity. This is only possible if the expressiveness of the
DL employed by the system is restricted in an appropriate way. Because of this
restriction of the expressive power of DLs, various application-driven language
extensions have been proposed in the literature (see, e.g., [2, 8, 19, 14]), some
of which have been integrated into state-of-the-art DL systems [13, 11].

The present paper considers a new concept constructor that is motivated by
a process engineering application [20]. This constructor is an n-ary variant of
the usual existential restriction operator available in most DLs. To motivate the
need for this new constructor, assume that we want to describe a chemical plant



that has a reactor with a main reaction, and in addition a reactor with a main
and a side reaction. Also assume that the concepts Reactor with main reaction
and Reactor with main and side reaction are defined such that the first concept
subsumes the second one. We could try to model this chemical plant with the
help of the usual existential restriction operator as

Plant u ∃has part.Reactor with main reaction u
∃has part.Reactor with main and side reaction.

However, because of the subsumption relationship between the two reactor con-
cepts, this concept is equivalent to

Plant u ∃has part.Reactor with main and side reaction,

and thus does not capture the intended meaning of a plant having two reac-
tors, one with a main reaction and the other with a main and a side reaction.
To overcome this problem, we consider a new concept constructor of the form
∃r.(C1, . . . , Cn), with the intended meaning that it describes all individuals hav-
ing n different r-successors d1, . . . , dn such that di belongs to Ci (i = 1, . . . , n).
Given this constructor, our concept can correctly be described as

Plant u ∃has part.(Reactor with main reaction,

Reactor with main and side reaction).

The situation differs from other application-driven language extensions in
that the new constructor can actually be expressed using constructors available
in the DL ALCQ, which can be handled by state-of-the-art DL systems (Sec-
tion 3). Thus, the new constructor can be seen as syntactic sugar; nevertheless,
it makes sense to introduce it explicitly since this speeds up reasoning. In fact,
expressing the new constructor with the ones available in ALCQ results in an
exponential blow-up. In addition, the translation introduces many “expensive”
constructors (disjunction and qualified number restrictions). For this reason,
even highly optimized DL systems like Racer [11] cannot handle the trans-
lated concepts in a satisfactory way. In contrast, the direct introduction of the
new constructor into ALCQ does not increase the complexity of reasoning (Sec-
tion 4). Moreover, in the process engineering application [20] mentioned above,
a rather inexpressive DL that provides only the new constructor together with
conjunction is sufficient. In addition, only concept descriptions are used where in
each conjunction there is at most one n-ary existential restriction for each role.
For this restricted DL, the subsumption problem turns out to be polynomial
(Section 5).

2 The DL ALCQ

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set NC of concept names and a set NR of role names. The



Name Syntax Semantics

conjunction C u D CI ∩ DI

negation ¬C ∆I \ CI

at-least qualified
number restriction

> n r.C {x | card({y | (x, y) ∈ rI ∧ y ∈ CI}) ≥ n}

Table 1: Syntax and semantics of ALCQ.

constructors determine the expressive power of the DL. In this section, we re-
strict the attention to the DL ALCQ, whose concept descriptions are formed
using the constructors shown in Table 1. Using these constructors, several other
constructors can be defined as abbreviations:

• C t D := ¬(¬C u ¬D) (disjunction),

• > := A t ¬A for a concept name A (top-concept),

• ∃r.C := > 1 r.C (existential restriction),

• ∀r.C := ¬∃r.¬C (value restriction),

• 6 n r.C := ¬(> (n + 1) r.C) (at-most restriction).

The semantics of ALCQ-concept descriptions is defined in terms of an interpre-
tation I = (∆I , ·I). The domain ∆I of I is a non-empty set of individuals and
the interpretation function ·I maps each concept name A ∈ NC to a subset AI

of ∆I and each role r ∈ NR to a binary relation rI on ∆I . The extension of
·I to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1. Here, the function card yields the cardinality of the given
set.

A general ALCQ-TBox is a finite set of general concept inclusions (GCIs)
C v D where C,D are ALCQ-concept descriptions. The interpretation I is a
model of the general ALCQ-TBox T iff it satisfies all its GCIs, i.e., if CI ⊆ DI

holds for all GCIs C v D in T .
We use C ≡ D as an abbreviation of the two GCIs C v D, D v C. An

acyclic ALCQ-TBox is a finite set of concept definitions of the form A ≡ C

(where A is a concept name and C an ALCQ-concept description) that does
not contain multiple definitions or cyclic dependencies between the definitions.
Concept names occurring on the left-hand side of a concept definition are called
defined whereas the others are called primitive.

Given two ALCQ-concept descriptions C,D we say that C is subsumed by
D w.r.t. the general TBox T (C vT D) iff CI ⊆ DI for all models I of T . Sub-
sumption w.r.t. an acyclic TBox and subsumption between concept descriptions
(where T is empty) are special cases of this definition. In the latter case we



write C v D in place of C v∅ D. The concept description C is satisfiable (w.r.t.
the general TBox T ) iff there is an interpretation I (a model I of T ) such that
CI 6= ∅.

The complexity of the subsumption problem in ALCQ depends on the pres-
ence of GCIs. Subsumption of ALCQ-concept descriptions (with or without
acyclic TBoxes) is PSpace-complete and subsumption w.r.t. a general ALCQ-
TBox is ExpTime-complete [21].1 These results hold both for unary and binary
coding of the numbers in number restriction, but in this paper we restrict the
attention to unary coding (where the size of the number n is counted as n rather
than log n).

3 The new constructor

The general syntax of the new constructor is

∃r.(C1, . . . , Cn)

where r ∈ NR, n ≥ 1, and C1, . . . , Cn are concept descriptions. We call this
expression an n-ary existential restriction. Its semantics is defined as

∃r.(C1, . . . , Cn)I := {x | ∃y1, . . . , yn. (x, y1) ∈ rI ∧ . . . ∧ (x, yn) ∈ rI ∧
y1 ∈ CI

1 ∧ . . . ∧ yn ∈ CI
n ∧

∧
1≤i<j≤n yi 6= yj}.

We call the DL whose concept descriptions are formed using the constructors
conjunction, negation, and n-ary existential restriction EL(n)C. It is an immedi-
ate consequence of the semantics of n-ary existential restrictions that the at-least
restriction > n r.C of ALCQ can be expressed by the n-ary existential restriction
∃r.(C, . . . , C).2 Consequently, all of ALCQ can be expressed within EL(n)C.

Conversely, can we express n-ary existential restrictions within ALCQ? We
have seen in the introduction that, in general, ∃r.(C1, . . . , Cn) cannot be replaced
by the conjunction ∃r.C1 u . . . u ∃r.Cn since this conjunction does not ensure
the existence of n different r-successors. However, ALCQ provides us with the
more expressive qualified number restriction constructor. Let us first consider
the case n = 2. We claim that ∃r.(C1, C2) can be expressed by the ALCQ-
concept description

D := (> 1 r.C1) u (> 1 r.C2) u (> 2 r.(C1 t C2)).

It is clear that any individual belonging to ∃r.(C1, C2) also belongs to D. Con-
versely, assume that x belongs to D. Then x has two distinct r-successors y1, y2,

1In [21], acyclic TBoxes are not considered, but it is easy to show that the usual approach
for handling acyclic TBoxes without using exponential space [16] extends to ALCQ (see [5]).

2Since we assume unary coding of numbers in number restrictions, this translation is linear.
Otherwise, it would be exponential.



both belonging to C1 t C2. If one of them belongs to C1 and the other to C2,
then we are done. Otherwise, we have two cases: (i) both belong to C1u¬C2, or
(ii) both belong to ¬C1uC2. We restrict our attention to the first case (since the
second is symmetric). Due to the conjunct > 1 r.C2 in D, x has an r-successor in
C2, which is different from y1 since y1 does not belong to C2. Consequently, there
are two distinct r-successors of x, one belonging to C1 and the other belonging
to C2, which shows that x belongs to ∃r.(C1, C2).

This result can be extended to arbitrary n.

Theorem 1 The n-ary existential restriction constructor can be expressed within
ALCQ, and thus ALCQ and EL(n)C have the same expressive power.

To prove this theorem we show that ∃r.(C1, . . . , Cn) can be expressed by the
ALCQ-concept description

Dn := u
{i1,...,ik}⊆{1,...,n}

(> k r.(Ci1 t . . . t Cik)).

It is again clear that any individual belonging to the concept ∃r.(C1, . . . , Cn)
also belongs to Dn. The other direction is an easy consequence of Hall’s theorem
[12]. Let F = (S1, . . . , Sn) be a finite family of sets. This family has a system
of distinct representatives (SDR) iff there are n distinct elements s1, . . . , sn such
that si ∈ Si (i = 1, . . . , n).

Theorem 2 (Hall) The family F = (S1, . . . , Sn) has an SDR iff card(Si1∪. . .∪
Sik) ≥ k for all {i1, . . . , ik} ⊆ {1, . . . , n}, where i1, . . . , ik are distinct.

Now, assume that the individual x belongs to Dn. For i = 1, . . . , n, let Si

be the set of r-successors of x that belong to Ci. By the definition of Dn, the
family (S1, . . . , Sn) satisfies the condition of Hall’s theorem, and thus it has an
SDR. This SDR obviously shows that x belongs to ∃r.(C1, . . . , Cn).

The proof of Theorem 1 shows that the subsumption problem in EL(n)C can
be reduced to the subsumption problem in ALCQ, and thus DL systems like
Racer that can handle ALCQ can in principle be used to compute subsumption
in EL(n)C. However, the translation from EL(n)C into ALCQ is obviously ex-
ponential. In addition, the constructs it introduces (disjunctions and qualified
number restrictions) are hard to handle for tableau-based subsumption algo-
rithms like the one used by Racer. In fact, faced with the ALCQ-translations
of the EL(n)C-concept descriptions

C := ∃r.(A1 u B1, A2 u B2, A3 u B3, A4 u B4),
D := ∃r.(A1, A2, A3, A4),



it takes Racer3 57 minutes to find out that C v D. For the 5-ary variant of
this example, Racer did not finish its computation within 4 hours.

This problem can be due either to the inherently higher complexity of rea-
soning in EL(n)C, or to the translation. We will see in the next section that the
latter is the culprit.

4 Complexity of reasoning in EL(n)C

The exponential translation of EL(n)C-concepts into ALCQ-concepts together
with the known complexity of the subsumption problem in ALCQ (PSpace

for subsumption of concept descriptions and ExpTime for subsumption w.r.t. a
general TBox) yields the following complexity upper-bounds for the subsumption
problem in EL(n)C: ExpSpace for subsumption of concept descriptions and
2ExpTime for subsumption w.r.t. a general TBox. The next theorem shows
that these upper-bounds are not optimal.

Theorem 3 The subsumption problem in EL(n)C is PSpace-complete for sub-
sumption between concept descriptions and ExpTime-complete for subsumption
w.r.t. a general TBox.

The hardness results are an immediate consequence of the corresponding hard-
ness results [10] for the subsumption problem in ALC (which allows for conjunc-
tion, negation, and existential restrictions). The complexity upper-bounds can
be shown by relatively simple adaptations of well-known algorithmic approaches
used in modal logics to show similar results (see [4] for more details). To show
the PSpace-upper bound, one can adapt the “witness algorithm” (also called
K-worlds algorithm) commonly used in modal logics to show that satisfiabil-
ity in the modal logic K is in PSpace (see, e.g., [6]). The ExpTime-upper
bound can be proved by an adaptation of Pratt’s “elimination of Hintikka sets”
approach to show that satisfiability in propositional dynamic logic (PDL) is in
ExpTime (see also [6]).

5 A tractable sublanguage

In the chemical process engineering application mentioned above [20], the full
expressive power of EL(n)C is actually not needed. This application is concerned
with supporting the construction of mathematical models of process systems
by storing building blocks for such models in a class hierarchy. In order to
retrieve building blocks, one can then either browse the hierarchy or formulate

3Racer Version 1.7.23; on a Pentium 4 machine, 2 Ghz, 2 GB memory; under Redhat
Linux.



query classes. In both cases, the existence of efficient algorithms for computing
subsumption between class descriptions is an important prerequisite.

The frame-like formalism for describing classes of such building blocks intro-
duced in [20] can be expressed in the sublanguage EL(n) of EL(n)C, which allows
for conjunction, n-ary existential restrictions, and the top concept. Moreover,
since in each frame a given slot-name can be used only once, it is sufficient to
consider restricted EL(n)-concept descriptions where in each conjunction there
is at most one n-ary existential restriction for each role: an EL(n)-concept de-
scription is restricted iff it is of the form

A1 u . . . u An u ∃r1.(B1,1, . . . , B1,`1) u . . . u ∃rm.(Bm,1, . . . , Bm,`m
),

where A1, . . . , An are concept names, r1, . . . , rm are distinct role names, and
B1,1, . . . , Bm,`m

are restricted EL(n)-concept descriptions. For example, the EL(n)-
concept description ∃r.(A,∃r.(B,C)) u ∃s.(A,A) is restricted whereas the de-
scription ∃r.(A,∃r.(B,C)) u ∃r.(A,A) is not.

As in the case of EL [3], the corresponding DL with unary existential re-
strictions, restricted EL(n)-concept descriptions can be translated into EL(n)-
description trees, where the nodes are labeled with sets of concept names and
the edges are labeled with role names. For example, the restricted EL(n)-concept
descriptions

A u ∃r.(A,B u ∃r.(B,A),∃r.(A,A u B)) and A u ∃r.(A,B,∃r.(A,A))

yield the description trees depicted in Fig. 1. Given a restricted EL(n)-concept

∅
r

r

r

rr
{A}{A, B}

∅
r

r

r

rr

r r

{A}

{B}

{B}

{A}

{A}

{A}

{A}

{A}

{B}

x1

x8

x3

x7

x2

x5 x6

y1

y2x4

y3

y5 y6

y4

{A}

Figure 1: Two EL(n)-description trees.

description C, we denote the corresponding description tree by TC . Formally,
this tree is described by a tuple TC = (V,E, v0, `), where V is the finite set of
nodes, E ⊆ V × NR × V is the set of NR-labeled edges, v0 ∈ V is the root, and
` : V → 2NC is the node labeling function.

In [3], it was shown that subsumption between EL-concept descriptions cor-
responds to the existence of a homomorphism between the corresponding de-
scription trees. In EL(n) we must additionally require that the homomorphism
is injective.



Definition 4 Given two EL(n)-description trees T1 = (V1, E1, v0,1, `1) and T2 =
(V2, E2, v0,2, `2), a homomorphism ϕ : T1 → T2 is a mapping ϕ : V1 −→ V2 s.t.

• ϕ(v0,1) = v0,2,

• `1(v) ⊆ `2(ϕ(v)) for all v ∈ V1, and

• (ϕ(v), r, ϕ(w)) ∈ E2 for all (v, r, w) ∈ E1.

This homomorphism is an embedding iff the mapping ϕ : V1 −→ V2 is injective.

For example, mapping yi to xi for i = 1, . . . , 6 yields an embedding from the
description tree on the right-hand side of Fig. 1 to the description tree on the
left-hand side. If we changed the label of x6 to {B}, then there would still exist
a homomorphism between the two trees (mapping both y5 and y6 onto x5), but
not an embedding. The following theorem can be shown similarly to the proof
of the corresponding result for EL [3].

Theorem 5 Let C,D be restricted EL(n)-concept descriptions and TC , TD the
corresponding description trees. Then C v D iff there exists an embedding from
TD into TC.

To show that subsumption between restricted EL(n)-concept descriptions is
a polynomial-time problem, it remains to be shown that the existence of an
embedding can be decided in polynomial time. First, let us recall the well-
known bottom-up approach for testing for the existence of a homomorphism
[18, 3].

Let T1 = (V1, E1, v0,1, `1) and T2 = (V2, E2, v0,2, `2) be two EL(n)-description
trees, and assume that we want to check whether there is a homomorphism from
T1 to T2. The idea underlying the polynomial time test is to compute, for each
v ∈ V1, the set δ(v) of all nodes w ∈ V2 such that there is a homomorphism from
the subtree of T1 with root v to the subtree of T2 with root w. Once these sets
δ are computed for all nodes of T1, we can simply check whether v0,2 belongs
to δ(v0,1). The sets δ(v) are computed in a bottom-up fashion, where a node is
treated only after all its successor nodes have been considered:4

1. If v is a leaf of T1, then δ(v) simply consists of all the nodes w ∈ V2 such
that `1(v) ⊆ `2(w).

2. Let v be a node of T1 and let (v, r1, v1), . . . , (v, rk, vk) be all the edges in
E1 with first component v. Since we work bottom up, we know that the
sets δ(v1), . . . , δ(vk) have already been computed. The set δ(v) consists of
all the nodes w ∈ V2 such that

4For example, one can use a postorder tree walk [9] of the nodes of T1 to realize this.



(a) `1(v) ⊆ `2(w) and

(b) for each i, 1 ≤ i ≤ k there exists a node wi ∈ δ(vi) such that
(w, ri, wi) ∈ E2.

It is easy to show that this indeed yields a polynomial-time algorithm for check-
ing the existence of a homomorphism between two EL(n)-description trees.

If we want to test for the existence of an embedding, we must modify Step 2
of this algorithm. In fact, we must ensure that distinct r-successors of v can be
mapped to distinct r-successors of w. This can be achieved as follows:

2′. Let v be a node of T1, and for each role r let (v, r, v1,r), . . . , (v, r, vkr ,r) be
the edges in E1 with first component v and label r. Since we work bottom
up, we know that the sets δ(v1,r), . . . , δ(vkr,r) have already been computed.
The set δ(v) consists of all the nodes w ∈ V2 satisfying the following two
properties:

(a) `1(v) ⊆ `2(w),

(b) for all roles r, the family Fr(w) := (S1,r(w), . . . , Skr,r(w)) has an
SDR, where the members of this family are defined as

Si,r(w) := {w′ ∈ δ(vi,r) | (w, r, w′) ∈ E2}.

Obviously, the existence of an SDR for Fr(w) allows us to map the r-successors
of v to distinct r-successors of w, and thus construct an embedding. For this
algorithm to be polynomial, it remains to be shown that the existence of an
SDR can be decided in polynomial time. Note that Hall’s characterization of
the existence of an SDR obviously does not yield a polynomial-time procedure.
However, checking for the existence of an SDR is basically the same as solving
the maximum bipartite matching problem, which can be done in polynomial
time since it can be reduced to a network flow problem [9].

To be more precise, let (L ∪ R,E) be a bipartite graph, i.e., L ∩ R = ∅ and
E ⊆ L × R. A matching is a subset M of E such that each node in L ∪ R

occurs at most once in M . This matching is called maximum iff there is no
other matching having a larger cardinality. As shown in [9], such a maximum
matching can be computed in time polynomial in the cardinality of V and E.

Let F = (S1, . . . , Sn) be a finite family of finite sets, and let L := {1, . . . , n}
and R = S1 ∪ . . . ∪ Sn.5 We define the set of edges of the bipartite graph
GF = (L ∪ R,E) as follows:

E := {(i, s) | s ∈ Si}.

5Without loss of generality we can assume that L ∩ R = ∅.



It is easy to see that the family F has an SDR iff the corresponding bipartite
graph GF has a maximum matching of cardinality n. In fact, (1, s1), . . . , (n, sn)
is a maximum matching iff s1, . . . , sn is an SDR.

Thus, we have shown that the existence of an embedding can be decided in
polynomial time. Together with Theorem 5, this yields the following tractability
result:

Corollary 6 Subsumption between restricted EL(n)-concept descriptions can be
decided in polynomial time.

A first implementation of this polynomial-time algorithm behaves much better
than the translation approach on the example concept descriptions C,D from
Section 3 and their obvious extensions to larger n. For small n, the subsumption
relationship is found immediately (i.e., with no measurable run-time), and even
for n = 100, the runtime (of our unoptimized implementation) is just 1 second.

It is not hard to show that this polynomiality result can be extended to the
case of restricted acyclic EL(n)-TBoxes, where an acyclic EL(n)-TBox is restricted
if its expansion (i.e., the TBox obtained by exhaustively replacing defined con-
cepts by their definition) contains only restricted EL(n)-concept descriptions (see
[4] for more details).

6 Related and future work

Polynomiality of the subsumption problem in EL was shown in [3] as a by-
product of the characterization of subsumption via the existence of homomo-
morphisms between the corresponding description trees. This result can also be
obtained as a consequence of the fact that the containment problem Q1 ⊆ Q2 for
conjunctive queries is polynomial if Q2 is acyclic [22, 17]. Since it is easy to see
that EL(n)-concept descriptions can be expressed by acyclic conjunctive queries
with disequations [15], one might conjecture that polynomiality of subsumption
in EL(n) follows from the corresponding result for acyclic conjunctive queries
with disequations. This is not true, however. In fact, the containment prob-
lem for conjunctive queries becomes considerably harder if disequations (i.e.,
atoms of the form x 6= y for variables x, y) are allowed to occur in the conjunc-
tive queries. For general conjunctive queries with disequations, the containment
problem is Πp

2-complete rather than NP-complete as in the case of conjunctive
queries without disequations. Surprisingly, the problem remains Πp

2-complete
if Q2 is restricted to being acyclic [15]. And even if both queries contain only
disequations (and no database predicates), it is not hard to show by a reduction
of the complement of the graph homomorphism problem that the containment
problem is coNP-hard. Thus, the polynomiality result shown in the present pa-
per does not follow from known results for containment of conjunctive queries
with disequations.



In [7], it was shown that subsumption in EL remains polynomial even in
the presence of GCIs, and this result was recently extended to a DL extending
EL by several other interesting constructors [1]. Unfortunately, the results in
[1] imply that subsumption in EL(n) becomes ExpTime-hard in the presence of
GCIs.

The most interesting topics for future research are, on the one hand, to show
that the exponential translation from EL(n)C into ALCQ given in Section 3 is
optimal, i.e., to prove that there is no polynomial translation. On the other
hand, the exact complexity of subsumption between unrestricted EL(n)-concept
descriptions is not yet known. The best complexity upper-bound that we cur-
rently have is coNP, i.e., there is an NP-algorithm for testing non-subsumption.
We conjecture that the problem is also coNP-hard, but we have not yet found
an appropriate reduction from a coNP-complete problem.

References

[1] F. Baader and S. Brandt and C. Lutz. Pushing the EL envelope. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), 2005.

[2] F. Baader and P. Hanschke. Extensions of concept languages for a mechanical
engineering application. In Proc. of the 16th German Workshop on Artificial
Intelligence (GWAI’92), volume 671 of LNCS, 1992. Springer-Verlag.

[3] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers
in description logics with existential restrictions. In Proc. of the 16th Int. Joint
Conf. on Artificial Intelligence (IJCAI’99), 1999.

[4] F. Baader, C. Lutz, E. Karabaev, and M. Theißen. A new n-ary existential
quantifier in description logics. In Proc. of the 28th German Conference on
Artificial Intelligence (KI’05), 2005. To appear. A long version has appeared as
LTCS-Report 05-08. See http://lat.inf.tu-dresden.de/research/reports.html.

[5] F. Baader, M. Milicic, C. Lutz, U. Sattler, and F. Wolter. Integrat-
ing description logics and action formalisms for reasoning about web ser-
vices LTCS-Report 05-02, TU Dresden, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

[7] Sebastian Brandt. Polynomial time reasoning in a description logic with exis-
tential restrictions, GCI axioms, and—what else? In Proc. 16th Eur. Conf. on
Artificial Intelligence (ECAI’04), 2004.

[8] D. Calvanese, M. Lenzerini, and D. Nardi. A unified framework for class based
representation formalisms. In Proc. of the 4th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’94), 1994.



[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[10] F. Donini. Complexity of reasoning. In F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. F. Patel-Schneider (editors), The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press, 2003.

[11] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), 2001.

[12] P. Hall. On representatives of subsets. The Journal of the London Mathematical
Society, 10:26–30, 1935.

[13] I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), 1998.

[14] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. J. of the IGPL, 8(3):239–264, 2000.

[15] P. G. Kolaitis, D. M. Martin, and M. N. Thakur. On the complexity of the
containment problem for conjunctive queries with built-in predicates. In Proc. of
the 17th ACM Symp. on Principles of Database Systems (PODS’98), 1998.

[16] Carsten Lutz. Complexity of terminological reasoning revisited. In Proc. 6th
Int. Conf. on Logic for Programming and Automated Reasoning, volume 1705 of
LNAI. Springer-Verlag, 1999.

[17] X. Qian. Query folding. In Proc. of the 12th IEEE Int. Conf. on Data Engineering
(ICDE’96), 1996.

[18] S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM
J. on Computing, 6(4):730–732, 1977.

[19] U. Sattler. A concept language extended with different kinds of transitive roles.
In Proc. of the 20th German Annual Conf. on Artificial Intelligence (KI’96),
volume 1137 of LNAI. Springer-Verlag, 1996.

[20] M. Theißen and L. von Wedel. The need for an n-ary existential quantifier in
description logics. In Proc. of the KI-04 Workshop on Applications of Description
Logics. http://CEUR-WS.org/Vol-115/, 2004.

[21] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, Department of Computer Science, RWTH
Aachen, Germany, 2001.

[22] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of the 7th Int.
Conf. on Very Large Data Bases (VLDB’81), 1981.


