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Abstract. In a previous paper, we have introduced a general approach
for connecting two many-sorted theories through connection functions
that behave like homomorphisms on the shared signature, and have
shown that, under appropriate algebraic conditions, decidability of the
validity of universal formulae in the component theories transfers to their
connection. This work generalizes decidability transfer results for so-
called E-connections of modal logics. However, in this general algebraic
setting, only the most basic type of E-connections could be handled. In
the present paper, we overcome this restriction by looking at pairs of
connection functions that are adjoint pairs for partial orders defined in
the component theories.

1 Introduction

Transfer of decidability from component theories/logics to their combination
have been investigated independently in different areas of computer science and
logic, and only recently it has turned out that there are close connections between
different such transfer results. For example, in modal logics it was shown that in
many cases decidability of (relativized) validity transfers from two modal logics
to their fusion [14, 21, 23, 3]. In automated deduction, the Nelson-Oppen com-
bination procedure [18, 17] and combination procedures for the word problem
[20, 19, 4] were generalized to the case of the union of theories over non-disjoint
signatures [7, 22, 5, 8, 11, 2], and it could be shown that some of these approaches
[11, 2] actually generalize decidability transfer results for fusions of modal log-
ics from equational theories induced by modal logics to more general first-order
theories satisfying certain model-theoretic restrictions. In particular, these gen-
eralizations no longer require the shared theory to be the theory of Boolean
algebras.

The purpose of this work is to develop similar algebraic generalizations of
decidability transfer results for so-called E-connections [15] of modal logics. In-
tuitively, the difference between fusion and E-connection can be explained as
follows. A model of the fusion is obtained from two models of the component
logics by identifying their domains. In contrast, a model of the E-connection
consists of two separate models of the component logics together with certain
connecting relations between their domains. There are also differences in the



syntax of the combined logic. In the case of the fusion, the Boolean operators
are shared, and all operators can be applied to each other without restrictions. In
the case of the E-connection, there are two copies of the Boolean operators, and
operators of the different logics cannot be mixed; the only connection between
the logics are new modal operators that are induced by the connecting relations.

In [1], this connection approach was generalized to the more general setting
of connecting many-sorted first-order theories. The use of many-sorted theories
allowed us to keep the domains separate and to restrict the way function symbols
can be applied to each other. To be more precise, let T1, T2 be two many-sorted
theories that may share some sorts as well as function and relation symbols.
We first build the disjoint union T1 ] T2 of these two theories (by using disjoint
copies of the shared parts), and then connect them by introducing connection
functions between the shared sorts. These connection functions must behave
like homomorphisms for the shared function and predicate symbols, i.e., the
axioms stating this are added to T1 ] T2. This corresponds to the fact that the
new modal operators in the E-connection approach interact with the Boolean
operators of the component logics. In [1], we started with the simplest case
where there is just one connection function, and showed that decidability of
the universal fragments of T1, T2 transfers to their connection whenever certain
model-theoretic conditions are satisfied. The approach was then extended to the
case of several connection functions, and to variants of the general combination
scheme where the connection function must satisfy additional properties (like
being surjective, an embedding, or an isomorphism).

However, in the E-connection approach introduced in [15], one usually con-
siders not only the modal operator induced by a connecting relation, but also
the modal operator induced by its inverse. It is not adequate to express these
two modal operators by independent connection function going in different direc-
tions since this does not capture the relationships that must hold between them.
For example, if 3 is the diamond operator induced by the connecting relation
E, and 2

− is the box operator induced by its inverse E−, then the formulae
x → 2

−
3x and 32

−y → y are valid in the E-connection. In order to express
these relationships in the algebraic setting without assuming the presence of the
Boolean operators in the shared theory, we replace the logical implication → by
a partial order ≤,1 and require that x ≤ r(`(x)) and `(r(y)) ≤ y holds for the
corresponding connection functions. If `, r are also order preserving, then this
means that `, r is a pair of adjoint functions for the partial order ≤. We call the
connection of two theories obtained this way an adjoint theory connection.

In this paper we give an abstract algebraic condition under which the decid-
ability of the universal fragment transfers from the component theories to their
adjoint theory connection. In contrast to the conditions in [1], which are com-
patibility conditions between a shared theory and the component theories, this
is a condition that requires the existence of certain subtheories of the component

1 In the presence of (some of) the Boolean operators, this partial order is obtained in
the usual way, e.g., by defining x ≤ y iff xt y = y, where t is the join (disjunction)
operator. Note that the applications of 3 and 2

− preserve this order.



theories, but these subtheories need not be the same for different components.
We then give sufficient conditions under which our new condition is satisfied. In
particular, this shows that the decidability transfer results for E-connection with
inverse connection modalities follow from our more general algebraic result.

2 Notation and definitions

In this section, we fix the notation and give some important definitions, in par-
ticular a formal definition of the adjoint connection of two theories. In addition,
we show some simple results regarding adjoint functions in partially ordered set.

Basic model theory We use standard many-sorted first-order logic (see, e.g.,
[9]), but try to avoid the notational overhead caused by the presence of sorts
as much as possible. Thus, a signature Ω consists of a non-empty set of sorts
S together with a set of function symbols F and a set of predicate symbols P.
The function and predicate symbols are equipped with arities from S∗ in the
usual way. For example, if the arity of f ∈ F is S1S2S3, then this means that
the function f takes tuples consisting of an element of sort S1 and an element
of sort S2 as input, and produces an element of sort S3. We consider logic with
equality, i.e., the set of predicate symbols contains a symbol ≈S for equality in
every sort S. Usually, we will just use ≈ without explicitly specifying the sort.

Terms and first-order formulae over Ω are defined in the usual way, i.e., they
must respect the arities of function and predicate symbols, and the variables
occurring in them are also equipped with sorts. An Ω-atom is a predicate symbol
applied to (sort-conforming) terms, and an Ω-literal is an atom or a negated
atom. A ground literal is a literal that does not contain variables. We use the
notation φ(x) to express that φ is a formula whose free variables are among the
ones in the tuple of variables x. An Ω-sentence is a formula over Ω without
free variables. An Ω-theory T is a set of Ω-sentences (called the axioms of T ).
If T, T ′ are Ω-theories, then we write (by a slight abuse of notation) T ⊆ T ′ to
express that all the axioms of T are logical consequences of the axioms of T ′. The
formula φ is called open iff it does not contain quantifiers; it is called universal
iff it is obtained from an open formula by adding a prefix of universal quantifiers.
The theory T is a universal theory iff its axioms are universal sentences.

From the semantic side, we have the standard notion of an Ω-structure A,
which consists of non-empty and pairwise disjoint domains AS for every sort
S, and interprets function symbols f and predicate symbols P by functions fA

and predicates PA according to their arities. By A we denote the union of all
domains AS . Validity of a formula φ in an Ω-structure A (A |= φ), satisfiability,
and logical consequence are defined in the usual way. The Ω-structure A is a
model of the Ω-theory T iff all axioms of T are valid in A. The class of all models
of T is denoted by Mod(T ).

If φ(x) is a formula with free variables x = x1, . . . , xn and a = a1, . . . , an is
a (sort-conforming) tuple of elements of A, then we write A |= φ(a) to express
that φ(x) is valid in A under the assignment {x1 7→ a1, . . . , xn 7→ an}. Note



that φ(x) is valid in A iff it is valid under all assignments iff its universal closure
is valid in A. An Ω-homomorphism between two Ω-structures A and B is a
mapping µ : A → B that is sort-conforming (i.e., maps elements of sort S in A
to elements of sort S in B), and satisfies the condition

(∗) A |= A(a1, . . . , an) implies B |= A(µ(a1), . . . , µ(an))

for all Ω-atoms A(x1, . . . , xn) and (sort-conforming) elements a1, . . . , an of A.
In case the converse of (∗) holds too, µ is called an embedding. Note that an
embedding is something more than just an injective homomorphism since the
stronger condition must hold not only for the equality predicate, but for all
predicate symbols. If the embedding µ is the identity on A, then we say that
A is an Ω-substructure of B. An important property of universal theories is
that their classes of models are closed under building substructures, i.e., if T is a
universal Ω-theory and A is an Ω-substructure of M, then M ∈ Mod(T ) implies
A ∈ Mod(T ) (see, e.g. [6]).

We say that Σ is a subsignature of Ω (written Σ ⊆ Ω) iff Σ is a signature
that can be obtained from Ω by removing some of its sorts and function and
predicate symbols. If Σ ⊆ Ω and A is an Ω-structure, then the Σ-reduct of A is
the Σ-structure A|Σ obtained from A by forgetting the interpretations of sorts,
function and predicate symbols from Ω that do not belong to Σ. Conversely, A
is called an expansion of the Σ-structure A|Σ to the larger signature Ω.

Given a set X of constant symbols not belonging to the signature Ω, but
each equipped with a sort from Ω, we denote by ΩX the extension of Ω by these
new constants. If A is an Ω-structure, then we can view the elements of A as a
set of new constants, where a ∈ AS has sort S. By interpreting each a ∈ A by
itself, A can also be viewed as an ΩA-structure. The diagram ∆Ω(A) of A is the
set of all ground ΩA-literals that are true in A. Robinson’s diagram theorem [6]
says that there is an embedding between the Ω-structures A and B iff there is
an expansion of B to an ΩA-structure that is a model of the diagram of A.

Adjoint functions in posets We recall some basic facts about adjoints among
posets (see, e.g., [12] for more details). A partially ordered set (poset, for short) is
a set P equipped with a reflexive, transitive, and antisymmetric binary relation
≤. Such a poset is called complete if the meet

∧
i ai ∈ P and the join

∨
i ai ∈ P

of a family {ai}i∈I of elements of P always exist. In case I is empty, the meet is
the greatest and the join the least element of P .

Let P,Q be posets. A pair of maps f∗ : P → Q and f∗ : Q → P is said to be
an adjoint pair (written f∗ a f∗) iff the condition

f∗(a) ≤ b iff a ≤ f∗(b) (1)

is satisfied for all a ∈ P, b ∈ Q. In this case, f ∗ is called the left adjoint to f∗,
and f∗ is called the right adjoint to f∗. The left (right) adjoint to a given map
f : P → Q may not exist, but if it does, then it is unique.

Condition (1) implies that f∗, f∗ are order preserving. For example, assume
that a1, a2 ∈ P are such that a1 ≤ a2. Now, f∗(a2) ≤ f∗(a2) implies a2 ≤



f∗(f
∗(a2)) by (1), and thus by transitivity a1 ≤ f∗(f

∗(a2)). By (1), this implies
f∗(a1) ≤ f∗(a2).

Instead of condition (1), we may equivalently require that f ∗, f∗ are order
preserving and satisfy, for all a ∈ P, b ∈ Q, the conditions

a ≤ f∗(f
∗(a)) and f∗(f∗(b) ≤ b. (2)

If f∗ a f∗ is an adjoint pair, then the mappings f ∗, f∗ are inverse to each
other on their images, i.e., for all a ∈ P, b ∈ Q

f∗(a) = f∗(f∗(f
∗(a))) and f∗(f

∗(f∗(b))) = f∗(b). (3)

Adjoint pairs compose in the following sense: if f ∗ : P → Q, f∗ : Q → P and
g∗ : Q → R, g∗ : R → Q are such that f∗ a f∗ and g∗ a g∗, then we also have
that g∗ ◦ f∗ a f∗ ◦ g∗ (where composition should be read from right to left).

If P,Q are complete posets, then any pair of adjoints f ∗ a f∗ between P and
Q preserves meet and join in the following sense: the left adjoint preserves join
and the right adjoint preserves meet. The latter can, e.g., be seen as follows:

a ≤ f∗(
∧

bi) iff f∗(a) ≤
∧

bi iff ∀i.f∗(a) ≤ bi iff ∀i.a ≤ f∗(bi) iff a ≤
∧

f∗(bi).

Since a is arbitrary, this shows that f∗(
∧

bi) =
∧

f∗(bi).
Given a mapping f : P → Q between the posets P,Q, we may ask under what

conditions it has a left (right) adjoint. As we have seen above, order preserving
is a necessary condition, but it is easy to see that it is not sufficient.

If P,Q are complete, then meet preserving is a necessary condition for f to
have a left adjoint f∗, and join preserving is a necessary condition for f to have
a right adjoint f∗. These conditions are also sufficient: if f preserves join (meet),
then the following mapping f∗ (f∗) is a right (left) adjoint to f :

f∗(b) :=
∨

f(a)≤b

a and f∗(b) :=
∧

b≤f(a)

a.

Example 1. Let W1,W2 be sets, and consider the posets induced by the sub-
set relation on their powersets ℘(W1) and ℘(W2). Obviously, these posets are
complete, where set union is the join and set intersection is the meet operation.
Any binary relation E ⊆ W2 × W1 yields a join-preserving diamond operator
3E : ℘(W1) → ℘(W2) by defining for all a ∈ ℘(W1):

3Ea := {w2 ∈ W2 | ∃w1 ∈ W1. (w2, w1) ∈ E ∧ w1 ∈ a}.

The right adjoint to this diamond operator is the box operator 2
−
E : ℘(W2) →

℘(W1), which can be defined as the map taking b ∈ ℘(W2) to

2
−
Eb := {w1 ∈ W1 | ∀w2 ∈ W2. (w2, w1) ∈ E → w2 ∈ b}.

It is easy to see that these two maps indeed form an adjoint pair for set inclusion,
i.e., we have 3E a 2

−
E . Conversely, for any adjoint pair f∗ a f∗ with

f∗ : ℘(W1) → ℘(W2) and f∗ : ℘(W2) → ℘(W1),



there is a unique relation E ⊆ W2 × W1 such that f∗ = 3E and f∗ = 2
−
E . To

show this, just take E to consist of the pairs (w2, w1) such that w2 ∈ f∗({w1})).
This shows that the adjoint pairs among powerset Boolean algebras coincide
with the pairs of inverse modal operators on the powersets defined above.

Adjoint connections We define adjoint connections first on the semantic side,
where we connect classes of structures, and then on the syntactic side, where we
connect theories.

Let Ω1, Ω2 be two disjoint (many-sorted) signatures.2 We assume that Ω1

contains a binary predicate symbol v1 of arity S1S1, and Ω2 contains a binary
predicate symbol v2 of arity S2S2. The combined signature Ω1+∗Ω2 contains
the union Ω1∪Ω2 of the signatures Ω1 and Ω2. In addition Ω1+

∗Ω2 contains two
new function symbols `, r of arity S1S2 and S2S1. Since the signatures Ω1 and
Ω2 are sorted and disjoint, it is easy to see that (Ω1+

∗Ω2)-structures are formed
by 4-tuples of the form (M1,M2, `M, rM), where M1 is an Ω1-structure, M2

is an Ω2-structure, and

`M : S1 → S2 and rM : S2 → S1

are functions between the interpretations S1,S2 of the sorts S1, S2 in M1,M2.
Let K1 be a class of Ω1-structures and K2 a class of Ω2-structures such that

each of the structures in Ki interprets vi as a partial order on the interpretation
Si of the sort Si (i = 1, 2). The combined class of structures K1+∗K2, called
the adjoint connection of K1 and K2, consists of those (Ω1 +∗ Ω2)-structures
(M1,M2, `M, rM) for which M1 ∈ K1, M

2 ∈ K2, and `M, rM is an adjoint pair
for the posets given by S1,S2 and the interpretations of the predicate symbols
v1,v2 in M1,M2, respectively.

Let T1 be an Ω1-theory and T2 an Ω2-theory such that the axioms of Ti (i =
1, 2) entail the reflexivity, transitivity, and antisymmetry axioms for vi. The
combined theory T1+

∗T2, called the adjoint theory connection of T1 and T2, has
Ω1+∗Ω2 as its signature, and the following axioms:

T1 ∪ T2 ∪ {∀x, y. (`(x) v2 y ↔ x v1 r(y)) }.

In the sequel, superscripts 1 and 2 for the partial orders v1,v2 are sometimes
omitted. It is easy to see that the adjoint theory connection corresponds to
building the adjoint connection of the corresponding classes of models.

Proposition 2. Mod(T1+∗T2) = Mod(T1)+
∗Mod(T2).

Example 3. We show that basic E-connections of abstract description systems,
as introduced in [15], are instances of our approach for connecting classes of
structures. A Boolean-based signature is a signature Ω including the signature
ΩBA of Boolean algebras. Boolean-based signatures correspond to the abstract

2 If Ω1, Ω2 are not disjoint, we can make them disjoint by appropriately renaming the
shared sorts and the shared function and predicate symbols.



description languages (ADL) introduced in [15], with the exception that we do
not consider object variables and relation symbols.3

An algebraic Ω-model is an Ω-structure whose ΩBA-reduct is a Boolean al-
gebra. As a special case we consider Ω-frames, which are algebraic Ω-models
F(W ) whose ΩBA-reduct is the Boolean algebra ℘(W ), where W is a set (called
the set of possible worlds). Ω-frames are the same as the abstract description
models (ADM) introduced in [15]. An abstract description system (ADS) is de-
termined by an ADL together with a class of ADMs for this ADL. Thus, in our
setting, an ADS is given by a Boolean-based signature Ω together with a class
of Ω-frames.

Let Ω1, Ω2 be Boolean-based signatures, and K1,K2 be classes of Ω1- and
Ω2-frames, respectively. Any element of their adjoint connection K1+

∗K2 is of the
form (F(W1),F(W2), `

M, rM), where F(W1) ∈ K1, F(W2) ∈ K2, and `M, rM

is an adjoint pair between the powersets ℘(W1) and ℘(W2). The considerations
in Example 1 show that there is a relation E ⊆ W2 × W1 such that `M = 3E

and rM = 2
−
E . We call such a relation a connecting relation. Conversely, assume

that F(W1) ∈ K1, F(W2) ∈ K2. If E ⊆ W2 × W1 is a connecting relation, then
3E ,2−

E is an adjoint pair, and thus (F(W1),F(W2),3E ,2−
E) belongs to the

adjoint connection K1+∗K2.
Let ADS1,ADS2 be the ADSs induced by Ω1, Ω2 and K1,K2. The above

argument shows that the basic E-connection of ADS1 and ADS2 (with just one
connecting relation) is given by Ω1+∗Ω2 and the frame class K1+∗K2.

This example shows that the adjoint connection of frame classes really captures
the basic E-connection approach introduced in [15]. On the one hand, our ap-
proach is more general in that it can also deal with arbitrary classes of algebraic
models (and not just frame classes), and even more generally with signatures
that are not Boolean based. On the other hand, in [15], also more general types
of E-connections are considered. First, there may be more than one connecting
relation in E . In our algebraic setting this means that more than one pair of ad-
joints is considered. Though we do not treat this case here, it is straightforward
to extend our approach to several (independent) pairs of adjoints. Second, in
[15] n ≥ 2 rather than just 2 ADSs are connected. We will show later on how
our approach can be extended to deal with this case. Third, [15] considers ex-
tensions of the basic connection approach such as applying Boolean operations
to connecting relations. These kinds of extensions can currently not be handled
by our algebraic approach.

3 The decidability transfer result

We are interested in deciding universal fragments i.e., validity of universal for-
mulae (or, equivalently open formulae) in a theory T or a class of structures K.

3 This means that our approach cannot treat the relational object assertions of [15]
(see Example 9 below for more details). These object assertions correspond to role
assertions of description logic ABoxes, and are usually not considered in modal logic.



The formula φ is valid in the class of structures K iff φ is valid in each element
of K. It is valid in the theory T iff it is valid in Mod(T ). It is well known that the
validity problem for universal formulae is equivalent to the problem of deciding
whether a set of literals is satisfiable in some element of K (some model of T ).
We call such a set of literals a constraint.

By introducing new free constants (i.e., constants not occurring in the axioms
of the theory), we can assume without loss of generality that such constraints
contain no variables. In addition, we can transform any ground constraint into
an equi-satisfiable set of ground flat literals, i.e., literals of the form

a ≈ f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an),

where a, a1, . . . , an are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

Before we can formulate the decidability transfer result, we must first define
the conditions under which it holds. These conditions are conditions regarding
the existence of certain subtheories T0 of the component theories. Let Ω0 be
a single-sorted signature containing (possibly among other symbols) a binary
predicate symbol v, and let T0 be a universal Ω0-theory that entails reflexivity,
transitivity, and antisymmetry of v.

The first condition is that T0 must be locally finite, i.e., all finitely generated
models of T0 are finite. To be more precise, we need the following restricted ver-
sion of the effective variant of local finiteness defined in [11, 2]. The theory T0 is
called locally finite with an effective bound iff there is a computable function BT0

from the non-negative integers into the non-negative integers with the following
property: if the model A of T0 is generated by a set of generators of size n, then
the cardinality of A is bounded by BT0

(n).
The second condition requires the existence of certain adjoint functions. We

say that T0 guarantees adjoints iff every Ω0-embedding e : A → M of a finitely
generated model A of T0 into a model M of T0 has both a left adjoint e∗ and a
right adjoint e∗ for the posets induced by the interpretations of v in A and M.

Definition 4. Let Ω be a (many-sorted) signature, and K be a class of Ω-
structures. We say that K is adjoint combinable iff there exist a finite single-
sorted subsignature Ω0 of Ω containing the binary predicate symbol v, and a
universal Ω0-theory T0 such that

1. every axiom of T0 is valid in K;
2. the axioms of T0 entail reflexivity, transitivity, and antisymmetry for v;
3. T0 is locally finite with an effective bound;
4. T0 guarantees adjoints.

Let T be an Ω-theory. We say that T is adjoint combinable iff the corresponding
class of models Mod(T ) is adjoint combinable.

For adjoint combinable classes of structures, decidability of the universal
fragment transfers from the components to their adjoint connection. It should
be noted that the universal theory T0 ensuring adjoint combinability need not
be the same for the component theories.



Theorem 5. Let K1,K2 be adjoint combinable classes of structures over the
respective signatures Ω1, Ω2. Then the decidability of the universal fragments of
K1 and K2 entails the decidability of the universal fragment of K1+∗K2.

Proof. Let T
(1)
0 and T

(2)
0 be the universal theories over the signatures Ω

(1)
0 and

Ω
(2)
0 ensuring adjoint combinability of K1 and K2, respectively. To prove the

theorem, we consider a finite set Γ of ground flat literals over the signature
Ω1 +∗ Ω2 (with additional free constants), and show how it can be tested for
satisfiability in K1 +∗K2. Since all literals in Γ are flat, we can divide Γ into
three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi (i = 1, 2) is a set of literals over
Ωi (expanded with free constants), and Γ0 is of the form

Γ0 = {`(a1) ≈ b1, . . . , `(an) ≈ bn, r(b′1) ≈ a′
1, . . . , r(b

′
m) ≈ a′

m}

for free constants aj , bj , a
′
i, b

′
i.

The following procedure decides satisfiability of Γ in K1+∗K2:

1. Guess a 4-tuple A,B, µ, ν, where:

(a) A is a finite Ω
(1)
0 -structure generated by {a1, . . . , an, a′

1, . . . , a
′
m} such

that |A| ≤ B
T

(1)
0

(n + m) and v is interpreted as a partial order, and B

is a finite Ω
(2)
0 -structure generated by {b1, . . . , bn, b′1, . . . , b

′
m} such that

|B| ≤ B
T

(2)
0

(n + m) and v is interpreted as a partial order.

(b) µ : A −→ B and ν : B −→ A is an adjoint pair for the partial orders
induced by the interpretations of v in A,B such that

µ(aj) = bj (j = 1, . . . , n) and ν(b′i) = a′
i (i = 1, . . . ,m).

2. Check whether Γ1 ∪∆
Ω

(1)
0

(A) is satisfiable in K1 (if not, go back to Step 1).

3. Check whether Γ2 ∪∆
Ω

(2)
0

(B) is satisfiable in K2 (if not, go back to Step 1).

If it is satisfiable, return ‘satisfiable’.
4. If all guesses fail, return ‘unsatisfiable’.

Local finiteness with an effective bound of the theories T
(i)
0 entails that the

functions B
T

(i)
0

are computable. Since the signatures Ω
(i)
0 are finite, there are

only finitely many guesses in Step 1, and we can effectively generate all of them.
Steps 2 and 3 are effective since satisfiability of a finite set of literals in Ki

(i = 1, 2) is decidable by our assumption that the universal fragments of K1 and
K2 are decidable. Thus, it is sufficient to show that the procedure is sound and
complete.

To show completeness, suppose that the constraint Γ is satisfiable in K1+
∗K2.

Thus, there is a structure M = (M1,M2, `
M, rM) ∈ K1+∗K2 satisfying Γ . In

particular, M1 ∈ K1,M2 ∈ K2, and `M a rM is an adjoint pair such that

`M(aj) = bj and rM(b′i) = a′
i.

4

4 Here we identify (for the sake of simplicity) the constants aj , a
′

i, bj , b
′

i with their
interpretations in M1,M2.



Let A be the Ω
(1)
0 -substructure of M1|Ω(1)

0
generated by {a1, . . . , an, a′

1, . . . , a
′
m},

and B be the Ω
(2)
0 -substructure of M2|Ω(2)

0
generated by {b1, . . . , bn, b′1, . . . , b

′
m}.

The Ω
(i)
0 -reduct Mi|Ω(i)

0
of Mi (i = 1, 2) is a model of T

(i)
0 . Since T

(i)
0 is univer-

sal, the substructures A,B are also models of T
(1)
0 , T

(2)
0 , respectively. In partic-

ular, this implies that v is interpreted as a partial order in A and B. Since the

theories T
(i)
0 are locally finite with an effective bound, the cardinalities of these

substructures are bounded by the respective functions B
T

(i)
0

.

We know M1 ∈ K1 satisfies Γ1. In addition, since A is an Ω
(1)
0 -substructure

of M1, Robinson’s diagram theorem entails that M1 satisfies ∆
Ω

(1)
0

(A). Thus,

Γ1 ∪ ∆
Ω

(1)
0

(A) is satisfiable in K1. The fact that Γ2 ∪ ∆
Ω

(2)
0

(B) is satisfiable in

K2 can be shown in the same way.

To construct the adjoint pair µ a ν, we consider the Ω
(1)
0 -embedding e and

the Ω
(2)
0 -embedding f , where

e : A → M1|Ω(1)
0

and f : B → M2|Ω(2)
0

are given by the inclusion maps. Since the theories T
(i)
0 guarantee adjoints, these

embeddings have both left and right adjoints. Let us call f ∗ the left adjoint to
f and e∗ the right adjoint to e. We define

µ := f∗ ◦ `M ◦ e and ν := e∗ ◦ rM ◦ f.

Since adjoints compose, we have indeed µ a ν. It remains to be shown that
µ(aj) = bj and ν(b′i) = a′

i. We restrict the attention to the first identity (as the
second one can be proved symmetrically). We know that `M(aj) = bj , and since
e is the inclusion map we have e(aj) = aj . Thus

µ(aj) = f∗(`M(e(aj))) = f∗(`M(aj)) = f∗(bj).

Since f is the inclusion map, we have f ∗(bj) = f(f∗(f(bj))) and because f∗ a f
we know by (3) that f(f∗(f(bj))) = f(bj) = bj . If we put all these identities
together, we obtain µ(aj) = bj .

To show soundness, we argue as follows. If Γ1 ∪ ∆
Ω

(1)
0

(A) is satisfiable in

K1, then there is a structure M1 ∈ K1 that satisfies Γ1 and has A as Ω
(1)
0 -

substructure. The Ω
(1)
0 -reduct of M1 is a model of T

(1)
0 , and since T

(1)
0 is uni-

versal this implies that the substructure A is also a model of T
(1)
0 . Analogously,

if Γ2 ∪ ∆
Ω

(2)
0

(B) is satisfiable in K2, then there is a structure M2 ∈ K2 that

satisfies Γ2 and has the model B of T
(2)
0 as Ω

(2)
0 -substructure.

In order to construct a structure M = (M1,M2, `
M, rM) ∈ K1+∗K2 satis-

fying Γ = Γ0 ∪ Γ1 ∪ Γ2, it is enough to construct the adjoint pair `M, rM such
that it extends the pair µ, ν provided by Step 2b of the procedure. Let

e : A → M1|Ω(1)
0

and f : B → M2|Ω(2)
0



be the Ω
(1)
0 - and Ω

(2)
0 -embeddings of A,B into the reducts of M1,M2, respec-

tively. Without loss of generality we can assume that e, f are inclusion maps.

Since the theories T
(i)
0 guarantee adjoints, these embeddings have both left and

right adjoints. Let us call e∗ the left adjoint to e and f∗ the right adjoint to f .
We define

`M := f ◦ µ ◦ e∗ and rM := e ◦ ν ◦ f∗.

Since adjoints compose, we have again `M a rM. It remains to be shown that
M := (M1,M2, `

M, rM) satisfies Γ0, i.e., `M(aj) = bj and rM(b′i) = a′
i.

5

Again, we restrict the attention to the first identity (as the second one can
be proved symmetrically). We have µ(aj) = bj , and `M(aj) = f(µ(e∗(aj)) =
µ(e∗(aj)) since f is the inclusion map. Thus, it is enough to show that e∗(aj) =
aj . Since e is the inclusion map, we have e∗(aj) = e(e∗(e(aj))) and because
e∗ a e we know by (3) that e(e∗(e(aj))) = e(aj) = aj . ut

Proposition 2 and the above theorem yield the following transfer result for
adjoint theory connections.

Corollary 6. Let T1, T2 be adjoint combinable theories over the respective sig-
natures Ω1, Ω2. Then the decidability of the universal fragments of T1 and T2

entails the decidability of the universal fragment of T1+∗T2.

4 Applications of the transfer result

In order to apply Theorem 5, we must find universal theories that extend the
theory of posets, guarantee adjoints, and are locally finite with an effective

bound. Given such theories T
(1)
0 , T

(2)
0 , every pair K1,K2 of classes of Ω1- and

Ω2-structures whose members are models of T
(1)
0 , T

(2)
0 , respectively, satisfy the

conditions of Theorem 5, and hence allow transfer of decidability (of the univer-
sal fragment) from K1 and K2 to K1+∗K2.

In order to ensure the existence of adjoints for embeddings, it is enough that
meets and joins exist and embeddings preserve them. For this reason, we start
with the theory of bounded lattices since it provides us with meet and join.
Recall that the theory TL of bounded lattices is the theory of posets endowed
with binary meet and join, and a least and a greatest element. In the following,
we assume that the signature ΩL of this theory contains the function symbols
t, 0 for the join and the least element, the function symbols u, 1 for the meet
and the greatest element, and the relation symbol v for the partial order. Note,
however, that is not really necessary to have v explicitly in the signature since
it can be expressed using meet or join (e.g., x v y iff x t y = y).

The theory TL is not locally finite, but we can make it locally finite by
adding as extra axioms all the identities that are true in a fixed finite lattice A.
The theory TA obtained this way is locally finite: two n-variable terms cannot

5 As before, we identify (for the sake of simplicity) the constants aj , a
′

i, bj , b
′

i with their
interpretations in M1,M2.



be distinct modulo TA in case they are interpreted in A by the same n-ary
function An → A, and there are only finitely many such functions. This argument
also yields an effective bound: if |A| = c, then BTA

(n) = ccn

. In addition, TA

guarantees adjoints. To show this, consider an ΩL-embedding e : B → M of a
finitely generated model B of TA into a model M of TA. Since B is a finite, it is a
complete lattice, and the preservation of binary joins, meets, as well as the least
and greatest element by e implies that e preserves all joins and meets. Thus, it
has both a left and a right adjoint.

If we take as A the two element bounded lattice, then it is well known (see,
e.g., [13]) that the theory TA coincides with the theory TD of distributive lattices,
i.e., the extension of TL by the distributivity axiom xt (yuz) ≈ (xty)u (xtz).

Corollary 7. Let K1,K2 be classes of Ω1- and Ω2-structures whose members
are models of the theory TD of distributive lattices. Then the decidability of the
universal fragments of K1,K2 implies the decidability of the universal fragment
of K1+∗K2.

Obviously, any pair of classes of frames over two Boolean-based signatures (see
Example 3) satisfies the precondition of the above corollary.

Corollary 8. Let Ω1, Ω2 be Boolean-based signatures, and K1,K2 be classes of
Ω1- and Ω2-frames. Then the decidability of the universal fragments of K1,K2

implies the decidability of the universal fragment of K1+∗K2.

As shown in Example 3, a Boolean-based signature together with a class of
frames corresponds to an ADS in the sense of [15]. To show the connection
between Corollary 8 and the decidability transfer result proved in [15], we must
relate the problem of deciding the universal fragment of a class of frames to the
decision problem considered in [15].

Example 9. Consider a Boolean-based signature Ω and a class K of Ω-frames.
Taking into account the Boolean structure and the (implicit or explicit) presence
of the partial order v, an Ω-constraint can be represented in the form

t1 v u1, . . . , tn v un, v1 6≈ 0, . . . , vm 6≈ 0.

We call such a constraint a modal constraint. It is satisfiable in K whenever there
are F(W ) ∈ K and w1, . . . , wm ∈ W such that

t
F(W )
1 ⊆ u

F(W )
1 , . . . , tF(W )

n ⊆ uF(W )
n , w1 ∈ v

F(W )
1 , . . . , wm ∈ vF(W )

m .

If one restricts the attention to modal constraints with just one negated equa-
tion (i.e., if m = 1), then one obtains the traditional relativized satisfiability
problem in modal logic. The satisfiability problem introduced in [15] is slightly
more general since the set of constraints considered there can also contain object
assertions involving relation symbols. As mentioned in Example 3, such asser-
tions can currently not be handled by our approach. Consequently, our transfer
result applies to a slightly more restricted satisfiability problem than the one
considered in [15]. On the other hand, our result holds for more general theories
and classes of structures, i.e., also ones that are not given by classes of frames.



Complexity considerations The complexity of the combination algorithm
described in the proof of Theorem 5 can be quite high. It is non-deterministic
since it guesses finitely generated structures up to a given bound, which may
itself be quite large. In addition, the possibly large diagrams of these structures
are part of the input for the decision procedures of the component theories.

Depending on the theories T
(i)
0 , specific features of these theories may allow

for sensible improvements, due for instance to the possibility of more succinct

representations of the diagrams of models of T
(i)
0 . We illustrate this phenomenon

by showing how our combination algorithm can be improved in the case of adjoint
connections of Boolean-based equational theories, as treated in Corollary 8. With
this modified algorithm, we obtain complexity bounds that coincide with the ones
shown in [15]. Actually, the algorithm obtained this way is also similar to the
one described in [15]. It should be noted, however, that the correctness of this
modified algorithm still follows from the proof of our general Theorem 5.

Thus, let Ω1, Ω2 be Boolean-based signatures, and K1,K2 be classes of Ω1-

and Ω2-frames, respectively. As theories T
(1)
0 , T

(2)
0 we can then take the theory

BA of Boolean algebras. Let Γ = Γ0∪Γ1∪Γ2 be a constraint, where Γi (i = 1, 2)
is a set of literals over Ωi (expanded with free constants), and Γ0 is of the form

Γ0 = {`(a1) ≈ b1, . . . , `(an) ≈ bn, r(b′1) ≈ a′
1, . . . , r(b

′
m) ≈ a′

m}

for free constants aj , bj , a
′
i, b

′
i. If we follow the instructions in the proof of The-

orem 5 literally, in order to guarantee the satisfiability of Γ , we must find:

1. a finite Boolean algebra A generated by G1 := {a1, . . . , an, a′
1, . . . , a

′
m} such

that Γ1 ∪ ∆ΩBA
(A) is satisfiable in K1;

2. a finite Boolean algebra B generated by G2 := {b1, . . . , bn, b′1, . . . , b
′
m} such

that Γ2 ∪ ∆ΩBA
(B) is satisfiable in K2;

3. an adjoint pair µ : A −→ B and ν : B −→ A, such that

µ(aj) = bj (j = 1, . . . , n) and ν(b′i) = a′
i (i = 1, . . . ,m). (4)

It is well known that a Boolean algebra generated by n + m elements can have
cardinality 22n+m

, and hence its diagram may also be of doubly-exponential size.
However, we will show that exponential space is sufficient to represent all the
relevant information contained in such a diagram.

Let us call G1-minterm a term τ that is of the form

u
g∈G1

στ (g),

where στ (g) is either g or g. Notice that the G1-minterm τ is uniquely determined
(up to associativity and commutativity of conjunction) by the function στ , and
hence there are as many G1-minterms as there are subsets of G1. We associate
with every finite Boolean algebra A generated by G1 the set WA of the G1-
minterms τ such that A |= τ 6= 0. The following is not difficult to show:

(i) the map associating with g ∈ G1 the set {τ ∈ WA | στ (g) = g} extends to
an isomorphism ιA : A −→ ℘(WA);



(ii) BA |= ∆ΩBA
(A) ⇔ δ(A), where δ(A) is the conjunction of the formulas

τ = 0 for τ 6∈ WA.

Fact (ii) means that δ(A) can replace ∆ΩBA
(A) in the consistency test of Step 1

above, and the same consideration obviously applies to B in Step 2. The size of
δ(A) is singly-exponential, and to guess δ(A) it is sufficient to guess the set WA

(and not the whole A).

A similar technique can be applied to Step 3. By Fact (i) above, we have
A ' ℘(WA) and B ' ℘(WB). Hence, the considerations in Example 1 show that
the adjoint pair of Step 3 is uniquely determined by a relation E ⊆ WB × WA.

To sum up, the data that we are required to guess are simply a set WA of
G1-minterms, a set WB of G2-minterms, and a relation E among them. All this
is an exponential size guess, and thus can be done in non-deterministic exponen-
tial time. The decision procedures for the component theories receive exponen-
tial size instances of their constraint satisfiability problems as inputs. Finally,
Condition (4) can be checked in exponential time. From the considerations in
Example 1 and from Fact (ii) above, it follows that µ(aj) = bj is equivalent to
the following statement:

∀τ ∈ WB. (τ ∈ ιB(bj) iff ∃τ ′ ∈ WA. (τ ′ ∈ ιA(aj) ∧ (τ, τ ′) ∈ E)).

Since WA and WB are of exponential size, this condition can be tested in expo-
nential time. The same approach can be used to test the conditions ν(b′i) = a′

i.

Overall, the improved combined decision procedure has the following com-
plexity. Its starts with a non-deterministic exponential step that guesses the
sets δ(A) and δ(B). Then it tests satisfiability in K1 and K2 of Γ1 ∪ δ(A) and
Γ2 ∪ δ(B), respectively. The complexity of these tests is one exponential higher
than the complexity of the decision procedures for K1 and K2. Testing Condi-
tion (4) needs exponential time. This shows that our combination procedure has
the same complexity as the one for E-connections described in [15].

Let us consider the complexity increase caused by the combination procedure
in more detail for the complexity class ExpTime, which is often encountered
when considering the relativized satisfiability problem in modal logic. Thus, as-
sume that the decision procedures for K1 and K2 are in ExpTime. The combined
decision procedure then generates doubly-exponentially many decision problems
of exponential size for the component procedures. Each of these component de-
cision problems can be decided in doubly-exponential time. This majorizes the
exponential complexity of testing Condition (4). Thus, in this case the overall
complexity of the combined decision procedure is 2ExpTime, i.e, one exponen-
tial higher than the complexity of the component procedures.

5 N -ary adjoint connections

We sketch how our results can be extended to the case of n-ary connections
by using parametrized notions of adjoints, as suggested in [10]. For simplicity,



we limit ourselves to the case n = 3, and use a notation inspired by Lambek’s
syntactic calculus [16]. Let P1, P2, P3 be posets. A triple (·, /, \) of functions

· : P1 × P2 → P3, \ : P1 × P3 → P2, / : P3 × P2 → P1

is an adjoint triple iff the following holds for all a1 ∈ P1, a2 ∈ P2, a3 ∈ P3:

a1 · a2 ≤ a3 iff a2 ≤ a1\a3 iff a1 ≤ a3/a2.

To illustrate this definition, we consider a ternary variant of Example 1.

Example 10. Suppose we are given three sets W1,W2,W3 and a ternary relation
E ⊆ W3×W2×W1. With two given subsets a1 ⊆ W1, a2 ⊆ W2, we can associate
a subset a1 ·E a2 ⊆ W3 as follows:

a1 ·E a2 := {w3 | ∃(w2, w1) ∈ W2 × W1. (w3, w2, w1) ∈ E ∧ w1 ∈ a1 ∧ w2 ∈ a2}.

If we fix a1, the function a1 ·E (−) : ℘(W2) → ℘(W3) preserves all joins, and
hence has a right adjoint a1\E(−) : ℘(W3) → ℘(W2), which can be described as
follows: for every a3 ⊆ W3, the subset a1\Ea3 ⊆ W2 is defined as

a1\Ea3 := {w2 | ∀(w3, w1) ∈ W3 × W1. (w3, w2, w1) ∈ E ∧ w1 ∈ a1 ⇒ w3 ∈ a3}.

Similarly, if we fix a2, the function (−) ·E a2 : ℘(W1) → ℘(W3) preserves all
joins, and hence has a right adjoint (−)/Ea2 : ℘(W3) → ℘(W1), which can be
described as follows: for every a3 ⊆ W3, the subset a3/Ea2 ⊆ W1 is defined as

a3/Ea2 := {w1 | ∀(w3, w2) ∈ W3 × W2. (w3, w2, w1) ∈ E ∧ w2 ∈ a2 ⇒ w3 ∈ a3}.

It is easy to see that the three binary operators (·E , /E , \E) fulfill the definition
of an adjoint triple (with set inclusion as partial order). Conversely every adjoint
triple (for set inclusion) is induced in this way by a unique ternary relation E.

Using the notion of an adjoint triple, we can now define a ternary vari-
ant of the notion of an adjoint connection. Let Ω1, Ω2, Ω3, be three disjoint
signatures containing binary predicate symbols vi of arity SiSi (i = 1, 2, 3).
The combined signature +∗(Ω1, Ω2, Ω3) contains the union Ω1 ∪ Ω2 ∪ Ω3 of
the signatures Ω1, Ω2, Ω3 and, in addition, three new function symbols ·, \, /
of arity S1S2S3, S1S3S2 and S3S2S1, respectively. For i = 1, 2, 3, let Ki be
a class of Ωi-structures such that each of the structures in Ki interprets vi

as a partial order on the interpretation of Si. The ternary adjoint connec-
tion +∗(K1,K2,K3) of K1,K2,K3 consists of those +∗(Ω1, Ω2, Ω3)-structures
(M1,M2,M3, ·M, \M, /M) for which M1 ∈ K1, M2 ∈ K2, M3 ∈ K3, and
(·M, \M, /M) is an adjoint triple for the underlying posets.

Using the observations made in Example 10, it is easy to see that the ternary
adjoint connection corresponds to the basic E-connection of three ADSs. Under
the same conditions as in Theorem 5, and with a very similar proof, we can
show that decidability of the universal fragment also transfers to ternary adjoint
connections.

Theorem 11. Let K1,K2,K3 be adjoint combinable classes of structures over
the respective signatures Ω1, Ω2, Ω3. Then decidability of the universal fragments
of K1,K2,K3 entails decidability of the universal fragment of +∗(K1,K2,K3).



6 Conclusion

The main motivation of this work was to develop an algebraic generalization of
the decidability transfer results for E-connections shown in [15]. On the one hand,
our approach is more general than the one in [15] since it also applies to theories
and classes of structures that are not given by ADSs (i.e., classes of frames). More

generally, since the theories T
(1)
0 , T

(2)
0 need not be the theory of Boolean algebras

and since T
(1)
0 need not coincide with T

(2)
0 , we do not require the underlying logic

to be classical propositional logic, and the components may even be based on
different logics. On the other hand, we currently cannot handle the relational
object assertions considered in [15], and we cannot deal with extensions of the
basic E-connection approach such as applying Boolean operations to connecting
relations. It is the topic of future research to find out whether such extensions
and relational object assertions can be expressed in our algebraic setting.

The paper [1] has the same motivation, but follows a different route towards
generalizing E-connections. In the present paper, we used as our starting point
the observation that the pair (3,2−) consisting of the diamond operator induced
by the connecting relation E, and the box operator induced by its inverse E− is
an adjoint pair for the partial order ≤ defined as x ≤ y iff x t y = y, where t is
the Boolean disjunction operator. In [1] we used instead the fact that the dia-
mond operator behaves like a homomorphism for t, i.e., 3(xty) = 3(x)t3(y).
This was generalized to the case of connection functions that behave like homo-
morphisms for an arbitrary shared subsignature of the theories to be combined.
The conditions required in [1] for the transfer of decidability are model-theoretic
conditions on a shared subtheory T0 and its algebraic compatibility with the
component theories T1, T2. There are examples of theories T0, T1, T2 satisfying
these requirements that are quite different from theories induced by (modal)
logics. However, there is a price to be payed for this generality: since no partial
order is required, it is not possible to model pairs of connection functions that
are induced by a connecting relation and its inverse. In contrast, the conditions
considered in the present paper are abstract algebraic conditions, which do not
look at the structure of models. They require the existence of certain adjoint
functions for embeddings between models of subtheories of the component the-
ories. These subtheories need not be identical for different component theories,
and there is no additional compatibility requirement between the subtheories and
the component theories. In order to require adjoints, we must, however, assume
that the models are equipped with a partial order. In addition, one possibility to
guarantee the existence of adjoints is to assume that the subtheories provide us
with meets and joins. In this case, the theories that we obtain are quite close to
theories induced by logics, though not necessarily classical propositional logic.
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