
DL Actions with GCIs: a Pragmatic Approach

H. Liu1, C. Lutz1, M. Miličić1, F. Wolter2

1Institut für Theoretische Informatik 2Department of CS
TU Dresden, Germany Univ. of Liverpool, UK

lastname@tcs.inf.tu-dresden.de frank@csc.liv.ac.uk

Abstract

We recently proposed action formalisms based on description logics (DLs)
as decidable fragments of well-established action theories such as the Sit-
uation Calculus and the Fluent Calculus. One short-coming of our initial
proposal is that the considered formalisms admit only acyclic TBoxes,
but not GCIs. In this paper, we define DL action formalisms that admit
GCIs, propose a pragmatic approach to addressing the ramification prob-
lem that is introduced in this way, show that our formalim is decidable
and investigate its computational complexity.

1 Introduction

Action theories such as the Situation Calculus (SitCalc) and the Fluent Calculus
aim at describing actions in a semantically adequate way [8, 10]. They are
usually formulated in first- or higher-order logic and do not admit decidable
reasoning. For reasoning about actions in practical applications, such theories
are thus not directly suited. There are two obvious ways around this problem:
the first one is to accept undecidability and replace reasoning by programming.
This route is taken by the inventors of action-oriented programming languages
such as Golog [3] and Flux [11], whose semantics is based on the SitCalc and
Fluent Calculus, respectively. The second one is to try to identify fragments of
action theories such as SitCalc that are sufficiently expressive to be useful in
applications, but nevertheless admit decidable reasoning. For example, a simple
such fragment is obtained by allowing only propositional logic for describing
the state of the world and pre- and post-conditions of actions. A much more
expressive formalism was identified in our recent paper [1], where we define action
formalisms that are based on description logics (DLs). More precisely, we use DL
ABoxes to describe the state of the world and pre- and post-conditions of actions



and prove that reasoning in the resulting formalism is decidable [1]. We also show
in [1] that, in this way, we actually get a decidable fragment of SitCalc. However,
the DL action formalism defined in [1] has two major limitations: first, we only
admit acyclic TBoxes, but no general TBoxes involving GCIs. And second, we
allow only concept names (but no complex concepts) in post-conditions and
additionally stipulate that these concept names are not defined in the TBox.
In the present paper, we present a pragmatic approach to overcoming these
limitations while retaining decidability of reasoning. In particular, we show how
to incorporate general TBoxes into DL action formalisms. Since there is no clear
notion of a concept name “being defined” in a general TBox, we also drop the
second restriction and admit arbitrary concepts in post-conditions.

The main reason for adopting the mentioned restrictions in [1] was that
they disarm the frame and ramification problem, which pose major difficulties
in reasoning about actions. When admitting general TBoxes, in particular the
ramification problem becomes a serious issue. Attempts to automatically solve
this problem, e.g. by adopting a Winslett-style PMA semantics [14], lead to
semantic and computational problems: we show in [1] that counter-intuitive
results and undecidability of reasoning are the consequence of adopting such
a semantics. Since there appears to be no general automated solution to the
ramification problem introduced by general TBoxes, we take a rather pragmatic
approach and leave it to the designer of an action description to fine-tune the
ramifications of the action. This is similar to what is done in the SitCalc and
the Fluent Calculus to address the ramification problem. There, the designer
of an action description can control the ramifications of the action by specify-
ing causal relationships between predicates [4, 9]. While causality appears to
be a satisfactory approach for addressing the ramification problem in the case
of propositional state constraints (which correspond to a TBox formulated in
propositional logic), it seems not powerful enough for attacking the ramifica-
tions introduced by general TBoxes, which may involve complex quantification
patterns. We therefore adopt a different strategy for controlling ramifications:
when describing an action, the user can specify the predicates that can change
by executing the action, as well as those that cannot change. To allow an ad-
equate fine-tuning of ramifications, we admit rather complex statements about
the change of predicates such as “the concept name A can change from positive
to negative only at the indidivual a, and from negative to positive only where
the complex concept C was satisfied before the action was executed”.

The family of action formalisms introduced in this paper can be parame-
terized with any description logic. We show that, for many standard DLs, the
reasoning problems executability and projection in the corresponding action for-
malism are decidable. We also pinpoint the exact computational complexity of
these reasoning problems for several members of the ALCQIO family of DLs.
As a rule of thumb, our results show that reasoning in the action formalism



instantiated with a description logic L is of the same complexity as subsump-
tion in L extended with nominals. For fine-tuning ramifications, deciding the
consistency of actions is of prime importance. We introduce two notions of con-
sistency (weak and strong) and show that one of them is of the same complexity
as deciding projection while the other one is undecidable even when the action
formalism is instantiated with ALC.

2 Describing Actions

The action formalism proposed in this paper is an extension of the one from [1]
and is not restricted to a particular DL. However, for our complexity results
we consider the DL ALCQIO and its fragments. We refrain from introducing
the syntax and semantics of ALCQIO in full detail, referring e.g. to [2], and
only give a few central definitions. A concept literal is a concept name or the
negation thereof, and a role literal is a role name or the negation thereof. An
ABox assertion is of the form C(a) or r(a, b), where a, b are individual names, C
is a concept, and r a role literal. An ABox A is a finite set of ABox assertions.
A general concept inclusion axiom (GCI) is an expression of the form C v D,
where C and D are an concepts. A (general) TBox T is a finite set of GCIs.

The main ingredients of our approach to reasoning about actions are action
descriptions (as defined below), ABoxes for describing the current knowledge
about the state of affairs in the application domain, and TBoxes for describing
general knowledge about the application domain similar to state constraints in
the SitCalc and Fluent Calculus. On the semantic side, interpretations are used
to describe the state of affairs in the application domain. Thus, the knowledge
described by an ABox is incomplete: ABoxes may admit more than a single
model, and all the corresponding states of affairs are considered possible. Before
we go deeper into the semantics, we introduce the syntax of action descriptions.
We use LO to denote the extension of a description logic L with nominals.

Definition 1 (Action). Let L be a description logic. An atomic L-action
α = (pre, occ, post) consists of

• a finite set pre of L-ABox assertions, the pre-conditions ;

• the occlusion pattern occ which is a set of mappings {occϕ1
, . . . , occϕn

}
indexed by L-ABox assertions ϕ1, . . . , ϕn such that each occϕi

assigns

– to every concept literal A an LO-concept occϕi
(A),

– to every role literal r a finite set occϕi
(r) of pairs of LO-concepts.

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ
and ψ are L-ABox assertions.

A composite L-action is a finite sequence of atomic L-actions α1, . . . , αn.



Applying an action changes the state of affairs, and thus transforms an interpre-
tation I into an interpretation I ′. Intuitively, the pre-conditions specify under
which conditions the action is applicable. The post-condition ϕ/ψ says that, if
ϕ is true in the original interpretation I, then ψ is true in the interpretation
I ′ obtained by applying the action. The purpose of the occlusion pattern is to
control the changes that are allowed to occur during the execution of the action.
This is necessary because, as will be discussed in more detail later, the presence
of TBoxes often requires to allow more changes than those that are directly en-
forced via the post-conditions. To illustrate how the occlusion pattern works,
suppose occ = {occϕ1

, . . . , occϕn
} and ϕi1 , . . . , ϕim are the assertions among the

indexes in occ that are true in the original interpretation I. If A is a concept
name, then instances of the concept

occϕi1
(A) t · · · t occϕim

(A)

in I may change from A in I to ¬A in I ′, but non-instances may not. Likewise,
instances of

occϕi1
(¬A) t · · · t occϕim

(¬A)

may change from ¬A to A. For role names, (C,D) ∈ occϕik
(r) means that pairs

from CI×DI that have been connected by r in I may lose this connection in I ′,
and similarly for the occlusion of negated role names. Note that the indexing of
the mappings occϕ with ABox assertions makes the occlusions conditional: the
occlusion occϕ is only active if ϕ is satisfied by the original interpretation I. We
will explain later why nominals are always admitted in the occlusion pattern,
even if they are not provided by L.

For defining the semantics in a succinct way, it is convenient to introduce
the following abbreviation. For an action α with occ = {occϕ1

, . . . , occϕn
}, an

interpretation I, a concept literal A, and a role literal r, we set

(occ(A))I :=
⋃

I|=ϕi

(occϕi
(A))I

(occ(r))I :=
⋃

(C,D)∈occϕi
(r),I|=ϕi

(CI ×DI)

Thus, occ(B)I describes those elements of ∆I that may change from B to ¬B
when going to I ′.

Definition 2 (Action semantics). Let α = (pre, occ, post) be an atomic ac-
tion and I, I ′ interpretations sharing the same domain and interpretation of
all individual names. We say that α may transform I to I ′ w.r.t. a TBox T
(I ⇒T

α I ′) iff the following holds:

• I, I ′ are models of T ;

• for all ϕ/ψ ∈ post: I |= ϕ implies I ′ |= ψ (written I, I ′ |= post);



• for each A ∈ NC and r ∈ NR, we have

AI \ AI′

⊆ (occ(A))I ¬AI \ ¬AI′

⊆ (occ(¬A))I

rI \ rI
′

⊆ (occ(r))I ¬rI \ ¬rI
′

⊆ (occ(¬r))I

The composite action α1, . . . , αn may transform I to I ′ w.r.t. T (I ⇒T
α1,...,αn

I ′)
iff there are models I0, . . . , In of T with I = I0, I

′ = In, and Ii−1 ⇒T
αi

Ii for
1 ≤ i ≤ n.

We now give a simple example for DL actions that illustrates the ramification
problem introduced by general TBoxes and how occlusion patterns can be used
to control this problem. The TBox T contains the following GCI, which says
that everybody registered for a course has access to the university library:

∃registered for.Course v ∃access to.Library

The ABox A, which describes the current state of the world, is defined as:

Course(cs), ¬∃registered for.Course(peter), ¬∃access to.Library(peter).

Obviously, A states that computer science is a course and that Peter is neither
registered for a course nor has access to a library. Now, the action

α := (∅, occ, {taut/registered for(peter, cs)})

describes the registration of Peter for the computer science course. For simplic-
ity, the set of pre-conditions is empty and taut is some valid ABox assertion (say
>(cs)), i.e., the post-condition is unconditional.

Following the law of inertia, it may seem reasonable to specify occ such that
only the fact stated explicitly in the post-condition can change when execut-
ing the action: occ consists of just one (unconditional) mapping occtaut which
maps all concept and role literals with the exception of ¬registered for to ⊥ and
{(⊥,⊥)}, respectively. By setting

occtaut(¬registered for) := {({peter}, {cs})},

where {peter} and {cs} are nominals, we achieve the desired effect that only
the pair (peter, cs) can be added to “registered for”, and nothing else can be
changed. This shows why nominals are indispensible in the occlusion pattern:
without them, we are not able to occlude only the change that is enforced by
simple post-conditions such as the one in the example.

However, our choice of the occlusion pattern is too strict. Due to the presence
of the TBox, the action is inconsistent in the sense that there is no model I of A
and T such that I ⇒T

α I ′ for some model I ′ of T . The reason is that, due to T ,



Peter should have access to a library after execution of the action. Since he does
not have access before the action and the occlusion pattern does not allow us
to change access to, there is no way to achieve this. This shows that admitting
general TBoxes induces a ramification problem: there may be indirect effects of
an action that are not directly stated in the post-conditions. Such ramifications,
which led us to introducing occlusion patterns in the current paper, cannot occur
in the more basic DL action formalism introduced in [1] where we admit only
acyclic TBoxes and primitive concepts in post-conditions. An obvious way to
regain consistency of the action α is to allow via the occlusion pattern that
access to can change in the required way, i.e., setting

occtaut(¬access to) := {({peter}, Library)}

and thus allow Peter to have access to a library after the action.

In the example above, for simplicity we did not use conditional post-conditions,
i.e., conditions ϕ/ψ where ϕ is not taut. For this reason, it was sufficient that
occ consists of a single (unconditional) mapping as well. Obviously, controlling
the ramifications of conditional post-conditions requires occlusion patterns that
are conditional as well.

The above example suggests that deciding consistency of an action is an
important task because failure to specify the occlusion pattern in a proper way
can result in inconsistent actions. In the following, we propose two notions of
consistency.

Definition 3 (Consistency). Let α = α1, . . . , αn be a composite action, let T
be a TBox, and A an ABox. We say that

• α is weakly consistent with T and A iff there is a model I of T and A,
and a model I ′ of T such that I ⇒T

α I ′.

• α is strongly consistent with T and A iff for all models I of T and A, there
is a model I ′ of T such that I ⇒T

α I ′.

Ideally, the designer of an action α = (pre, occ, post) should establish strong
consistency of α w.r.t. the relevant TBox and the ABox pre. Note that strong
consistency of an action α w.r.t. T and pre implies strong consistency of α w.r.t.
T and A for all ABoxes A that satisfy the preconditions pre. Unfortunately, we
shall show later that strong consistency is undecidable even for ALC actions. In
contrast, weak consistency will turn out to be decidable. As demonstrated by
our example, in which the first attempt to specify occ yields an action that is
not even weakly consistent, checking for weak consistency is helpful to detect
severe ramfication problems. In the case of weak consistency, consistency w.r.t.
pre does not imply consistency w.r.t. all ABoxes satisfying the pre-conditions.
Hence, the designer of an action should not only consider the ABox pre when



checking weak consistency, but also additional ABoxes that he considers typical
for the application domain.

To check whether an action can be applied in a given situation, the user wants
to know whether it is (strongly consistent and) executable, where executable
means that all pre-conditions are satisfied in the states of the world considered
possible. If the action is executable, he wants to know whether applying it
achieves the desired effect, i.e., whether an assertion that he wants to make
true really holds after executing the action. This problem is usually called
projection [8, 1].

Definition 4 (Executability and projection). Let α1, . . . , αn be a composite
action with αi = (prei, occi, posti) for i = 1, . . . , n, let T be a TBox, and A an
ABox.

• Executablity: α1, . . . , αn is executable in A w.r.t. T iff the following con-
ditions are true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒T
α1,...,αi

I ′,
we have I ′ |= prei+1.

• Projection: The assertion ϕ is a consequence of applying α1, . . . , αn in A
w.r.t. T iff for all models I of A and T and for all I ′ with I ⇒T

α1,...,αn
I ′,

we have I ′ |= ϕ.

It is not too difficult to see that the action formalism just introduced is a gen-
eralization of the one introduced in [1], for details see [5]. As in [1], projection
and executability are mutually reducible in polynomial time. Moreover, (i) an
action α is weakly consistent with a TBox T and ABox A iff ⊥(a) is not a
consequence of applying α in A w.r.t. T ; and (ii) ϕ is a consequence of applying
α = (pre, occ, post) in A w.r.t. T iff the action (pre, occ, post∪{>(a)/¬ϕ}) is not
weakly consistent with T and A. Thus, since both executability and weak con-
sistency can be reduced to (non-)projection and vice versa, we will concentrate
on the latter throughout this paper.

3 Deciding Projection in ALCQI and ALCQIO

We consider the prominent DLs ALCQI and ALCQIO and show that projec-
tion is co-NExpTime-complete. It is shown in [5] that Lemma 8 of [1] implies
the following.

Theorem 5. Projection and executability (weak consistency) in ALCQI are co-
NExpTime-hard (NExpTime-hard) even if occlusions for roles are restricted
to {(⊥,⊥)} and only nominals are allowed in the occlusions of concept names.



Note that projection in ALCQI is thus harder than subsumption in the same
logic, which is ExpTime-complete [13]. In the case of ALCQIO, the complex-
ities of subsumption and projection coincide. Intuitively (and as shown by the
proof of Theorem 5), projection in a logic L should be expected to be of the
same complexity as subsumption in L extended with nominals.

In the following, we establish a matching co-NExpTime upper bound for
projection in ALCQIO (and thus also ALCQI). The proof proceeds by reducing
projection in ALCQIO to ABox (in)consistency in ALCQIO¬,∩,∪, i.e. the
extension of ALCQIO with the Boolean role constructors.

Let α1, . . . , αn be a composite action with αi = (prei, occi, posti) for i =
1, . . . , n, and let T be a TBox, A0 an ABox and ϕ0 an assertion. We are
interested in deciding whether ϕ0 is a consequence of applying α1, . . . , αn in A0

w.r.t. T . In what follows, we call α1, . . . , αn, T , A0 and ϕ0 the input. W.l.o.g.,
we make the following assumptions:

• ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (possibly complex) concept.

This assumption can be made because an assertion r(a, b) can be replaced
with (∃r.{b})(a), and ¬r(a, b) with (¬∃r.{b})(a).

• Each occlusion pattern occi contains exactly one occlusion pattern that is
unconditional (i.e., indexed by taut) and formulated in ALCQIO¬,∩,∪.

An occlusion pattern {occϕ1
, . . . , occϕn

} can be converted into an occlusion
pattern {occtaut} formulated in ALCQIO¬,∩,∪ as follows. First, we may
assume w.l.o.g. that ϕi is of the form Ci(ai) for 1 ≤ i ≤ n (see previous
point). For 1 ≤ i ≤ n, let Pi denote the concept ∀U.({ai} → Ci), where
U denotes the universal role, i.e. r ∪ ¬r for some r ∈ NR. Then, define for
each concept literal A

occtaut(A) := t
1≤i≤n

(Pi u occϕi
(A)

)

Likewise, for each role literal r, define

occtaut(r) := {(Pi u C,Pi uD) | (C,D) ∈ occϕi
}.

Having the occlusion pattern formulated in ALCQIO¬,∩,∪ is unproblem-
atic since our reduction is to ALCQIO¬,∩,∪ anyway. In the following, we
slightly abuse notation and confuse the singleton set occi with the (uncon-
ditional) occlusion mapping contained in it.

The idea of the reduction is to define an ABox Ared and a TBox Tred such that a
single model of them encodes a sequence of interpretations I0, . . . , In such that
I0 |= A0, T and Ii−1 ⇒T

αi
Ii for i = 1, . . . , n. In the following, we use Sub to

denote the set of subconcepts of the concepts which occur in the input. In the



reduction, we introduce concept names A(i) and role names r(i) for every concept
name A and every role name r used in the input, and every i ≤ n. Intuitively,
A(i) and r(i) represent the extensions of A and r in the i-th interpretation. For a
complex concept C ∈ Sub, we use C(i), for i ≤ n, to denote the concept obtained
by replacing all concept names A and role names r occurring in C by A(i) and
r(i) respectively.

We start by assembling the reduction ABox Ared. First, define a “copy” Aini

of the input ABox A0 as:

Aini := {C(0)(a) | C(a) ∈ A0}∪
{r(0)(a, b) | r(a, b) ∈ A0} ∪ {¬r(0)(a, b) | ¬r(a, b) ∈ A0}

Then, introduce abbreviations, for i ≤ n:

pi(C(a)) := ∀U.({a} → C (i)),
pi(r(a, b)) := ∀U.({a} → ∃r(i).{b}),

pi(¬r(a, b)) := ∀U.({a} → .∀r(i).¬{b}),

Now we can define the components of Ared that take care of post-condition
satisfaction. For 1 ≤ i ≤ n, we define:

A
(i)
post := {

(

pi−1(ϕ) → pi(ψ)
)

(a0) | ϕ/ψ ∈ posti}

We assemble Ared as
Ared := Aini ∪

⋃

1≤i≤n

A
(i)
post.

Next, we define the components of the TBox Tred. Since all interpretations
I0, . . . , In have to be models of the input TBox T , we define for each i ≤ n, a
copy T (i) of T in the obvious way:

T (i) = {C(i) v D(i) | C v D ∈ T }.

To deal with occlusions, we introduce auxiliary role names r
(i)
Dom(C) and r

(i)
Ran(D)

for 0 ≤ i < n and all concepts C,D such that (C,D) ∈ occi(s) for some role

literal s. The following TBox T
(i)

aux ensures that r
(i)
Dom(C) and r

(i)
Ran(D) are interpreted

as C(i) ×> and >×D(i), respectively. It contains the following axioms, for all
concepts C,D as above:

C(i) v ∀¬r
(i)
Dom(C).⊥ > v ∀r

(i)
Ran(D).D

(i)

¬C(i) v ∀r
(i)
Dom(C).⊥ > v ∀¬r

(i)
Ran(D).¬D

(i)

The following TBox T
(i)

fix ensures that concept and role names do not change
unless this is allowed by the occlusion pattern:



• for every concept name A in the input,

A(i) u ¬A(i+1) v (occi+1(A))(i)

¬A(i) u A(i+1) v (occi+1(¬A))(i)

• for every role name r in the input,

> v ∀¬
(

⋃

(C,D)∈occi+1(r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)

∩ (r(i) ∩ ¬r(i+1)).⊥

> v ∀¬
(

⋃

(C,D)∈occi+1(¬r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)

∩ (¬r(i) ∩ r(i+1)).⊥

Finally, we can construct Tred as

Tred :=
⋃

0≤i≤n

T (i) ∪
⋃

0≤i<n

T (i)
aux ∪

⋃

0≤i<n

T
(i)

fix .

The following is shown in [5]:

Lemma 6. C0(a0) is a consequence of applying α1, . . . , αn in A0 w.r.t. T iff

Ared ∪ {¬C(n)
0 (a0)} is inconsistent w.r.t. Tred.

Since ALCQIO¬,∩,∪ is a fragment of C2 (the 2-variable fragment of first-order
logic with counting), ABox inconsistency in ALCQIO¬,∩,∪ is in co-NExpTime

even if numbers are coded in binary [7]. Since Ared and Tred are polynomial
in the size of the input, Lemma 6 gives us a co-NExpTime upper bound for
projection in ALCQIO and ALCQI.

Theorem 7. Projection and executability are co-NExpTime-complete, while
weak consistency is NExpTime-complete in ALCQIO and ALCQI.

4 Undecidability of Strong Consistency

Here we show that strong consistency is undecidable. The proof consists of a
reduction of the undecidable semantic consequence problem from modal logic.
Before formulating the DL version of this problem, we need some preliminaries.
We use concepts and interpretations with only one role name r, which we call
ALCr-concepts. Accordingly, we also assume that interpretations interprete only
concept names and the role name r. A frame is a structure F = (∆F , rF) where
∆F is a non-empty set and rF ⊆ ∆F × ∆F . An interpretation I = (∆I , ·I) is
based on a frame F iff ∆I = ∆F and rI = rF . We say that a concept C is valid
on F (written F |= C) iff CI = ∆I for every interpretation I based on F .

Definition 8 (Semantic consequence problem). Let D and E be ALCr-
concepts. We say that E is a semantic consequence of D iff for every frame
F = (∆F , rF) such that F |= D, it holds that F |= E.



In [12], it is proved that for ALCr-concepts D and E, the problem “Is E a
semantic consequence of D?” is undecidable. We now show that the semantic
consequence problem can be reduced to strong consistency. For ALCr-concepts
D and E, we define the ABox AE := {¬E(a)} and the atomic action αD =
(∅, {occtaut}, post) with post := {>(a)/(∃u.¬D)(a)} where u is an arbitrary role
name and occtaut maps r and ¬r to {(⊥,⊥)}, all other role literals to {(>,>)},
and all concept literals to >. Then the action αD is strongly consistent with the
empty TBox and the ABox AE iff E is a semantic consequence of D [5]. As an
immediate consequence, we obtain the following theorem.

Theorem 9. Strong consistency of ALC-actions is undecidable, even with the
empty TBox.

5 Discussion

We have introduced an action formalism based on description logics that ad-
mits general TBoxes and complex post-conditions. To deal with ramifications
induced by general TBoxes, the formalism includes powerful occlusion patterns
that can be used to fine-tune the ramifications. We believe that undecidability
of strong consistency is no serious obstacle for the feasibility of our approach
in practice. Although deciding strong consistency would provide valuable sup-
port for the designer of an action, it could not replace manual inspection of the
ramifications. For example, occluding all concept names with > and all role
names with {(>,>)} usually ensures strong consistency but does not lead to an
intuitive behaviour of the action. With weak consistency, we offer at least some
automatic support to the action designer for detecting ramification problems.

In [6], we investigate the complexity of reasoning with DL actions for other
fragments of ALCQIO, most notably ALC, ALCI, and ALCIO. It turns
out that, in these logics, deciding projection (as well as executability and weak
consistency) is ExpTime-complete, which is in accordance with the observation
that, usually, reasoning with L-actions has the same complexity as subsumption
in L extended with nominals. In [5], we also show how reasoning with a restricted
version of ALCQIO actions can be reduced to reasoning in ALCQIO instead
of ALCQIO¬,∩,∪. This is relevant since reasoners for the former (but not for
the latter) are readily available.

Acknowledgements. We would like to thank Giuseppe De Giacomo for ideas
and discussions. The third author is supported by the DFG Graduiertenkol-
leg 334. The fourth author is partially supported by UK EPSRC grant no.
GR/S63182/01.



References

[1] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating
description logics and action formalisms: First results. In Proc. of (AAAI-
05), Pittsburgh, PA, USA, 2005.

[2] F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The De-
scription Logic Handbook: Theory, implementation and applications. Cam-
bridge University Press, 2003.

[3] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG:
A logic programming language for dynamic domains. J. Log. Program.,
31(1-3):59–83, 1997.

[4] F. Lin. Embracing causality in specifying the indirect effects of actions. In
Proc. of IJCAI-95, Montreal, Canada, 1995. Morgan Kaufmann.

[5] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with
general TBoxes: a pragmatic approach. LTCS-Report 06-03, TU Dresden,
Germany, 2006. See http://lat.inf.tu-dresden.de/research/reports.html.

[6] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with
general TBoxes: a pragmatic approach. Submitted to JELIA’06, 2006.

[7] I. Pratt-Hartmann. Complexity of the two-variable fragment with counting
quantifiers. Journal of Logic, Language and Inf., 14(3):369–395, 2005.

[8] R. Reiter. Knowledge in Action. MIT Press, 2001.

[9] M. Thielscher. Ramification and causality. Artificial Intelligence Journal,
89(1–2):317–364, 1997.

[10] M. Thielscher. Introduction to the Fluent Calculus. Electronic Transactions
on Artificial Intelligence, 2(3–4):179–192, 1998.

[11] M. Thielscher. FLUX: A logic programming method for reasoning agents.
TPLP, 5(4-5):533–565, 2005.

[12] S. K. Thomason. The logical consequence relation of propositional tense
logic. Z. Math. Logik Grundl. Math., 21:29–40, 1975.

[13] S. Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence
Research, 12:199–217, 2000.

[14] M. Winslett. Reasoning about action using a possible models approach. In
AAAI, pages 89–93, Saint Paul, MN, 1988.


