
A Tableau Algorithm for Description Logics

with Concrete Domains and GCIs

Carsten Lutz and Maja Miličić ?

Institute of Theoretical Computer Science
TU Dresden, Germany

{lutz,milicic}@tcs.inf.tu-dresden.de

Abstract. In description logics (DLs), concrete domains are used for
defining concepts based on concrete qualities of their instances such as
the weight, age, duration, and spatial extension. So-called general con-
cept inclusions (GCIs) play an important role for capturing background
knowledge. It is well-known that, when combining concrete domains with
GCIs, reasoning easily becomes undecidable. In this paper, we identify a
general property of concrete domains that is sufficient for proving decid-
ability of DLs with both concrete domains and GCIs. We exhibit some
useful concrete domains, most notably a spatial one based on the RCC-8
relations, which have this property. Then, we present a tableau algorithm
for reasoning in DLs equipped with concrete domains and GCIs.

1 Introduction

Description Logics (DLs) are an important family of logic-based knowledge rep-
resentation formalisms [4]. In DL, one of the main research goals is to provide
a toolbox of logics such that, given an application, one may select a DL with
adequate expressivity. Here, adequate means that, on the one hand, all relevant
concepts from the application domain can be captured. On the other hand, no
unessential means of expressivity should be included to prevent a (potential) in-
crease in computational complexity. For several relevant applications of DLs such
as the semantic web and reasoning about ER and UML diagrams, there is a need
for DLs that include, among others, the expressive means concrete domains and
general concept inclusions (GCIs) [3, 8, 15]. The purpose of concrete domains is
to enable the definition of concepts with reference to concrete qualities of their
instances such as the weight, age, duration, and spatial extension. GCIs play an
important role in modern DLs as they allow to represent background knowledge
of application domains by stating that the extension of a concept is included in
the extension of another concept.

Unfortunately, combining concrete domains with GCIs easily leads to unde-
cidabilty. For example, it has been shown in [18] that the basic DL ALC extended
with GCIs and a rather inexpressive concrete domain based on the natural num-
bers and providing for equality and incrementation predicates is undecidable,

? supported by DFG under grant GRK 334/3

2

see also the survey paper [16]. In view of this discouraging result, it is a natural
question whether there are any useful concrete domains that can be combined
with GCIs in a decidable DL. A positive answer to this question has been given
in [17] and [14], where two such well-behaved concrete domains are identified:
a temporal one based on the Allen relations for interval-based temporal rea-
soning, and a numerical one based on the rationals and equipped with various
unary and binary predicates such as “≤”, “>5”, and “6=”. Using an automata-
based approach, it has been shown in [17, 14] that reasoning in the DLs ALC
and SHIQ extended with these concrete domains and GCIs is decidable and
ExpTime-complete.

The purpose of this paper it to advance the knowledge about decidable DLs
with both concrete domains and GCIs. Our contribution is two-fold: first, instead
of focussing on particular concrete domains as in previous work, we identify a
general property of concrete domains, called ω-admissibility, that is sufficient
for proving decidability of DLs equipped with concrete domains and GCIs. For
defining ω-admissibility, we concentrate on a particular kind of concrete domains:
constraint systems. Roughly, a constraint system is a concrete domain that only
has binary predicates, which are interpreted as jointly exhaustive and pairwise
disjoint (JEPD) relations. We exhibit two example constraint systems that are
ω-admissible: a temporal one based on the rational line and the Allen relations
[1], and a spatial one based on the real plane and the RCC8 relations [6, 20]. The
proof of ω-admissibility turns out to be relatively straightforward in the Allen
case, but is somewhat cumbersome for RCC8. We believe that there are many
other useful constraint systems that can be proved ω-admissible.

Second, for the first time we develop a tableau algorithm for DLs with both
concrete domains and GCIs. This algorithm is used to establish a general de-
cidability result for ALC equipped with GCIs and any ω-admissible concrete
domain. In particular, we obtain decidability of ALC with GCIs and the Allen
relations as first established in [17], and, as a new result, get decidability of ALC
with GCIs and the RCC8 relations as a concrete domain. As state-of-the-art DL
reasoners such as FaCT and RACER are based on tableau algorithms similar to
the one described in this paper [11, 10], we view our algorithm as a first step
towards an efficient implementation of description logics with (ω-admissible)
concrete domains and GCIs.

This paper is organized as follows: in Section 2, we introduce constraint sys-
tems and identify some properties of constraint systems that will be useful for
defining ω-admissibility. In Section 3, we introduce the description logic ALC(C)
that incorporates constraint systems and GCIs. The tableau algorithm for de-
ciding satisfiability in ALC(C) is developed in Section 4. In Section 5, we briefly
discuss the implementability of our algorithm. This paper is accompanied by a
technical report containing full proofs [19].

2 Constraint Systems

We introduce a general notion of constraint system that is intended to capture
standard constraint systems based on a set of jointly-exhaustive and pairwise-
disjoint (JEPD) binary relations.

3

black b gray

gray a black

black m gray

gray mi black

black o gray

gray oi black

black d gray

gray di black

black s gray

gray si black

black f gray

gray fi black

Fig. 1. The thirteen Allen relations, equality omitted.

Let Var be a countably infinite set of variables and Rel a finite set of binary
relation symbols. A Rel-constraint is an expression (v r v′) with v, v′ ∈ Var and
r ∈ Rel. A Rel-network is a (finite or infinite) set of Rel-constraints. Let N be
a Rel-network. We use VN to denote the variables used in N and say that N is
complete if, for all v, v′ ∈ VN , there is exactly one constraint (v r v′) ∈ N .

To assign a semantics to networks in an abstract way, we use complete net-
works as models: N is a model of a network N ′ if N is complete and there is a
mapping τ : VN ′ → VN such that (v r v′) ∈ N ′ implies (τ(v) r τ(v′)) ∈ N . In
this context, the nodes in N , although from the set Var, are to be understood
as values rather than variables (see below for examples).

A constraint system C = 〈Rel,M〉 consists of a finite set of binary relation
symbols Rel and a set M of complete Rel-networks (the models of C). A Rel-
network N is satisfiable in C if M contains a model of N .

We give two examples of constraint systems: a constraint system for temporal
reasoning based on the Allen relations in the rational line, and a constraint
system for spatial reasoning based on the RCC8 relations in the real plane. Both
constraint systems have been extensively studied in the literature.

In artificial intelligence, constraint systems based on Allen’s interval relations
are a popular tool for the representation of temporal knowledge [1]. Let

Allen = {b, a,m,mi, o, oi, d, di, s, si, f, fi,=}

denote the thirteen Allen relations. Examples of these relations are given in
Figure 1. As the flow of time, we use the rational numbers with the usual order-
ing. Let Int � denote the set of all closed intervals [q1, q2] over � with q1 < q2,
i.e., point-intervals are not admitted. The extension r

�
of each Allen relation

r is a subset of Int � × Int � . It is defined in terms of the relationships between
endpoints in the obvious way, c.f. Figure 1. We define the constraint system
Allen � = 〈Allen,M � 〉 by setting M � := {N � }, where N � is defined by fixing a

4

r s r s sr sr

r po s r eq s

rss rr s r s

r ntppi sr tppi s

r tpp s r ntpp sr dc s r ec s

Fig. 2. The eight RCC8 relations.

variable vi ∈ Var for every i ∈ Int � and setting

N � := {(vi r vj) | r ∈ Allen, i, j ∈ Int � and (i, j) ∈ r
�
}.

Whether we use the rationals or the reals for defining this constraint system has
no impact on the satisfiability of (finite and infinite) constraint networks.

The RCC8 relations describe the possible relation between two regions in a
topological space [20]. In this paper, we use the standard topology of the real
plane, one of the most natural topologies for spatial reasoning. Let

RCC8 = {eq, dc, ec, po, tpp, ntpp, tppi, ntppi}

denote the RCC8 relations. Examples of these relations are given in Figure 2.
Recall that a topological space is a pair T = (U, I), where U is a set and I is an
interior operator on U , i.e., for all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

As usual, the closure operator C is defined as C(s) = I(s), where t = U \ t,
for t ⊆ U . As the regions of a topological space T = (U, I), we use the set of
non-empty, regular closed subsets of U , where a subset s ⊆ U is called regular
closed if CI(s) = s. Given a topological space T and a set of regions UT, we
define the extension of the RCC8 relations as the following subsets of UT × UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t 6= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) 6= ∅ ∧ s \ t 6= ∅ ∧ t \ s 6= ∅
(s, t) ∈ eqT iff s = t

(s, t) ∈ tppT iff s ∩ t = ∅ ∧ s ∩ I(t) 6= ∅

(s, t) ∈ ntppT iff s ∩ I(t) = ∅
(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Let T � 2 be the standard topology on
� 2 induced by the Euclidean metric, and

let RS � 2 be the set of all non-empty regular-closed subsets of T � 2 . Intuitively,

5

regular closedness is required to eliminate sub-dimensional regions such as 0-
dimensional points and 1-dimensional spikes. We define the constraint system
RCC8 � 2 = 〈RCC8,M � 2〉 by setting M � 2 := {N � 2}, where N � 2 is defined by
fixing a variable vs ∈ Var for every s ∈ RS � 2 and setting

N � 2 := {(vs r vt) | r ∈ RCC8, s, t ∈ RS � 2 and (s, t) ∈ rT � 2}.

Properties of Constraint Systems

We will use constraint systems as a concrete domain for description logics. To
obtain sound and complete reasoning procedures for DLs with such concrete
domains, we require constraint system to have certain properties.

Definition 1 (Patchwork Property, Compactness). Let C = 〈Rel,M〉 be a
constraint system. If N is a Rel-network and V ⊆ VN , we write N |V to denote
the network {(v r v′) ∈ N | v, v′ ∈ V } ⊆ N . We say that

– C has the patchwork property if the following holds: for all finite, complete,
and satisfiable Rel-networks N,M that agree on their (possibly empty) inter-
section (i.e. N |VN∩VM

= M |VN∩VM
), N ∪ M is satisfiable;

– C has the compactness property if the following holds: a Rel-network N with
VN infinite is satisfiable in C if and only if, for every finite V ⊆ VN , the
network N |V is satisfiable in C.

Intuitively, the patchwork property ensures that satisfiable networks (satisfy-
ing some additional conditions) can be “patched” together to a joint network
that is also satisfiable. Compactness ensures that this even works when patching
together an infinite number of satisfiable networks. In [5], where constraint sys-
tems are combined with linear temporal logic, Balbiani and Condotta formulate
a property closely related to ours. This property requires that partial models of
networks can be extended to complete models. For our purposes, such a property
could be used alternatively to the patchwork property and compactness (in fact,
it implies both of them).

In the technical report [19], we prove the following:

Theorem 1. RCC8 � 2 and Allen � satisfy the patchwork property and the com-
pactness property.

The proof of compactness works by devising a satisfiability-preserving translation
of constraint networks to sets of first-order formulas, and then appealing to
compactness of the latter. In the case of Allen � , we need compactness of first-
order logic on structures 〈 � , <〉, while arbitrary structures are sufficient for
RCC8 � 2 . The proof of the patchwork property is relatively straightforward in
the case of Allen � : given two finite, satisfiable, and complete networks N and
M that agree on the overlapping part, we show how models of N and M can
be manipulated into a model of N ∪ M . Finally, the proof of the patchwork
property of RCC8 � 2 requires quite some machinery. We consider RCC8-networks
interpreted on topologies that are induced by so-called fork frames, and then use
the standard translation of RCC8-networks into the model logic S4 and repeated
careful applications of a theorem from [9] to establish the patchwork property.

6

3 Syntax and Semantics

We introduce the description logic ALC(C) that allows to define concepts with
reference to the constraint system C. Different incarnations of ALC(C) are ob-
tained by instantiating it with different constraint systems.

Let C = (Rel,M) be a constraint system, and let NC, NR, and NcF be mutually
disjoint and countably infinite sets of concept names, role names, and concrete
features. We assume that NR has a countably infinite subset NaF of abstract
features. A path is a sequence R1 · · ·Rkg consisting of roles R1, . . . , Rk ∈ NR

and a concrete feature g ∈ NcF. A path R1 · · ·Rkg with {R1, . . . , Rk} ⊆ NaF is
called feature path. The set of ALC(C)-concepts is built according to the following
syntax rule

C ::= A | ¬C | C u D | C t D | ∃R.C | ∀R.C | ∃U1, U2.r | ∀U1, U2.r

where A ranges over NC, R ranges over NR, r ranges over Rel, and U1, U2 are
both feature paths or U1 = Rg1 and U2 = g2 with R ∈ NR and g1, g2 ∈ NcF or
vice versa. Throughout this paper, we use > as abbreviation for an arbitrary
propositional tautology and C → D for ¬C t D.

A general concept inclusion axiom (GCI) is an expression of the form C v D,
where C and D are concepts. A finite set of GCIs is called TBox. The TBox
formalism introduced here is often called general TBox since it subsumes several
other, much weaker variants [7, 13]. We use C

.
= D to abbreviate C v D and

D v C. For example, the following TBox describes some properties of cities
using the concrete domain RCC � 2 :

City v ∀waters.(River t Lake t Ocean) u ∀trade-partner.City

RegionalTrader
.
= City u ∃(trade-partner loc), (province loc).ntpp

HarborCity
.
= ∃(waters loc), loc.po u ∃(port loc), loc.ntpp

u ∃(waters loc), (port loc).ec

Here, trade−partner is a role, province, waters, and port are abstract features, and
loc is a concrete feature. The second GCI says that RegionalTraders trade with at
least one city located in the same province. The third GCI says that HarborCitys

overlap some water and contain a port externally connected to this water.
The semantics of ALC(C) is defined in terms of interpretations as usual. To

deal with the constraint constructors ∃U1, U2.r and ∀U1, U2.r, interpretations
comprise a model of C as an additional component: an interpretation I is a
tuple (∆I , ·I ,MI), where ∆I is a set called the domain, ·I is the interpretation
function, and MI ∈ M. The interpretation function maps

– each concept name C to a subset CI of ∆I ,
– each role name R to a subset RI of ∆I × ∆I ,
– each abstract feature f to a partial function fI from ∆I to ∆I , and
– each concrete feature g to a partial function gI from ∆I to the set of variables

VMI
of MI .

7

The interpretation function is extended to arbitrary concepts as follows:

¬CI := ∆I \ CI ,
(C u D)I := CI ∩ DI ,
(C t D)I := CI ∪ DI ,
(∃R.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ RI and e ∈ CI},
(∀R.C)I := {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ RI implies e ∈ CI},

(∃U1, U2.r)
I := {d ∈ ∆I | ∃x1 ∈ UI

1 (d), x2 ∈ UI
2 (d) : (x1rx2) ∈ MI}

(∀U1, U2.r)
I := {d ∈ ∆I | ∀x1 ∈ UI

1 (d), x2 ∈ UI
2 (d) : (x1rx2) ∈ MI}

where, for every path U = R1 · · ·Rkg and d ∈ ∆I , UI(d) is defined as

{x ∈ VMI
| ∃e1, . . . , ek+1 : d = e1,

(ei, ei+1) ∈ RI
i for 1 ≤ i ≤ k, and gI(ek+1) = x}.

An interpretation I is a model of a concept C iff CI 6= ∅. I is a model of a TBox
T iff it satisfies CI ⊆ DI for all GCIs C v D in T .

The most important reasoning tasks for DLs are satisfiability and subsump-
tion: a concept C is called satisfiable with respect to a TBox T iff there exists a
common model of C and T . A concept D subsumes a concept C with respect to
T (written C vT D) iff CI ⊆ DI holds for each model I of T . It is well-known
that subsumption can be reduced to (un)satisfiability: C vT D iff C u ¬D is
unsatisfiable w.r.t. T . Therefore, in the current paper we only consider concept
satisfiability.

4 Tableau Algorithm

In this section, we present a tableau algorithm which decides satisfiability of
ALC(C)-concepts w.r.t. TBoxes. Tableau algorithms are the most popular de-
cision procedures for description logics since, despite not always yielding tight
upper complexity bounds, they are amenable to various optimizations and can
often be efficiently implemented. In general, tableau algorithms for DLs decide
satisfiability of a concept by trying to construct a model for it. The underlying
data structure is a tree which, in case of a successful run of the algorithm, rep-
resents a single tree model of the input concept and TBox in a straightforward
way: the nodes of the tree are the domain elements and the edges denote the
extension of roles. Note that this is in contrast to many modal and first-order
tableaux, where models of the input formula correspond to branches of the tree
generated by the tableau algorithm.

Before presenting the tableau algorithm for ALC(C), we need some prerequi-
sites. In particular, we assume a certain normal form for concepts and TBoxes:
negation is only allowed in front of concept names, and the length of paths is
restricted.

A concept is said to be in negation normal form (NNF) if negation occurs
only in front of concept names. We now show that NNF can be assumed without
loss of generality: for every ALC(C)-concept, an eqi-satisfiable one in NNF can

8

be computed in linear time. Note that usual NNF transformations are even
equivalence-preserving, which cannot be achieved in our case. We assume that
the constraint system C has an equality predicate “=”, i.e., = ∈ Rel such that,
for all M ∈ M and v ∈ VM , we have (v = v) ∈ M .

Lemma 1 (NNF Conversion). Exhaustive application of the following rewrite
rules translates ALC(C)-concepts to eqi-satisfiable ones in NNF. The number of
rule applications is linear in the length of the original concept.

¬¬C ; C ¬(C u D) ; ¬C t ¬D ¬(C t D) ; ¬C u ¬D

¬(∃R.C) ; (∀R.¬C) ¬(∀R.C) ; (∃R.¬C)

¬(∀U1, U2.r) ; t
r′∈Rel,r′ 6=r

∃U1, U2.r
′

¬(∃U1, U2.r) ; t
r′∈Rel,r′ 6=r

∀U1, U2.r
′ where U1, U2 are feature paths

¬(∃Rg1, g2.r) ; (∀Rg∗, g2. =) u t
r′∈Rel,r′ 6=r

∀R.(∀g1, g
∗.r′)

where R ∈ NR \ NaF and g∗ is a fresh concrete feature

By nnf(C), we denote the result of converting C into NNF using the above rules.

In the last transformation, the fresh concrete feature g∗ is used to propagate
the value of g2 to all R successors. This transformation is the reason for the
fact that our NNF translation is not equivalence-preserving. Intuitively, giving
an equivalence preserving-translation would require to allow the formation of
complex C-relations from atomic ones by means of union.

We now introduce path normal form for ALC(C)-concepts and TBoxes. Path
normal form was first considered in [17, 14].

Definition 2 (Path Normal Form). An ALC(C)-concept C is in path normal
form (PNF) iff it is in NNF and, for all subconcepts ∃U1, U2.r and ∀U1, U2.r of
C, we have either

1. U1 = g1 and U2 = g2 for some g1, g2 ∈ NcF or
2. U1 = Rg1 and U2 = g2 for some R ∈ NR and g1, g2 ∈ NcF or
3. U1 = g1 and U1 = Rg2 for some R ∈ NR and g1, g2 ∈ NcF.

An ALC(C)-TBox T is in path normal form iff all concepts in T are in PNF.

The following lemma shows that we can w.l.o.g. assume ALC(C)-concepts and
TBoxes to be in PNF.

Lemma 2. Satisfiability of ALC(C)-concepts w.r.t. TBoxes can be polynomially
reduced to satisfiability of ALC(C)-concepts in PNF w.r.t. TBoxes in PNF.

Proof. Let C be an ALC(C)-concept. For every feature path u = f1 · · · fng used
in C, we assume that [g], [fng], . . . , [f1 · · · fng] are concrete features not used
in C. We inductively define a mapping λ from feature paths u in C to concepts
as follows:

λ(g) = > λ(fu) = (∃f [u], [fu]. =) u ∃f.λ(u)

For every ALC(C)-concept C, a corresponding concept ρ(C) is obtained by

9

– first replacing all subconcepts ∀u1, u2.r, where ui = f
(i)
1 · · · f

(i)
ki

gi for i ∈
{1, 2}, with

∀f
(1)
1 . · · · ∀f

(1)
k1

.∀g1, g1.r
6= t ∀f

(2)
1 . · · · ∀f

(2)
k2

.∀g2, g2.r
6= t ∃u1, u2.r

where r 6= ∈ Rel \ {=} is arbitrary, but fixed;
– and then replacing all subconcepts ∃u1, u2.r with ∃[u1], [u2].ruλ(u1)uλ(u2).

We extend the mapping ρ to TBoxes in the obvious way: replace each GCI C v D
with ρ(C) v ρ(D). To convert a concept to PNF, we may first convert to NNF
and then apply the above translation ρ. It is easily verified that (un)satisfiability
is preserved, and that the translation can be done in polynomial time. ut

In what follows, we generally assume that all concepts and TBoxes are in path
normal form. Moreover, we require that constraint systems are ω-admissible:

Definition 3 (ω-admissible). Let C = (Rel,M) be a constraint system. We
say that C is ω-admissible iff the following holds:

1. satisfiability in C is decidable;
2. C has the patchwork property;
3. C has the compactness property.

In Section 2, we have shown that RCC8 � 2 and Allen � have the patchwork and
compactness property. Moreover, satisfiability in RCC8 � 2 and Allen � is NP-
complete [21, 22]. Thus, these constraint systems are ω-admissible and may be
used with our tableau algorithm.

Let C0 be a concept and T a TBox such that satisfiability of C0 w.r.t. T is
to be decided. The concept form CT is defined as

CT = u
CvD∈T

nnf(C → D).

We define the set of subconcepts sub(C0, T) := sub(C0) ∪ sub(CT), with sub(C)
denoting the set of all subconcepts of C, including C.

As already noted, our algorithm uses trees as the main data structure, and
nodes of this tree represent elements of the interpretation domain. Due to the
presence of concrete domains, trees have two types of nodes: abstract ones that
represent individuals of the logic domain ∆I , and concrete ones representing
values of the concrete domain. Likewise, edges represent either roles or concrete
features.

Definition 4 (Completion system). Let Oa and Oc be disjoint and countably
infinite sets of abstract and concrete nodes. A completion tree for C0, T is a
finite, labelled tree T = (Va,Vc, E,L) with nodes Va ∪ Vc, such that Va ⊆ Oa,
Vc ⊆ Oc, and all nodes from Vc are leaves. The tree is labelled as follows:

1. each node a ∈ Va is labelled with a subset L(a) of sub(C0, T),
2. each edge (a, b) ∈ E with a, b ∈ Va is labelled with a role name L(a, b)

occurring in C0 or T ;

10

3. each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labelled with a concrete
feature L(a, x) occurring in C0 or T .

A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and L(a, b) = R,
while an x ∈ Vc is a g-successor of a if (a, x) ∈ E and L(a, x) = g. The notion
u-successor for a path u is defined in the obvious way. A completion system for
C0 and T is a tuple S = (T,N) where T = (Va,Vc, E,L) is a completion tree
for C0 and T and N is a Rel-network with VN = Vc.

To decide the satisfiability of C0 w.r.t. T (both in PNF), the tableau algorithm
is started with the initial completion system

SC0
= (TC0

, ∅), where TC0
= ({a0}, ∅, ∅, {a0 7→ {C0}}).

The algorithm applies completion rules to the completion system until an obvious
inconsistency (clash) is detected or no completion rule is applicable any more.
Before we define the completion rules for ALC(C), we introduce an operation
that is used by completion rules to add new nodes to completion trees.

Definition 5 (⊕ Operation). An abstract or concrete node is called fresh
w.r.t. a completion tree T if it does not appear in T . Let S = (T,N) be a
completion system with T = (Va,Vc, E,L). We use the following operations:

– S ⊕ aRb (a ∈ Va, b ∈ Oa fresh in T , R ∈ NR) yields a completion system
obtained from S in the following way:
• if R /∈ NaF or R ∈ NaF and a has no R-successors, then add b to Va,

(a, b) to E and set L(a, b) = R, L(b) = ∅;
• if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R

then rename c in T with b.
– S ⊕ agx (a ∈ Va, x ∈ Oc fresh in T , g ∈ NcF) yields a completion system

obtained from S in the following way:
• if a has no g-successors, then add x to Vc, (a, x) to E and set L(a, x) = g;
• if a has a g-successor y, then rename y in T and N with x.

Let u = R1 · · ·Rng be a path. With S ⊕ aux, where a ∈ Va and x ∈ Oc is fresh
in T , we denote the completion system obtained from S by taking distinct nodes
b1, ..., bn ∈ Oa which are fresh in T and setting

S′ := S ⊕ aR1b1 ⊕ · · · ⊕ bn−1Rnbn ⊕ bngx

To ensure termination of the tableau algorithm, we need a mechanism for detect-
ing cyclic expansions, commonly called blocking. Informally, we detect nodes in
the completion tree “similar” to previously created ones and “block” them, i.e.,
apply no more completion rules to such nodes. To define the blocking condition,
we need a couple of notions. For a ∈ Va, define:

cs(a) := {g ∈ NcF | a has a g-successor}

N (a) := {(g r g′) | there are x, y ∈ Vc such that x is a g-successor of a,
y is a g′-successor of a, and (x r y) ∈ N}

N ′(a) := {(x r y) | there exist g, g′ ∈ cs(a) s.t. x is a g-successor of a,
y is a g′-successor of a, and (x r y) ∈ N}

11

Ru if C1 u C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a),
then set L(a) := L(a) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅,
then set L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor of a such that
C ∈ L(b), then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := L(b) ∪ {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a such that
C 6∈ L(b), then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, U2.r ∈ L(a), a is not blocked, and there exist no x1, x2 ∈ Vc such that
xi is a Ui-successor of a for i = 1, 2 and (x1 r x2) ∈ N then set
S := (S ⊕ aU1x1 ⊕ aU2x2) with x1, x2 ∈ Oc fresh and N := N ∪ {(x1 r x2)}

R∀c if ∀U1, U2.r ∈ L(a), a is not blocked, and there are x1, x2 ∈ Vc such that xi is
a Ui-successor of a for i = 1, 2 and (x1 r x2) 6∈ N , then set
N := N ∪ {(x1 r x2)}

Rnet if a is potentially blocked by b and N (a) is not complete, then non-
deterministically guess a completion N ′ of N ′(a) and set N := N ∪N ′

Rnet′ if a is potentially blocked by b and N (b) is not complete, then non-
deterministically guess a completion N ′ of N ′(b) and set N := N ∪N ′

Rgci if CT 6∈ L(a), then set L(a) := L(a) ∪ {CT }

Fig. 3. The Completion Rules.

A completion of a Rel-network N is a satisfiable and complete Rel-network N ′

such that VN = VN ′ and N ⊆ N ′.

Definition 6 (Blocking). Let S = (T,N) be a completion system for a concept
C0 and a TBox T with T = (Va,Vc, E,L). Let a, b ∈ Va. We say that a ∈ Va is

– potentially blocked by b if b is an ancestor of a in T , L(a) ⊆ L(b), and
cs(a) = cs(b).

– directly blocked by b if a is potentially blocked by b, N (a) and N (b) are
complete, and N (a) = N (b).

Finally, a is blocked if it or one of its ancestors is directly blocked.

We are now ready to define the completion rules, which are given in Fig-
ure 3. Among the rules, there are three non-deterministic ones: Rt, Rnet and
Rnet′. All rules except Rnet and Rnet′ are rather standard, as they are variants
of the corresponding rules from existing algorithms for DLs with concrete do-
mains, see e.g. [2]. The purpose of these additional rules is to resolve potential
blocking situations into actual blocking situations (or non-blocking situations)
by completing the parts of the network N that correspond to the “blocked” and
“blocking” node. To ensure an appropriate interplay between Rnet/Rnet′, and
the blocking condition and thus to guarantee termination, we apply these rules
with highest precedence.

12

Note that the blocking mechanism obtained in this way is dynamic in the
sense that blocking situations can be broken again after they have been estab-
lished. Also note that the conditions L(a) ⊆ L(b) and cs(a) = cs(b) can be
viewed as a refinement of pairwise blocking as known from [12]: due to path
normal form, pairwise blocking is a strictly sharper condition than the above
two.

The algorithm applies completion rules until no more rules are applicable
(such a completion system is called complete), or a clash is encountered.

Definition 7 (Clash). Let S = (T,N) be a completion system for a concept C
and a TBox T with T = (Va,Va, E,L). S is said to contain a clash if

– there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a), or
– N is not satisfiable in C.

Note that the existence of clashes is decidable since we require that satisfiability
in C is decidable. In an actual implementation of our algorithm, checking for
clashes would require calling an external reasoner for satisfiability in the con-
straint system used. The tableau algorithm checks for clashes before each rule ap-
plication. It returns “satisfiable” if there is a way to apply the non-deterministic
rules such that a complete and clash-free completion system is generated. Oth-
erwise, it returns “unsatisfiable”. In actual implementations of our algorithm,
non-determinism has to be replaced by backtracking and search.

Note that checking for clashes before every rule application ensures that
Rnet and Rnet′ are well-defined: if Rnet is applied, then there indeed exists a
completion N ′ of N (a) to be guessed: due to clash checking, the network N is
satisfiable, and it is readily checked that this implies the existence of the required
completion.

Theorem 2. If C is an ω-admissible constraint system, the tableau algorithm
decides satisfiability of ALC(C) concepts w.r.t. general TBoxes.

Proof. Termination of the algorithm is ensured by the blocking condition, the
Rnet and Rnet′ rules, and the fact that these rules are executed with highest
precedence. Completeness can be proved in the standard way, by showing that
if the input concept C0 and TBox T have a common model I, we can guide the
(non-deterministic parts of) the tableau algorithm according to I, such that it
ends up with a clash-free completion system. Detailed proofs are given in [19].

Here we sketch the soundness proof. We have to show, that, if the tableau
algorithm returns “satisfiable”, then the input concept C0 is satisfiable w.r.t.
the input TBox T . If the tableau algorithm returns “satisfiable”, then there
exists a complete and clash-free completion system S = (T,N) of C0 and T . Let
T = (Va,Vc, E,L), and let root ∈ Va denote the root of T . Our aim is to define
a model I of C0 and T . We proceed in several steps.

Let blocks be a function that for every directly blocked b ∈ Va, returns an
unblocked a ∈ Va such that b is blocked by a in S. It can easliy seen that, by
definition of blocking, such a node a always exists. A path in S is a (possibly

13

empty) sequence of pairs of nodes a1

b1
, . . . , an

bn

, with a1, . . . , an and b1, . . . , bn from
Va, such that, for 1 ≤ i < n, bi+1 is a successor of ai in T and

ai+1 :=

{

bi+1 if bi+1 is not blocked,

blocks(bi+1) otherwise.

We use Paths to denote the set of all paths in S, head(p) to denote the first pair
of a path p and tail(p) to denote the last pair of p (if p is nonempty). We now
define the “abstract part” of the the model I we are constructing:

∆I := {p ∈ Paths | p non-empty and head(p) =
root

root
}

AI := {p ∈ ∆I | tail(p) =
a

b
and A ∈ L(a)},

RI := {(p, p ·
a

b
) ∈ ∆I × ∆I | tail(p) =

a′

b′
and b is R-successor of a′ in T }

for all A ∈ NC and R ∈ NR. Observe that ∆I is non-empty since root

root
∈ ∆I , and

that fI is functional for every f ∈ NaF, which is ensured by the “⊕” operation
and by definition of Paths.

Intuitively, the abstract part of I as defined above is “patched together” from
(copies of) parts of the completion tree T . For defining the concrete part of I,
we make this patching explicit: For p, q ∈ Paths,

– p is called a hook if p = root

root
or tail(p) = a

b
with a 6= b (and thus b blocked

by a). We use Hooks to denote the set of all hooks.
– we call p a q-companion if q is a hook and there exists q′ ∈ Paths such that

p = qq′ and all nodes a
b

in q′ satisfy a = b, with the possible exception of
tail(q′).

Intuitively, the hooks, which are induced by blocking situations in T , are the
points where we patch together parts of T . The part of T patched at a hook p
with tail(p) = a

b
is comprised of (copies of) all the nodes c in T that are reachable

from a, except indirectly blocked ones. Formally, the part of I belonging to the
hook p is defined as P (p) := {q ∈ ∆I | q is a p-companion}. For p, q ∈ Hooks, q
is called a successor of p if q is a p-companion and p 6= q. Observe that, for each
hook p, P (p) includes all successor hooks of p. Intuitively, this means that the
parts patched together to obtain the abstract part of I are overlapping at the
hooks.

For space limitations, we only sketch how the concrete part of I is defined.
The full construction with proofs can be found in [19]. Since the completion
system S is clash-free, its constraint network N is satisfiable. Therefore, there
exists a completion N c of N . For every p ∈ Hooks, we define a constraint network
N(p) that defines the constraints that have to be satisfied by the concrete part
of I corresponding to P (p). More precisely, N(p) is defined as (a copy of) the
part of N c that corresponds to the part of T patched at p.

Then the network N =
⋃

p∈Hooks
N(p) describes the constraints that have

to be satisfied by the concrete part of the whole model I. By construction, the

14

networks N(p) are finite, complete, satisfiable, and overlap at the hooks. Due to
the blocking condition, their overlapping parts are identical. Thus, we can use
the patchwork and compactness property of C to show that N is satisfiable in C.
Then a model MI ∈ M of N becomes the last argument of our interpretation I,
and we can define extensions of concrete features in I. To show that I is indeed
a model of C0 and T , we can prove by structural induction that for all p ∈ ∆I

with tail(p) = a
b

and for all C ∈ sub(C0, T) the following holds: if C ∈ L(a) then
p ∈ CI . Since C0 ∈ L(root) we have that root

root
∈ CI

0 . Finally, CT ∈ L(a) for all
unblocked a ∈ Va implies that p ∈ CI

T for all p ∈ ∆I , and thus I models T .

5 Conclusion

We have proved decidability of ALC with ω-admissible constraint systems and
GCIs. We conjecture that, by mixing the techniques from the current paper with
those from [17, 14], it is possible to prove ExpTime-completeness of satisfiability
in ALC(C) provided that satisfiability in C can be decided in ExpTime. Various
language extensions, both on the logical and concrete side, should also be possible
in a straightforward way.

We also exhibited the first tableau algorithm for DLs with concrete domains
and GCIs in which the concrete domain constructors are not limited to con-
crete features. We view this algorithm as a first step towards an implementa-
tion, although there is clearly room for improvements: the rules Rnet and Rnet′

add considerable non-determinism, clash checking involves the whole network N
rather than only a local part of it, and blocking can be further refined.

We believe that, in general, getting rid of the additional non-determinism
introduced by Rnet and Rnet′ is difficult. One possible way out may be to permit
only a single concrete feature: then Rnet and Rnet′ become deterministic (in
fact they can be omitted), and “potentially blocking” coincides with “directly
blocking”. We believe that having only one concrete feature is actually rather
natural: for the Allen/RCC8 concrete domains, the concrete feature could be
hasTime and hasLocation, respectively.

However, a complication is posed by the fact that path normal form intro-
duces additional concrete features. Simply requiring, as an additional restriction,
that only concepts and TBoxes in PNF are allowed is rather severe: it can be
seen that, then, satisfiability in ALC(C) instantiated with the RCC8 and Allen
constraint systems can be decided by adding some simple clash conditions. In
particular, there is no need to use an external reasoner for the constraint system
at all. Therefore, it is more interesting to find a tableau algorithm for ALC(C)
with only one concrete feature that does not rely on PNF, but still avoids the
non-determinism and global satisfiability check of N .

References

1. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11), 1983.

15

2. F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept
languages. In Proc. of IJCAI-91, pages 452–457, Morgan Kaufman. 1991.

3. F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages
for the semantic web. In Festschrift in honor of Jörg Siekmann, LNAI. Springer-
Verlag, 2003.

4. F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2003.

5. P. Balbiani and J.-F. Condotta. Computational complexity of propositional linear
temporal logics based on qualitative spatial or temporal reasoning. In Proc. of
FroCoS 2002, number 2309 in LNAI, pages 162–176. Springer, 2002.

6. B. Bennett. Modal logics for qualitative spatial reasoning. Journal of the IGPL,
4(1), 1997.

7. D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Proc. of ECAI-96, pages 303–307, 1996.

8. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In Logics for Databases and Information Systems, pages 229–263.
Kluwer, 1998.

9. D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Elsevier, 2003.

10. V. Haarslev and R. Möller. RACER system description. In Proc. of IJCAR’01,
number 2083 in LNAI, pages 701–705. Springer-Verlag, 2001.

11. I. Horrocks. Using an expressive description logic: Fact or fiction? In Proc. of
KR98, pages 636–647, 1998.

12. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. of LPAR’99, number 1705 in LNAI, pages 161–180. Springer, 1999.

13. C. Lutz. Complexity of terminological reasoning revisited. In Proc. of LPAR’99,
number 1705 in LNAI, pages 181–200. Springer, 1999.

14. C. Lutz. Adding numbers to the SHIQ description logic—First results. In Proc.
of KR2002, pages 191–202. Morgan Kaufman, 2002.

15. C. Lutz. Reasoning about entity relationship diagrams with complex attribute
dependencies. In Proc. of DL2002, number 53 in CEUR-WS (http://ceur-ws.org/),
pages 185–194, 2002.

16. C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal
Logics Volume 4, pages 265–296. King’s College Publications, 2003.

17. C. Lutz. Combining interval-based temporal reasoning with general tboxes. Arti-
ficial Intelligence, 152(2):235–274, 2004.

18. C. Lutz. NExpTime-complete description logics with concrete domains. ACM
Transactions on Computational Logic, 5(4):669–705, 2004.

19. C. Lutz and M. Miličić. A tableau algorithm for DLs with concrete do-
mains and GCIs. LTCS-Report 05-07, TU Dresden, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

20. D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and
connection. In Proc. of KR’92, pages 165–176. Morgan Kaufman, 1992.

21. J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A max-
imal tractable fragment of the region connection calculus. Artificial Intelligence,
108(1–2):69–123, 1999.

22. M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for
temporal reasoning: a revised report. In Readings in qualitative reasoning about
physical systems, pages 373–381. Morgan Kaufmann, 1990.

