
CEL—A Polynomial-time Reasoner for

Life Science Ontologies?

Franz Baader, Carsten Lutz, Boontawee Suntisrivaraporn

Theoretical Computer Science, TU Dresden, Germany
{baader,lutz,meng}@tcs.inf.tu-dresden.de

Abstract. CEL (Classifier for EL) is a reasoner for the small description
logic EL+ which can be used to compute the subsumption hierarchy in-
duced by EL+ ontologies. The most distinguishing feature of CEL is that,
unlike all other modern DL reasoners, it is based on a polynomial-time
subsumption algorithm, which allows it to process very large ontologies
in reasonable time. In spite of its restricted expressive power, EL+ is
well-suited for formulating life science ontologies.

The Description Logic underlying CEL

The system CEL1 is a first step towards realizing the dream of a description
logic system that offers both sound and complete polynomial-time algorithms
and expressive means that allow its use in real-world applications. It is based
on recent theoretical advances that have shown that the description logic (DL)
EL, which allows for conjunction and existential restrictions, and some of its
extensions have a polynomial-time subsumption problem even in the presence
of concept definitions and so-called general concept inclusions (GCI) [1]. The
DL EL+ handled by CEL extends EL by so-called role inclusions (RI). On the
practical side, it has turned out that the expressive power of EL+ is sufficient
to express several large life science ontologies. In particular, the Systematized
Nomenclature of Medicine (Snomed) [4] employs EL with RIs and acyclic con-
cept definitions. The Gene Ontology (Go) [3] can also be expressed in EL with
acyclic concept definitions and one transitive role (which is a special case of an
RI). Finally, large parts of the Galen Medical Knowledge Base (Galen) [5] can
be expressed in EL with GCIs and RIs.

Because of the space limitations, we cannot introduce the syntax and seman-
tics of EL+ in detail. We just mention the syntax elements, and illustrate their
use by a small example. Full definitions can be found in [1, 2]. Like in other DLs,
EL+ concepts are inductively defined starting with the sets of concept names NC

and role names NR. Each concept name A is a concept, and so are the top con-
cept >, conjunction C uD, and existential restriction ∃r.C. An EL+ ontology is
a finite set of general concept inclusions (GCI) of the form C v D for concepts

? This work was partially supported by the EU funded IST-2005-7603 FET Project
Thinking Ontologies (TONES).

1 CEL can be downloaded from http://lat.inf.tu-dresden.de/systems/cel/.

C,D, and complex role inclusions (RI) of the form r1 ◦ · · · ◦ rn v s for roles
r1, . . . , rn, s. A primitive concept definition (PCDef) A v D is a GCI with the
left-hand side a concept name, while a (non-primitive) concept definition (CDef)
A ≡ D can be expressed using two GCIs. It is worthwhile to note that RIs gen-
eralize at least three expressive means important in bio-medical applications:
role hierarchy, transitive role, and so-called right-identity axioms [4]. One of the
most prominent inference problems for DL ontologies is classification: compute
the subsumption hierarchy of all concept names occurring in the ontology.

Endocardium v Tissue u ∃cont-in.HeartWall u
∃cont-in.HeartValve

HeartWall v BodyWall u ∃part-of.Heart

HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium

Inflammation v Disease u ∃acts-on.Tissue

HeartDisease ≡ Disease u ∃has-loc.Heart

part-of v cont-in

has-loc ◦ cont-in v has-loc

Fig. 1. An example EL+ ontology (motivated by Galen).

As an example, we consider the EL+ ontology in Fig. 1, where all capi-
talized words are concept names and all lowercase words are role names. This
small ontology contains 5 GCIs (which are indeed PCDefs), a CDef, and 2 RIs
(more precisely a role hierarchy and a right-identity axiom) expressing a piece
of clinical knowledge about endocarditis and related concepts and roles. It is not
hard to infer from this ontology that endocarditis is classified as heart disease,
i.e., Endocarditis vO HeartDisease. In fact, (i) Endocarditis implies Inflammation

and thus Disease, which yields the first conjunct in the definition of HeartDisease.
Moreover, (ii) ∃has-loc.Endocardium implies ∃has-loc.∃cont-in.HeartWall and thus
∃has-loc.∃cont-in.∃part-of.Heart, which, in the presence of both RIs, implies
∃has-loc.Heart, satisfying the second conjunct in the definition of HeartDisease.

The CEL System

The algorithm implemented in CEL is based on the restriction to EL+ of the
polytime classification algorithm for the more expressive DL EL++ introduced
in [1]. To classify an ontology, the algorithm first transforms it into normal form,
which requires all GCIs and RIs to be in one of the forms shown in the left part
of Fig. 2. By introducing new concept and role names and applying a number
of straightforward rewriting rules, any EL+ ontology O can be transformed into
a normalized one such that subsumption between the concept names occurring
in O is preserved. The normalization can be carried out in linear time, yield-
ing an ontology whose size is linear in the size of the original one [1]. After

normalization, the algorithm computes two mappings: S : N>

C
−→ 2N

>

C and

A1 u · · · u An v B CR1 If {A1, . . . , An} ⊆ S(X), A1 u · · · u An v B ∈ O,
and B /∈ S(X)

then S(X) := S(X) ∪ {B}
A v ∃r.B CR2 If A ∈ S(X), A v ∃r.B ∈ O, and (X, B) /∈ R(r)

then R(r) := R(r) ∪ {(X, B)}

∃r.A v B CR3 If (X, Y) ∈ R(r), A ∈ S(Y), ∃r.A v B ∈ O,
and B /∈ S(X)

then S(X) := S(X) ∪ {B}
r v s CR4 If (X, Y) ∈ R(r), r v s ∈ O, and (X, Y) /∈ R(s)

then R(s) := R(s) ∪ {(X, Y)}

r ◦ s v t CR5 If (X, Z) ∈ R(r), (Z, Y) ∈ R(s), r ◦ s v t ∈ O,
and (X, Y) /∈ R(t)

then R(t) := R(t) ∪ {(X, Y)}

Fig. 2. Normal Form and Completion Rules

R : NR −→ 2(N>

C
×N

>

C
) where N>

C
is NC augmented by >. The intuition is that

these mappings make implicit subsumption relationships explicit in the sense
that B ∈ S(A) implies A vO B, and (A,B) ∈ R(r) implies A vO ∃r.B. The
mappings are initialized by setting S(A) := {A,>} and R(r) := ∅. Then the sets
S(A) and R(r) are extended by applying the completion rules shown in the right
part of Fig. 2 until no more rule applies. As a result, the mapping S computed
this way satisfies B ∈ S(A) iff A vO B, i.e., S(A) contains all subsumers of A.
Note that this algorithm computes the subsumption relationships between all
pairs of concept names.

It is obvious that, when implementing this algorithm, an efficient approach
for finding an applicable rule must be developed. To avoid searching for such
rules, we use a set of queues, one for each concept name appearing in the input
ontology, to guide the application of completion rules. Intuitively, the queues
list modifications to S(A) and R(A) that still have to be carried out. The fact
that such an addition triggers other rules is taken into account by appropriately
extending the queues when the addition is performed (see [2] for a detailed de-
scription). With a relatively straightforward implementation (in Common LISP)
of this idea, we were able to classify the large Snomed ontology (see below) in
less than 4 hours (see [2] for this and other experimental results). Since then,
however, we have further improved the implementation by changing the strategy
of rule applications, changing the encoding of concept and role names, and low-
level optimizations on the data structures. These optimizations have enhanced
the performance of CEL on large real-world ontologies. In particular, CEL can
now classify Snomed in less than half an hour (see below).

The CEL interface. CEL currently accepts input based on a small extension
of the KRSS syntax.2 It is currently equipped with a very simple shell-like in-
terface that provides users with all essential functionalities, including a simple
interactive help command. The user can either load an EL+ ontology formu-
lated in KRSS syntax into the system from a file by calling (load-ontology

2 see http://dl.kr.org/krss-spec.ps

filename) or enter interactively at the prompt each axiom of the ontology.
The normalization is carried out while the ontology is being loaded, and once
normalization is finished, (classify-ontology) can be invoked to classify all
concept names occurring in the ontology (eager subsumption approach). We have
modified the algorithm described above to a goal-directed variant such that a
single subsumption query between 2 concept names (subsumes? B A) can be
answered without needing to classify the whole ontology first (lazy subsumption
approach). After having classified the whole ontology, CEL allows the user to
output the classification results in different formats: (output-supers) to out-
put the sets S(A) for all concept names A occurring in O; (output-taxonomy)
to output the Hasse diagram of the subsumption hierarchy, i.e., just the direct
parent-child relationships; and (output-hierarchy) to output the hierarchy as
a graphical indented tree.

Through its command-line options, CEL can also work as a stand-alone rea-
soner without interaction from users. For instance, the command line:

$cel -l filename -c -outputHierarchy -q

can be entered to load and classify an ontology from filename , and then output
the hierarchy. For a more detailed description of the CEL interface, we refer to
the CEL user manual (available on the CEL homepage).

Performance evaluation. The empirical results for the performance of CEL

described below show that it can compete with, and often outperforms, the
fastest tableau-based DL systems. We have compared the performance of CEL

with three of the most advanced DL systems: FaCT++ (v1.1.0), RacerMaster

(v1.9.0), and Pellet (v1.3b). These systems implement tableau-based decision
procedures for expressive DLs in which subsumption is ExpTime-complete. All
experiments have been performed on a PC with 2.8GHz Intel Pentium 4 proces-
sor and 512MB memory running Linux v2.6.14. For Pellet, we used JVM v1.5
and set the Java heap space to 256MB (as recommended by the implementers).

Our experiments are based on three important bio-medical ontologies: Go,
Galen, and Snomed. Since Galen uses some expressivity that CEL cannot
handle, we have simplified it by removing inverse role axioms and treating func-
tional roles as ordinary ones, and obtained an EL+ ontology OGalen. (Of course,
also the other reasoners, which could have handled inverse and functional roles,
were applied to OGalen rather than full Galen.) We have obtained two other
benchmarks, OGo and OSnomed, from the other two ontologies. However, Snomed

has one right-identity rule similar to the last axiom in our example (see Fig. 1).
This axiom is passed to CEL, but not to the other reasoners, as the latter do
not support right identities. Additionally, to get a smaller version of Snomed

that can be dealt with by standard DL reasoners, we also consider a fragment
obtained by keeping only CDefs, and call it OSnomed

core . Some information on the
size and structure of these benchmarks is given in the upper part of Table 1,
where the first row shows the numbers of PCDef, CDef, and GCI axioms, re-
spectively. The results of our experiments are summarized in the lower part of
Table 1, where all classification times are shown in seconds and unattainable

OGo OGalen OSnomed
core OSnomed

concept axioms 20,465/0/0 2,041/699/1,214 0/38,719/0 340,972/38,719/0

role axioms 1 438 0 11 + 1

|NC| 20,465 2,740 53,234 379,691

|NR| 1 413 52 52

CEL 5.8 14 95 1,782

FaCT++ 6.9 50 740 3,859

RacerMaster 19 14 34,709 unattainable

Pellet 1,357 75 unattainable unattainable

Table 1. Benchmarks and Evaluation Results

means that the reasoner failed due to memory exhaustion. Notable, CEL out-
performs all the reasoners in all benchmarks except OGalen, where RacerMaster

is as fast. CEL and FaCT++ are the only reasoners that can classify OSnomed,
whereas RacerMaster and Pellet fail. Pellet and the original version of FaCT (not
shown in the table) even fail to classify OSnomed

core . It seems worth noting that the
performance of FaCT++ degrades dramatically if OSnomed is extended with real
GCIs. For instance, FaCT++ needs about 3,000 more seconds to classify OSnomed

for each additional GCI of the form ∃r.C v D, whereas the performance of CEL

does not change noticeably if we add such GCIs.

Conclusion

We view these results as a strong argument for the use of tractable DLs based
on extensions of EL. As illustrated by the above performance evaluation, CEL is
suitable for practical reasoning on very large life science ontologies. Developing
CEL is ongoing work. We plan to extend its capabilities to the DL EL++ [1], with
which one can express, among other things, nominals and disjoint concepts. We
also plan to implement the DIG and OWL interface, so that CEL can be used as
a backend reasoner for ontology editors such as OilEd and Protégé, which would
also make their sophisticated user-interfaces available to users of CEL.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI-05, Edin-
burgh, UK, 2005. Morgan-Kaufmann Publishers.

2. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions of
the description logic EL useful in practice? In Proceedings of the 2005 International
Workshop on Methods for Modalities (M4M-05), 2005.

3. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

4. R. Cote, D. Rothwell, J Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED In-
ternational, Northfield, IL: College of American Pathologists, 1993.

5. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97),
Stanford, CA, 1997. AAAI Press.

