
Reasoning about Actions using Description
Logics with general TBoxes

(Revised Version)

Hongkai Liu1, Carsten Lutz1, Maja Miličić1, Frank Wolter2

1 Institut für Theoretische Informatik
TU Dresden, Germany

lastname @tcs.inf.tu-dresden.de
2 Department of Computer Science

University of Liverpool, UK
frank@csc.liv.ac.uk

Abstract. Action formalisms based on description logics (DLs) have
recently been introduced as decidable fragments of well-established ac-
tion theories such as the Situation Calculus and the Fluent Calculus.
However, existing DL action formalisms fail to include general TBoxes,
which are the standard tool for formalising ontologies in modern descrip-
tion logics. We define a DL action formalism that admits general TBoxes,
propose an approach to addressing the ramification problem that is intro-
duced in this way, and perform a detailed investigation of the decidability
and computational complexity of reasoning in our formalism.

1 Introduction

Action theories such as the Situation Calculus (SitCalc) and the Fluent Cal-
culus aim at describing actions in a semantically adequate way [10, 12]. They
are usually formulated in first- or higher-order logic and do not admit decidable
reasoning. For reasoning about actions in practical applications, such theories
are thus not directly suited. There are two obvious ways around this problem:
the first one is to accept undecidability and replace reasoning by programming.
This route is taken by the inventors of action-oriented programming languages
such as Golog [5] and Flux [13], whose semantics is based on the SitCalc and
Fluent Calculus, respectively. The second one is to try to identify fragments of
action theories such as SitCalc that are sufficiently expressive to be useful in
applications, but nevertheless admit decidable reasoning. For example, a simple
such fragment is obtained by allowing only propositional logic for describing the
state of the world and pre- and post-conditions of actions. A much more ex-
pressive formalism was identified in our recent paper [2], where we define action
formalisms that are based on description logics (DLs) [3]. More precisely, we use
DL ABoxes to describe the state of the world and pre- and post-conditions of
actions and prove that reasoning in the resulting formalism is decidable [2]. We
also show in [2] that, in this way, we actually get a decidable fragment of SitCalc.

In description logic, TBoxes are used as an ontology formalism, i.e., to define
concepts and describe relations between them. For example, a TBox may describe

2

relevant concepts from the domain of universities such as lecturers, students,
courses, and libraries. From the reasoning about actions perspective, TBoxes
correspond to state constraints. For example, a TBox for the university domain
could state that every student that is registered for a course has access to a
university library. If we execute an action that registers the student Dirk for a
computer science course, then after the action Dirk should also have access to
a university library to comply with the state constraint imposed by the TBox.
Thus, general TBoxes as state constraints induce a ramificiation problem which
we henceforth call the TBox ramification problem.

Regarding TBoxes, the DL action formalism defined in [2] has two major lim-
itations: first, we only admit acyclic TBoxes which are a much more lightweight
ontology formalism than the general TBoxes that can be found in all state-of-
the-art DL reasoners [17]. For example, the DL formulation of the above ontol-
ogy statement regarding access to libraries requires a general concept inclusion
(GCIs) as offered by general TBoxes. Second, we allow only concept names (but
no complex concepts) in post-conditions and additionally stipulate that these
concept names are not defined in the TBox. In the present paper, we present an
approach to overcoming these limitations while retaining decidability of the most
important reasoning tasks. In particular, we show how to incorporate general
TBoxes into DL action formalisms. This implies dropping the second restriction
as well since there is no clear notion of a concept name “being defined” in a
general TBox.

The main reason for adopting the mentioned restrictions in [2] was that they
disarm the TBox ramification problem. Attempts to automatically solve the
TBox ramificiation problem, e.g. by adopting a Winslett-style PMA semantics
[16], lead to semantic and computational problems: we show in [2] that counter-
intuitive results and undecidability of reasoning are the consequence of adopting
such a semantics. Since there appears to be no general automated solution to
the TBox ramification problem other than resorting to very inexpressive DLs [4],
we propose to leave it to the designer of an action description to fine-tune the
ramifications of the action. This is similar to the approach taken in the SitCalc
and the Fluent Calculus to address the ramification problem. There, the designer
of an action description can control the ramifications of the action by specify-
ing causal relationships between predicates [6, 11]. While causality appears to
be a satisfactory approach for addressing the ramification problem that is in-
duced by Boolean state constraints, it seems not powerful enough for attacking
the ramifications introduced by general TBoxes, which usually involve complex
quantification patterns. We therefore advocate a different approach: when de-
scribing an action, the user can specify the predicates that can change through
the execution of the action, as well as those that cannot change. To allow an
adequate fine-tuning of ramifications, we admit complex statements about the
change of predicates such as “the concept name A can change from positive to
negative only at the individual a, and from negative to positive only where the
complex concept C was satisfied before the action was executed”.

3

Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

at-least restriction (> n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≥ n}
at-most restriction (6 n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≤ n}

Fig. 1. Syntax and semantics of ALCQIO.

The family of action formalisms introduced in this paper can be parame-
terised with any description logic. We show that, for many standard DLs, the
reasoning problems executability and projection in the corresponding action for-
malism are decidable. We also pinpoint the exact computational complexity of
these reasoning problems. As a rule of thumb, our results show that reasoning
in the action formalism instantiated with a description logic L is of the same
complexity as standard reasoning in L extended with nominals (which corre-
spond to first-order constants [1]). For fine-tuning the ramifications, consistency
of actions is an important property. We introduce two notions of consistency
(weak and strong) and show that weak consistency is of the same complexity
as deciding projection while strong consistency is undecidable even when the
action formalism is instantiated with the basic DL ALC. Details regarding the
technical results can be found in the report [7].

2 Description Logics

In DLs, concepts are inductively defined with the help of a set of constructors,
starting with a set NC of concept names, a set NR of role names, and (possibly) a
set NI of individual names. In this section, we introduce the DL ALCQIO, whose
concepts are formed using the constructors shown in Figure 1. There, the inverse
constructor is the only role constructor, whereas the remaining six constructors
are concept constructors. In Figure 1 and throughout this paper, we use #S to
denote the cardinality of a set S, a and b to denote individual names, r and s
to denote roles (i.e., role names and inverses thereof), A,B to denote concept
names, and C,D to denote (possibly complex) concepts. As usual, we use >
as abbreviation for an arbitrary (but fixed) propositional tautology, ⊥ for ¬>,
→ and ↔ for the usual Boolean abbreviations, ∃r.C (existential restriction) for
(> 1 r C), and ∀r.C (universal restriction) for (6 0 r ¬C).

The DL that allows only for negation, conjunction, disjunction, and uni-
versal and existential restrictions is called ALC. The availability of additional
constructors is indicated by concatenation of a corresponding letter: Q stands for
number restrictions; I stands for inverse roles, and O for nominals. This explains

4

the name ALCQIO for our DL, and also allows us to refer to its sublanguages
in a simple way.

The semantics of ALCQIO-concepts is defined in terms of an interpreta-
tion I = (∆I , ·I). The domain ∆I is a non-empty set of individuals and the
interpretation function ·I maps each concept name A ∈ NC to a subset AI of
∆I , each role name r ∈ NR to a binary relation rI on ∆I , and each individual
name a ∈ NI to an individual aI ∈ ∆I . The extension of ·I to inverse roles
and arbitrary concepts is inductively defined as shown in the third column of
Figure 1.

A general concept inclusion axiom (GCI) is an expression of the form C v D,
where C and D are concepts. A (general) TBox T is a finite set of GCIs. An
ABox is a finite set of concept assertions C(a) and role assertions r(a, b) and
¬r(a, b) (where r may be an inverse role). An interpretation I satisfies a GCI
C v D iff CI ⊆ DI , a concept assertion C(a) iff aI ∈ CI , a role assertion
r(a, b) iff (aI , bI) ∈ rI , and a role assertion ¬r(a, b) iff (aI , bI) /∈ rI . We denote
satisfaction of a GCI C v D by an interpretation I with I |= C v D, and similar
for ABox assertions. An interpretation I is a model of a TBox T (written I |= T)
iff it satisfies all GCIs in T . It is a model of an ABox A (written I |= A) iff it
satisfies all assertions in A.

A concept C is satisfiable w.r.t. a TBox T iff CI 6= ∅ for some model I of T .
An ABox A is consistent w.r.t. a TBox T iff A and T have a common model.

3 Describing Actions

The action formalism proposed in this paper is not restricted to a particular
DL. However, for our complexity results we consider the DL ALCQIO and its
sublogics. In the following, we use LO to denote the result of extending the DL
L with nominals. A concept literal is a concept name or the negation thereof,
and a role literal is defined analogously.

Definition 1 (Action). Let L be a description logic. An L-action α = (pre,
occ, post) consists of

– a finite set pre of L ABox assertions, the pre-conditions;
– the occlusion pattern occ which is a set of mappings {occϕ1 , . . . , occϕn

} in-
dexed by L ABox assertions ϕ1, . . . , ϕn such that each occϕi assigns
• to every concept literal B an LO-concept occϕi

(B),
• to every role literal s a finite set occϕi

(s) of pairs of LO-concepts.
– a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ

and ψ are L ABox assertions.

Intuitively, the pre-conditions specify under which conditions the action is appli-
cable. A post-condition ϕ/ψ says that, if ϕ is true before executing the action,
then ψ should be true afterwards. The purpose of the occlusion patterns is
to control ramifications: they provide a description of where concept and role
names may change during the execution of an action. More precisely, suppose

5

occ = {occϕ1 , . . . , occϕn
} and ϕi1 , . . . , ϕim

are the assertions which are true
before the action was executed. If A is a concept name, then instances of the
concept

occϕi1
(A) t · · · t occϕim

(A)

may change from A to ¬A during the execution of the action provided, but
instances of ¬(occϕi1

(A) t · · · t occϕim
(A)) may not. Likewise, instances of

occϕi1
(¬A) t · · · t occϕim

(¬A)

may change from ¬A to A. For role names, (C,D) ∈ occϕik
(r) means that if

an instance of C was connected to an instance of D by the role r before the
action, then this connection may vanish through the execution of the action,
and similarly for the occlusion of negated role names.

Before giving more details on how occlusions relate to ramifications, we in-
troduce the semantics of actions. In our formalism, interpretations correspond
to the state of the world. Thus, actions transform interpretations into new inter-
pretations. We first introduce a convenient abbreviation. For an action α with
occ = {occϕ1 , . . . , occϕn}, an interpretation I, a concept literal B, and a role
literal s, we set

occ(B)I :=
⋃

I|=ϕi

(occϕi
(B))I occ(s)I :=

⋃
(C,D)∈occϕi

(s),I|=ϕi

(CI ×DI).

Now, the semantics of actions is defined as follows.

Definition 2 (Action semantics). Let α = (pre, occ, post) be an action and
I, I ′ interpretations sharing the same domain and interpretation of all individual
names. We say that α may transform I to I ′ w.r.t. a TBox T (I ⇒T

α I ′) iff the
following holds:

– I, I ′ are models of T ;
– for all ϕ/ψ ∈ post: I |= ϕ implies I ′ |= ψ (written I, I ′ |= post);
– for each A ∈ NC and r ∈ NR, we have

AI \AI′
⊆ (occ(A))I ¬AI \ ¬AI′

⊆ (occ(¬A))I

rI \ rI
′
⊆ (occ(r))I ¬rI \ ¬rI

′
⊆ (occ(¬r))I

Let us reconsider the example from the introduction to explain how occlusions
provide a way to control the ramifications induced by general TBoxes. The TBox
T contains the following GCIs which say that everybody registered for a course
has access to a university library, and that every university has a library:

∃registered for.Course v ∃access to.Library

University v ∃has facility.Library

The upper GCI cannot be expressed in terms of an acyclic TBox and is thus
outside the scope of the formalism in [2]. The ABox A which describes the

6

current state of the world (in an incomplete way) says that computer science is
a course held at TU Dresden, SLUB is the library of TU Dresden, and Dirk is
neither registered for a course nor has access to a library:

Course(cs) held at(cs, tud) ¬∃registered for.Course(dirk)
University(tud) has facility(tud, slub) ¬∃access to.Library(dirk)
Library(slub)

The action
α := (∅, occ, {taut/registered for(dirk, cs)})

describes the registration of Dirk for the computer science course. For simplicity,
the set of pre-conditions is empty and taut is some ABox assertion that is trivially
satisfied, say >(cs). To obtain occ, we may start by strictly following the law of
inertia, i.e., requiring that the only changes are those that are explicitly stated
in the post-condition. Thus, occ consists of just one mapping occtaut such that

occtaut(¬registered for) := {({dirk}, {cs})}

and all concept and role literals except ¬registered for are mapped to ⊥ and
{(⊥,⊥)}, respectively. This achieves the desired effect that only the pair (dirk, cs)
can be added to “registered for” and nothing else can be changed.

It is not hard to see that this attempt to specify occlusions for α is too strict.
Intuitively, not allowing any changes is appropriate for Course, Library, University,
held at, has facility and their negations since the action should have no impact
on these predicates. However, not letting ¬access to change leads to a problem
with the ramifications induced by the TBox: as Dirk has no access to a library
before the action and ¬access to is not allowed to change, he cannot have access
to a library after execution of the action as required by the TBox. Thus, the
action is inconsistent in the following sense: there is no model I of A and T and
model I ′ of T such that I ⇒T

α I ′. To take care of the TBox ramifications and
regain consistency, we can modify occ. One option is to set

occtaut(¬access to) := {({dirk}, Library)}

and thus allow Dirk to have access to a library after the action. Another option
is to set

occtaut(¬access to) := {({dirk}, slub)}

which allows Dirk to have access to SLUB after the action, but not to any other
library.

Two remarks regarding this example are in order. First, the occlusion occ
consists only of a single mapping occtaut. The reason for this is that there is only
a single post-condition in the action. If we have different post-conditions ϕ/ψ
and ϕ′/ψ such that ϕ and ϕ′ are not equivalent, there will usually be different
occlusion mappings (indexed with ϕ and ϕ′) to deal with the ramifications that
the TBox induces for these post-conditions. Second, the example explains the

7

need for extending L to LO when describing occlusions (c.f. Definition 1): with-
out nominals, we would not have been able to properly formulate the occlusions
although all other parts of the example are formulated without using nominals
(as a concept-forming operator).

As illustrated by the example, it is important for the action designer to de-
cide consistency of actions to detect ramification problems that are not properly
addressed by the occlusions. In the following, we propose two notions of consis-
tency.

Definition 3 (Consistency). Let α = (pre, occ, post) be an action and T a
TBox. We say that

– α is weakly consistent with T iff there are models I, I ′ of T such that
I |= pre and I ⇒T

α I ′.
– α is strongly consistent with T iff for all models I of T and pre, there is a

model I ′ of T such that I ⇒T
α I ′.

Intuitively, strong consistency is the most desirable form of consistency: if the
preconditions of an action are satisfied by an interpretation I, then the action can
transform I into a new interpretation I ′. Unfortunately, strong consistency will
turn out to be undecidable. For this reason we also introduce weak consistency,
which is still sufficient to detect serious ramification problems. In the example
above, the first attempt to define the occlusions results in an action that is not
even weakly consistent. After each of the two possible modifictions, the action
is strongly consistent. We will see later that weak consistency is decidable while
strong consistency is not.

To check whether an action can be applied in a given situation, the user wants
to know whether it is executable, i.e., whether all pre-conditions are satisfied in
the states of the world considered possible. If the action is executable, he wants
to know whether applying it achieves the desired effect, i.e., whether an assertion
that he wants to make true really holds after executing the action. These two
problems are called executability and projection [10, 2].

Definition 4 (Executability and projection). Let α = (pre, occ, post) be an
action, T a TBox, and A an ABox.

– Executability: α is executable in A w.r.t. T iff I |= pre for all models I of
A and T ;

– Projection: The assertion ϕ is a consequence of applying α in A w.r.t. T iff
for all models I of A and T and for all I ′ with I ⇒T

α I ′, we have I ′ |= ϕ.

To make sure that an action α can be successfully executed, α has to be both
strongly consistent and executable: without strong consistency, it could be that
although the action α is executable w.r.t. the ABox A describing the knowledge
about the current state of the world, the actual state of the world I is such that
there is no interpretation I ′ with I ⇒T

α I ′.
It is not difficult to see that the action formalism just introduced is a gen-

eralisation of the one introduced in [2] when composite actions are disallowed,

8

for details see [7]. Clearly, executability can be polynomially reduced to ABox
consequence which is defined as follows: given an ABox A and an assertion ϕ,
decide whether I satisfies ϕ in all models I of A. The complexity of this prob-
lem is extensively discussed in [2]. For example, it is NExpTime-complete for
ALCQIO and ExpTime-complete for ALC extended with at most two of Q, I,
and O.

It can also be seen that (i) an action α = (pre, occ, post) is weakly consistent
with a TBox T iff ⊥(a) is not a consequence of applying α in pre w.r.t. T ;
(ii) ϕ is a consequence of applying α = (pre, occ, post) in A w.r.t. T iff the action
(A ∪ pre, occ, post ∪ {>(a)/¬ϕ}) is not weakly consistent with T . Thus, weak
consistency can be reduced to (non-)projection and vice versa and complexity
results carry over from one to the other. In this paper, we will concentrate on
projection.

4 Projection in ExpTime

We show that projection and weak consistency are ExpTime-complete for DL
actions formulated in ALC, ALCO, ALCI, ALCIO. Thus, in these DLs reason-
ing about actions is not more difficult than the standard DL reasoning problems
such as concept satisfiability and subsumption w.r.t. TBoxes. The complexity
results established in this section are obtained by proving that projection in
ALCIO is in ExpTime. We use a Pratt-style type elimination technique as first
proposed in [8].

In the following, we assume that the set occ of occlusions of an action con-
sists of only one mapping occtaut, where taut is >(a). We will identify occ with
the mapping occtaut and write occ(X) instead of occtaut(X). Proofs are easily
extended to actions containing general occlusions, see [7].

Let α = (pre, occ, post) be an action, T a TBox, A0 an ABox and ϕ0 an
assertion. We want to decide whether ϕ0 is a consequence of applying α in A0

w.r.t. T . In what follows, we call α, T , A0 and ϕ0 the input. W.l.o.g., we make
the following assumptions:

– concepts used in the input are built only from the constructors {a}, ¬, u,
and ∃r.C;

– ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (complex) concept;
– A0 and α contain only concept assertions.

The last two assumptions can be made because every assertion r(a, b) can be
replaced with (∃r.{b})(a), and every ¬r(a, b) with (¬∃r.{b})(a).

Before we can describe the algorithm, we introduce a series of notions and
abbreviations. With Sub, we denote the set of subconcepts of the concepts which
occur in the input. With Ind, we denote the set of individual names used in the
input, and set Nom := {{a} | a ∈ Ind}.

The algorithm for deciding projection checks for the existence of a counter-
model witnessing that ϕ0 is not a consequence of applying α in A0 w.r.t. T .

9

Such a countermodel consists of interpretations I and I ′ such that I |= A0,
I ⇒T I ′, and I ′ 6|= ϕ0. To distinguish the extension of concept and role names
in I and I ′, we introduce concept names A(0), A(1) and role names r(0), r(1), for
every concept name A and role name r used in the input. Here, the superscript
·(0) identifies I and the superscript ·(1) identifies I ′. For a concept C ∈ Sub that
is not a concept name and i ∈ {0, 1}, we use C(i) to denote the concept obtained
by replacing all concept names A and role names r occurring in C by A(i) and
r(i), respectively. We define the set of concepts Cl as:

Cl = {C(0),¬C(0), C(1),¬C(1) | C ∈ Sub ∪ Nom}.

The notion of a type plays a central role in the projection algorithm to be devised.

Definition 5. A set of concepts t ⊆ Cl is a type for Cl iff it satisfies the follow-
ing conditions:

– for all ¬D ∈ Cl: ¬D ∈ t iff D 6∈ t;
– for all D u E ∈ Cl: D u E ∈ t iff {D,E} ⊆ t;
– for all C v D ∈ T , C(0) ∈ t implies D(0) ∈ t and C(1) ∈ t implies D(1) ∈ t;
– for all concept names A, {A,¬A′} ⊆ t implies that occ(A) ∈ t and {¬A,A′} ⊆
t implies that occ(¬A) ∈ t.

A type is anonymous if it does not contain a nominal. Let Tano be the set of all
anonymous types.

Intuitively, a type describes the concept memberships of a domain element in the
interpretations I and I ′. Our algorithm starts with a set containing (almost) all
types, then repeatedly eliminates those types that cannot be realized in a coun-
termodel witnessing that ϕ0 is not a consequence of applying α in A0 w.r.t. T ,
and finally checks whether the surviving types give rise to such a countermodel.
The picture is slightly complicated by the presence of ABoxes and nominals.
These are treated via core type sets to be introduced next.

Definition 6. TS is a core type set iff TS is a minimal set of types such that,
for all a ∈ Ind, there is a t ∈ TS with {a} ∈ TS.
A core type set TS is called proper if the following conditions are satisfied:

1. for all C(a) ∈ A0, {a} ∈ t ∈ TS implies C(0) ∈ t;
2. for all C(a)/D(b) ∈ post: if there is a t ∈ TS with {{a}, C(0)} ⊆ t then there

is a t′ ∈ TS with {{b}, D(1)} ⊆ t′.

Intuitively, a core type set carries information about the “named” part of the
interpretations I0 and I1, where the named part of an interpretation consists of
those domain elements that are identified by nominals. Let m be the size of the
input. It is not difficult to check that the number of core type sets is exponential
in m. Also, checking whether a core type set is proper can be done in linear time.

The following definition specifies the conditions under which a type is elim-
inated. For a role name r, we set occ(r−) := {(Y,X) | (X,Y) ∈ occ(r)}, and
analogously for occ(¬r−). For role names r, we set Inv(r) := r− and Inv(r−) := r.

10

ALCIO-elim(A0, T , α, ϕ0)
for all proper core type sets TS do

i := 0;
T0 := TS ∪ Tano

repeat
Ti+1 := {t ∈ Ti | t is good in Ti};
i := i+ 1;

until Ti = Ti−1;
if TS ⊆ Ti and there is a t ∈ Ti with {{a0},¬C(1)

0 } ⊆ t then
return false

endif
endfor
return true

Fig. 2. The type elimination algorithm.

Definition 7. Let T be a set of types for Cl. Then a type t ∈ T is good in T if
for all (∃r.C)(i) ∈ t, there exists a type t′ ∈ T a set ρ ⊆ {0, 1} such that i ∈ ρ`

and the following are satisfied, for i ∈ {0, 1}:

– if (¬∃r.C)(i) ∈ t and i ∈ ρj, then (¬C)(i) ∈ t′;
– if ¬∃(Inv(r).C)(i) ∈ t′ and i ∈ ρj, then (¬C)(i) ∈ t;
– if 0 ∈ ρj and 1 6∈ ρj then there exists a pair (X,Y) ∈ occ(r) such that
X(0) ∈ t and Y (0) ∈ t′,

– if 0 6∈ ρj and 1 ∈ ρj then there exists a pair (X,Y) ∈ occ(¬r) such that
X(0) ∈ t and Y (0) ∈ t′.

Intuitively, the above definition checks whether there can be any instances of t in
an interpretation in which all domain elements have a type in T. More precisely, t
is the type of a domain element that is needed to satisfy the existential restriction
(∃r.C)(i). The set ρ determines the extension of the role r: if 0 ∈ ρ, then the
instance of t′ is reachable via the role r from the instance of t in I, and similarly
for 1 ∈ ρj and I ′.

The type elimination algorithm is given in a pseudo-code notation in Figure 2,
where C0 is the concept from the ABox assertion ϕ0 = C0(a0). A proof of the
following lemma can be found in [7].

Lemma 1. ALCIO-elim(A0, T , α, ϕ0) returns true iff ϕ0 is a consequence of
applying α in A0 w.r.t. T .

The algorithm runs in exponential time: first, we have already argued that there
are only exponentially many core type sets. Second, the number of elimination
rounds is bounded by the number of types, of which there are only exponentially
many. And third, it is easily seen that it can be checked in exponential time
whether a type is good in a given type set. Since concept satisfiability w.r.t.
TBoxes is ExpTime-hard in ALC [3] and concept satisfiability can be reduced
to (non-)projection [2], we obtain the following result.

11

Theorem 1. Projection and weak consistency are ExpTime-complete in ALC,
ALCO, ALCI, and ALCIO.

It is not too difficult to adapt the algorithm given in this section to the DL
ALCQO. Therefore, we conjecture that the reasoning problems from Theorem 1
are also ExpTime-complete for ALCQ and ALCQO.

5 ALCQI and ALCQIO: Beyond ExpTime

In the previous section, we have identified a number of DLs for which both rea-
soning about actions and standard DL reasoning are ExpTime-complete. An-
other candidate for a DL with such a behaviour is ALCQI, in which satisfiability
and subsumption are ExpTime-complete as well [15]. However, it follows from
results in [2] that projection in ALCQI is co-NExpTime-hard. In the following,
we show that it is in fact co-NExpTime-complete, and that the same holds for
the DL ALCQIO. Note that, for the latter DL, also concept subsumption is
co-NExpTime-complete.

It is shown in [7] that Lemma 8 of [2] implies the following.

Theorem 2. Projection (weak consistency) in ALCQI is co-NExpTime-hard
(NExpTime-hard) even if occlusions for role literals are restricted to (⊥,⊥) and
occlusions of concept literals are restricted to ⊥ and nominals.

In the following, we establish a co-NExpTime upper bound for projection in
ALCQIO (and thus also ALCQI). The proof proceeds by reducing projection in
ALCQIO to ABox (in)consistency in ALCQIO¬,∪,∩, the extension of ALCQIO
with the Boolean role constructors complement, union, and intersection.

Let α be an action, T a TBox, A0 an ABox and ϕ0 an assertion. We are
interested in deciding whether ϕ0 is a consequence of applying α in A0 w.r.t. T .
We use the same notions and abbreviations as in Section 4. As in that section, we
also assume that ϕ0 is of the form C0(a0) and that occlusions are of a restricted
form.

The idea for the following reduction is to define an ABox Ared and a TBox
Tred such that each model of Ared and Tred encodes interpretations I and I ′ with
I |= A0 and I ⇒T

α I ′, and I ′ 6|= ϕ0. The encoding of the two interpretations
I and I ′ into a single model of Ared and Tred is similar to what was done in
the previous section: we introduce superscripted version of all concept and role
names to distinguish the extension in I from that in I ′. We start by assembling
the reduction ABox Ared. First, introduce abbreviations:

pi(C(a)) := ∀U.({a} → C(i)),
pi(r(a, b)) := ∀U.({a} → ∃r(i).{b}),

pi(¬r(a, b)) := ∀U.({a} → .∀r(i).¬{b}),

where U denotes the universal role, i.e. r ∪ ¬r for some r ∈ NR. Now we can
define the components of Ared that take care of post-condition satisfaction. We
define:

Apost := {
(
p0(ϕ) → p1(ψ)

)
(a0) | ϕ/ψ ∈ post},

12

We assemble Ared as Ared := A0∪Apost and continue by defining the components
of the TBox Tred. The first component ensures that auxiliary role names rDom(C)

and rRan(D) are interpreted as C×> and >×D, respectively. For every (C,D) ∈
occ(s) for some role literal s from the input, the TBox Taux contains the following
GCIs :

C(0) v ∀¬rDom(C).⊥ > v ∀rRan(D).D
(0)

¬C(0) v ∀rDom(C).⊥ > v ∀¬rRan(D).¬D(0)

The following component describes the behaviour of concept names and role
names in parts of the domain where they are not allowed to vary. The TBox Tfix

contains for every concept name A in the input,

¬occ(A)(0) uA(0) v A(1)

¬occ(¬A)(0) u ¬A(0) v ¬A(1)

and for every role name r in the input,

> v ∀¬
(⋃

(C,D)∈occ(r)

(rDom(C) ∩ rRan(D))
)
∩ (r(0) ∩ ¬r(1)).⊥

> v ∀¬
(⋃

(C,D)∈occ(¬r)

(rDom(C) ∩ rRan(D))
)
∩ (¬r(0) ∩ r(1)).⊥

Finally, we can construct Tred as

Tred := Taux ∪ Tfix ∪ {C(i) v D(i) | i ∈ {0, 1} ∧ C v D ∈ T }.

The last two components of Tred ensure that I and I ′ are models of the input
TBox T . It is not difficult to show that the following holds:

Lemma 2. C0(a0) is a consequence of applying α in A0 w.r.t. T iff Ared ∪
{¬C(1)

0 (a0)} is inconsistent w.r.t. Tred.

Since ALCQIO∪,∩,¬ is a fragment of C2 (the 2-variable fragment of first-
order logic with counting), we have that ABox inconsistency in ALCQIO∪,∩,¬

is in co-NExpTime, even if numbers are coded in binary [9]. Since Ared and Tred

are polynomial in the size of the input ABox A0, TBox T , and action α, Lemma
2 gives us the same upper complexity bound for projection in ALCQIO and
ALCQI. Theorem 2 implies that this is a tight complexity bound:

Theorem 3. In ALCQIO, projection is co-NExpTime-complete and weak con-
sistency is NExpTime-complete.

6 Undecidability of Strong Consistency

We show that strong consistency is undecidable already in ALC. The proof
consists of a reduction of the undecidable semantic consequence problem from

13

modal logic. Before formulating the DL version of this problem, we need some
preliminaries. We use ALC concepts with only one fixed role name r, which we
call ALCr-concepts. Accordingly, we also assume that interpretations interpret
only concept names and the role name r. A frame is a structure F = (∆F , rF)
where ∆F is a non-empty set and rF ⊆ ∆F×∆F . An interpretation I = (∆I , ·I)
is based on a frame F iff ∆I = ∆F and rI = rF . We say that a concept C is
valid on F (written F |= C) iff CI = ∆I for every interpretation I based on F .

Definition 8 (Semantic consequence problem). Let D and E be ALCr-
concepts. We say that E is a semantic consequence of D iff for every frame
F = (∆F , rF) such that F |= D, it holds that F |= E.

In [14], it is proved that for ALCr-concepts D and E, the problem “Is E a
semantic consequence of D?” is undecidable. We now show that the semantic
consequence problem can be reduced to strong consistency. For ALCr-concepts
D and E, we define the action αD = (pre, {occtaut}, post) where pre := {¬E(a)},
post := {>(a)/(∃u.¬D)(a)} (u a role name), and occtaut maps r and ¬r to
{(⊥,⊥)}, all other role literals to {(>,>)}, and all concept literals to >. Then
the following holds.

Lemma 3. The action αD is strongly consistent with the empty TBox iff E is
a semantic consequence of D.

Proof. “⇒” We show the contraposition. Assume that E is not a semantic con-
sequence of D. Then there exists a frame F = (∆F , rF) such that F |= D and
there is an interpretation I based on F such that EI 6= ∆I . We take I based
on F such that aI 6∈ EI , thus I |= pre. But every I ′ such that I ⇒∅

αD
I ′ must

be based on F (since rI
′

= rI = rF) and must satisfy DI′ 6= ∆I′
(by the

post-condition of α). Since F |= D, there is no such I ′. Thus, αD is not strongly
consistent with the empty TBox.

“⇐” Assume that E is a semantic consequence of D. Let I |= pre. By def-
inition of pre, we have that aI 6∈ EI , and thus I is not based on a frame
F = (∆F , rF) validating E. Since E is a semantic consequence of D, F is not
validating D either, and there is an interpretation I ′ based on F such that
DI′ 6= ∆I′

. Take y ∈ ∆I′
such that y 6∈ DI′

. Since D is an ALCr- concept,
we may assume that uI

′
= {(aI′

, y)}. Obviously, we have that I ⇒∅
αD

I ′, and,
consequently, αD is strongly consistent with the empty TBox.

As an immediate consequence, we obtain the following theorem.

Theorem 4. Strong consistency of ALC-actions is undecidable, even with the
empty TBox.

7 Discussion

We have introduced an action formalism based on description logics that admits
general TBoxes and complex post-conditions. To deal with ramifications induced

14

by general TBoxes, the formalism includes powerful occlusion patterns that can
be used to fine-tune the ramifications. Most important reasoning tasks in our
formalism turn out to be decidable.

Our only negative result concerns the undecidability of strong consistency.
To discuss the impact of this result, let us briefly review the relevance of strong
consistency for the action designer and for the user of the action (the person
who applies the action).

For the action designer, an algorithm for checking strong consistency would
be useful for fine-tuning the ramifications of his action. However, it is worth
noting that deciding strong consistency could not replace manual inspection of
the ramifications. For example, occluding all concept names with > and all role
names with {(>,>)} usually ensures strong consistency but does not lead to an
intuitive behaviour of the action. With weak consistency, we offer at least some
automatic support to the action designer for detecting ramification problems.

For the user of the action, strong consistency is required to ensure that
the execution of an action whose preconditions are satisfied will not fail. If the
action is such that failure cannot be tolerated (because executing the action is
expensive, dangerous, etc), strong consistency is thus indispensible and should
already be guaranteed by the action designer. However, for other actions it is
conceivable that an execution failure does not have any negative effects. If this
is the case, the action user only needs to check that the action is executable, and
strong consistency is not strictly required.

Future work will include developing practical decision procedures. A first step
is carried out in [7], where we show that in the following special (but natural)
case, projection can be reduced to standard reasoning problems in DLs that are
implemented in DL reasoners such as RACER and FaCT++: (i) role occlusions
in actions are given by occtaut; (ii) occtaut(r) = occtaut(¬r); and (iii) concepts
used in occtaut(r) are nominals, >, or ⊥.

Acknowledgements. We would like to thank Giuseppe De Giacomo for
ideas and discussions. The first author was supported by the DFG Project
BA1122/10-2. The second author was supported by the EU funded IST-2005-
7603 FET Project Thinking Ontologies (TONES). The third author was sup-
ported by the DFG Graduiertenkolleg 334. The fourth author was partially sup-
ported by UK EPSRC grant no. GR/S63182/01.

References

1. C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. Proc. of CSL-99, number 1683 in LNCS, pages 307–321. Springer, 1999.

2. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms: First results. In Proc. of AAAI-05, AAAI Press,
2005.

3. F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2003.

15

4. G. de Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the update of description
logic ontologies at the instance level. Proc. of AAAI-06, AAAI Press, 2006.

5. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59–83, 1997.

6. F. Lin. Embracing causality in specifying the indirect effects of actions. In Proc.
of IJCAI-95, pages 1985–1991, Morgan Kaufmann, 1995.

7. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with general
TBoxes: a pragmatic approach. LTCS-Report 06-03, TU Dresden, Germany, 2006.
See http://lat.inf.tu-dresden.de/research/reports.html.

8. V. R. Pratt. Models of program logics. In Proc. of the Twentieth FoCS, San Juan,
Puerto Rico, 1979.

9. I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quan-
tifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.

10. R. Reiter. Knowledge in Action. MIT Press, 2001.
11. M. Thielscher. Ramification and causality. Artificial Intelligence Journal, 89(1–

2):317–364, 1997.
12. M. Thielscher. Introduction to the Fluent Calculus. Electronic Transactions on

Artificial Intelligence, 2(3–4):179–192, 1998.
13. M. Thielscher. FLUX: A logic programming method for reasoning agents. TPLP,

5(4-5):533–565, 2005.
14. S. K. Thomason. The logical consequence relation of propositional tense logic. Z.

Math. Logik Grundl. Math., 21:29–40, 1975.
15. S. Tobies. The complexity of reasoning with cardinality restrictions and nominals

in expressive description logics. JAIR, 12:199–217, 2000.
16. M. Winslett. Reasoning about action using a possible models approach. In AAAI-

88, pages 89–93, 1988.
17. A list of DL reasoners: http://www.cs.man.ac.uk/∼sattler/reasoners.html

