
Updating Description Logic ABoxes

Hongkai Liu 1, Carsten Lutz1, Maja Mili čić1, Frank Wolter 2

1Institut für Theoretische Informatik 2Department of Computer Science
TU Dresden, Germany University of Liverpool, UK

lastname@tcs.inf.tu-dresden.de frank@csc.liv.ac.uk

Abstract

Description logic (DL) ABoxes are a tool for describing the
state of affairs in an application domain. In this paper, we
consider the problem of updating ABoxes when the state
changes. We assume that changes are described at an atomic
level, i.e., in terms of possibly negated ABox assertions that
involve only atomic concepts and roles. We analyze such ba-
sic ABox updates in several standard DLs by investigating
whether the updated ABox can be expressed in these DLs
and, if so, whether it is computable and what is its size. It
turns out that DLs have to include nominals and the “@”
constructor of hybrid logic (or, equivalently, admit Boolean
ABoxes) for updated ABoxes to be expressible. We devise
algorithms to compute updated ABoxes in several expres-
sive DLs and show that an exponential blowup in the size
of the whole input (original ABox + update information) can-
not be avoided unless every PTIME problem is LOGTIME-
parallelizable. We also exhibit ways to avoid an exponential
blowup in the size of the original ABox, which is usually
large compared to the update information.

Introduction
Description logics (DLs) are a prominent family of logic-
based formalisms for the representation of and reasoning
about conceptual knowledge (Baaderet al. 2003). In DLs,
concepts are used to describe classes of individuals sharing
common properties. For example, the following concept de-
scribes the class of all parents with only happy children:

Personu∃has-child.Personu∀has-child.(PersonuHappy)

This concept is formulated inALC, the basic DL that con-
tains all Boolean operators. Concepts are the most important
ingredient of description logicABoxes, whose purpose is to
describe a snapshot of the world. For example, the following
ABox, which is also formulated inALC, says that John is a
parent with only happy children, that Peter is his child, and
that Mary is a person:

john:Person u ∃has-child.Personu
∀has-child.(Person u Happy)

has-child(john, peter)
mary:Person

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In many applications of DLs, an ABox is used to repre-
sent the current state of affairs in the application domain
(Baaderet al. 2003). In such applications, it is necessary
to update the ABox in the case that the state has changed.
Such an update should incorporate the information about the
new state while retaining all knowledge that is not affected
by the change (as demanded by the principle of inertia, see
e.g. (M.P.Shanahan 1997)). For example, if Mary is now un-
happy, we should update the above ABox to the following
one. This updated ABox is formulated inALCO, the ex-
tension ofALC with nominals (i.e., individual names inside
concept descriptions):

john:Person u ∃has-child.Personu
∀has-child.(Person u (Happy t {mary}))

has-child(john, peter)
mary:Person u ¬Happy

To see that this ABox is obtained by the update operation,
note that ABoxes adopt the open world assumption and thus
represent the domain in an incomplete way (Baaderet al.
2003). In the example above, we have no information about
whether or not Mary is a child of John. However, because we
cannot exclude that this is the case, John may now have an
unhappy child (which is Mary). Thus, the new information
concerning Mary also resulted in an update of the informa-
tion concerning John.

Surprisingly, formal theories of ABox updates have never
been developed. In applications, ABoxes are usually updated
in an ad-hoc way, and effects such as the information change
for John above are simply ignored. The current paper aims
at curing this deficiency. Its purpose isto provide a first for-
mal analysis of ABox updates in many common description
logics, concentrating on the most basic kind of updates. The
basic kind of update we consider is as follows: the new infor-
mation to be incorporated into the ABox is a set of possibly
negated assertionsa:A and r(a, b), whereA is an atomic
concept. As discussed in more detail later, there are both
semantic and computational problems with unrestricted up-
dates that are avoided by adopting these restrictions.

We consider ABox updates in the expressive DL
ALCQIO and its fragments. It turns out that, in many nat-
ural DLs such asALC, the updated ABox cannot be ex-
pressed. As an example, consider theALC ABox given

above. To express the ABox obtained by the update with
mary:¬Happy, we had to resort to the more expressive DL
ALCO. But even the introduction of nominals does not suf-
fice to guarantee that updated ABoxes are expressible. Only
if we further add the “@” concept constructor from hybrid
logic (Areces & de Rijke 2001) or Boolean ABoxes (we
show that these two are equivalent in the presence of nom-
inals), updated ABoxes can be expressed. Here, the @ con-
structor allows the formation ofconceptsof the form@aC
expressing that the individuala satisfiesC, and Boolean
ABoxes are a generalization of standard ABoxes: while the
latter can be thought of as a conjunction of ABox assertions
of the forma:C andr(a, b), Boolean ABoxes are a Boolean
combination of such ABox assertions. Our expressiveness
results do not only concernALC: similar proofs as those
given in this paper can be used to show that, in any stan-
dard DL in which nominals and the “@” constructor are not
expressible, updated ABoxes cannot be expressed.

We show that updated ABoxes exist and are computable
inALCQIO@, the extension ofALCQIO (which includes
nominals) with the @ constructor. The proposed algorithm
can easily be adapted to the fragmentsALCO@,ALCIO@,
andALCQO@. An important issue is the size of updated
ABoxes: the updated ABoxes computed by our algorithm
may be of size exponential both in the size of the original
ABox and in the size of the new information (henceforth
called theupdate). We show that an exponential blowup
cannot be completely avoided by proving that, even in the
case of propositional logic, the size of updated theories is
not polynomial in the size of the (combined) input unless
every PTIME-algorithm is LOGTIME-parallelizable (the “P
vs. NP” question of parallel computation).1 In the update
literature, an exponential blowup in the size of the update is
viewed as much more tolerable than an exponential blowup
in the size of the original ABox since the former tend to
be small compared to the latter. We believe that, in the case
of ALCQIO@ and its two fragments mentioned above, the
exponential blowup in the size of the original ABox can-
not be avoided. While we leave a proof as an open problem,
we exhibit two ways around the blowup: the first is to al-
low the introduction of new concept definitions in an acyclic
TBox when computing the update. The second is to move
to extensions ofALCQIO@ that allow Boolean operators
on roles, thus eliminating the asymmetry between concepts
and roles found in standard DLs. In both cases, we show
how to compute updated ABoxes that are polynomial in the
size of the original ABox (and exponential in the size of the
update). Thus, the blowup induced by updates in these ex-
pressive DLs is not worse than in propositional logic. We
also show that the blowup produced by iterated updates is
not worse than the blowup produced by a single update.

1In contrast to the results by Cadoli et al. (Cadoliet al. 1999),
our result even applies to the restricted form of updates, i.e., up-
dates in propositional logic where the update is a conjunction of lit-
erals. Thus, our argument provides further evidence for the claims
in (Cadoli et al. 1999), where it is shown that, with unrestricted
updates, an exponential blowup in the size of the update cannot be
avoided unless the first levels of the polynomial hierarchy collapse.

Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

at-least number
restriction (> n r C)

{x | #{y |(x, y) ∈ rI ∧
y ∈ CI} ≥ n}

at-most number
restriction (6 n r C)

{x | #{y |(x, y) ∈ rI ∧
y ∈ CI} ≤ n}

@ constructor @aC
∆I if aI ∈ CI , and
∅ otherwise

Figure 1: Syntax and semantics ofALCQIO.

Full proofs of the results presented in this paper can be
found in the accompanying technical report (Liuet al.2005).

Description Logics
In DLs, conceptsare inductively defined with the help of a
set ofconstructors, starting with a setNC of concept names
and a setNR of role names, and (possibly) a setNI of individ-
ual names. In this section, we introduce the DLALCQIO@,
whose concepts are formed using the constructors shown in
Figure 1. There, the inverse constructor is the only role con-
structor, whereas the remaining seven constructors are con-
cept constructors. In Figure 1 and in what follows, we use
#S to denote the cardinality of a setS, a andb to denote
individual names,r ands to denote roles (i.e., role names
and inverses thereof),A,B to denote concept names, and
C,D to denote (possibly complex) concepts. As usual, we
use> as abbreviation for an arbitrary (but fixed) proposi-
tional tautology,⊥ for ¬>,→ and↔ for the usual Boolean
abbreviations,∃r.C (existential restriction) for (> 1 r C),
and∀r.C (universal restriction) for (6 0 r ¬C).

The DL that allows only for negation, conjunction, dis-
junction, and universal and existential restrictions is called
ALC. The availability of additional constructors is indicated
by concatenation of a corresponding letter:Q stands for
number restrictions;I stands for inverse roles,O for nom-
inals and superscript “@” for the @ constructor. This ex-
plains the nameALCQIO@ for our DL, and also allows us
to refer to its sublanguages in a simple way.

The semantics ofALCQIO@-concepts is defined in
terms of aninterpretationI = (∆I , ·I). Thedomain∆I is
a non-empty set of individuals and theinterpretation func-
tion ·I maps each concept nameA ∈ NC to a subsetAI of
∆I , each role namer ∈ NR to a binary relationrI on ∆I ,
and each individual namea ∈ NI to an individualaI ∈ ∆I .
The extension of·I to inverse roles and arbitrary concepts is
inductively defined as shown in the third column of Figure 1.

An ALCQIO@ assertional box (ABox)is a finite set
of concept assertionsC(a) and role assertionsr(a, b) and
¬r(a, b) (wherer may be an inverse role). For readability,
we sometimes write concept assertions asa:C. Observe that

there is no need for explicitly introducing negated concept
assertions as negation is available as a concept constructor
in ALCQIO@. An ABox A is simpleif C(a) ∈ A implies
thatC is aconcept literal, i.e., a concept name or a negated
concept name.

An interpretationI satisfiesa concept assertionC(a) iff
aI ∈ CI , a role assertionr(a, b) iff (aI , bI) ∈ rI , and a
role assertion¬r(a, b) iff (aI , bI) /∈ rI . We denote satis-
faction of an ABox assertionα by an intepretationI with
I |= α. An interpretationI is amodelof an ABoxA (writ-
ten I |= A) if it satisfies all assertions inA. An ABox is
consistentiff it has a model. Two ABoxesA andA′ are
equivalent(writtenA ≡ A′) iff they have the same models.
We useM(A) to denote the set of all models of the ABoxA.

ABox Updates
We introduce a simple form of ABox update where complex
concepts are not allowed in the update information.

Definition 1 (Interpretation Update). An updateU is a
simple ABox that is consistent. LetU be an update andI, I ′
interpretations such that∆I = ∆I′ andI andI ′ agree on
the interpretation of individual names. ThenI ′ is theresult
of updatingI with U , written I =⇒U I ′, if the following
hold for all concept namesA and role namesr:

AI
′

= (AI ∪ {aI | A(a) ∈ U}) \ {aI | ¬A(a) ∈ U}

rI
′

= (rI ∪ {(aI , bI) | r(a, b) ∈ U})
\{(aI , bI) | ¬r(a, b) ∈ U}

It is easily seen that, for each fixed updateU , the relation
“=⇒U ” is functional. Therefore, we can writeIU to denote
the uniqueI ′ with I =⇒U I ′.
Based on the relation “=⇒U ”, we can now define ABox up-
dates.

Definition 2 (ABox Update). LetA be an ABox andU an
update. An ABoxA′ is theresult of updatingA with U , in
symbolsA ∗ U ≡ A′, if

M(A′) = {IU | I ∈M(A)}.

We then callA theoriginal ABoxandA′ theupdated ABox.

Note that updated ABoxes are unique up to logical equiv-
alence. This justifies talking ofthe result of updatingA
with U .

There are at least two advantages of disallowing com-
plex concepts in updates: first, the semantics given above
is uncontroversial and coincides with all standard semantics
for updates considered in the literature, see e.g., (Thielscher
2000b; Scherl & Levesque 2003; Winslett 1990; Reiter
2001). In contrast, several different and equally natural se-
mantics become available as soon as we allow disjunc-
tion (or even non-Boolean constructors) in updates, see e.g.
(Winslett 1990; Forbus 1989; Lin 1996; Thielscher 2000a;
Zhang & Foo 2000; Herzig 1996; Reiter 2001). Second, it
follows from the results in (Baaderet al.2005) that, at least

under Winslett-style PMA semantics (Winslett 1990), unre-
stricted ABox updates in relatively simple DLs are not com-
putable. It seems very likely that the other available seman-
tics suffer from similar computational problems. Practically,
our restriction means that the user has to describe updates at
an atomic level.

We now give a more involved example of updating
ABoxes than that given in the introduction. The following
ALCO ABox expresses that John and Mary are married. We
also know that (at least) one of them is unhappy, but we do
not know which of the two this is. Moreover, Peter and Sarah
both have a happy parent:

spouse(john,mary)
peter:∃parent.Happy

sarah:∃parent.Happy

john:¬Happy t ∀spouse.({mary} → ¬Happy)
Suppose that, because one of them is unhappy, John and
Mary have an argument. This results in both John and Mary
being unhappy now. Hence, we should apply the following
update to the above ABox:

¬Happy(john), ¬Happy(mary).

Then, the updated ABox can be expressed inALCO@ as
follows. Here and in what follows, we assume that the @
constructor has higher precedence than conjunction:

spouse(john,mary)
dummy:

(
@peter∃parent.(Happy t {john})u

@sarah∃parent.(Happy t {john})
)
t(

@peter∃parent.(Happy t {mary})u
@sarah∃parent.(Happy t {mary})

)
¬Happy(john)
¬Happy(mary)

The only surprising assertion in the updated ABox is the
second one. Intuitively, it represents the update of the sec-
ond and third assertion of the original ABox:2 the first dis-
junct captures the case where John was unhappy and Mary
was happy, and the second disjunct captures the case when it
was the other way around. In the remaining that both Mary
and John were unhappy, the update of the second and third
assertions is

dummy:@peter∃parent.Happy u@sarah∃parent.Happy

(because nothing has changed through the update). A cor-
responding disjunct in the second assertion of the updated
ABox is not needed since it would imply each of the first
two disjuncts.

Also note that the last line of the original ABox is sub-
sumed by the last two lines of the updated ABox.

We shall later refer back to this example as the “spouse
example” and prove that the updated ABox cannot be ex-
pressed inALCO.

2Note that the individual namedummy in front of the colon
does not carry any information: we could exchange it with any
other individual name without changing the meaning of this as-
sertion.

Description Logics without Updates
We say that a description logicL has ABox updatesiff, for
every ABoxA formulated inL and every updateU , there
exists an ABoxA′ formulated inL such thatA ∗ U ≡ A′.
In this section, we show that a lot of basic DLs are lacking
ABox updates.

Updates inALC
We analyze the basic description logicALC and show that it
does not have ABox updates. Consider the followingALC
ABox A, updateU , andALCO ABox A′:

A := {∀r.A(a)}
U := {¬A(b)}
A′ := {¬A(b),∀r.(A t {b})(a)}.

The following is not difficult to verify using Definition 2.

Lemma 3. A ∗ U ≡ A′.

To show thatALC does not have ABox updates, it thus suf-
fices to prove that there is noALC ABox equivalent to the
ALCO ABox A′. This is an easy exercise: find two models
I andI ′ that are bisimilar3 such thatI |= A′ andI ′ 6|= A′.
Then use the fact thatALC concepts cannot distinguish be-
tween bisimilar models to show the desired result. Details of
this and following proofs can be found in (Liuet al.2005).

Lemma 4. There is noALC ABox equivalent toA′.

Note that our proof applies to the case where the update con-
tains only concept assertions, but no role assertions.

Theorem 5. ALC does not have ABox updates, even if up-
dates contain only concept assertions.

The fact that the updated ABoxA′ used in this section is
actually anALCO ABox may give rise to the conjecture that
adding nominals toALC recovers the existence of updates.
Unfortunately, as shown in the following section, this is not
the case.

Updates inALCO
To show thatALCO does not have ABox updates, we pro-
ceed in two steps: we first give a straightforward proof of
the non-existence of updated ABoxes inALCO that relies
on the use of role assertions in updates. In the second step,
we use a slightly more complex construction to show that
ALCO does not have ABox updates even if only concept
assertions are allowed in updates.

Consider the followingALC ABox A (which thus also is
anALCO ABox), updateU , andALCO@ ABox A′:

A := {∃r.A(a)}
U := {¬r(a, b)}
A′ = {(∃r.(A u ¬{b}) t@bA)(a),¬r(a, b)}.

Again, the following is not difficult to verify:

Lemma 6. A ∗ U ≡ A′.

3W.r.t. the standard notion of bisimilarity forALC that is inde-
pendent of individual names (Kurtonina & de Rijke 1999).

•c

•a •b
AI

•c A

•a •b
r

?

I ′

•c

•a •b
I ′′

Figure 2: Interpretations for Lemma 7

We now show that there exists noALCO ABox that is equiv-
alent to theALCO@ ABox A′. It follows thatALCO does
not have ABox updates.

Consider the interpretationsI, I ′ andI ′′ depicted in Fig-
ure 2. We assume that the individual namesa, b, and c
are mapped to the individuals of the same name, and that
all other individual names are mapped to the individualc.
Moreover, the concept nameA is interpreted as shown in
the figure and all other concept names are interpreted as the
empty set in all three interpretations. Then we haveI |= A′,
I ′ |= A′ andI ′′ 6|= A′. We will show that, if anALCO
ABox B is equivalent toA′, thenI ′′ |= B, which is a con-
tradiction.

Lemma 7. There is noALCO ABox that is equivalent to the
ALCO@ ABoxA′ = {(∃r.(Au¬{b})t@bA)(a),¬r(a, b)}.
Proof. Assume there is anALCO ABox B that is equivalent
to A′. ThenI |= B, I ′ |= B, andI ′′ 6|= B. We show that,
for all assertionsϕ ∈ B, we haveI ′′ |= ϕ, thus obtaining
a contradiction toI ′′ 6|= B. First,B does not contain any
positive role assertion sinceI |= B andI does not satisfy
any positive role assertions. Second, ifϕ is a negative role
assertion, thenI ′′ |= ϕ sinceI ′′ satisfies all negative role
assertions. Finally, letϕ be a concept assertion. Then,I ′′ |=
ϕ is a consequence ofI |= ϕ, I ′ |= ϕ, and the fact that
the truth of an assertionC(â) in a modelJ , C anALCO-
concept, only depends on the set of points reachable from
âJ by role paths. ❏

Note that our proof also shows thatALC does not have
ABox updates even if we restrict ourselves to updates con-
taining only role assertions.

Theorem 8. ALC andALCO do not have ABox updates,
even if updates contain only role assertions.

This result raises the question whether or not restricting up-
dates to concept assertions regains the existence of updated
ABoxes inALCO. We answer this question to the negative
by returning to the spouse example. LetA, U , andA′ de-
note the original ABox (formulated inALCO), update, and
updated ABox (formulated inALCO@) from this example.
We have already argued thatA∗U ≡ A′. It suffices to prove
that there is noALCO ABox equivalent toA′.

Consider the interpretationsI, I ′ andI ′′ depicted in Fig-
ure 3 where we abbreviate the individual names from the
spouse example using their initial letter,x denotes an indi-
vidual, all horizontal edges are for the rolespouse, and all
vertical edges are for the roleparent. We assume that the
four individual namesj,m, p, s are mapped to individuals

•j

•p •s

•x
H
•? m ?-

I

•x

•p •s

•m
H
•?
j ?-

I ′

•j

•p •s

•m? ?-

•
x

HI ′′

Figure 3: Interpretations for Lemma 9

of the same name, and that all other individual names are
mapped to the individualx. Moreover,H is interpreted as
indicated and all other concept names are interpreted as the
empty set.

The proof of the following lemma uses the facts thatI |=
A′, I ′ |= A′, butI ′′ 6|= A′. It is quite similar to the proof of
Lemma 7.

Lemma 9. There is noALCO-ABox that is equivalent to
the updated ABox from the spouse example.

Thus, we obtain the following result:

Theorem 10. ALCO does not have ABox updates, even if
updates contain only concept assertions.

Updates inALC@ and Boolean ABoxes inALC
The proofs of Theorems 8 and 10 suggest that there is a con-
nection between ABox updates and the “@” constructor. In-
deed, we will later see that the DLALCO@ has ABox up-
dates. Here, we show that addingonly the @ constructor to
ALC does not suffice to guarantee the existence of updated
ABoxes. Indeed, we even consider Boolean ABoxes (Areces
et al. 2003), which are closely related to the @ constructor
but strictly more expressive.

Boolean ABox assertionsare Boolean combinations of
ABox assertions expressed in terms of the connectives∧ and
∨. Then, aBoolean ABoxis simply a finite set of Boolean
ABox assertions. We do not need to explicitly introduce
negation since we admit negated role assertions and concept
negation is contained in every DL considered in this paper.
For example, the following is a Boolean ABox:

{B(a), (A(a) ∧ r(a, b)) ∨ ¬∃s.A(b)}.
An interpretationI is a model of a Boolean ABoxA if every
Boolean ABox assertion inA evaluates to true. The follow-
ing lemma relates Boolean ABoxes and the@ constructor. It
shows that non-BooleanALCO@ ABoxes have exactly the
same expressive power as BooleanALCO-ABoxes, and that
the same does not hold forALC: while everyALC@ ABox
can be translated into an equivalent BooleanALC ABox,
there are BooleanALC ABoxes for which no equivalent
non-BooleanALC@ ABox exists.

Lemma 11.
(i) For every BooleanALC@ ABox (ALCO@ ABox), there
exists an equivalent BooleanALC ABox (ALCO ABox);
(ii) For every BooleanALCO ABox, there exists an equiva-
lent non-BooleanALCO@ ABox;

(iii) There exists no non-BooleanALC@ ABox that is equiv-
alent to the BooleanALC ABox{A(a) ∨ r(b, c)}.

Since, when added toALC, Boolean ABoxes are more ex-
pressive than the @ constructor, it is more general to con-
sider the former when proving the lack of ABox updates.

Theorem 12. There exists anALC ABoxA and an update
U such that there exists no BooleanALC ABoxA′ withA ∗
U ≡ A′.

The proof of Theorem 12 uses the ABoxesA, A′ and the
updateU that have been used in the proof thatALC does
not have ABox updates. To show that no Boolean ABoxB is
equivalent toA, B is first converted into disjunctive normal
form and then proceeds similar to the non-Boolean case. By
Lemma 11, we obtain the following corollary.

Corollary 13. ALC@ does not have ABox updates.

Observe that both Theorem 12 and Corollary 13 remain true
if we restrict updates to only concept assertions.

Computing Updates inALCQIO@

Straightforward extensions of the results obtained in the pre-
vious section show that none of the standard DLs between
ALC and ALCQIO has ABox updates. In this section,
we show that adding nominals and the @ constructor to
such DLs suffices to have ABox updates. More presicely,
we prove that the expressive DLALCQIO@ has ABox
updates. The proof is easily adapted to the fragments of
ALCQIO@ obtained by dropping number restrictions, in-
verse roles, or both.

Our construction of updated ABoxes is an extension
of the corresponding construction for propositional logic
described in (Winslett 1990), and proceeds as follows.
First, we considerupdates of conceptson the level of
interpretations. More precisely, we show how to convert a
conceptC and an updateU into a conceptCU such that the
following holds:

(∗) for all interpretationsI andI ′ such thatI satisfiesno
assertion inU andI =⇒U I ′, we haveCI = (CU)I

′
.

So intuitively,CU can be used after the update to describe
exactly those objects that have been in the extension ofC
before the update. Our aim is to use the translationCU to
update concept assertions in ABoxes. We will later see how
to overcome the restriction thatI has to satisfy no assertion
in U .

For defining the conceptsCU , we first introduce a bit of
notation. For an ABoxA, we useObj(A) to denote the set of
individual names inA, andsub(A) to denote the set of sub-
concepts of the concepts occurring inA. For an ABoxA, we
use¬A to denote{¬ϕ | ϕ ∈ A}. The inductive translation
that takes a conceptC and an updateU to a conceptCU as
explained above is given in Figure 4.

Lemma 14. The translation of conceptsC into conceptsCU

given in Figure 4 satisfies (∗).

AU = A t t
¬A(a)∈U

{a} u ¬(t
A(a)∈U

{a}) {a}U = {a}

(@aC)U = @aCU (¬C)U = ¬CU

(C uD)U = CU uDU (C tD)U = CU tDU

(> m r C)U = (
l

a∈Obj(U)

¬{a} u (≥ m r CU))

t t
a∈Obj(U)

“
{a} u t

m1+m2+m3=m

`
(≥ m1 r

l

b∈Obj(U)

¬{b} u CU) u (≥ m2 r t
b∈Obj(U),r(a,b) 6∈U

{b} u CU)

u t
S⊆{b|¬r(a,b)∈U},|S|=m3

l

b∈S

@bC
U´”

(6 m r C)U = (
l

a∈Obj(U)

¬{a} u (≤ m r CU))

t t
a∈Obj(U)

“
{a} u t

m1+m2+m3=m

`
(≤ m1 r

l

b∈Obj(U)

¬{b} u CU) u (≤ m2 r t
b∈Obj(U),r(a,b) 6∈U

{b} u CU)

u
l

S⊆{b|¬r(a,b)∈U},|S|=m3+1

t
b∈S

¬@bC
U´”

Figure 4: ConstructingCU

We now extend the update of concepts to the update of
ABoxes. LetA be an ABox andU an update. Then define
the ABoxAU by setting

AU := {CU (a) | C(a) ∈ A} ∪
{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ U} ∪
{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ U}.

We can now establish a property that corresponds to (∗), but
concerns ABoxes instead of concepts.

Lemma 15. Let A be an ABox andU an update. For ev-
ery interpretationI with I |= ¬U , we haveI |= A iff
IU |= AU .

Similar to the conceptsCU , the ABox updateAU works only
if the interpretationsI of A satisfy no assertion inU . For
a fixed interpretationI, we can overcome this problem by
replacingCU with CU ′

, whereU ′ is the set of those asser-
tions inU that are violated inI. However, in general we are
confronted with the problem that an ABox can have many
different models, and these models can violate different as-
sertions of the updateU . Hence, there is no unique way of
moving fromCU to CU ′

as described above. The solution
is to produce an updated ABox for each subsetU ′ ⊆ U of
violated assertions separately, and then simply take the dis-
junction.

LetA be an ABox andU an update. A simple ABoxD is
called adiagram forU if it is a maximal consistent subset
of LU , whereLU = {ψ,¬ψ | ψ ∈ U} is the set ofliterals
overU . Intuitively, a diagram gives a complete description
of the part of a model ofA that is “relevant” for the up-
dateU . Let D be the set of all diagrams forU and consider
for D ∈ D the setDU := {ψ | ¬ψ ∈ D andψ ∈ U} which
corresponds to taking a subset ofU as described above: we

retain only those parts ofU that are violated by interpreta-
tions whose relevant part is described byD. We now define
the updated ABoxA′ as

A′ =
∨
D∈D

∧
ADU ∪ DU ∪ (D \ ¬DU).

Here, we use Boolean ABox operators only as an abbrevia-
tion for the “@” constructor. The expansion of this abbrevi-
ation does not substantially increase the size of the updated
ABox: the translation from Boolean ABoxes to non-Boolean
ones described in (Liuet al. 2005) is linear. To achieve a
less redundant ABox, it is possible to drop fromA′ those
disjuncts for which the diagramD is not consistent w.r.t.
A. This is, however, not strictly necessary since the ABox
D \ ¬DU ensures that these disjuncts are inconsistent.

Lemma 16. A ∗ U ≡ A′.

It is easy to adapt the construction of updated ABoxes to the
DLs ALCO@, ALCIO@, ALCQO@. For the former two,
we have to treat existential and universal restrictions in the
CU translation rather than number restrictions. The corre-
sponding clauses are shown in Figure 5. The lemmas proved
above forALCQIO@ are then easily adapted.

Theorem 17. All of the following DLs have ABox updates:
ALCO@,ALCIO@,ALCQO@, andALCQIO@.

Now that we know that updated ABoxes always exist in the
above DLs, we should have a look at their size. Let us first
make precise what we mean with this. Thelengthof a con-
ceptC, denoted by|C|, is the number of symbols needed
to write C. Note that it makes a considerable difference
whether we assume the numbers inside number restrictions
to be written in unary or in binary: if written in unary, we
have|(6 n r C)| ∈ O(n), and if written in binary, we have

(∃r.C)B = (
l

a∈Obj(B)

¬{a} u ∃r.CB) t ∃r.(
l

a∈Obj(B)

¬{a} u CB)

t t
a,b∈Obj(B),r(a,b) 6∈B

({a} u ∃r.({b} u CB)) t t
¬r(a,b)∈B

({a} u@bC
B)

(∀r.C)B = (
l

a∈Obj(B)

¬{a} → ∀r.CB) u ∀r.(
l

a∈Obj(B)

¬{a} → CB)

u
l

a,b∈Obj(B),r(a,b) 6∈B

({a} → ∀r.({b} → CB)) u
l

¬r(a,b)∈B

({a} → @bC
B)

Figure 5: ConstructingCU for existential and universal restrictions

|(6 n r C)| ∈ O(log n). In the following, we will always
point out to which coding our results apply.4 Thesizeof an
ABox assertionC(a) is |C|, the size ofr(a, b) and¬r(a, b)
is 1. Finally, thesizeof an ABoxA, denoted by|A|, is the
sum of the sizes of all assertions inA.

A close inspection of our construction reveals the follow-
ing: first, the size the conceptsCDU is exponential in the size
of A and polynomial in the size ofU ; and second, the num-
ber of disjuncts inA′ is exponential in the size ofU . These
bounds hold regardless of the coding of numbers.

Theorem 18.
Let L ∈ {ALCO@,ALCIO@,ALCQO@,ALCQIO@}.
Then there are polynomialsp1, p2, andq such that, for every
L ABoxA and every updateU , there is anL ABoxA′ such
that

• A ∗ U ≡ A′;
• |A′| ≤ 2p1(|A|) · 2p2(|U|);
• A′ can be computed in timeq(|A′|).
There are applications in which the domain of interest
evolves continuously. In such an environment, it is necessary
to update an ABox over and over again. Then, it is clearly
important that the exponential blowups of the individual up-
dates do not add up. The following theorem, which can be
proved by carefully investigating our update construction,
shows that this is indeed not the case. It holds independently
of the coding of numbers.

Theorem 19. There are polynomialsp1, p2 such that the
following holds: for all ABoxesA0, . . . ,An and updates
U1, . . . ,Un, if Ai is the ABox computed by our algorithm
whenAi−1 is updated withUi, for 0 < i ≤ n, then

|An| ≤ 2p1(|A0|) · 2p2(|U1|+···+|Un|).

Conditional Updates
For the sake of simplicity, we have defined ABox updates
to be unconditional: the assertions in the updateU are un-
conditionally true after the update and we cannot express
statements such as “A(a) is true after the update ifC(b) was
true before”. In some applications such as reasoning about

4In fact, all results except Theorems 26 and 27 apply to both
unary and binary coding.

actions with DLs (Baaderet al. 2005), it is more useful to
haveconditional updates, where the initial interpretation de-
termines the changes that are triggered.

A conditional updateU is a finite set of expressionsϕ/ψ,
where thepreconditionϕ is an ABox assertion (possibly in-
volving non-atomic concepts) and thepostconditionψ is an
assertion of the form

A(a),¬A(a), r(a, b),¬r(a, b)

with A a concept name. Intuitively, an expressionϕ/ψ
means that ifϕ holds in the initial interpretation, thenψ
holds after the update. As in the case of unconditional up-
dates, we require a consistency condition: ifϕ/ψ andϕ′/¬ψ
are both inU , then the ABox{ϕ,ϕ′} has to be inconsistent.

The definition of “=⇒U ” is easily adapted to the case of
conditional updates: forU a conditional update, we write
I =⇒U I ′ if the following hold:

• for all concept namesA,

AI
′

= (AI ∪ {aI | ϕ/A(a) ∈ U ∧ I |= ϕ})
\ {aI | ϕ/¬A(a) ∈ U ∧ I |= ϕ}

• for all role namesr,
rI

′
= (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ U ∧ I |= ϕ})

\ {(aI , bI) | ϕ/¬r(a, b) ∈ U ∧ I |= ϕ}.
Then the result of updating an ABox is defined exactly as in
the case of unconditional updates. Clearly, conditional up-
dates generalize unconditional once since assertionsψ of
unconditional updates can be expressed as>(a)/ψ, with a
an arbitrary individual name.

We now show how to adapt our construction of updated
ABoxes to conditional updates. ForU a conditional update,
we userhs(U) to denote{ψ | ϕ/ψ ∈ U}, and lhs(U) for
{ϕ | ϕ/ψ ∈ U}. In the original algorithm, the updated ABox
A′ is assembled by taking one disjunct for every diagram
for U . The intuition is that, when a diagramD is satisfied by
an interpretationI, then we know which assertions inU have
already been satisfied inI beforeU is applied. We general-
ize this idea to conditional updates by taking one disjunct for
each pair(D,U ′), whereD is a diagram forrhs(U), andU ′
is a subset ofU . Intuitively, U ′ determines the set of asser-
tions fromU whose preconditions are satisfied in the initial
model, andD determines the post-conditions that actually
cause a change.

Let D be the set of all diagrams forrhs(U). LetD ∈ D
andU ′ ⊆ U . We define

DU ′ := {ψ | ¬ψ ∈ D andϕ/ψ ∈ U ′}.
Then we can assemble the updated ABoxA′ as follows:

A′ =
∨
D∈D

∨
U ′⊆U

∧
{ϕ | ϕ/ψ ∈ U ′}DU′

∪ {¬ϕ | ϕ/ψ ∈ U \ U ′}DU′

∪ ADU′ ∪ DU ′ ∪ (D \ ¬DU ′).
The notion of a description logicL having conditional ABox
updatesis defined in the obvious way.
Theorem 20. All of the following DLs have condi-
tional ABox updates:ALCO@, ALCIO@, ALCQO@, and
ALCQIO@.
Concerning the size and computability of updated ABoxes,
we obtain the same bounds as in Theorem 18, independently
of the coding of numbers.

A Lower Bound for the Size of Updated
ABoxes

In the following sections, we are interested in the question
whether or not the exponential blowup observed in Theo-
rems 18 and 19 can be avoided. In this section, we consider
updates ofpropositional logic theorieswhere the updates
are of the restricted form considered in this paper, i.e., con-
junctions of literals. We prove that, even in this case, an
exponential blowup in the size of the whole input (origi-
nal ABox + update) cannot be avoided unless the complex-
ity classes PTIME and NC coincide. As discussed in (Pa-
padimitriou 1994), this is believed to be similarly unlikely
as PTIME = NP. It is not difficult to prove that this lower
bound on the size of updated ABoxes transfers to all DLs
considered in this paper.

For the following definitions, we fix an individual namea.
A propositional ABoxA is of the form {C(a)} with C
a propositional concept, i.e., a concept that uses only the
concept constructors¬, u, andt. A propositional update
U contains only assertions of the formA(a) and¬A(a).
Observe that propositional ABoxes and propositional up-
dates are only allowed to refer to the single, fixed individual
namea.

For the semantics, we fix a single individualx. Since we
are dealing with propositional ABoxes and updates, we as-
sume that interpretations do not inteprete role names, and
that interpretation domains have only a single elementx
with aI = x. We introduce a couple of notions. For a con-
ceptC, let C(C) denote the set of concept names used in
C. For an interpretationI and a set of concept namesΓ,
let I|Γ denote the restriction ofI that interpretes only the
concept names inΓ. Let C be a concept andΓ ⊆ C(C).
Then a conceptD is called auniformΓ-interpolantof C iff
C(D) ⊆ Γ and{I|Γ | x ∈ CI} = {I|Γ | x ∈ DI}. It
is easily seen that, for any propositional conceptC and sub-
setΓ ⊆ C(C), the uniformΓ-interpolant ofC exists and is
unique up to equivalence. The following lemma establishes
a tight connection between uniform interpolants and propo-
sitional updates.

Lemma 21. LetA = {C(a)} be a propositional ABox,U
a propositional update,Γ the set of concept names inC not
occurring inU , Ĉ the shortest uniformΓ-interpolant ofC,
and

A′ = {a : (Ĉ u
l

A(a)∈U

A)}.

Then we have the following:

(i) A ∗ U ≡ A′;

(ii) if A ∗ U ≡ A′′, then|A′| ≤ |U|+ |A′′|.
It thus remains to show that the size of (smallest) uni-
form interpolants of propositional concepts is not bounded
polynomially in the size of the interpolated concept unless
PTIME = NC.

The size of uniform interpolants of propositional concepts
is closely related to the relative succinctness of propositional
logic (PL) formulas and Boolean circuits. We remind that
both PL formulas and Boolean circuits compute Boolean
functions and refer, e.g., to (Papadimitriou 1994) for exact
definitions. We use|c| to denote the number of gates in the
Boolean circuitc, and |ϕ| to denote the length of the PL
formulaϕ. It is known that, unless PTIME = NC, there ex-
ists no polynomialp such that every Boolean circuitc can
be converted into a PL formulaϕ that computes the same
function asci and satisfies|ϕ| ≤ p(|ci|), see e.g. Exercise
15.5.4 of (Papadimitriou 1994). In the following, we show
that non-existence of such a polynomialp implies that uni-
form interpolants are not bounded polynomially in the size
of the interpolated concept. Take a Boolean circuitc with k
inputs. Thenc can be translated into a propositional concept
Dc by introducing concept namesI1, . . . , Ik for the inputs
and, additionally, one auxiliary concept name for the output
of every gate. LetG be the set of concept names introduced
for gate outputs, and letO ∈ G be the concept name for
the output of the gate computing the final output ofc. It is
not difficult to see that this translation can be done such that
there exists a polynomialq such that, for all Boolean cir-
cuitsc,
(i) |Dc| ≤ q(|c|) and
(ii) for all interpretationsI and allx ∈ DI

c , x ∈ OI iff c
outputs “true” on inputb1, . . . , bk, wherebj = 1 if x ∈ IIj
andbj = 0 otherwise.

Now, setΓ := G \ {O}. Then the uniformΓ-interpolant
D̂c of Dc also satisfies (ii). Thus,̂Dc is a (notational vari-
ant of a) propositional logic formula computing the same
Boolean function asc. If the size ofD̂c would be bounded
polynomially in the size ofDc, we thus had obtained a con-
tradiction to our assumption on the non-existence of the
polynomialp. Together with Lemma 21, we obtain the fol-
lowing theorem.

Theorem 22. UnlessPTIME = NC, there exists no polyno-
mial p such that, for all propositional ABoxesA and propo-
sitional updatesU , there exists a propositional ABoxA′ such
that

• A ∗ U ≡ A′ and
• |A′| ≤ p(|A|+ |U|).

Our result is closely related to a result of (Cadoliet al.
1999) who prove an analogue of Theorem 22 under the
complexity-theoretic assumption that the polynomial hier-
archy does not collapse. However, Cadoli et al.’s technique
does not appear to work with the restricted form of updates
(conjunctions of literals) considered in this paper.

Small(er) Updated ABoxes
Theorem 18 does not differentiate between exponential
blowups in the size of the original ABox and exponential
blowups in the size of the update. In contrast to the former,
the latter is usually considered acceptable since updates will
usually be small compared to the original ABoxA. We be-
lieve that, in the DLs mentioned in Theorem 17, the expo-
nential blowup in the size ofA is unavoidable. However, we
have to leave a proof as an open problem. In the following,
we exhibit three different ways to extendALCQIO@ and its
fragments such that it becomes possible to compute updated
ABoxes that are only polynomial in the size of the original
ABox.

A first, rather restrictive solution is to admit only concept
assertions in updates. Then, in all DLs captured by Theo-
rem 17, computing the conceptsCU becomes a lot simpler:
just replace every concept nameA in C with

A t t
¬A(a)∈B

{a} u ¬(t
A(a)∈B

{a}).

If modified in this way, our original construction yields up-
dated ABoxes that are only polynomial in the size of the
original ABox (but still exponential inU). The bound is in-
dependent of the coding of numbers and also applies to iter-
ated updates.

Small Updates Through TBoxes
We show how to produce smaller updated ABoxes by al-
lowing the introduction of auxiliary concept names via an
acyclic TBox. In the propositional case, this corresponds to
admitting additional variables for defining abbreviations. In
the terminology of Cadoli et al. (Cadoliet al.1999), we thus
move from logical equivalence to query equivalence. In this
way, we obtain updates that are polynomial in the size of the
original ABox.

In the following, we assume that the set of concept names
is partitioned into a set ofprimary concept names and a
set ofauxiliary concept names. The latter are used only for
defining abbreviations in a TBox. Aconcept definitionis of
the formA ≡ C, whereA is an auxiliary concept name
andC is a concept. An(acyclic) TBoxT is a finite set of
concept definitions with unique left-hand sides and without
cyclic definitions (Baaderet al. 2003), page 52. We call a
concept nameA definedin a TBoxT and writeA ∈ def(T)
if A occurs on the left-hand side of a concept definition inT .
A knowledge base (KB)is a pairK = (T ,A) consisting of
a TBoxT and an ABoxA such that every auxiliary concept
name used inK is in def(T). An interpretationI satisfies
a concept definitionA ≡ C if AI = CI . I is amodelof a
TBoxT , writtenI |= T , if I satisfies all concept definitions
in T . An interpretationI is amodelof a KB K = (T ,A),

written I |= K, if I is a model ofT andA. The set of all
models of a KBK is denotedM(K).

An updateU is a simple and consistent ABox that does
not use auxiliary concept names. We disallow auxiliary con-
cept names because they can be defined in a TBox and thus
allowing them is equivalent to admitting updates with com-
plex concepts. LetU be an update and letI andI ′ be in-
terpretations that agree on the interpretation of individual
names. We define an update relationI =⇒p

U I ′ (wherep
stands for “primary”) as in Definition 1, but restrict the con-
dition on concept names to primary concept names. This re-
striction is not harmful since we require auxiliary concept
names that are used in a knowledge base to be defined in
the TBox, and this means that their extension is uniquely
determined by the extensions of the primary concept names
and role names. Still, as a result of the restriction, the rela-
tion =⇒p

U is not functional (in contrast to the case without
TBoxes).

Definition 23 (Knowledge Base Update).Let K1 andK2

be knowledge bases,Ki = (Ti,Ai), andU an update. Then
K2 is a result of updatingK1 with U if

M(K2) = {I ′ | ∃I ∈M(K1) : I =⇒p
U I

′ ∧ I ′ |= T2}.

In this case, we writeK1 ∗ U ≡p K2.

Observe that the TBox of the updated KBK2 can contain
new abbreviations, i.e., definitionsA

.= C with A an aux-
iliary concept names that does not occur inK1. Since there
is more than a single way to define such abbreviations, the
result of updating a knowledge base is not unique up to logi-
cal equivalence. However, we have this uniqueness when re-
stricting our attention to what the updated ABox expresses
regarding the primary concept names and role names, only.

In the equality in Definition 23, the conjunctI ′ |= T2 has
no impact on the “⊆” direction since all models ofK2 are
models ofT2 anyway. For the “⊇” direction, the conjunct
is essential: dropping it would mean to require thatevery
possible interpretation of the auxiliary concept names inI ′
satisfiesT2. Moreover, sinceT2 is part of the updated knowl-
edge baseK2, interpretations not satisfyingT2 are irrelevant.

We now establish a relationship between updates of
ABoxes and updates of knowledge bases. LetT be an
acyclic TBox, andC a concept. The conceptCT obtained
fromC by exhaustively replacing defined concept names in
C with their definitions fromT is called theunfolding of
C w.r.t. T . If A is an ABox, then theunfolding ofA w.r.t.
T is the ABoxAT obtained by replacing each concept as-
sertionC(a) in A with CT (a). If (T ,A) is a knowledge
base, then the unfoldingAT contains only primary concept
names. The following lemma shows that updated knowledge
bases are just updated ABoxes with abbreviations.

Lemma 24. Let K1 and K2 be knowledge bases,Ki =
(Ti,Ai), andU an update. Then

K1 ∗ U ≡p K2 iff AT1
1 ∗ U ≡ AT2

2 .

For the moment, the purpose of Lemma 24 is only to clarify
the relation between ABox updates and knowledge base up-
dates. Although we could compute knowledge base updates
using Lemma 24 together with our construction for ABox
updates, this would not help to obtain smaller updates.

Therefore, we now show how to directly construct up-
dated knowledge bases inALCQIO@ and its fragments.
Let K = (T ,A) be a knowledge base, and letU be an
update. Diagrams forU and the setsD andDU are de-
fined as in the previous section. We usesub(K) to denote
the set of all subconcepts of concepts occurring inK. To
construct the result of updatingK with U , we introduce a
new concept nameADC for every diagramD ∈ D and ev-
eryC ∈ sub(K). Let trans(C,D) denote the concept on the
right-hand side of the clause forCDU in Figure 4, with all
subconceptsED replaced by the concept nameADE . For ex-
ample,trans(C u D,D) = ADC u ADD. For each diagram
D ∈ D, define a TBox

T D
sub := {ADC ≡ trans(C,D) | C ∈ sub(K) \ def(T)}.

Then, we define the TBox

T ′ :=
⋃
D∈D

(T D
sub ∪ {ADA ≡ ADC | A ≡ C ∈ T }).

For everyD ∈ D, let

ADU := {ADC (a) | C(a) ∈ A} ∪ ∪
{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ DU} ∪
{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ DU}

Now we can define the ABoxA′ by setting

A′ =
∨
D∈D

∧
ADU ∪ DU ∪ (D \ ¬DU).

and finally assemble the updated knowledge base by setting
K′ := (T ′,A′). It can be proved that this knowledge base is
as required:

Lemma 25. K ∗ U ≡p K′

We now formulate the main result on updates with acyclic
TBoxes. In constrast to updates without TBoxes, updated
knowledge bases are polynomial in the size of the origi-
nal KB. Thus, Lemma 24 implies that we can use acyclic
TBoxes to obtain a more succinct presentation of updated
ABoxes. In the following, the size|T | of a TBox T is∑

A≡C∈T |C|, and the size|K| of a knowledge baseK =
(T ,A) is the sum of|T | and|A|.
Theorem 26.
Let L ∈ {ALCO@,ALCIO@,ALCQO@,ALCQIO@}.
Then there are polynomialsp1, p2, andq such that, for every
L-knowledge baseK = (T ,A) and every updateU , there is
anL-knowledge baseK′ such that

• K ∗ U ≡p K′;
• |K′| ≤ p1(|K|) · 2p2(|U|);
• K′ can be computed in timeq(|K′|).

It is important to note that Theorem 26 is true only if we as-
sume unary coding of numbers: with binary coding, already
the translationCU results in an exponential blowup in the
size of the original ABox since we have|(6 n r C)U | ∈
O(2n). Thus, the updated ABox will not be polynomial in
the size of the original one.

As in the case without TBoxes, it can be shown that iter-
ated updates do not produce a blowup of the size of updated
ABoxes that is worse than the blowup produced by a single
update.

Theorem 27. There are polynomialsp1, p2 such that the
following holds: for all knowledge basesK0, . . . ,Kn and
updatesU1, . . . ,Un, if Ki is the ABox computed by our al-
gorithm whenKi−1 is updated withUi, for 0 < i ≤ n, then

|Kn| ≤ p1(|K0|) · 2p2(|U1|+···+|Un|).

Small Updates inALCQIO+

We have argued above that, if the update contains no role as-
sertions, then updatedALCQIO@ ABoxes are polynomial
in the size of the original ABox even without introducing
TBoxes. Intuitively, updates with only concept assertions do
not lead to an exponential blowup because we have avail-
able nominals, the@-operator, and the Boolean operators on
concepts. In standard DLs, none of these operators is avail-
able for roles: we can neither construct the union of roles,
nor their complement, nor a “nominal role”{(a, b)} with a
andb nominals. In this section, we explore the possibility of
constructing updated ABoxes in a language in which such
constructors are available. The language we consider is of
almost the same expressive power asC2, the two-variable
fragment of first-order logic with counting quantifiers (Lutz,
Sattler, & Wolter 2001).

Denote byALCQIO+ the description logic extending
ALCQIO@ by means of the role constructors∩ (role inter-
section),− (set-theoretic difference of roles), and{(a, b)}
(nominal roles). In this language, complex roles are con-
structed starting from role names and nominal roles, and
then applying∩, −, and the inverse role operator·−. The
interpretation of complex roles is as expected:

• {(a, b)}I = {(aI , bI)}, for all a, b ∈ NI;

• (r1 ∩ r2)I = rI1 ∩ rI2 ;

• (r1 − r2)I = rI1 − rI2 .

We note that reasoning inALCQIO+ is decidable: this DL
can easily be embedded intoC2 and, therefore, ABox con-
sistency is decidable in NEXPTIME even if the numbers
inside number restrictions are coded in binary (Pacholski,
Szwast, & Tendera 2000; Pratt-Hartmann 2005). We now
formulate the main result of this section:

Theorem 28. There are polynomialsp1, p2, andq such that,
for everyALCQIO+ ABoxA and every updateU , there is
anALCQIO+ ABoxA′ such that

• A ∗ U ≡ A′;
• |A′| ≤ p1(|A|) · 2p2(|U|);
• A′ can be computed in timeq(|A′|).

Proof. We modify the proof of Theorem 18. For
ALCQIO+, the construction of the conceptsCU is much
simpler: it suffices to replace every concept nameA in C
with

A t t
¬A(a)∈U

{a} u ¬(t
A(a)∈U

{a})

and every role namer in C with

r ∪
⋃

¬r(a,b)∈U

{(a, b)} \ (
⋃

r(a,b)∈U

{(a, b)}).

The conceptsCU are of size polynomial in the size ofC and
U . The ABoxA′ can then be constructed in the same way as
in the proof of Theorem 18 and is polynomial in the size of
A, but exponential in the size of the updateU . ❏

Clearly, Theorem 28 is independent of the coding of num-
bers, and, also with iterated updates, updated ABoxes re-
main polynomial in the size of the original ABox. An
alternative to working with a description logic such as
ALCQIO+ is to work directly in the two-variable fragment
with countingC2. Then, a result analogous to Theorem 28
is easily obtained.

Outlook
There are two obvious directions for future work. The first
direction is to alleviate the syntactic restriction posed on
concepts appearing in updates in a controlled way. For ex-
ample, research on propositional updates containingdis-
junctions (Zhang & Foo 2000; Herzig 1996; Lin 1996;
Thielscher 2000a) suggests the feasibility of ABox updates
with Boolean combinations of concept names. We conjec-
ture that natural generalizations of the semantics proposed in
the propositional case lead to useful notions of an ABox up-
date under which the updates are still computable. The sec-
ond direction for future work is to incorporate cyclic TBoxes
into our framework. However, this direction appears to be
considerably more difficult than the first one. As discussed
in (Baaderet al. 2005), it is not even clear if a satisfactory
semantics can be defined in this case.

Acknowledgements We would like to thank Franz Baader
and Michael Thielscher for ideas and discussions. The first
author was supported by the DFG Project BA1122/10-2. The
second author was supported by the EU funded IST-2005-
7603 FET Project Thinking Ontologies (TONES). The third
author was supported by the DFG Graduiertenkolleg 334.
The fourth author was partially supported by UK EPSRC
grant no. GR/S63182/01.

References
Areces, C., and de Rijke, M. 2001. From description logics
to hybrid logics, and back. InAdvances in Modal Logics
Volume 3. CSLI Publications.
Areces, C.; Blackburn, P.; Hernandez, B. M.; and Marx, M.
2003. Handling Boolean ABoxes. InProc. of the 2003 Int.
Workshop on Description Logics.
Baader, F.; McGuiness, D. L.; Nardi, D.; and Patel-
Schneider, P. 2003.The Description Logic Handbook:
Theory, implementation and applications. Cambridge Uni-
versity Press.

Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. InProc. of the Twentieth National Conf. on AI
(AAAI-05).
Borgida, A. 1996. On the relative expressiveness of de-
scription logics and predicate logics.Artificial Intelligence
82(1 - 2):353–367.
Cadoli, M.; Donini, F. M.; Liberatore, P.; and Schaerf, M.
1999. The size of a revised knowledge base.Artificial
Intelligence115(1):25–64.
Forbus, K. D. 1989. Introducing actions into qualitative
simulations. InProc. of the Int. Joint Conf. on AI (IJ-
CAI’89), 1273–1279. Morgan Kaufman.
Herzig, A. 1996. The PMA revisited. InProc. of the 5th
Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’96), 40–50. Morgan Kaufmann.
Kurtonina, N., and de Rijke, M. 1999. Expressiveness of
concept expressions in first-order description logics.Arti-
ficial Intelligence107(2):303–333.
Lin, F. 1996. Embracing causality in specifying the inde-
terminate effects of actions. InProc. of the 14th National
Conf. on AI (AAAI-96), 670–676. MIT Press.
Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F.
2005. Updating aboxes. LTCS-Report 05-10,
Technical University Dresden. see http://lat.inf.tu-
dresden.de/research/reports.html.
Lutz, C.; Sattler, U.; and Wolter, F. 2001. Modal logics
and the two-variable fragment. InAnnual Conf. of the Eu-
ropean Association for Computer Science Logic (CSL’01),
LNCS. Paris, France: Springer Verlag.
M.P.Shanahan. 1997.Solving the Frame Problem. MIT
Press.
Pacholski, L.; Szwast, W.; and Tendera, L. 2000. Complex-
ity results for first-order two-variable logic with counting.
SIAM Journal on Computing29(4):1083–1117.
Papadimitriou, C. H. 1994.Computational Complexity.
Addison-Wesley.
Pratt-Hartmann, I. 2005. Complexity of the two-variable
fragment with counting quantifiers.Journal of Logic, Lan-
guage, and Information14(3):369–395.
Reiter, R. 2001.Knowledge in Action. MIT Press.
Scherl, R., and Levesque, H. 2003. Knowledge, action, and
the frame problem.Artificial Intelligence144(1):1–39.
Thielscher, M. 2000a. Nondeterministic actions in the flu-
ent calculus: Disjunctive state update axioms. InIntellec-
tics and Comput. Logic. Kluwer Academic. 327–345.
Thielscher, M. 2000b. Representing the knowledge of
a robot. InProc. of the 7th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’00), 109–
120. Morgan Kaufmann.
Winslett, M. 1990. Updating Logical Databases. Cam-
bridge, England: Cambridge University Press.
Zhang, Y., and Foo, N. 2000. Updating knowledge bases
with disjunctive information.Computational Intelligence
16:1–22.

