
Efficient Reasoning in EL+

Franz Baader, Carsten Lutz, Boontawee Suntisrivaraporn
Institute for Theoretical Computer Science

TU Dresden, Germany
{baader,clu,meng}@tcs.inf.tu-dresden.de

1 Introduction

The early dream of a description logic (DL) system that offers both sound and
complete polynomial-time algorithms and expressive means that allow its use
in real-world applications has since the 1990ies largely been considered to be
a pipe dream. This was, on the one hand, due to complexity results showing
intractability even in very inexpressive DLs [5], in particular in the presence
of TBoxes [13]. On the other hand, many of the applications considered then
required more expressive power rather than less, which led to the development of
more and more expressive DLs. The use of such intractable DLs in applications
was made possible by the fact that highly-optimized tableau-based reasoners for
them behaved quite well in practice.

However, more recent developments regarding the EL family of DLs have
shed a new light on the realizability of this dream.1 On the one hand, theoreti-
cal results [1, 6, 2] have shown that reasoning in EL and several of its extensions
remains tractable in the presence of TBoxes and even of general concept inclu-
sions (GCIs). On the other hand, it has turned out that, despite its relatively
low expressivity, the EL family is highly relevant for a number of important
applications, in particular in the bio-medical domain: for example, medical ter-
minologies such as the Systematized Nomenclature of Medicine (Snomed) [9]
and the Galen Medical Knowledge Base (Galen) [14] are formulated in EL or
small extensions thereof, and the Gene Ontology (Go) [8] used in bioinformatics
can also be viewed as an EL TBox.

In this paper, we address the question of whether the polynomial-time algo-
rithms for reasoning in EL and its extensions really behave better in practice
than intractable, but highly-optimized tableau-based algorithms. To this end,
we have implemented a refined version of the algorithm described in [2] in our

1An alternative contender for a usable tractable DL is the one introduced in [7].

Endocardium v Tissue u ∃cont-in.HeartWall u

∃cont-in.HeartValve

HeartWall v BodyWall u ∃part-of.Heart

HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium

Inflammation v Disease u ∃acts-on.Tissue

Heartdisease u ∃has-loc.HeartValve v CriticalDisease

Heartdisease
.
= Disease u ∃has-loc.Heart

part-of ◦ part-of v part-of

part-of v cont-in

has-loc ◦ cont-in v has-loc

Figure 1: An example EL+ ontology.

CEL reasoner,2 and compared its performance on the large bio-medical ontologies
Snomed, Go, and a trimmed-down version of Galen with the performance of
the most advanced tableau-based reasoners FaCT++,3 RacerMaster,4 and Pellet5

on these ontologies.

2 EL+ and the algorithm implemented in CEL

The CEL system currently supports the DL EL+, whose concepts are formed
according to the syntax rule

C ::= A | > | C u D | ∃r.C,

where A ranges over concept names, r over role names, and C,D over concepts.
Thus, the concept language of EL+ is identical to that of EL. The ·+ in its
name refers to the more powerful ontology formalism. An EL+ ontology is a
finite set of general concept inclusions (GCIs) C v D and role inclusions (RIs)
r1 ◦ · · · ◦ rn v r. Note that EL+ ontologies can thus express transitive roles, role
hierarchies, and so-called right-identities on roles (r◦s v s), which are very useful
in medical ontologies [15, 11]. The semantics of concepts and ontologies is defined
in the usual way (see, e.g., [2]). We write C vO D if the concept C is subsumed
by the concept D w.r.t. the ontology O. Figure 1 shows a small medical ontology
formulated in EL+. Based on this ontology, it is not hard to see that the

2CEL can be downloaded from http://lat.inf.tu-dresden.de/systems/cel/
3See http://owl.man.ac.uk/factplusplus/
4See http://www.racer-systems.com/
5See http://www.mindswap.org/2003/pellet/

Normal Form Completion Rules

A1 u · · · u An v B R1 If A1, . . . , An ∈ S(X), A1 u · · · u An v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) /∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3 If (X,Y) ∈ R(r), A ∈ S(Y), ∃r.A v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y) ∈ R(r), r v s ∈ O, and (X,Y) /∈ R(s)
then R(s) := R(s) ∪ {(X,Y)}

r ◦ s v t R5 If (X,Y) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O,
and (X,Z) /∈ R(t)

then R(t) := R(t) ∪ {(X,Z)}

Figure 2: Normal form and completion rules

concept Endocarditis is subsumed by the concept Heartdisease and CriticalDisease

(i.e. Endocarditis vO Heartdisease and Endocarditis vO CriticalDisease).
The main reasoning service that CEL offers is classification, i.e., the computa-

tion of the complete subsumption hierarchy between all concept names occurring
in the input ontology O. The CEL reasoner is based on the polynomial time al-
gorithm developed in [2] for the extension EL++ of EL+, which can additionally
handle the bottom concept (and thus disjoint concepts), restricted concrete do-
mains, and nonimals (and thus ABoxes). In the following, we briefly introduce
the restriction of this algorithm to EL+, and then describe the refined version
of this algorithm implemented in our CEL reasoner.

To classify an ontology, the algorithm first transforms it into normal form,
which requires that all concept and role inclusions are of one of the forms shown
in the left part of Figure 2. By introducing new concept and role names and
applying a number of simple transformation rules, any ontology O can be trans-
formed in linear time into a normalized one such that subsumption between the
concept names occurring in O is preserved [16, 2].

For the rest of this section, we assume without loss of generality that the
input ontology O is in normal form. Let RNO be the set of all role names
occurring in O, CNO the set of all concept names occurring in O, and CN>

O :=
CNO ∪ {>}. The algorithm computes

• a mapping S assigning to each element of CN>
O a subset of CN>

O, and

• a mapping R assigning to each element of RNO a binary relation on CN>
O.

The intuition is that these mappings make implicit subsumption relationships
explicit in the sense that B ∈ S(A) implies A vO B, and (A,B) ∈ R(r) implies

A vO ∃r.B. The mappings are initialized by setting S(A) := {A,>} for each
A ∈ CN>

O and R(r) := ∅ for each r ∈ RNO. Then the sets S(A) and R(r) are
extended by applying the completion rules shown in the right part of Figure 2
until no more rule applies.

In [2], it is shown that this algorithm always terminates in time polynomial in
the size of the input ontology, and that it is sound and complete in the following
sense: after termination we have B ∈ S(A) iff A vO B, for all A,B ∈ CN>

O.
Thus, the sets S(A) yield a complete representation of the subsumption relation
vO on the concept names from O (including >).

It is obvious that, when implementing this algorithm, an efficient approach
for finding an applicable rule must be developed. Though a näıve brute-force
search for applicable rules would still yield a polynomial time algorithm, its
complexity on very large knowledge bases would be prohibitive. As a solution
to this problem, we use a refined version of the algorithm, which is inspired
by the linear-time algorithm for satisfiability of propositional Horn formulas
proposed in [10]. More precisely, our algorithm uses a set of queues, one for
each element of CN>

O, to guide the application of completion rules. Intuitively,
the queues list additions to S(A) and R(r) that still have to be carried out. The
possible entries of the queues are of the form

B1 u · · · u Bn → B′ and ∃r.B

with B1, . . . , Bn, B, and B′ concept names, r a role name, and n ≥ 0. For
the case n = 0, we simply write the queue entry B1 u · · · u Bn → B′ as B′.
Intuitively,

• an entry B1 u · · · u Bn → B′ in queue(A) means that B ′ has to be added
to S(A) if S(A) already contains B1, . . . , Bn, and

• ∃r.B ∈ queue(A) means that (A,B) has to be added to R(r).

The fact that such an addition triggers other rules will be taken into account by
appropriately extending the queues when the addition is performed.

To facilitate describing the manipulation of the queues, we view the (normal-

ized) input ontology O as a mapping Ô from concepts to sets of queue entries

as follows: for each concept name A ∈ CN>
O, Ô(A) is the minimal set of queue

entries such that

• if A1 u · · · u An v B ∈ O and A = Ai, then

A1 u · · · u Ai−1 u Ai+1 u · · · u An → B ∈ Ô(A);

• if A v ∃r.B ∈ O, then ∃r.B ∈ Ô(A).

procedure process(A, X)
begin

if X = B1, . . . , Bn → B and B /∈ S(A) then

if {B1, . . . , Bn} ⊆ S(A) then

S(A) := S(A) ∪ {B};

queue(A) := queue(A) ∪ Ô(B);
for all concept names A′ and role names r

with (A′, A) ∈ R(r) do

queue(A′) := queue(A′) ∪ Ô(∃r.B);
if X = ∃r.B and (A, B) /∈ R(r) then

process-new-edge(A, r, B)
end;

procedure process-new-edge(A, r, B)
begin

for all role names s with r v∗
O s do

R(s) := R(s) ∪ {(A, B)};

queue(A) := queue(A) ∪
⋃

{B′|B′∈S(B)} Ô(∃s.B′);

for all concept names A′ and role names t, u with
t ◦ s v u ∈ O and (A′, A) ∈ R(t) and (A′, B) 6∈ R(u) do

process-new-edge(A′, u, B);
for all concept names B′ and role names t, u with

s ◦ t v u ∈ O and (B, B′) ∈ R(t) and (A, B′) 6∈ R(u) do

process-new-edge(A, u, B′);
end;

Figure 3: Processing the queue entries

Likewise, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue entries

such that, if ∃r.A v B ∈ O, then B ∈ Ô(∃r.A).

In the modified algorithm, the queues are used as follows: since the sets S(A)

are initialized with {A,>}, we initialize queue(A) with Ô(A) ∪ Ô(>), i.e., we
add to the queues the immediate consequences of being an instance of A and
>. Then, we repeatedly fetch (and thereby remove) entries from the queues
and process them using the procedure process displayed in Figure 3. To be
more precise, process(A,X) is called when the queue of A was non-empty and
we fetched the queue entry X from queue(A) to be treated next. Observe that
the first if-clause of the procedure process implements R1 and (part of) R3, and
the second if-clause implements R2, (the rest of) R3, as well as R4 and R5. The
procedure process-new-edge(A, r,B) is called by process to handle the effects of
adding a new pair (A,B) to R(r). The notation v∗

O used in its top-most for-

loop stands for the reflexive-transitive closure of the statements r v s occurring
in O. Queue processing is continued until all queues are empty. Observe that
the refined algorithm need not perform any search to check which completion
rules are applicable.

With a relatively straightforward implementation (in Common LISP) of this
algorithm, we were able to classify the large Snomed ontology (see below) in
less than 4 hours (see [4] for this and other experimental results). Since then,
however, we have further improved the implementation by changing the strategy
of rule applications, changing the encoding of concept and role names, and by
using low-level optimizations of the underlying data structure. These optimiza-
tions have enhanced the performance of CEL on large real-world ontologies. In
particular, CEL can now classify Snomed in less than half an hour (see below).

3 The experimental results

To test whether CEL can compete with modern tableau based reasoners, we
have conducted a number of experiments based on three important bio-medical
ontologies: the Gene Ontology (Go) [8], the Galen Medical Knowledge Base
(Galen) [14], and the Systematized Nomenclature of Medicine (Snomed) [9].
These ontologies provide us with the following benchmark EL+ ontologies:

• OGo, which is the latest OWL version of Go;

• OGalen, which is a stripped-down version of Galen obtained by removing
inverse role axioms and treating functional roles as ordinary ones;

• OSnomed, which is the complete Snomed ontology;

• OSnomed

core
, which is the definitorial fragment of OSnomed, obtained by keeping

only complete concept definitions (A ≡ C) , but not the primitive ones
(A v C). We consider this fragment in order to obtain another benchmark
that is easier to tackle for standard DL reasoners.

Some information about the size and structure of these ontologies is shown in
the upper part of Table 1, where CDefs stands for complete concept definitions
(A ≡ C), PCDefs for primitive concept definitions (A v C), and GCIs for
concept inclusions that are neither CDefs nor PCDefs. It is interesting to note
that all ontologies except for OGalen are actually acyclic TBoxes.

We have compared the performance of CEL with three of the most advanced
tableau-based reasoning systems: FaCT++ (v1.1.0), RacerMaster (v1.9.0), and
Pellet (v1.3b). All these systems implement expressive DLs in which subsump-
tion is ExpTime-complete. The experiments have been performed on a PC with
2.8GHz Intel Pentium 4 processor and 512MB memory running Linux v2.6.14.

OGo OGalen OSnomed
core

OSnomed

No. of CDefs. 0 699 38,719 38,719

No. of PCDefs. 20,465 2041 0 340,972

No. of GCIs 0 1214 0 0

No. of role axioms 1 438 0 11 + 1

|CNO| 20,465 2,740 53,234 379,691

|RNO| 1 413 52 52

CEL 5.8 14 95 1,782

FaCT++ 6.9 50 740 3,859

RacerMaster 19 14 34,709 unattainable

Pellet 1,357 75 unattainable unattainable

Table 1: Benchmarks and Evaluation Results

For Pellet, we used JVM v1.5 and set the Java heap space to 256MB (as recom-
mended by the implementor). In the case of Galen, for the sake of fairness also
the tableau reasoners have been used with the restricted version of Galen that
includes neither functional nor inverse roles. In the case of Snomed, the only
existing right-identity rule was passed to CEL, but not to the other reasoners as
they do not support right identities. The results of our experiments are sum-
marized in the lower part of Table 1, where all classification times are shown in
seconds and unattainable means the reasoner failed due to memory exhaustion.
Notably, CEL outperforms all the reasoners in all benchmarks except for OGalen,
where CEL and RacerMaster show the same performance.

CEL and FaCT++ are the only reasoners that can classify OSnomed, whereas
RacerMaster and Pellet fail. Pellet and the original version of FaCT (not shown
in the table) also fail already to classify OSnomed

core
. It seems worth noting that the

performance of FaCT++ on OSnomed degrades dramatically if OSnomed is extended
with real GCIs. For instance, FaCT++ needs about 3,000 more seconds to classify
OSnomed for each additional randomly generated GCI of the form ∃r.C v D,
whereas the performance of CEL does not change noticeably if we add such
GCIs.

4 Computing the Subsumption DAG

The innate classification output of CEL is simply the computed sets S(A) for all
concept names A. We call these sets subsumer sets in what follows. In contrast,
tableau-based reasoners usually employ the enhanced traversal method from [3]
to generate a directed acyclic graph (DAG) describing the direct subsumption
relationships, i.e., for every concept name A they compute the sets of its direct

subsumers and subsumees, which are the sets of concept names B such that
A vO B (B vO A) and there is no concept name B ′ /∈ {A,B} with A vO B′ vO

B (B vO B′ vO A). We will call this graph the subsumption DAG. Since the
subsumption relation is a quasi-order rather than a partial order (i.e., in general
not antisymmetric), one node of the DAG actually corresponds to an equivalence
class of concept names rather than a single concept name. The advantage of
using subsumption DAGs over subsumer sets is that this format is more compact,
and it directly supports browsing the subsumption hierarchy by going from a
concept name to its direct subsumers or subsumees. The disadvantage is that
answering a subsumption question A v?

O B then requires to test reachability of
B from A in the DAG, and not just a look-up in the subsumer set S(A).

Since many applications require subsumption DAGs rather than (or in addi-
tion to) subsumer sets, CEL allows to construct the former from the latter in an
efficient way. In principle, converting subsumer sets into a subsumption DAG is
easy. We can simply compute, for each concept name A,

• the set SS (A) := {B ∈ S(A) | A /∈ S(B)} of strict subsumers of A, i.e.,
subsumers of A that are not equivalent to A;

• the set DS (A) := SS (A) \
(⋃

B∈SS(A) SS (B)
)

of direct subsumers of A;

• the set DS−(A) := {B | A ∈ DS (B)} of direct subsumees of A.

Clearly, the sets DS (A) and DS−(A) yield a representation of the subsumption
DAG.

However, we do not use this direct construction since computing the sets
DS−(A) is expensive (it needs quadratic time) and it is possible to avoid the
direct computation of these sets according to the above definition by using an
approach that is inspired by the enhanced traversal method in [3]. Another
virtue of our alternative approach is that the potentially costly set operations in
the computation of DS (A) are replaced by an inexpensive marking algorithm.

In order to explain the main idea underlying our algorithm, assume that we
have already computed a restriction of the subsumption DAG to some subset
of the concept names, and that we now want to insert the concept name A into
this DAG. We start by computing the set SS (A) of strict subsumers according
to the definition given above. The elements of S(A) \ SS (A) are the concepts
that are equivalent to A. To find all the direct subsumers of A among the
elements of SS (A), we proceed as follows. If all elements of SS (A) belong to
the already computed DAG, we can find the direct subsumers by using a simple
graph traversal algorithm to mark all the strict subsumers of elements of SS (A)
in the DAG. The direct subsumers of A are then those elements of SS (A) that
are not marked. If there are elements of SS (A) that do not belong to the already
computed DAG, then we simply first insert these elements into the DAG (by

issuing recursive calls of the insertion procedure) before inserting A. By following
this strategy, we ensure that, when inserting a concept name A into the DAG,
all subsumers of A are already in the DAG, but no subsumee of A is. Hence,
our algorithm need not compute the direct subsumees explicitly. Instead, it is
enough to extend the set of direct subsumees of B by A in case B is found to
be a direct subsumer of A.

Figure 4 shows a pseudo code representation of our algorithm. The sets
parents(A) are used to store the direct subsumers of A, the sets children(A) are
used to store the direct subsumees of A, and the sets equivalents(A) are used to
store the concepts that are equivalent to A. Note that the description of the
algorithm is a bit sloppy in that we do not distinguish between a concept name
and the node in the DAG representing (the equivalence class of) this name.

An algorithm similar to ours is obtained if we describe the subsumer sets
as a primitive TBox, i.e. a set of primitive concept definitions A v uBi∈S(A)Bi

for each concept name A, and then employ a simplified version of the enhanced
traversal method [3] using told subsumer information and some of the optimiza-
tions described in [12] to compute the subsumption DAG from the resulting
TBox.

The time required by CEL for computing subsumption DAGs is very small.
For example, even in the case of OSnomed, which has almost 380,000 concepts
and huge subsumer sets, it takes only 9 seconds. This is negligible compared
to the time needed to compute the subsumer sets. In particular, if we add this
time to CEL’s run-time on OSnomed in Table 1, CEL is still more than twice as
fast as FaCT++.

There is an obvious alternative to first computing the full subsumer sets,
and only then deriving the subsumption DAG from them: we could modify our
classification algorithm, which computes the whole subsumption hierarchy, into
a subsumption algorithm that answers only a single subsumption query, and then
use this subsumption algorithm inside a standard enhanced traversal algorithm
as described in [3]. We have experimented with this strategy, which is closer
to the approach employed by tableau-based systems. To turn our algorithm
into a subsumption algorithm, we have developed a goal-directed variant of it,
which is based on activating a concept name if computing its subsumer set is
required for answering the subsumption question at hand. If the aim is to answer
the subsumption query A v?

O B, then initially only A is activated. Intuitively,
completion rules are only applied to activated names. We activate a concept
name B′ whenever B′ is the second component of a tuple added to some R(r).
The set S(A′) and the queue of A′ is initialized only when the concept name
becomes activated, and thus the subsumer sets of concept names that do not
become activated are not populated by the algorithm. During the construction of
the whole subsumption DAG, the enhanced traversal procedure makes repeated
calls to the subsumption algorithm. To avoid redoing work, we retain the already

procedure compute-dag

for all concept names X ∈ CN>
O do

classified(X) := false

parents(X) := children(X) := equivalents(A) := ∅

for each concept name A ∈ CN>
O do

if not classified(A) then

dag-classify(A);
end;

procedure dag-classify(A)
candidates := ∅;
for all subsumers B ∈ S(A) do

if A ∈ S(B) then

classified(B) := true;
equivalents(A) := equivalents(A) ∪ {B};

else

if not classified(B) then

dag-classify(B);
candidates := candidates ∪ {B};

dag-insert(A, candidates);
classified(B) := true;

end;

procedure dag-insert(A, candidates)

marked(X) := false for all X ∈ CN>
O;

for all B ∈ candidates do

for all X ∈ parents(B) do

marked(X) := true

while there are X, Y ∈ CN>
O with marked(X), Y ∈ parents(X), and

not marked(Y) do

marked(Y) := true

parents(A) := {B ∈ candidates | marked(B) = false};
for all B ∈ parents(A) do

children(B) := children(B) ∪ {A};
end;

Figure 4: Computing the DAG from the subsumer sets

computed parts of the mappings S(·) and R(·) for such repeated calls.

However, our current implementation of this idea cannot compete with the
runtime of the original CEL implementation described before. For example, the
classification of OSnomed takes 3,750 seconds. This is still slightly better than

the performance of FaCT++, but more than twice of the 1,791 seconds needed
when first computing the subsumer sets and then constructing the subsumption
DAG. The reason is probably that, in sum, the single subsumption tests do the
same work as the full classification algorithm, but then there is the additional
overhead of the enhanced traversal method (which is more complicated than
the simplified version employed to compute the subsumption DAG from the
subsumer sets).

5 Conclusion

The performance evaluations show that our tractable reasoner CEL outperforms
modern reasoners for intractable DLs based on tableau algorithms. It should be
noted that the good performance of CEL is achieved with a relatively straight-
forward implementation of the tractable algorithm, whereas the tableau-based
systems are the result of many years of research into optimization techniques.
The robustness and scalability of tractable reasoning is visible in the case of
Snomed, which comprises almost 380,000 concept definitions. Only CEL and
FaCT++ can classify this terminology, whereas RacerMaster, Pellet, and the orig-
inal version of FaCT fail. Additionally, FaCT++ shows a significant degradation
in performance if Snomed, which is an acyclic TBox, is extended with GCIs.
In contrast, the runtime of CEL is not noticeably affected by such an extension.

Developing CEL is ongoing work. We plan to extend its capabilities to the
DL EL++ [2], which includes, among other things, nominals and the bottom
concept (thus one can express ABoxes and disjoint concepts). We also plan to
implement DIG and OWL interfaces,6 so that CEL can be used as a backend
reasoner for ontology editors like OilEd7 and Protégé,8 which would also make
their sophisticated graphical user-interfaces available to users of CEL.

References

[1] F. Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. IJCAI’03, 2003.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. IJCAI’05,
2005.

[3] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence, 4:109–132, 1994.

6See http://dl.kr.org/dig/ and http://www.w3.org/2004/OWL/
7See http://oiled.man.ac.uk/
8See http://protege.stanford.edu/

[4] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Proc. M4M’05, 2005.

[5] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-
based description languages. In Proc. AAAI’84, 1984.

[6] S. Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. AAAI’05, 2005.

[8] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[9] R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED
International, Northfield, IL: College of American Pathologists, 1993.

[10] W. F. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Logic Programming, 1(3):267–284, 1984.

[11] I. Horrocks and U. Sattler. Decidability of SHIQ with complex role inclusion
axioms. Artificial Intelligence, 160(1–2):79–104, 2004.

[12] I. Horrocks and D. Tsarkov. Optimised classification for taxonomic knowledge
bases. In Proc. DL’05, 2005.

[13] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelli-

gence, 43:235–249, 1990.

[14] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In Proc.

Ontological Engineering Workshop, AAAI Spring Symposium, 1997.

[15] K.A. Spackman. Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT. J. of the American

Medical Informatics Association, 2000. Fall Symposium Special Issue.

[16] B. Suntisrivaraporn. Optimization and implementation of subsumption algo-
rithms for the description logic EL with cyclic TBoxes and general concept in-
clusion axioms. Master thesis, TU Dresden, Germany, 2005.

