
A New n-ary Existential Quantifier in

Description Logics

Franz Baader, Eldar Karabaev, Carsten Lutz,1 and Manfred Theißen2

1 Theoretical Computer Science, TU Dresden, Germany
2 Process Systems Engineering, RWTH Aachen, Germany

Abstract. Motivated by a chemical process engineering application, we
introduce a new concept constructor in Description Logics (DLs), an
n-ary variant of the existential restriction constructor, which general-
izes both the usual existential restrictions and so-called qualified num-
ber restrictions. We show that the new constructor can be expressed in
ALCQ, the extension of the basic DL ALC by qualified number restric-
tions. However, this representation results in an exponential blow-up. By
giving direct algorithms for ALC extended with the new constructor, we
can show that the complexity of reasoning in this new DL is actually not
harder than the one of reasoning in ALCQ. Moreover, in our chemical
process engineering application, a restricted DL that provides only the
new constructor together with conjunction, and satisfies an additional
restriction on the occurrence of roles names, is sufficient. For this DL,
the subsumption problem is polynomial.

1 Introduction

Description Logics (DLs) [2] are a class of knowledge representation formalisms in
the tradition of semantic networks and frames, which can be used to represent the
terminological knowledge of an application domain in a structured and formally
well-understood way. DL systems provide their users with inference services (like
computing the subsumption hierarchy) that deduce implicit knowledge from the
explicitly represented knowledge. For these inference services to be feasible, the
underlying inference problems must at least be decidable, and preferably of low
complexity. This is only possible if the expressiveness of the DL employed by
the system is restricted in an appropriate way. Because of this restriction of the
expressive power of DLs, various application-driven language extensions have
been proposed in the literature (see, e.g., [3, 9, 22, 16]), some of which have been
integrated into state-of-the-art DL systems [15, 13].

The present paper considers a new concept constructor that is motivated by
a process engineering application [23]. This constructor is an n-ary variant of
the usual existential restriction operator available in most DLs. To motivate the
need for this new constructor, assume that we want to describe a chemical plant
that has a reactor with a main reaction, and in addition a reactor with a main
and a side reaction. Also assume that the concepts Reactor with main reaction
and Reactor with main and side reaction are defined such that the first concept

subsumes the second one. We could try to model this chemical plant with the
help of the usual existential restriction operator as

Plant u ∃has part.Reactor with main reaction u
∃has part.Reactor with main and side reaction.

However, because of the subsumption relationship between the two reactor con-
cepts, this concept is equivalent to

Plant u ∃has part.Reactor with main and side reaction,

and thus does not capture the intended meaning of a plant having two reac-
tors, one with a main reaction and the other with a main and a side reaction.
To overcome this problem, we consider a new concept constructor of the form
∃r.(C1, . . . , Cn), with the intended meaning that it describes all individuals hav-
ing n different r-successors d1, . . . , dn such that di belongs to Ci (i = 1, . . . , n).
Given this constructor, our concept can correctly be described as

Plant u ∃has part.(Reactor with main reaction,
Reactor with main and side reaction).

The situation differs from other application-driven language extensions in
that the new constructor can actually be expressed using constructors avail-
able in the DL ALCQ, which can be handled by state-of-the-art DL systems
(Section 3). Thus, the new constructor can be seen as syntactic sugar; never-
theless, it makes sense to introduce it explicitly since this speeds up reasoning.
In fact, expressing the new constructor with the ones available in ALCQ results
in an exponential blow-up. In addition, the translation introduces many “ex-
pensive” constructors (disjunction and qualified number restrictions). For this
reason, even highly optimized DL systems like Racer [13] cannot handle the
translated concepts in a satisfactory way. In contrast, the direct introduction
of the new constructor into ALC does not increase the complexity of reason-
ing (Section 4). Moreover, in the process engineering application [23] mentioned

above, the rather inexpressive DL EL(n) that provides only the new constructor
together with conjunction is sufficient. In addition, only concept descriptions are
used where in each conjunction there is at most one n-ary existential restriction
for each role. For this restricted DL, the subsumption problem is polynomial
(Section 5). If this last restriction is removed, then subsumption is in coNP, but

the exact complexity of the subsumption problem in EL(n) is still open (Sec-
tion 6). Because of space constraints, some of the technical details are omitted:
they can be found in [5].

2 The DL ALCQ

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set NC of concept names and a set NR of role names. The

Name Syntax Semantics

conjunction C u D CI ∩ DI

negation ¬C ∆I \ CI

at-least qualified
number restriction

> n r.C {x | card({y | (x, y) ∈ rI ∧ y ∈ CI}) ≥ n}

Table 1. Syntax and semantics of ALCQ.

constructors determine the expressive power of the DL. In this section, we re-
strict the attention to the DL ALCQ, whose concept descriptions are formed
using the constructors shown in Table 1. Using these constructors, several other
constructors can be defined as abbreviations:

– C t D := ¬(¬C u ¬D) (disjunction),

– > := A t ¬A for a concept name A (top-concept),

– ∃r.C := > 1 r.C (existential restriction),

– ∀r.C := ¬∃r.¬C (value restriction),

– 6n r.C := ¬(> (n + 1) r.C) (at-most restriction).

The semantics of ALCQ-concept descriptions is defined in terms of an interpre-
tation I = (∆I , ·I). The domain ∆I of I is a non-empty set of individuals and
the interpretation function ·I maps each concept name A ∈ NC to a subset AI

of ∆I and each role r ∈ NR to a binary relation rI on ∆I . The extension of
·I to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1. Here, the function card yields the cardinality of the given set.

A general ALCQ-TBox is a finite set of general concept inclusions (GCIs)
C v D where C,D are ALCQ-concept descriptions. The interpretation I is a
model of the general ALCQ-TBox T iff it satisfies all its GCIs, i.e., if CI ⊆ DI

holds for all GCIs C v D in T .

We use C ≡ D as an abbreviation of the two GCIs C v D, D v C. An
acyclic ALCQ-TBox is a finite set of concept definitions of the form A ≡ C
(where A is a concept name and C an ALCQ-concept description) that does
not contain multiple definitions or cyclic dependencies between the definitions.
Concept names occurring on the left-hand side of a concept definition are called
defined whereas the others are called primitive.

Given two ALCQ-concept descriptions C,D we say that C is subsumed by
D w.r.t. the general TBox T (C vT D) iff CI ⊆ DI for all models I of T .
Subsumption w.r.t. an acyclic TBox and subsumption between concept descrip-
tions (where T is empty) are special cases of this definition. In the latter case we
write C v D in place of C v∅ D. The concept description C is satisfiable (w.r.t.
the general TBox T) iff there is an interpretation I (a model I of T) such that
CI 6= ∅.

The complexity of the subsumption problem in ALCQ depends on the pres-
ence of GCIs. Subsumption of ALCQ-concept descriptions (with or without
acyclic TBoxes) is PSpace-complete and subsumption w.r.t. a general ALCQ-

TBox is ExpTime-complete [24].1 These results hold both for unary and binary
coding of the numbers in number restrictions, but in this paper we restrict the
attention to unary coding (where the size of the number n is counted as n rather
than log n).

3 The new constructor

The general syntax of the new constructor is

∃r.(C1, . . . , Cn)

where r ∈ NR, n ≥ 1, and C1, . . . , Cn are concept descriptions. We call this
expression an n-ary existential restriction. Its semantics is defined as

∃r.(C1, . . . , Cn)I := {x | ∃y1, . . . , yn. (x, y1) ∈ rI ∧ . . . ∧ (x, yn) ∈ rI ∧
y1 ∈ CI

1 ∧ . . . ∧ yn ∈ CI
n ∧

∧
1≤i<j≤n yi 6= yj}.

We call the DL whose concept descriptions are formed using the constructors
conjunction, negation, and n-ary existential restriction EL(n)C. It is an imme-
diate consequence of the semantics of n-ary existential restrictions that the at-
least restriction >n r.C can be expressed by the n-ary existential restriction
∃r.(C, . . . , C).2 Consequently, all of ALCQ can be expressed within EL(n)C.

Conversely, can we express n-ary existential restrictions within ALCQ? We
have seen in the introduction that, in general, ∃r.(C1, . . . , Cn) cannot be replaced
by the conjunction ∃r.C1 u . . . u ∃r.Cn since this conjunction does not ensure
the existence of n different r-successors. However, ALCQ provides us with the
more expressive qualified number restriction constructor. Let us first consider the
case n = 2. We claim that ∃r.(C1, C2) can be expressed by the ALCQ-concept
description

D := (> 1 r.C1) u (> 1 r.C2) u (> 2 r.(C1 t C2)).

It is clear that any individual belonging to ∃r.(C1, C2) also belongs to D. Con-
versely, assume that x belongs to D. Then x has two distinct r-successors y1, y2,
both belonging to C1 t C2. If one of them belongs to C1 and the other to C2,
then we are done. Otherwise, we have two cases: (i) both belong to C1 u¬C2, or
(ii) both belong to ¬C1uC2. We restrict our attention to the first case (since the
second is symmetric). Due to the conjunct > 1 r.C2 in D, x has an r-successor in
C2, which is different from y1 since y1 does not belong to C2. Consequently, there
are two distinct r-successors of x, one belonging to C1 and the other belonging
to C2, which shows that x belongs to ∃r.(C1, C2).

This result can be extended to arbitrary n.

1 In [24], acyclic TBoxes are not considered, but it is easy to show that the usual
approach for handling acyclic TBoxes without using exponential space [18] extends
to ALCQ (see [6]).

2 Since we assume unary coding of numbers in number restrictions, this translation is
linear. Otherwise, it would be exponential.

Theorem 1. The n-ary existential restriction constructor can be expressed within
ALCQ, and thus ALCQ and EL(n)C have the same expressive power.

To prove this theorem we show that ∃r.(C1, . . . , Cn) can be expressed by the
ALCQ-concept description

Dn := u
{i1,...,ik}⊆{1,...,n}

(> k r.(Ci1 t . . . t Cik
)).

It is again clear that any individual belonging to the concept ∃r.(C1, . . . , Cn)
also belongs to Dn. The other direction is an easy consequence of Hall’s theorem
[14]. Let F = (S1, . . . , Sn) be a finite family of sets. This family has a system of
distinct representatives (SDR) iff there are n distinct elements s1, . . . , sn such
that si ∈ Si (i = 1, . . . , n).

Theorem 2 (Hall). The family F = (S1, . . . , Sn) has an SDR iff card(Si1 ∪
. . . ∪ Sik

) ≥ k for all {i1, . . . , ik} ⊆ {1, . . . , n}, where i1, . . . , ik are distinct.

Now, assume that the individual x belongs to Dn. For i = 1, . . . , n, let Si

be the set of r-successors of x that belong to Ci. By the definition of Dn, the
family (S1, . . . , Sn) satisfies the condition of Hall’s theorem, and thus it has an
SDR. This SDR obviously shows that x belongs to ∃r.(C1, . . . , Cn).

The proof of Theorem 1 shows that the subsumption problem in EL(n)C
can be reduced to the subsumption problem in ALCQ, and thus DL systems
like Racer that can handle ALCQ can in principle be used to compute sub-
sumption in EL(n)C. However, the translation from EL(n)C into ALCQ described
above is obviously exponential. In addition, the constructs it introduces (disjunc-
tions and qualified number restrictions) are hard to handle for tableau-based
subsumption algorithms like the one used by Racer. In fact, faced with the
ALCQ-translations of the EL(n)C-concept descriptions

C := ∃r.(A1 u B1, A2 u B2, A3 u B3, A4 u B4),
D := ∃r.(A1, A2, A3, A4),

it takes Racer3 57 minutes to find out that C v D. For the 5-ary variant of
this example, Racer did not finish its computation within 4 hours.

This problem can be due either to the inherently higher complexity of rea-
soning in EL(n)C, or to the translation. We will see in the next section that the
latter is the culprit.

4 Complexity of reasoning in EL(n)C

The exponential translation of EL(n)C-concepts into ALCQ-concepts together
with the known complexity of the subsumption problem in ALCQ (see Section 2)
yields the following complexity upper-bounds for the subsumption problem in
EL(n)C: ExpSpace for subsumption of concept descriptions and 2ExpTime for

define procedure EL(n)C-World(∆, Γ)

if ∆ is not a type for Γ then

return false

for all r ∈ rol∃(∆) do

non-deterministically choose an n ≤ Nr(Γ) and sets Ψ0, . . . , Ψn−1 ⊆ r- cl(∆)

if Ψ0, . . . , Ψn−1 is not a successor candidate for ∆ w.r.t. Γ then

return false

for all i < n do

if EL(n)C-World(Ψi, r- cl(∆)) = false then

return false

return true

Fig. 1. The procedure EL(n)C-World.

subsumption w.r.t. a general TBox. The next theorem shows that these upper-
bounds are not optimal.

Theorem 3. The subsumption problem in EL(n)C is PSpace-complete for sub-
sumption between concept descriptions and ExpTime-complete for subsumption
w.r.t. a general TBox.

The hardness results are an immediate consequence of the corresponding hard-
ness results [11] for the subsumption problem in ALC (which allows for con-

junction, negation, and existential restrictions). Since EL(n)C is closed under
negation, it is enough to prove the upper bounds for the satisfiability problem.
To show the PSpace-upper bound, we adapt the “witness algorithm” (also called
K-worlds algorithm) commonly used in modal logics to show that satisfiability
in the modal logic K is in PSpace (see, e.g., [7]). The ExpTime-upper bound
is proved by an adaptation of Pratt’s “elimination of Hintikka sets” approach
to show that satisfiability in propositional dynamic logic (PDL) is in ExpTime

(see also [7]). But first, we must introduce some notation.
In the following, we assume that all concept descriptions are built using

only the constructors conjunction, negation, and n-ary existential restriction.
We use sub(C) to denote the set of all subconcepts of C, sub(T) to denote⋃

CvD∈T (sub(C) ∪ sub(D)), and define the closure of C and T as

cl(C, T) := sub(C) ∪ sub(T) ∪ {¬D | D ∈ sub(C) ∪ sub(T)}.

We use cl(C) as an abbreviation for cl(C, ∅). Let Γ be a set of concept descrip-
tions. A set Ψ ⊆ Γ is a type for Γ iff it satisfies the following conditions:

– for all C u D ∈ Γ : C u D ∈ Ψ iff {C,D} ⊆ Ψ ;
– for all ¬(C u D) ∈ Γ : ¬(C u D) ∈ Ψ iff {¬C,¬D} ∩ Ψ 6= ∅;
– for all ¬C ∈ Γ : ¬C ∈ Ψ iff C /∈ Ψ .

3
Racer Version 1.7.23; on a Pentium 4 machine, 2 Ghz, 2 GB memory; under Redhat
Linux.

define procedure EL(n)C-Elim(C, T)

Set i := 0 and T0 to the set of all types for C and T

repeat

Ti+1 := {Γ ∈ Ti | Γ is not moribund in Ti}

i := i + 1

until Ti = Ti−1

if there is a Γ ∈ Ti with C ∈ Γ then

return true

return false

Fig. 2. The procedure EL(n)C-Elim.

Intiuitively, a type for cl(C, T) can be used to describe to which subconcepts of
C, T an individual of a given interpretation belongs or not. Individuals having
identical types behave the same w.r.t. subconcepts of C, T , and thus, in the al-
gorithms, types can be used to represent the relevant properties of individuals.
Basically, the ExpTime-upper bound is due to the fact that there are only expo-
nentially many types for cl(C, T). In case T is empty, there are still exponentially
many types, but the way one goes through them is such that only polynomially
many of them need to be held in memory at the same time.

Let Γ be a set of concept descriptions, and r a role name. Then rol∃(Γ)
denotes the set of role names r such that ∃r.(C1, . . . , Ck) ∈ Γ for some sequence
of concept descriptions C1, . . . , Ck; moreover, for every role name r we set

r-con(Γ) := {C1, . . . , Ck | ∃r.(C1, . . . , Ck) ∈ Γ or ¬∃r.(C1, . . . , Ck) ∈ Γ},
r-cl(Γ) := {D,¬D | D ∈ sub(E) for some E ∈ r-con(Γ)},
Nr(Γ) :=

∑
∃r.(C1,...,Ck)∈Γ k.

Finally, let Ψ ⊆ Γ , Φ0, . . . , Φn−1 a (possibly empty) sequence of subsets of Γ ,
and r a role name. Then Φ0, . . . , Φn−1 is a successor candidate for Ψ w.r.t. r
and Γ if, for all ∃r.(C1, . . . , Ck) ∈ Γ , we have ∃r.(C1, . . . , Ck) ∈ Ψ iff there are
i1, . . . , ik < n such that Cj ∈ Φij

for 1 ≤ j ≤ k and ij 6= i` for 1 ≤ j < ` ≤ k.

The following lemma, whose proof can be found in [5], states that the pro-

cedure introduced in Fig. 1 decides satisfiability of EL(n)C-concept descriptions.

Lemma 1. The EL(n)C-concept description C is satisfiable iff there exists a set
Ψ ⊆ cl(C) with C ∈ Ψ such that EL(n)C-World(Ψ, cl(C)) returns true.

In [5] it is also shown that EL(n)C-World is a non-deterministic algorithm that
runs in polynomial space. Because of Savitch’s theorem, which says that PSpace

= NPSpace, this yields the desired PSpace upper-bound.

Let us now turn to the case of satisfiability w.r.t. a general TBox. Let C be
a concept and T a TBox. A set Ψ ⊆ cl(C, T) is a type for C and T if it is a type
for cl(C, T) and additionally satisfies the following property: for all D v E ∈ T ,
D ∈ Ψ implies E ∈ Ψ .

A type Γ is called moribund w.r.t. a set of types T if there exists a role name
r such that there is no sequence Φ0, . . . , Φn−1 ∈ T with n ≤ Nr(Γ) that is a
successor candidate for Γ w.r.t. r and cl(C, T).

Lemma 2. The procedure EL(n)C-Elim introduced in Fig. 2 decides satisfiability
of C w.r.t. T in exponential time.

5 A tractable sublanguage

In the chemical process engineering application mentioned above [23], the full

expressive power of EL(n)C is actually not needed. This application is concerned
with supporting the construction of mathematical models of process systems
by storing building blocks for such models in a class hierarchy. In order to re-
trieve building blocks, one can then either browse the hierarchy or formulate
query classes. In both cases, the existence of efficient algorithms for computing
subsumption between class descriptions is an important prerequisite.

The frame-like formalism for describing classes of such building blocks intro-
duced in [23] can be expressed in the sublanguage EL(n) of EL(n)C, which allows
for conjunction, n-ary existential restrictions, and the top concept. Moreover,
since in each frame a given slot-name can be used only once, it is sufficient to
consider restricted EL(n)-concept descriptions where in each conjunction there
is at most one n-ary existential restriction for each role: an EL(n)-concept de-
scription is restricted iff it is of the form

A1 u . . . u An u ∃r1.(B1,1, . . . , B1,`1) u . . . u ∃rm.(Bm,1, . . . , Bm,`m
),

where A1, . . . , An are concept names, r1, . . . , rm are distinct role names, and
B1,1, . . . , Bm,`m

are restricted EL(n)-concept descriptions.

For example, the EL(n)-concept description ∃r.(A,∃r.(B,C)) u ∃s.(A,A) is
restricted whereas the description ∃r.(A,∃r.(B,C)) u ∃r.(A,A) is not.

As in the case of EL [4], the fragment of EL(n) admitting only unary exis-

tential restrictions, restricted EL(n)-concept descriptions can be translated into
EL(n)-description trees, where the nodes are labeled with sets of concept names
and the edges are labeled with role names. For example, the restricted EL(n)-
concept descriptions

A u ∃r.(A,B u ∃r.(B,A),∃r.(A,A u B)) and A u ∃r.(A,B,∃r.(A,A))

yield the description trees depicted in Fig. 3. Given a restricted EL(n)-concept
description C, we denote the corresponding description tree by TC . Formally,
this tree is described by a tuple TC = (V,E, v0, `), where V is the finite set of
nodes, E ⊆ V × NR × V is the set of NR-labeled edges, v0 ∈ V is the root, and
` : V −→ 2NC is the node labeling function.

In [4], it was shown that subsumption between EL-concept descriptions cor-
responds to the existence of a homomorphism between the corresponding de-
scription trees. In EL(n), we must additionally require that the homomorphism
is injective.

∅
r

r

r

rr
{A}{A, B}

∅
r

r

r

rr

r r

{A}

{B}

{B}

{A}

{A}

{A}

{A}

{A}

{B}

x1

x8

x3

x7

x2

x5 x6

y1

y2x4

y3

y5 y6

y4

{A}

Fig. 3. Two EL(n)-description trees.

Definition 1. Given two EL(n)-description trees T1 = (V1, E1, v0,1, `1) and T2 =
(V2, E2, v0,2, `2), a homomorphism ϕ : T1 −→ T2 is a mapping ϕ : V1 −→ V2

such that

– ϕ(v0,1) = v0,2,
– `1(v) ⊆ `2(ϕ(v)) for all v ∈ V1, and
– (ϕ(v), r, ϕ(w)) ∈ E2 for all (v, r, w) ∈ E1.

This homomorphism is an embedding iff the mapping ϕ : V1 −→ V2 is injective.

For example, mapping yi to xi for i = 1, . . . , 6 yields an embedding from the
description tree on the right-hand side of Fig. 3 to the description tree on the
left-hand side. If we changed the label of x6 to {B}, then there would still exist
a homomorphism between the two trees (mapping both y5 and y6 onto x5), but
not an embedding.

The following theorem can be shown similarly to the proof of the correspond-
ing result for EL [4] (see [5] for details).

Theorem 4. Let C,D be restricted EL(n)-concept descriptions and TC , TD the
corresponding description trees. Then C v D iff there exists an embedding from
TD into TC .

To show that subsumption between restricted EL(n)-concept descriptions is
a polynomial-time problem, it remains to be shown that the existence of an
embedding can be decided in polynomial time. First, let us recall the well-known
bottom-up approach for testing for the existence of a homomorphism [21, 4].

Let T1 = (V1, E1, v0,1, `1) and T2 = (V2, E2, v0,2, `2) be two EL(n)-description
trees, and assume that we want to check whether there is a homomorphism from
T1 to T2. The idea underlying the polynomial time test is to compute, for each
v ∈ V1, the set δ(v) of all nodes w ∈ V2 such that there is a homomorphism from
the subtree of T1 with root v to the subtree of T2 with root w. Once these sets
δ are computed for all nodes of T1, we can simply check whether v0,2 belongs
to δ(v0,1). The sets δ(v) are computed in a bottom-up fashion, where a node is
treated only after all its successor nodes have been considered:4

4 For example, one can use a postorder tree walk [10] of the nodes of T1 to realize this.

1. If v is a leaf of T1, then δ(v) simply consists of all the nodes w ∈ V2 such
that `1(v) ⊆ `2(w).

2. Let v be a node of T1 and let (v, r1, v1), . . . , (v, rk, vk) be all the edges in E1

with first component v. Since we work bottom up, we know that the sets
δ(v1), . . . , δ(vk) have already been computed. The set δ(v) consists of all the
nodes w ∈ V2 such that

(a) `1(v) ⊆ `2(w) and
(b) for each i, 1 ≤ i ≤ k there exists a node wi ∈ δ(vi)

such that (w, ri, wi) ∈ E2.

It is easy to show that this indeed yields a polynomial-time algorithm for checking
the existence of a homomorphism between two EL(n)-description trees.

If we want to test for the existence of an embedding, we must modify Step 2
of this algorithm. In fact, we must ensure that distinct r-successors of v can be
mapped to distinct r-successors of w. This can be achieved as follows:

2′. Let v be a node of T1, and for each role r let (v, r, v1,r), . . . , (v, r, vkr,r) be
the edges in E1 with first component v and label r. Since we work bottom
up, we know that the sets δ(v1,r), . . . , δ(vkr,r) have already been computed.
The set δ(v) consists of all the nodes w ∈ V2 satisfying the following two
properties:

(a) `1(v) ⊆ `2(w),
(b) for all roles r, the family Fr(w) := (S1,r(w), . . . , Skr,r(w)) has an SDR,

where the members of this family are defined as

Si,r(w) := {w′ ∈ δ(vi,r) | (w, r, w′) ∈ E2}.

Obviously, the existence of an SDR for Fr(w) allows us to map the r-successors
of v to distinct r-successors of w, and thus construct an embedding. For this
algorithm to be polynomial, it remains to be shown that the existence of an
SDR can be decided in polynomial time. Note that Hall’s characterization of
the existence of an SDR obviously does not yield a polynomial-time procedure.
However, checking for the existence of an SDR is basically the same as solving
the maximum bipartite matching problem, which can be done in polynomial
time since it can be reduced to a network flow problem [10].

To be more precise, let (L ∪ R,E) be a bipartite graph, i.e., L ∩ R = ∅ and
E ⊆ L×R. A matching is a subset M of E such that each node in L∪R occurs at
most once in M . This matching is called maximum iff there is no other matching
having a larger cardinality. As shown in [10], such a maximum matching can be
computed in time polynomial in the cardinality of V and E.

Let F = (S1, . . . , Sn) be a finite family of finite sets, and let L := {1, . . . , n}
and R = S1 ∪ . . . ∪ Sn.5 We define the set of edges of the bipartite graph
GF = (L ∪ R,E) as follows:

E := {(i, s) | s ∈ Si}.

5 Without loss of generality we can assume that L ∩ R = ∅.

It is easy to see that the family F has an SDR iff the corresponding bipartite
graph GF has a maximum matching of cardinality n. In fact, (1, s1), . . . , (n, sn)
is a maximum matching iff s1, . . . , sn is an SDR.

Thus, we have shown that the existence of an embedding can be decided in
polynomial time. Together with Theorem 4, this yields the following tractability
result:

Corollary 1. Subsumption between restricted EL(n)-concept descriptions can be
decided in polynomial time.

A first implementation of this polynomial-time algorithm behaves much bet-
ter than the translation approach on the example concept descriptions C,D from
Section 3 and their obvious extensions to larger n. For small n, the subsumption
relationship is found immediately (i.e., with no measurable run-time), and even
for n = 100, the runtime (of our unoptimized implementation) is just 1 second.
One could argue that the comparison of these results with the performance of
Racer on the ALCQ-translations of C,D and their extensions to larger n is
unfair since the culprit is the exponential translation rather than Racer. How-
ever, this is the only known translation of EL(n)-concept descriptions into a DL
that can be handled by Racer, and it is the one originally used in the process
engineering application.

Acyclic TBoxes In the process engineering application, acyclic TBoxes are
used to introduce abbreviations for complex concept descriptions. In order to
extend the polynomial-time algorithm for subsumption between restricted EL(n)-
concept descriptions to subsumption w.r.t. acyclic TBoxes, we must first define
what it means that an EL(n)-TBox is restricted. An acyclic EL(n)-TBox is called
restricted iff its concept definitions are of the form

A ≡ P1 u . . . u Pn u ∃r1.(A1,1, . . . , A1,`1) u . . . u ∃rm.(Am,1, . . . , Am,`m
),

where A,A1,1, . . . , Am,`m
are defined concepts, P1, . . . , Pn are primitive concepts,

and r1, . . . , rm are distinct role names.
Given defined concepts A,B in such a TBox T , we can decide subsumption

between A and B w.r.t. T by first expanding A and B, i.e., replacing defined con-
cept names by their definitions until no more defined concepts occur, and then
testing the expanded concept descriptions obtained this way for subsumption.
The definition of restricted EL(n)-TBoxes ensures that these expanded concept
descriptions are restricted, and thus we can use the subsumption algorithm de-
scribed above. However, it is well-know that the expansion process may lead to
an exponential blow-up, i.e., the expanded concept descriptions can be exponen-
tial in the size of the TBox [19].

To overcome this problem, we represent restricted EL(n)-TBoxes as directed
acyclic graphs (DAG), and define a notion of embedding that, (i) can be tested
in time polynomial in the size of the DAG, and (ii) implies the existence of an
embedding between the description trees of the expanded concept descriptions
(see [5] for details).

Corollary 2. Subsumption between defined concepts with respect to restricted
acyclic EL(n)-TBoxes can be decided in polynomial time.

Disjointness statements In the chemical process engineering application mo-
tivating this paper, the real-world concepts expressed by primitive concept names
are often disjoint. For example, an object cannot be both an apparatus and a
plant. Disjointness statements of the form dis(P,Q), where P,Q are primitive
concepts, allow us to express such additional knowledge. An interpretation I is
a model of this statement iff P I ∩ QI = ∅.

For restricted EL(n)-concept descriptions, the only effect that disjointness
statements have is that they can make concepts unsatisfiable. It is easy to see
that the EL(n)-concept description C is unsatisfiable w.r.t. the set of disjointness
statements D iff there is a statement dis(P,Q) in D and a node v in TC whose

label contains P and Q. Now, assume that C,D are restricted EL(n)-concept
descriptions. Then C is subsumed by D w.r.t. D iff (i) either C is unsatisfiable
w.r.t. D, or (ii) both are satisfiable w.r.t. D and C is subsumed by D without
considering D.

Corollary 3. Subsumption between restricted EL(n)-concept descriptions w.r.t.
disjointness statements can be decided in polynomial time.

6 Unrestricted EL(n)-concept descriptions

In such concept descriptions, several n-ary existential restrictions for the same
role r can occur in a conjunction, such as in the description

Cu := A u ∃r.(A,B) u ∃r.(∃r.A u ∃r.A).

If we translate this unrestricted EL(n)-concept description into a description tree,
then we obtain the tree on the right-hand side of Fig. 3, which is also obtained
as a translation of the restricted EL(n)-concept description

Cr := A u ∃r.(A,B,∃r.(A,A)).

To distinguish between these two descriptions, we introduce distinctness classes:
for each node x in the tree and each role r, the r-successors of x are partitioned
into such classes. For example, in the tree corresponding to Cu, the r-successors
of y1 are partitioned into the sets {y2, y3}, {y4}, whereas there is only one
distinctness class {y2, y3, y4} for these nodes in the tree corresponding to Cr.

The notion of an embedding that we will use in this section must take these
distinctness classes into account. Instead of requiring that the homomorphism
ϕ is injective, we require that for each node x in T1 and each distinctness
class {x1, . . . , xk} of r-successors of x, the nodes ϕ(x1), . . . , ϕ(xk) are distinct
r-successors of ϕ(x).

However, if we just change the notion of an embedding in this way, then
Theorem 4 obviously does not hold for unrestricted EL(n)-concept descriptions.

r r
{B}

∅ ∅

{A, B}

r

r

r

{A}

x1

x2 x4

{B}

{B}
x3

Fig. 4. Identification of EL(n)-description trees.

In fact, if ϕ(x1), . . . , ϕ(xk) do not belong to the same distinctness class, then we
cannot be sure that they really represent distinct individuals. For example, if
C = ∃r.A u ∃r.B and D = ∃r.(A,B), then there is an embedding from TD into
TC , but D does not subsume C.

Thus, an obvious conjecture could be that the embedding must respect dis-
tinctness classes, i.e., we must require ϕ(x1), . . . , ϕ(xk) to belong to the same
distinctness class. However, the following example shows that this requirement is
too strong. Let C = ∃r.Au∃r.(B,B) and D = ∃r.(A,B). There is no embedding
from TD to TC that respects distinctness classes, but it is easy to see that D
subsumes C.

Before we can formulate a correct characterization of subsumption between
unrestricted EL(n)-concept descriptions, we must introduce some notation. Given
a description tree T = (V,E, v0, `) where role successors are partitioned into
distinctness classes, an identification on T is an equivalence relation ∼ on V
such that v1 ∼ v2 implies that

– there are u1, u2 ∈ V and a role r such that v1 is an r-successor of u1, v2 is
an r-successor of u2, and u1 ∼ u2;

– if v1 6= v2, then v1, v2 do not belong to the same distinctness class.

Any identification ∼ on T induces a description tree T/∼ whose nodes are the
∼-equivalence classes [v]∼ := {u ∈ V | u ∼ v}, whose root is [v0]∼, and whose
edges and node labels are defined as follows:

E∼ := {([u]∼, r, [v]∼) | there is u′ ∈ [u]∼, v′ ∈ [v]∼ such that (u′, r, v′) ∈ E},

`∼([u]∼) :=
⋃

u′∈[u]∼
`(u′).

For example, the EL(n)-description tree TC corresponding to C = ∃r.A u
∃r.(B,B) is depicted on the left-hand side of Fig. 4, where the r-successors of
x1 are partitioned into the distinctness classes {x2}, {x3, x4}. There are three
different identifications: the identity relation, the relation where in addition x2 ∼
x3, and the relation where in addition x2 ∼ x4. The EL(n)-description tree
induced by the identity relation is TC itself, whereas the trees induced by the
other two identifications are isomorphic to the tree depicted on the right-hand
side of Fig. 4. Obviously, there is an embedding of the EL(n)-description tree TD

corresponding to D = ∃r.(A,B) into each of these two trees.

Theorem 5. Let C,D be (unrestricted) EL(n)-concept descriptions and TC , TD

the corresponding description trees. Then C v D iff for every identification ∼
on TC there exists an embedding from TD into TC/∼.

This theorem yields an NP-algorithm for testing non-subsumption of unre-
stricted EL(n)-concept descriptions: guess in non-deterministic polynomial time
an identification ∼ of TC , and then check in polynomial time (by a simple adap-
tation of the algorithm described in Section 5) whether there is an embedding
from TD into TC/∼.

Corollary 4. The subsumption problem for (unrestricted) EL(n)-concept de-
scriptions is in coNP.

Disjointness statements The characterization of subsumption between (unre-

stricted) EL(n)-concept descriptions given in Theorem 5 can easily be extended
to deal with disjointness statements. In fact, the only thing that must be changed
is the definition of an identification: we must additionally require that u ∼ v im-
plies {P,Q} 6⊆ `(u) ∪ `(v) for all dis(P,Q) in D. With this new notion of an
identification, Theorem 5 also holds w.r.t. a set of disjointness statements D.
This shows that the subsumption problem for (unrestricted) EL(n)-concept de-
scriptions w.r.t. disjointness statements is in coNP. In the presence of disjointness
statements, we can also show the matching hardness result.

Corollary 5. The subsumption problem for (unrestricted) EL(n)-concept de-
scriptions w.r.t. disjointness statements is coNP-complete.

The hardness result can be shown by a reduction of graph 3-colorability to non-
subsumption.6 A given undirected graph G = (V,E) is 3-colorable iff there is
a mapping f : V −→ {1, 2, 3} such that {u, v} ∈ E implies f(u) 6= f(v). It is
well-known (see [12]) that the 3-colorability problem, i.e., the question whether
a given graph is 3-colorable, is NP-complete.

Let G = (V,E) be an undirected graph with n vertices, i.e., V = {v1, . . . , vn}.
Without loss of generality we assume that this graph has no loops, i.e., {u, v} ∈ E
implies u 6= v. Let A1, . . . , An be concept names. The graph G = (V,E) is
represented by the set of disjointness statements

DG := {dis(Ai, Aj) | {vi, vj} ∈ E}.

Let C := ∃r.A1 u . . . u ∃r.An and D := ∃r.(>,>,>,>). In [5], it is shown that
C is not subsumed by D w.r.t. DG iff G is 3-colorable.

7 Related and future work

Polynomiality of the subsumption problem in EL was shown in [4] as a by-
product of the characterization of subsumption via the existence of homomor-
phisms between the corresponding description trees. This result can also be

6 The idea underlying this reduction was suggested by an anonymous reviewer.

obtained as a consequence of the fact that the containment problem Q1 ⊆ Q2

for conjunctive queries is polynomial if Q2 is acyclic [25, 20]. Since it is easy

to see that EL(n)-concept descriptions can be expressed by acyclic conjunctive
queries with disequations [17], one might conjecture that polynomiality of sub-

sumption in EL(n) follows from the corresponding result for acyclic conjunctive
queries with disequations. This is not true, however. In fact, the containment
problem for conjunctive queries becomes considerably harder if disequations (i.e.,
atoms of the form x 6= y for variables x, y) are allowed to occur in the conjunc-
tive queries. For general conjunctive queries with disequations, the containment
problem is Πp

2 -complete rather than NP-complete as in the case of conjunctive
queries without disequations. Surprisingly, the problem remains Πp

2 -complete if
Q2 is restricted to being acyclic [17]. And even if both queries contain only dis-
equations (and no database predicates), it is not hard to show by a reduction of
3-colorability to non-containment that the containment problem is coNP-hard.
Thus, the polynomiality results shown in the present paper does not follow from
known results for containment of conjunctive queries with disequations.

In [8], it was shown that subsumption in EL remains polynomial even in the
presence of GCIs, and this result was recently extended to a DL extending EL by
several other interesting constructors [1]. Unfortunately, the results in [1] imply

that subsumption in EL(n) becomes ExpTime-hard in the presence of GCIs.
The most interesting topics for future research are, on the one hand, to show

that the exponential translation from EL(n)C into ALCQ given in Section 3 is op-
timal, i.e., to prove that there is no polynomial translation. On the other hand,
the exact complexity of subsumption between unrestricted EL(n)-concept de-
scriptions is not yet known. The best complexity upper-bound that we currently
have is coNP (see Corollary 4). We conjecture that the problem is coNP-hard,
but have not yet found an appropriate reduction from a coNP-complete problem.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL-envelope. In Proc. 19th Int.
Joint Conf. on Artificial Intelligence, 2005. To appear.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

3. F. Baader and P. Hanschke. Extensions of concept languages for a mechanical
engineering application. In Proc. 16th German Workshop on Artificial Intelligence,
volume 671 of LNCS, 1992. Springer-Verlag.

4. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. 16th Int. Joint Conf. on
Artificial Intelligence, 1999.

5. F. Baader, C. Lutz, E. Karabaev, and M. Theißen. A new n-ary existential quanti-
fier in description logics. LTCS-Report 05-08, Theoretical Computer Science, TU
Dresden, Germany, 2005. See http://lat.inf.tu-dresden.de/research/reports.html.

6. F. Baader, M. Milicic, C. Lutz, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms for reasoning about web services. LTCS-Report 05-02,

Theoretical Computer Science, TU Dresden, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

7. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

8. S. Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In Proc. 16th Eur. Conf. on Artificial
Intelligence, 2004.

9. D. Calvanese, M. Lenzerini, and D. Nardi. A unified framework for class based
representation formalisms. In Proc. 4th Int. Conf. on the Principles of Knowledge
Representation and Reasoning, 1994.

10. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

11. F. Donini. Complexity of reasoning. In [2]. 2003.
12. M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to

NP-completeness. W. H. Freeman and Company, San Francisco, 1979.
13. V. Haarslev and R. Möller. RACER system description. In Proc. Int. Joint Conf.

on Automated Reasoning, 2001.
14. P. Hall. On representatives of subsets. The Journal of the London Mathematical

Society, 10:26–30, 1935.
15. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. 6th

Int. Conf. on Principles of Knowledge Representation and Reasoning, 1998.
16. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive

description logics. J. of the Interest Group in Pure and Applied Logic, 8(3):239–
264, 2000.

17. P. G. Kolaitis, D. M. Martin, and M. N. Thakur. On the complexity of the con-
tainment problem for conjunctive queries with built-in predicates. In Proc. 17th
ACM Symp. on Principles of Database Systems, 1998.

18. C. Lutz. Complexity of terminological reasoning revisited. In Proc. 6th Int.
Conf. on Logic for Programming and Automated Reasoning, volume 1705 of LNAI.
Springer-Verlag, 1999.

19. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43:235–249, 1990.

20. X. Qian. Query folding. In Proc. 12th IEEE Int. Conf. on Data Engineering, 1996.
21. S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM J.

on Computing, 6(4):730–732, 1977.
22. U. Sattler. A concept language extended with different kinds of transitive roles. In

Proc. 20th German Annual Conf. on Artificial Intelligence, volume 1137 of LNAI.
Springer-Verlag, 1996.

23. M. Theißen and L. von Wedel. The need for an n-ary existential quantifier in
description logics. In Proc. KI-04 Workshop on Applications of Description Logics.
CEUR Electronic Workshop Proceedings, http://CEUR-WS.org/Vol-115/, 2004.

24. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, Computer Science Department, RWTH Aachen, Ger-
many, 2001.

25. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7th Int. Conf.
on Very Large Data Bases, 1981.

