Updating Description Logic ABoxes

Hongkai Liu!, Carsten Lutz!, Maja Mili ¢i¢!, Frank Wolter 2

Ynstitut fur Theoretische Informatik 2Department of Computer Science

TU Dresden, Germany
lastnamé@tcs.inf.tu-dresden.de

Abstract

Description logic (DL) ABoxes are a tool for describing the
state of affairs in an application domain. In this paper, we
consider the problem of updating ABoxes when the state
changes. We assume that changes are described at an atomic
level, i.e., in terms of possibly negated ABox assertions that
involve only atomic concepts and roles. We analyze such ba-
sic ABox updates in several standard DLs by investigating
whether the updated ABox can be expressed in these DLs
and, if so, whether it is computable and what is its size. It
turns out that DLs have to include nominals and the “@”
constructor of hybrid logic (or, equivalently, admit Boolean
ABoxes) for updated ABoxes to be expressible. We devise
algorithms to compute updated ABoxes in several expres-
sive DLs and show that an exponential blowup in the size
of the whole input (original ABox + update information) can-
not be avoided unless every RIE problem is LOGTIME-
parallelizable. We also exhibit ways to avoid an exponential
blowup in the size of the original ABox, which is usually
large compared to the update information.

Introduction
Description logics (DLs) are a prominent family of logic-

University of Liverpool, UK
frank@csc.liv.ac.uk

In many applications of DLs, an ABox is used to repre-
sent the current state of affairs in the application domain
(Baaderet al. 2003). In such applications, it is necessary
to update the ABox in the case that the state has changed.
Such an update should incorporate the information about the
new state while retaining all knowledge that is not affected
by the change (as demanded by the principle of inertia, see
e.g. (M.P.Shanahan 1997)). For example, if Mary is now un-
happy, we should update the above ABox to the following
one. This updated ABox is formulated JALCO, the ex-
tension ofALC with nominals (i.e., individual names inside
concept descriptions):

john:Person M Jhas-child.Personr
Vhas-child.(Person M (Happy LI {mary}))
has-child(john, peter)
mary:Person [~Happy
To see that this ABox is obtained by the update operation,
note that ABoxes adopt the open world assumption and thus
represent the domain in an incomplete way (Baazteal.

2003). In the example above, we have no information about
whether or not Mary is a child of John. However, because we

based formalisms for the representation of and reasoning .annot exclude that this is the case, John may now have an

about conceptual knowledge (Baaddral. 2003). In DLs,

unhappy child (which is Mary). Thus, the new information

concepts are used to describe classes of individuals Sha””gconcerning Mary also resulted in an update of the informa-

common properties. For example, the following concept de-

scribes the class of all parents with only happy children:
Person M 3has-child.Person M Vhas-child.(Person M Happy)
This concept is formulated inlLC, the basic DL that con-

tains all Boolean operators. Concepts are the most important

ingredient of description logiéBoxeswhose purpose is to

describe a snapshot of the world. For example, the following

ABox, which is also formulated i1 LC, says that John is a
parent with only happy children, that Peter is his child, and
that Mary is a person:
john:Person M Fhas-child.Personl™
Vhas-child.(Person M Happy)
has-child(john, peter)
mary:Person

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tion concerning John.

Surprisingly, formal theories of ABox updates have never
been developed. In applications, ABoxes are usually updated
in an ad-hoc way, and effects such as the information change
for John above are simply ignored. The current paper aims
at curing this deficiency. Its purposetsprovide a first for-
mal analysis of ABox updates in many common description
logics, concentrating on the most basic kind of updatés
basic kind of update we consider is as follows: the new infor-
mation to be incorporated into the ABox is a set of possibly
negated assertions A andr(a,b), where A is anatomic
concept. As discussed in more detail later, there are both
semantic and computational problems with unrestricted up-
dates that are avoided by adopting these restrictions.

We consider ABox updates in the expressive DL
ALCQTO and its fragments. It turns out that, in many nat-
ural DLs such asALC, the updated ABox cannot be ex-
pressed. As an example, consider tA€C ABox given

above. To express the ABox obtained by the update with
mary:—~Happy, we had to resort to the more expressive DL
ALCQO. But even the introduction of nominals does not suf-
fice to guarantee that updated ABoxes are expressible. Only
if we further add the “@” concept constructor from hybrid
logic (Areces & de Rijke 2001) or Boolean ABoxes (we
show that these two are equivalent in the presence of hom-
inals), updated ABoxes can be expressed. Here, the @ con-
structor allows the formation afonceptsf the form@,C
expressing that the individual satisfiesC, and Boolean
ABoxes are a generalization of standard ABoxes: while the
latter can be thought of as a conjunction of ABox assertions
of the forma:C andr(a, b), Boolean ABoxes are a Boolean
combination of such ABox assertions. Our expressiveness
results do not only concerd LC: similar proofs as those
given in this paper can be used to show that, in any stan-
dard DL in which nominals and the “@" constructor are not
expressible, updated ABoxes cannot be expressed.

We show that updated ABoxes exist and are computable
in ALCQTO®, the extension afALCQZO (which includes
nominals) with the @ constructor. The proposed algorithm
can easily be adapted to the fragmed®8CO®, ALCTO®,
and ALCQO®. An important issue is the size of updated
ABoxes: the updated ABoxes computed by our algorithm
may be of size exponential both in the size of the original
ABox and in the size of the new information (henceforth
called theupdat§. We show that an exponential blowup
cannot be completely avoided by proving that, even in the
case of propositional logic, the size of updated theories is
not polynomial in the size of the (combined) input unless
every PTME-algorithm is LOGTIME-parallelizable (the “P
vs. NP” question of parallel computatioh)n the update
literature, an exponential blowup in the size of the update is
viewed as much more tolerable than an exponential blowup
in the size of the original ABox since the former tend to
be small compared to the latter. We believe that, in the case
of ALCOTO® and its two fragments mentioned above, the
exponential blowup in the size of the original ABox can-
not be avoided. While we leave a proof as an open problem,
we exhibit two ways around the blowup: the first is to al-
low the introduction of new concept definitions in an acyclic
TBox when computing the update. The second is to move
to extensions ofALCQZO® that allow Boolean operators
on roles, thus eliminating the asymmetry between concepts
and roles found in standard DLs. In both cases, we show
how to compute updated ABoxes that are polynomial in the
size of the original ABox (and exponential in the size of the
update). Thus, the blowup induced by updates in these ex-
pressive DLs is not worse than in propositional logic. We
also show that the blowup produced by iterated updates is
not worse than the blowup produced by a single update.

In contrast to the results by Cadoli et al. (Cadailial. 1999),
our result even applies to the restricted form of updates, i.e., up-
dates in propositional logic where the update is a conjunction of lit-
erals. Thus, our argument provides further evidence for the claims
in (Cadoliet al. 1999), where it is shown that, with unrestricted
updates, an exponential blowup in the size of the update cannot be
avoided unless the first levels of the polynomial hierarchy collapse.

[Name | Syntax | Semantics]
[inverserole | | (! |
nominal {a} {a’}
negation -C AT\ C*
conjunction CcnD ctnp*
disjunction cCubD ctuDp*
at-least number] {z | #{y |(z,y) € 77 A
restriction (ZnrC) y € CT} >n}
at-most numbe {z | #{y |(x,y) er’ A
restriction (snr0) yeC'} <n}
ATif a* € C*, and
@ constructor Q,C 0 otherwise

Figure 1: Syntax and semantics 4£CQ7ZO.

Full proofs of the results presented in this paper can be
found in the accompanying technical report (eiLal. 2005).

Description Logics

In DLs, conceptsare inductively defined with the help of a
set ofconstructorsstarting with a seN¢ of concept names
and a selg of role namesand (possibly) a sé, of individ-

ual namesin this section, we introduce the DLLC QT O,
whose concepts are formed using the constructors shown in
Figure 1. There, the inverse constructor is the only role con-
structor, whereas the remaining seven constructors are con-
cept constructors. In Figure 1 and in what follows, we use
#S to denote the cardinality of a s&t « andb to denote
individual namesy and s to denote roles (i.e., role names
and inverses thereofy, B to denote concept names, and
C, D to denote (possibly complex) concepts. As usual, we
useT as abbreviation for an arbitrary (but fixed) proposi-
tional tautology, | for =T, — and« for the usual Boolean
abbreviationsJr.C' (existential restrictionfor (> 1 r C)
andVr.C (universal restrictiof for (< 0 r =C).

The DL that allows only for negation, conjunction, dis-
junction, and universal and existential restrictions is called
ALC. The availability of additional constructors is indicated
by concatenation of a corresponding letté€}:stands for
number restrictions] stands for inverse roles) for nom-
inals and superscript “@” for the @ constructor. This ex-
plains the named £CQZO® for our DL, and also allows us
to refer to its sublanguages in a simple way.

The semantics ofALCQTO“-concepts is defined in

terms of aninterpretationZ = (AZ,.7). ThedomainAZ is

a non-empty set of individuals and tiv@erpretation func-
tion -Z maps each concept namec Nc to a subsetd? of
AT, each role name € Ng to a binary relation? on A7,
and each individual name € N, to an individuala® € AZ.
The extension of to inverse roles and arbitrary concepts is
inductively defined as shown in the third column of Figure 1.

An ALCQTO® assertional box (ABox)s a finite set
of concept assertion€’'(a) androle assertions-(a, b) and
-r(a,b) (wherer may be an inverse role). For readability,
we sometimes write concept assertiong@s. Observe that

there is no need for explicitly introducing negated concept under Winslett-style PMA semantics (Winslett 1990), unre-
assertions as negation is available as a concept constructorstricted ABox updates in relatively simple DLs are not com-

in ALCQZO®. An ABox A is simpleif C(a) € Aimplies putable. It seems very likely that the other available seman-

thatC' is aconcept literaj i.e., a concept name or a negated tics suffer from similar computational problems. Practically,

concept name. our restriction means that the user has to describe updates at
An interpretationZ satisfiesa concept assertiofi(a) iff an atomic Ievgl. _ _

o € CZ, arole assertion(a, b) iff (a%,b?) € %, and a We now give a more involved example of updating

role assértiomr(a b) iff (a 7b1>) ¢ I \We denote satis- ABoxes than that given in the introduction. The following

faction of an ABox assertion by an intepretatiorf with ALCO ABox expresses that John and Mary are married. We

7 E «. An interpretatiorZ is amodelof an ABox.A (writ- also know that (at least) one of them is unhappy, but we do

tenZ k= A) if it satisfies all assertions inl. An ABox is not know which of the two this is. Moreover, Peter and Sarah

consistentiff it has a model. Two ABoxes4d and A’ are both have a happy parent:

equivalent(written A = A’) iff they have the same models. spouse(john, mary)

We usel (A) to denote the set of all models of the ABglx peter:Iparent.Happy

sarah:dparent.Happy
ABox Updates

We introduce a simple form of ABox update where complex
concepts are not allowed in the update information.

john:=Happy U Vspouse.({mary} — —Happy)

Suppose that, because one of them is unhappy, John and
Mary have an argument. This results in both John and Mary

Definition 1 (Interpretation Update). An updatel{ is a being unhappy now. Hence, we should apply the following
simple ABox that is consistent. Létbe an update arig, 7' update to the above ABox:
interpretations such thatZ = AZ" andZ andZ’ agree on —=Happy(john), —Happy(mary).

the interpretation of individual names. Th&his theresult
of updatingZ with U, writtenZ =, Z’, if the following
hold for all concept named and role names:

Then, the updated ABox can be expresseddiicO® as
follows. Here and in what follows, we assume that the @
constructor has higher precedence than conjunction:

AT = (ATu{d® | A(a) eU})\ {d” | ~A(a) €U} spouse(john, mary)
. (7 U {(aT,6) | r(a,b) € UD) dummy:(@peterﬂparent.(Happy U {john})r
\((aZ 1) | —r(a.b) € U} QgaranJparent.(Happy U {john}))L

(@peterﬂparent.(Happy U {mary})M

It is easily seen that, for each fixed updatethe relation @garanJparent.(Happy L {mary}))
“—,,” is functional. Therefore, we can writg” to denote H oh
the uniqueZ’ with 7 =, 7. ~Happy (john)

—Happy(mary)
The only surprising assertion in the updated ABox is the
second one. Intuitively, it represents the update of the sec-
Definition 2 (ABox Update). Let.A be an ABox and/ an ond and third assertion of the original AB8sxhe first dis-

Based on the relation=-,", we can now define ABox up-
dates.

update. An ABoxA’ is theresult of updating4 with Z{ , in junct captures the case where John was unhappy and Mary
symbolsA «U = A, if was happy, and the second disjunct captures the case when it
, u was the other way around. In the remaining that both Mary
M(A") ={T" [T € M(A)}. and John were unhappy, the update of the second and third

assertions is
dummy:@,eier Iparent.Happy M Qg,rap Iparent.Happy

We then callA theoriginal ABoxand.A’ theupdated ABox

Note that updated ABoxes are unique up to logical equiv- .
alence. This justifies talking athe result of updating4 (because nothing has changed through the update). A cor-
with 2. responding disjunct in the second assertion of the updated

.) ABox is not needed since it would imply each of the first
There are at least two advantages of disallowing com- g disjuncts.

 Uncontroversial and comcices with all standard semantics, . A1S0 NOte that the last line of the original ABox is sub-

. : X ; sumed by the last two lines of the updated ABox.
for updates considered in the literature, see e.g., (Thielscher . .
2000b; Scherl & Levesque 2003; Winslett 1990; Reiter We sh,z'all later refer back to this example as the “spouse
2001). In contrast, several different and equally natural se- €xample” and prove that the updated ABox cannot be ex-
mantics become available as soon as we allow disjunc- PressedinALCO.
tion (or even non-Boolean constructors) in updates, see €.9. 2Note that the individual nameummy in front of the colon
(Winslett 1990; Forbus 1989; Lin 1996; Thielscher 2000a; does not carry any information: we could exchange it with any
Zhang & Foo 2000; Herzig 1996, Reiter 2001). Second, it other individual name without changing the meaning of this as-
follows from the results in (Baadet al. 2005) that, at least sertion.

Description Logics without Updates

We say that a description logi¢ has ABox updateif, for
every ABox.A formulated in£ and every updaté{, there
exists an ABoxA’ formulated in£ such thatd « U = A’.

In this section, we show that a lot of basic DLs are lacking

ABox updates.

Updates in ALC

We analyze the basic description logdC and show that it
does not have ABox updates. Consider the follow#gC
ABox A, updatd/, andALCO ABox A’:

A = {¥r.A(a)}
U = {-A@)}
A" = {=A(D),Vr.(Au{b})(a)}.

The following is not difficult to verify using Definition 2.
Lemma3. AxU = A'.

To show that4£C does not have ABox updates, it thus suf-
fices to prove that there is ndLC ABox equivalent to the

A A T’ "

° Yo ae obh
rl

°

<
L]
[
>
@

A ce

ce

o

Figure 2: Interpretations for Lemma 7

We now show that there exists ot CO ABox that is equiv-

alent to theA£CO® ABox A'. It follows that ALCO does
not have ABox updates.

Consider the interpretations Z' andZ” depicted in Fig-
ure 2. We assume that the individual namesh, and ¢
are mapped to the individuals of the same name, and that
all other individual names are mapped to the individual
Moreover, the concept nam# is interpreted as shown in
the figure and all other concept names are interpreted as the
empty set in all three interpretations. Then we have A’,

ALCO ABox A’. This is an easy exercise: find two models Z' = A’ andZ” [# A’. We will show that, if anALCO

7 andZ’ that are bisimilat such thatZ = A’ andZ’ j~= A'.
Then use the fact thad £C concepts cannot distinguish be-

ABox B is equivalent tad’, thenZ” = B, which is a con-
tradiction.

tween bisimilar models to show the desired result. Details of |emma 7. There is n@A£CO ABox that is equivalent to the

this and following proofs can be found in (Lat al. 2005).
Lemma 4. There is naALC ABox equivalent tod’.

ALCO® ABox A’ = {(3r.(AN—{b} L@, A)(a), ~r(a,b)}.
Proof. Assume there is ad LCO ABox B that is equivalent

Note that our proof applies to the case where the update con-t0 A’ ThenZ = B, I’ = B, andZ” = B. We show that,

tains only concept assertions, but no role assertions.

Theorem 5. ALC does not have ABox updates, even if up-

dates contain only concept assertions.

The fact that the updated ABaA’ used in this section is
actually anALCO ABox may give rise to the conjecture that

adding nominals todLC recovers the existence of updates.
Unfortunately, as shown in the following section, this is not

the case.

Updates in ALCO
To show thatdLCO does not have ABox updates, we pro-

ceed in two steps: we first give a straightforward proof of

the non-existence of updated ABoxesALCO that relies

for all assertionsp € B, we haveZ” E ¢, thus obtaining

a contradiction taZ” [~ B. First, B does not contain any
positive role assertion sincg = B andZ does not satisfy
any positive role assertions. Secondyifs a negative role
assertion, thed” = ¢ sinceZ” satisfies all negative role
assertions. Finally, leb be a concept assertion. Tha, =

p is a consequence af = ¢, I’ = ¢, and the fact that
the truth of an assertiofi(a) in a model7, C an ALCO-
concept, only depends on the set of points reachable from
a7 by role paths. a

Note that our proof also shows thatZC does not have
ABox updates even if we restrict ourselves to updates con-
taining only role assertions.

on the use of role assertions in updates. In the second step, Theorem 8. ALC and ALCO do not have ABox updates,

we use a slightly more complex construction to show that €ven if updates contain only role assertions.
ALCO does not have ABox updates even if only concept This result raises the question whether or not restricting up-

assertions are allowed in updates.
Consider the followingd£C ABox A (which thus also is
an.ALCO ABox), update/, and.ALCO® ABox A’:

A = {3r.Ala)}
U = {-r(a,b)}
A = {@r.(An={b})u@yA)(a),-r(a,b)}.

Again, the following is not difficult to verify:
Lemma6. AxU = A’

3W.r.t. the standard notion of bisimilarity fo £C that is inde-
pendent of individual names (Kurtonina & de Rijke 1999).

dates to concept assertions regains the existence of updated
ABoxes inALCO. We answer this question to the negative
by returning to the spouse example. L&tl/, and A’ de-

note the original ABox (formulated il LCO), update, and
updated ABox (formulated itd£LCO®) from this example.

We have already argued thdt«/ = A'. It suffices to prove

that there is noALCO ABox equivalent ta4’.

Consider the interpretations 7’ andZ” depicted in Fig-
ure 3 where we abbreviate the individual names from the
spouse example using their initial letterdenotes an indi-
vidual, all horizontal edges are for the ralgouse, and all
vertical edges are for the rolgarent. We assume that the
four individual namesgj, m, p, s are mapped to individuals

Z I/ I// H
pe oS pe [X} pe e es
X
. m l]’ l l
je——>eey {EI}H.m Je—>eom

Figure 3: Interpretations for Lemma 9

of the same name, and that all other individual names are

mapped to the individuat. Moreover, H is interpreted as

indicated and all other concept names are interpreted as the

empty set.

The proof of the following lemma uses the facts that
AT = A, butZ” = A'. Itis quite similar to the proof of
Lemma 7.

Lemma 9. There is noALCO-ABox that is equivalent to
the updated ABox from the spouse example.

Thus, we obtain the following result:

Theorem 10. ALCO does not have ABox updates, even if

updates contain only concept assertions.

Updates in ALC® and Boolean ABoxes inALC

(iii) There exists no non-Boolead£C® ABox that is equiv-
alent to the Booleat! £LC ABox{A(a) V r(b, c)}.

Since, when added td£C, Boolean ABoxes are more ex-
pressive than the @ constructor, it is more general to con-
sider the former when proving the lack of ABox updates.

Theorem 12. There exists amdLC ABox.4 and an update
U such that there exists no BooleatCC ABox.A’ with A x
u=uA~.

The proof of Theorem 12 uses the ABoxds .A’ and the
updatel/ that have been used in the proof th&fC does

not have ABox updates. To show that no Boolean ABds
equivalent ta4, B is first converted into disjunctive normal
form and then proceeds similar to the non-Boolean case. By
Lemma 11, we obtain the following corollary.

Corollary 13. ALC“ does not have ABox updates.

Observe that both Theorem 12 and Corollary 13 remain true
if we restrict updates to only concept assertions.

Computing Updates in ALCQZO®

Straightforward extensions of the results obtained in the pre-
vious section show that none of the standard DLs between
ALC and ALCQTO has ABox updates. In this section,

we show that adding nominals and the @ constructor to

The proofs of Theorems 8 and 10 suggest that there is a con-such DLs suffices to have ABox updates. More presicely,

nection between ABox updates and the “@” constructor. In-

deed, we will later see that the DULCO® has ABox up-
dates. Here, we show that addiagly the @ constructor to

we prove that the expressive DULCQZO® has ABox
updates. The proof is easily adapted to the fragments of
ALCQTO® obtained by dropping number restrictions, in-

ALC does not suffice to guarantee the existence of updated verse roles, or both.

ABoxes. Indeed, we even consider Boolean ABoxes (Areces

Our construction of updated ABoxes is an extension

et al. 2003), which are closely related to the @ constructor of the corresponding construction for propositional logic

but strictly more expressive.

Boolean ABox assertiongre Boolean combinations of
ABox assertions expressed in terms of the connectivasd
V. Then, aBoolean ABos simply a finite set of Boolean
ABox assertions. We do not need to explicitly introduce

negation since we admit negated role assertions and concept
negation is contained in every DL considered in this paper.

For example, the following is a Boolean ABox:
{B(a), (A(a) Ar(a,b)) v —3s.A(b)}.

An interpretatior? is a model of a Boolean ABaA if every
Boolean ABox assertion il evaluates to true. The follow-
ing lemma relates Boolean ABoxes and theonstructor. It
shows that non-Boolead LCO® ABoxes have exactly the
same expressive power as BooledfC O-ABoxes, and that
the same does not hold fat£C: while every. ALC® ABox
can be translated into an equivalent Boole4dC ABoX,
there are BooleatdLC ABoxes for which no equivalent
non-Booleand£C® ABox exists.

Lemma 11.))

(i) For every Booleand£C® ABox (ALCO® ABox), there
exists an equivalent BooleatZC ABox (ALCO ABox);

(i) For every BooleandLCO ABoX, there exists an equiva-
lent non-Booleand £LCO° ABoX;

described in (Winslett 1990), and proceeds as follows.
First, we considerupdates of conceptsn the level of
interpretations. More precisely, we show how to convert a
conceptC and an updat# into a conceptC¥ such that the
following holds:

(x) for all interpretationg andZ’ such that satisfiesno
assertion i andZ =, 7', we haveC” = (CY)Z'.

So intuitively, CY can be used after the update to describe
exactly those objects that have been in the extensiafi of
before the update. Our aim is to use the transla@ihto
update concept assertions in ABoxes. We will later see how
to overcome the restriction thathas to satisfy no assertion
inU.

For defining the concept8", we first introduce a bit of
notation. For an ABox4, we useObj(.A) to denote the set of
individual names in4, andsub(.A) to denote the set of sub-
concepts of the concepts occurringdnFor an ABoxA4, we
use—.A to denote{—¢ | ¢ € A}. The inductive translation
that takes a concet and an updatef to a conceptC” as
explained above is given in Figure 4.

Lemma 14. The translation of concepts into concept£
given in Figure 4 satisfies].

u = —/
A" = AU ﬁAIELu{a} n (AL_)€|M{G})
(@, = @,cv
(cnp¥ = c“np“
acObj(U)
>
H aelo_bj!Z/{) ({a} n m1+m|2_+|m3:m ((— mir
A
(cmroft = (] ~fapn(mrc®)
a€Obj(U)
<
a€e0bj(U) ({a} i m1+m|,2_+|m3:m ((— myr
[l

beObj(U)

SC{b|-r(a,b)eU},|S|=m

beObj(U)

SC{b|-r(a,b)eU},|S|=mz+1

{a} = {a}

(O = -c"
(CuD¥ = c*upv

{b} nct)

-{prncyn (>
|_| {6}) (zmar beObj(U),r(a,b)gU

[@c))

Sbes

{py)

beObj(U),r(a,b)gU

L-aic)

[1 ~{pnc)n(Emr

Figure 4: Constructing’"!

We now extend the update of concepts to the update of
ABoxes. LetA be an ABox and/ an update. Then define
the ABox A by setting

AU {CY(a) | C(a) € A} U
{r(a,b) | r(a,b) € AN —r(a,b) ¢ U} U
{-r(a,b) | =r(a,b) € ANr(a,b) ¢ U}.

We can now establish a property that corresponds)td(t
concerns ABoxes instead of concepts.

Lemma 15. Let A be an ABox and/ an update. For ev-
ery interpretationZ with 7 |= -, we haveZ = A iff

Y = A4,

Similar to the concept§¥, the ABox updated” works only

if the interpretation& of A satisfy no assertion itd. For

a fixed interpretatior¥, we can overcome this problem by
replacingC” with CY’, wherel{’ is the set of those asser-
tions in/ that are violated irT. However, in general we are
confronted with the problem that an ABox can have many
different models, and these models can violate different as-
sertions of the updat®. Hence, there is no unique way of
moving fromCY to C" as described above. The solution
is to produce an updated ABox for each suligetC U/ of

violated assertions separately, and then simply take the dis-

junction.

Let.4 be an ABox and/ an update. A simple ABo® is
called adiagram for{ if it is @ maximal consistent subset
of Ly, whereLy = {¢,—¢ | b € U} is the set ofiterals
over. Intuitively, a diagram gives a complete description
of the part of a model of4 that is “relevant” for the up-
datel/. Let® be the set of all diagrams féf and consider
for D € © the setDy, := {¢ | =¢) € D andy € U} which
corresponds to taking a subsetl¢fas described above: we

retain only those parts @f that are violated by interpreta-
tions whose relevant part is describedDyWe now define
the updated ABox4’ as

A = \/ NAP*UD,U(D\-Dy).

De®

Here, we use Boolean ABox operators only as an abbrevia-
tion for the “@” constructor. The expansion of this abbrevi-
ation does not substantially increase the size of the updated
ABox: the translation from Boolean ABoxes to hon-Boolean
ones described in (Liet al. 2005) is linear. To achieve a
less redundant ABoX, it is possible to drop fro#i those
disjuncts for which the diagrar®® is not consistent w.r.t.

A. This is, however, not strictly necessary since the ABox
D\ =Dy, ensures that these disjuncts are inconsistent.

Lemmal16. AxU = A'.

Itis easy to adapt the construction of updated ABoxes to the
DLs ALCO®, ALCTIO®, ALCQO®. For the former two,

we have to treat existential and universal restrictions in the

CY translation rather than number restrictions. The corre-

sponding clauses are shown in Figure 5. The lemmas proved
above forALCQTO® are then easily adapted.

Theorem 17. All of the following DLs have ABox updates:
ALCO®, ALCTO®, ALCQO®, and ALCQTO®.

Now that we know that updated ABoxes always exist in the
above DLs, we should have a look at their size. Let us first
make precise what we mean with this. Tleagthof a con-
ceptC, denoted by C|, is the number of symbols needed
to write C. Note that it makes a considerable difference
whether we assume the numbers inside number restrictions
to be written in unary or in binary: if written in unary, we
have|(< n r C)] € O(n), and if written in binary, we have

@r.c)f =

a€cObj(B)

({a} 1 3r.({p} N C®) |_| ({a} M @,C"®)

a,beObj(B),r(a,b)¢B

a€O0bj(B)

o]

a,beObj(B),r(a,b)¢B

([~{aynarc®yuar([] ~{a}nc®)

([1 ~fa}=vrc®nvr([] ~{a} —C%)

({a} = vr.({b} — C®) N

acObj(B)

—r(a,b)EB

a€Obj(B)
({a} — @,C")

[

—r(a,b)EB

Figure 5: Constructing’" for existential and universal restrictions

(< nr C)] € O(logn). In the following, we will always
point out to which coding our results apgdiyrhe sizeof an
ABox assertiorC'(a) is |C|, the size ofr(a, b) and—r(a, b)

is 1. Finally, thesizeof an ABox.A, denoted byl.A|, is the
sum of the sizes of all assertions.in

A close inspection of our construction reveals the follow-
ing: first, the size the concepf& is exponential in the size
of .4 and polynomial in the size @f; and second, the num-
ber of disjuncts ind’ is exponential in the size @f. These
bounds hold regardless of the coding of numbers.
Theorem 18.

Let £ € {ALCO®, ALCIO®, ALCQO®, ALCQTO}.
Then there are polynomials , p2, andg such that, for every
L ABox.A and every updat#, there is anl ABox.4’ such
that

o AxU =A;

o |A/| < 201 (AD . gpa(iul;

e A’ can be computed in timg|.A'|).

There are applications in which the domain of interest
evolves continuously. In such an environment, it is necessary

actions with DLs (Baadeet al. 2005), it is more useful to
haveconditional updatesvhere the initial interpretation de-
termines the changes that are triggered.

A conditional updaté/ is a finite set of expressions/1,
where thepreconditiony is an ABox assertion (possibly in-
volving non-atomic concepts) and thestconditiory is an
assertion of the form

A(a),—A(a),r(a,b), r(a,b)

with A a concept name. Intuitively, an expressigny
means that ifp holds in the initial interpretation, then
holds after the update. As in the case of unconditional up-
dates, we require a consistency conditior ff) andy’ /-
are both irt/, then the ABox{¢, ¢’} has to be inconsistent.
The definition of “=-;,” is easily adapted to the case of
conditional updates: fot/ a conditional update, we write
T =y, T’ if the following hold:

¢ for all concept named,
AT = (AT U{d? | p/A(a) eUNT = ¢})
\ {a? | p/~Ala) EUNT E ¢}

to update an ABox over and over again. Then, it is clearly ® for all role names,

important that the exponential blowups of the individual up-
dates do not add up. The following theorem, which can be
proved by carefully investigating our update construction,
shows that this is indeed not the case. It holds independently

of the coding of numbers.

Theorem 19. There are polynomialg,, ps such that the
following holds: for all ABoxesA,,...,.4,, and updates
Uy, ...,.U,, if A; is the ABox computed by our algorithm
whenA;_; is updated witli/;, for 0 < i < n, then

|A,| < op1(l4ol) | gp2 (U |+ +[Unl)

Conditional Updates

rto= (1P U{(a®,0%) | ¢/r(a,b) eUNT |= o))
\ {(@®,b%) | ¢/=r(a,b) eUNT = ¢}
Then the result of updating an ABox is defined exactly as in
the case of unconditional updates. Clearly, conditional up-
dates generalize unconditional once since assertjon$
unconditional updates can be expressed &s)/v¢, with a
an arbitrary individual name.

We now show how to adapt our construction of updated
ABoxes to conditional updates. Fra conditional update,
we userhs(/) to denote{v) | /v € U}, andlhs(Uf) for
{¢ | /¥ € U}.Inthe original algorithm, the updated ABox
A’ is assembled by taking one disjunct for every diagram
for . The intuition is that, when a diagrais satisfied by

For the sake of simplicity, we have defined ABox updates 2an interpretatiof, then we know which assertionslihhave

to be unconditional: the assertions in the upddtare un-

already been satisfied ihbeforel(is applied. We general-

conditionally true after the update and we cannot express ize this idea to conditional updates by taking one disjunct for

statements such asl{a) is true after the update @'(b) was

each pair(D,U’), whereD is a diagram forhs(l(), andis’

true before”. In some applications such as reasoning about IS & Subset of/. Intuitively, 4’ determines the set of asser-

tions fromi/ whose preconditions are satisfied in the initial

“In fact, all results except Theorems 26 and 27 apply to both model, andD determines the post-conditions that actually

unary and binary coding.

cause a change.

Let ® be the set of all diagrams fehs(/). LetD € ©
andy’ C U. We define
Dy = {’(/) ‘ - €D andgp/d) S Z/{/}
Then we can assemble the updated ABUxas follows:

A V'V Alele/weuype
PERMEH U e | o/ eUNUY P
U APw U Dy U (D \ —Dyr).
The notion of a description logi€ having conditional ABox
updatess defined in the obvious way.
Theorem 20. All of the following DLs have condi-
tional ABox updatesALCO®, ALCIO®, ALCQO®, and
ALCQIO®.

Concerning the size and computability of updated ABoxes
we obtain the same bounds as in Theorem 18, independentl
of the coding of numbers.

A Lower Bound for the Size of Updated
ABoxes

In the following sections, we are interested in the question
whether or not the exponential blowup observed in Theo-
rems 18 and 19 can be avoided. In this section, we consider
updates ofpropositional logic theoriesvhere the updates
are of the restricted form considered in this paper, i.e., con-
junctions of literals. We prove that, even in this case, an
exponential blowup in the size of the whole input (origi-
nal ABox + update) cannot be avoided unless the complex-
ity classes PTMME and NC coincide. As discussed in (Pa-
padimitriou 1994), this is believed to be similarly unlikely
as PTME = NP. Itis not difficult to prove that this lower
bound on the size of updated ABoxes transfers to all DLs
considered in this paper.

For the following definitions, we fix an individual name
A propositional ABoxA is of the form {C(a)} with C
a propositional concepti.e., a concept that uses only the
concept constructors, M, andU. A propositional update
U contains only assertions of the forri(a) and —A(a).
Observe that propositional ABoxes and propositional up-
dates are only allowed to refer to the single, fixed individual
namea.

For the semantics, we fix a single individualSince we

are dealing with propositional ABoxes and updates, we as- A

sume that interpretations do not inteprete role names, and
that interpretation domains have only a single element
with X = z. We introduce a couple of notions. For a con-
ceptC, let C(C) denote the set of concept names used in
C. For an interpretatiol and a set of concept namés

let Z|r denote the restriction df that interpretes only the
concept names ifr. Let C' be a concept anft C C(C).
Then a concepb is called auniformI'-interpolantof C iff
C(D) CTand{Z|r | z € C%} = {Z|r | = € D*}. It

is easily seen that, for any propositional cono@mnd sub-
setl’ C C(C), the uniformI-interpolant ofC' exists and is
unique up to equivalence. The following lemma establishes
a tight connection between uniform interpolants and propo-
sitional updates.

Lemma 21. Let A = {C(a)} be a propositional ABoxX{
a propositional Lipdate],“ the set of concept namesdhnot
occurring inU, C the shortest uniforni’-interpolant ofC,

and N

A={a:(Cn [] A}

A(a)eU

Then we have the following:
) AxU= A
(i) if AxU = A", then|A'| < |U|+ |A"|.
It thus remains to show that the size of (smallest) uni-
form interpolants of propositional concepts is not bounded

polynomially in the size of the interpolated concept unless
PTiIME = NC.

The size of uniform interpolants of propositional concepts

' is closely related to the relative succinctness of propositional
Ylogic (PL) formulas and Boolean circuits. We remind that

both PL formulas and Boolean circuits compute Boolean
functions and refer, e.g., to (Papadimitriou 1994) for exact
definitions. We uséx| to denote the number of gates in the
Boolean circuite, and || to denote the length of the PL
formulae. It is known that, unless RWE = NC, there ex-
ists no polynomialp such that every Boolean circuitcan

be converted into a PL formula that computes the same
function asc; and satisfiegp| < p(|c;|), see e.g. Exercise
15.5.4 of (Papadimitriou 1994). In the following, we show
that non-existence of such a polynomjaimplies that uni-
form interpolants are not bounded polynomially in the size
of the interpolated concept. Take a Boolean cireuwitith &
inputs. There can be translated into a propositional concept
D, by introducing concept namds, . .., I;, for the inputs
and, additionally, one auxiliary concept name for the output
of every gate. Leg be the set of concept names introduced
for gate outputs, and leD € G be the concept name for
the output of the gate computing the final outputcoft is

not difficult to see that this translation can be done such that
there exists a polynomial such that, for all Boolean cir-
Ccuitse,

() [De| < q(|c|) and
(ii) for all interpretationsZ and allz € DZ, » € Of iff ¢

outputs “true” on inpuby, . .., by, whereb. =1ifz e IJI
andb; = 0 otherwise.

Now, setl’ := G \ {O}. Then the unifornT-interpolant

D, of D, also satisfies (ii). Thus), is a (notational vari-
ant of a) propositional logic formula computing the same
Boolean function as. If the size off)C would be bounded
polynomially in the size oD, we thus had obtained a con-
tradiction to our assumption on the non-existence of the
polynomialp. Together with Lemma 21, we obtain the fol-
lowing theorem.

Theorem 22. UnlessPTIME = NC, there exists no polyno-
mial p such that, for all propositional ABoxe4 and propo-
sitional update$/, there exists a propositional ABoX such
that

e AxU = A and
o |A| <p(lAl+ U]).

Our result is closely related to a result of (Cadeti al.
1999) who prove an analogue of Theorem 22 under the
complexity-theoretic assumption that the polynomial hier-
archy does not collapse. However, Cadoli et al.’s technique
does not appear to work with the restricted form of updates
(conjunctions of literals) considered in this paper.

Small(er) Updated ABoxes

Theorem 18 does not differentiate between exponential
blowups in the size of the original ABox and exponential
blowups in the size of the update. In contrast to the former,
the latter is usually considered acceptable since updates will
usually be small compared to the original ABa@ix We be-
lieve that, in the DLs mentioned in Theorem 17, the expo-
nential blowup in the size ofl is unavoidable. However, we
have to leave a proof as an open problem. In the following,
we exhibit three different ways to extent.C Q7O and its

writtenZ |= K, if Z is a model of7 and.A. The set of all

models of a KBK is denotedV/ ().

An updatel/ is a simple and consistent ABox that does
not use auxiliary concept names. We disallow auxiliary con-
cept names because they can be defined in a TBox and thus
allowing them is equivalent to admitting updates with com-
plex concepts. Lel/ be an update and |& andZ’ be in-
terpretations that agree on the interpretation of individual
names. We define an update relatibn—-}, 7' (wherep
stands for “primary”) as in Definition 1, but restrict the con-
dition on concept names to primary concept names. This re-
striction is not harmful since we require auxiliary concept
names that are used in a knowledge base to be defined in
the TBox, and this means that their extension is uniquely
determined by the extensions of the primary concept names
and role names. Still, as a result of the restriction, the rela-
tion =7, is not functional (in contrast to the case without

fragments such that it becomes possible to compute updatedTBoxes).

ABoxes that are only polynomial in the size of the original
ABoX.

A first, rather restrictive solution is to admit only concept
assertions in updates. Then, in all DLs captured by Theo-
rem 17, computing the concepi®! becomes a lot simpler:
just replace every concept namen C with

AL Jml%{a} A (Awl—)lg{“})'
If modified in this way, our original construction yields up-
dated ABoxes that are only polynomial in the size of the
original ABox (but still exponential id{). The bound is in-
dependent of the coding of numbers and also applies to iter-
ated updates.

Small Updates Through TBoxes

We show how to produce smaller updated ABoxes by al-
lowing the introduction of auxiliary concept names via an
acyclic TBox. In the propositional case, this corresponds to
admitting additional variables for defining abbreviations. In
the terminology of Cadoli et al. (Cadddt al. 1999), we thus
move from logical equivalence to query equivalence. In this
way, we obtain updates that are polynomial in the size of the
original ABox.

In the following, we assume that the set of concept names
is partitioned into a set oprimary concept names and a
set ofauxiliary concept names. The latter are used only for
defining abbreviations in a TBox. oncept definitioris of
the form A = C, where A is an auxiliary concept name
andC' is a concept. Ar(acyclic) TBox7 is a finite set of
concept definitions with unique left-hand sides and without
cyclic definitions (Baadeet al. 2003), page 52. We call a
concept namel definedn a TBox7 and writeA € def(7)
if A occurs on the left-hand side of a concept definitiof in
A knowledge base (KB$ a pairk = (7, .A) consisting of
a TBox7 and an ABoxA such that every auxiliary concept
name used irk is in def(7). An interpretationZ satisfies
a concept definitiom = C if AT = C*. T is amodelof a
TBox 7, writtenZ = 7, if Z satisfies all concept definitions
in 7. An interpretatiorZ is amodelof a KB K = (7, A),

Definition 23 (Knowledge Base Update).Let /C; and X
be knowledge basek,; = (7;,.4;), andi/ an update. Then
KCo is a result of updatingC; with/ if

M(Ko) ={Z"|IZT e M(K1) : T =7, T' NT' = T>}.
In this case, we writé(; U =, Ks.

Observe that the TBox of the updated KB can contain
new abbreviations, i.e., definition$ = C with A an aux-
iliary concept names that does not occuKip. Since there

is more than a single way to define such abbreviations, the
result of updating a knowledge base is not unique up to logi-
cal equivalence. However, we have this uniqueness when re-
stricting our attention to what the updated ABox expresses
regarding the primary concept names and role names, only.

In the equality in Definition 23, the conjun€t = 7; has
no impact on the " direction since all models of; are
models of7; anyway. For the D" direction, the conjunct
is essential: dropping it would mean to require thaery
possible interpretation of the auxiliary concept names’in
satisfies/;. Moreover, sincés, is part of the updated knowl-
edge bas&,, interpretations not satisfyir@, are irrelevant.

We now establish a relationship between updates of
ABoxes and updates of knowledge bases. fetbe an
acyclic TBox, andC' a concept. The conceit” obtained
from C by exhaustively replacing defined concept names in
C with their definitions from7 is called theunfolding of
C w.rt. 7. If Ais an ABox, then thainfolding of A w.r.t.
7T is the ABox.A7 obtained by replacing each concept as-
sertionC/(a) in A with C7 (a). If (T,.A) is a knowledge
base, then the unfolding” contains only primary concept
names. The following lemma shows that updated knowledge
bases are just updated ABoxes with abbreviations.

Lemma 24. Let K; and K2 be knowledge base&;, =
(7;, A;), andU{ an update. Then

KisU=,Ky iff AT sU = AP

For the moment, the purpose of Lemma 24 is only to clarify

the relation between ABox updates and knowledge base up-

It is important to note that Theorem 26 is true only if we as-
sume unary coding of numbers: with binary coding, already

dates. Although we could compute knowledge base updates the translationCV results in an exponential blowup in the

using Lemma 24 together with our construction for ABox
updates, this would not help to obtain smaller updates.

Therefore, we now show how to directly construct up-
dated knowledge bases IALCOZO® and its fragments.
Let £ = (7,.A) be a knowledge base, and tbe an
update. Diagrams fo#/ and the set$® and D, are de-
fined as in the previous section. We usé(/C) to denote
the set of all subconcepts of concepts occurringCinTo
construct the result of updating with ¢/, we introduce a
new concept namel? for every diagranD € © and ev-
ery C € sub(K). Lettrans(C, D) denote the concept on the
right-hand side of the clause f6rP« in Figure 4, with all
subconcept&® replaced by the concept namé’. For ex-
ample,trans(C 11 D,D) = AZ 1 AB. For each diagram
D € 9, define a TBox

T.E .= {AL = trans(C, D) | C € sub(K) \ def(7)}.
Then, we define the TBox

T = | J (@ u{aAf =48 |A=CeT)).
DeD

For everyD € D, let
Apy, {A2(a) | Cla) e A}U U
{r(a,b) | 7(a,b) € AN-r(a,b) ¢ Dy} U
{-r(a,b) | =r(a,b) € AAr(a,b) ¢ Dy}

Now we can define the ABox’ by setting

A =\ N\Ap,UDyU(D\-Dy).

De®

size of the original ABox since we hayé< n r O)Y| €
O(2™). Thus, the updated ABox will not be polynomial in
the size of the original one.

As in the case without TBoxes, it can be shown that iter-
ated updates do not produce a blowup of the size of updated
ABoxes that is worse than the blowup produced by a single
update.

Theorem 27. There are polynomialg,, p> such that the
following holds: for all knowledge basés,, ..., K, and
updatedfy, ..., U,, if IC; is the ABox computed by our al-
gorithm whenC;_; is updated witti/f;, for 0 < i < n, then

[Kal < pa(|Ko]) - 2P2(th 44D,

Small Updates inALCQIO*
We have argued above that, if the update contains no role as-
sertions, then updated£C Q7O ABoxes are polynomial
in the size of the original ABox even without introducing
TBoxes. Intuitively, updates with only concept assertions do
not lead to an exponential blowup because we have avail-
able nominals, th@-operator, and the Boolean operators on
concepts. In standard DLs, none of these operators is avail-
able for roles: we can neither construct the union of roles,
nor their complement, nor a “nominal rol¢{a, b)} with a
andb nominals. In this section, we explore the possibility of
constructing updated ABoxes in a language in which such
constructors are available. The language we consider is of
almost the same expressive powerGds the two-variable
fragment of first-order logic with counting quantifiers (Lutz,
Sattler, & Wolter 2001).

Denote by ALCQTO™ the description logic extending
ALCQIO® by means of the role constructangrole inter-

and finally assemble the updated knowledge base by setting section),— (set-theoretic difference of roles), adi¢a, b)}

K':= (7', A). It can be proved that this knowledge base is
as required:

Lemma25. K «U =, K’

We now formulate the main result on updates with acyclic
TBoxes. In constrast to updates without TBoxes, updated
knowledge bases are polynomial in the size of the origi-
nal KB. Thus, Lemma 24 implies that we can use acyclic
TBoxes to obtain a more succinct presentation of updated
ABoxes. In the following, the sizé7| of a TBox 7 is

> a—cer |Cl, and the sizeékC| of a knowledge bask =
(T,A)isthe sum of7| and|A|.

Theorem 26.

Let £ € {ALCO®, ALCIO®, ALCQO®, ALCQTOY.
Then there are polynomiajs, p2, andq such that, for every
L-knowledge bask = (7, .A) and every updat#, there is
an £-knowledge basg&’ such that

o KxU =, K;

o [K'| <pi(K)) - or=(IU)-

e K’ can be computed in timg|X'|).

(nominal roles). In this language, complex roles are con-
structed starting from role names and nominal roles, and
then applyingn, —, and the inverse role operator. The
interpretation of complex roles is as expected:

e {(a,b)}* ={(a®,b?)},foralla,b € Nj;

o (rinmr)t =rfnri;

o (r1 —r)t =rf —0L.

We note that reasoning iIALCQZO is decidable: this DL
can easily be embedded inf®? and, therefore, ABox con-
sistency is decidable in N TIME even if the numbers
inside number restrictions are coded in binary (Pacholski,
Szwast, & Tendera 2000; Pratt-Hartmann 2005). We now
formulate the main result of this section:

Theorem 28. There are polynomialg,, p2, andq such that,

for every ALCQTO™" ABox.A and every updat#/, there is

an ALCQTO" ABoxA’ such that

o Axl =A;

o |A] < pu(|Al) - 2000,

e A’ can be computed in timg|.A’|).

Proof. We modify the proof of Theorem 18. For
ALCQTO™, the construction of the concepf! is much
simpler: it suffices to replace every concept narhéen C
with
au U qayn-c U
—uA(a)eZ/t{a} (A(a)eu{a})
and every role namein C with

U {@o3\e U {@vh).

-r(a,b)eU r(a,b)eUd

ruJ

The concept€“ are of size polynomial in the size 6fand
U. The ABox.A’ can then be constructed in the same way as
in the proof of Theorem 18 and is polynomial in the size of
A, but exponential in the size of the update O

Clearly, Theorem 28 is independent of the coding of num-

bers, and, also with iterated updates, updated ABoxes re-

main polynomial in the size of the original ABox. An
alternative to working with a description logic such as
ALCQTOT is to work directly in the two-variable fragment
with countingC?. Then, a result analogous to Theorem 28
is easily obtained.

Outlook

There are two obvious directions for future work. The first
direction is to alleviate the syntactic restriction posed on

concepts appearing in updates in a controlled way. For ex-

ample, research on propositional updates contaiwiisg
junctions (Zhang & Foo 2000; Herzig 1996; Lin 1996;

Thielscher 2000a) suggests the feasibility of ABox updates

with Boolean combinations of concept names. We conjec-

ture that natural generalizations of the semantics proposed in

the propositional case lead to useful notions of an ABox up-

date under which the updates are still computable. The sec-

ond direction for future work is to incorporate cyclic TBoxes
into our framework. However, this direction appears to be
considerably more difficult than the first one. As discussed
in (Baaderet al. 2005), it is not even clear if a satisfactory
semantics can be defined in this case.

Acknowledgements We would like to thank Franz Baader

and Michael Thielscher for ideas and discussions. The first
author was supported by the DFG Project BA1122/10-2. The
second author was supported by the EU funded IST-2005-

7603 FET Project Thinking Ontologies (TONES). The third

author was supported by the DFG Graduiertenkolleg 334.
The fourth author was partially supported by UK EPSRC
grant no. GR/S63182/01.

References

Areces, C., and de Rijke, M. 2001. From description logics
to hybrid logics, and back. IAdvances in Modal Logics
Volume 3 CSLI Publications.

Areces, C.; Blackburn, P.; Hernandez, B. M.; and Marx, M.
2003. Handling Boolean ABoxes. Proc. of the 2003 Int.
Workshop on Description Logics

Baader, F.; McGuiness, D. L.; Nardi, D.; and Patel-
Schneider, P. 2003.The Description Logic Handbook:
Theory, implementation and applicatiorGambridge Uni-
versity Press.

Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. IrProc. of the Twentieth National Conf. on Al
(AAAI-05)

Borgida, A. 1996. On the relative expressiveness of de-
scription logics and predicate logicArtificial Intelligence
82(1 - 2):353-367.

Cadoli, M.; Donini, F. M.; Liberatore, P.; and Schaerf, M.
1999. The size of a revised knowledge baggttificial
Intelligencel15(1):25-64.

Forbus, K. D. 1989. Introducing actions into qualitative
simulations. InProc. of the Int. Joint Conf. on Al (13-
CAI'89), 1273-1279. Morgan Kaufman.

Herzig, A. 1996. The PMA revisited. IRroc. of the 5th
Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR'9640-50. Morgan Kaufmann.

Kurtonina, N., and de Rijke, M. 1999. Expressiveness of
concept expressions in first-order description logi&sti-
ficial Intelligencel07(2):303—-333.

Lin, F. 1996. Embracing causality in specifying the inde-
terminate effects of actions. Broc. of the 14th National
Conf. on Al (AAAI-96)670-676. MIT Press.

Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F.
2005. Updating aboxes. LTCS-Report 05-10,
Technical University Dresden. see http://lat.inf.tu-
dresden.de/research/reports.html.

Lutz, C.; Sattler, U.; and Wolter, F. 2001. Modal logics
and the two-variable fragment. Bnnual Conf. of the Eu-
ropean Association for Computer Science Logic (CSL’'01)
LNCS. Paris, France: Springer Verlag.

M.P.Shanahan. 1997Solving the Frame ProblemMIT
Press.

Pacholski, L.; Szwast, W.; and Tendera, L. 2000. Complex-
ity results for first-order two-variable logic with counting.
SIAM Journal on Computing9(4):1083-1117.

Papadimitriou, C. H. 1994.Computational Complexity
Addison-Wesley.

Pratt-Hartmann, I. 2005. Complexity of the two-variable
fragment with counting quantifierdournal of Logic, Lan-
guage, and Informatioti4(3):369—395.

Reiter, R. 2001Knowledge in ActionMIT Press.

Scherl, R., and Levesque, H. 2003. Knowledge, action, and
the frame problemaArtificial Intelligencel44(1):1-39.

Thielscher, M. 2000a. Nondeterministic actions in the flu-
ent calculus: Disjunctive state update axioms.ntellec-
tics and Comput. LogiKluwer Academic. 327—345.

Thielscher, M. 2000b. Representing the knowledge of
a robot. InProc. of the 7th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR'Q0P—
120. Morgan Kaufmann.

Winslett, M. 1990. Updating Logical DatabasesCam-
bridge, England: Cambridge University Press.

Zhang, Y., and Foo, N. 2000. Updating knowledge bases

with disjunctive information. Computational Intelligence
16:1-22.

