
A Tableau Algorithm for Description Logics with Concrete

Domains and General TBoxes

Carsten Lutz and Maja Miličić
Institute of Theoretical Computer Science
TU Dresden, Germany

Abstract. To use description logics (DLs) in an application, it is crucial to identify
a DL that is sufficiently expressive to represent the relevant notions of the application
domain, but for which reasoning is still decidable. Two means of expressivity that
are required by many modern applications of DLs are concrete domains and general
TBoxes. The former are used for defining concepts based on concrete qualities of
their instances such as the weight, age, duration, and spatial extension. The purpose
of the latter is to capture background knowledge by stating that the extension of
a concept is included in the extension of another concept. Unfortunately, it is well-
known that combining concrete domains with general TBoxes often leads to DLs
for which reasoning is undecidable. In this paper, we identify a general property
of concrete domains that is sufficient for proving decidability of DLs with both
concrete domains and general TBoxes. We exhibit some useful concrete domains,
most notably a spatial one based on the RCC-8 relations, which have this property.
Then, we present a tableau algorithm for reasoning in DLs equipped with concrete
domains and general TBoxes.

Keywords: Description logic, concrete domains, decidability, tableau algorithm

Table of Contents

1 Introduction 2
2 Constraint Systems 3

2.1 RCC8 4
2.2 Allen’s Relations 6
2.3 Properties of Constraint Systems 7

3 Syntax and Semantics 8
4 A Tableau Algorithm for ALC(C) 11

4.1 Normal Forms 11
4.2 Data Structures 13
4.3 The Tableau Algorithm 16
4.4 Correctness 18

5 Practicability 29
6 Conclusion 31
A Properties of RCC8 35
B Properties of Allen 39

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

jar.tex; 10/08/2006; 18:48; p.1

2 Lutz and Miličić

1. Introduction

Description Logics (DLs) are an important family of logic-based knowl-
edge representation formalisms [4]. In DL, one of the main research
goals is to provide a toolbox of logics such that, for a given applica-
tion, one can select a DL with adequate expressivity. Here, adequate
means that, on the one hand, all relevant concepts from the application
domain can be captured. On the other hand, no unessential means
of expressivity should be included to prevent an avoidable increase
in computational complexity. For several relevant applications of DLs
such as the semantic web and reasoning about ER and UML diagrams,
there is a need for DLs that include, among others, the expressive
means concrete domains and general TBoxes [3, 8, 22]. The purpose of
concrete domains is to enable the definition of concepts with reference
to concrete qualities of their instances such as the weight, age, duration,
and spatial extension. General TBoxes play an important role in mod-
ern DLs as they allow to represent background knowledge of application
domains by stating via inclusions C v D that the extension of a concept
C is included in the extension of a concept D.

Unfortunately, combining concrete domains with general TBoxes
easily leads to undecidability. For example, it has been shown in [25]
that the basic DL ALC extended with general TBoxes and a rather
inexpressive concrete domain based on the natural numbers and pro-
viding for equality and incrementation predicates is undecidable, see
also the survey paper [23]. In view of this discouraging result, it is a
natural question whether there are any useful concrete domains that
can be combined with general TBoxes in a decidable DL. A positive
answer to this question has been given in [24] and [20], where two such
well-behaved concrete domains are identified: a temporal one based
on the Allen relations for interval-based temporal reasoning, and a
numerical one based on the reals and equipped with various unary
and binary predicates such as “≤”, “>5”, and “6=”. Using an automata-
based approach, it has been shown in [24, 20] that reasoning in the DLs
ALC and SHIQ extended with these concrete domains and general
TBoxes is decidable and ExpTime-complete.

The purpose of this paper it to advance the knowledge about de-
cidable DLs with both concrete domains and general TBoxes. Our
contribution is two-fold: first, instead of focusing on particular concrete
domains as in previous work, we identify a general property of concrete
domains, called ω-admissibility, that is sufficient for proving decidabil-
ity of DLs equipped with concrete domains and general TBoxes. For
defining ω-admissibility, we concentrate on a particular kind of con-
crete domains: constraint systems. Roughly, a constraint system is a

jar.tex; 10/08/2006; 18:48; p.2

Description Logics with Concrete Domains and General TBoxes 3

concrete domain that only has binary predicates, which are interpreted
as jointly exhaustive and pairwise disjoint (JEPD) relations. We exhibit
two example constraint systems that are ω-admissible: a temporal one
based on the real line and the Allen relations [1], and a spatial one
based on the real plane and the RCC8 relations [9, 6, 29]. The proof of
ω-admissibility turns out to be relatively straightforward in the Allen
case, but is somewhat cumbersome for RCC8. We believe that there are
many other useful constraint systems that can be proved ω-admissible.

Second, we develop a tableau algorithm for DLs with both general
TBoxes and concrete domains. This algorithm is used to establish a
general decidability result for ALC equipped with general TBoxes and
any ω-admissible concrete domain. In particular, we obtain decidability
of ALC with general TBoxes and the Allen relations as first established
in [24], and, as a new result, prove decidability of ALC with general
TBoxes and the RCC8 relations as a concrete domain. In contrast to
existing tableau algorithms [13, 17], we do not impose any restrictions
on the concrete domain constructor. As state-of-the-art DL reasoners
such as FaCT and RACER are based on tableau algorithms similar to
the one described in this paper [14, 12], we view our algorithm as a
first step towards an efficient implementation of description logics with
(ω-admissible) concrete domains and general TBoxes. In particular,
we identify an expressive fragment of our logic that should be easily
integrated into existing DL reasoners.

This paper is organized as follows: in Section 2, we introduce con-
straint systems and define ω-admissibility. In Section 3, we introduce
the description logic ALC(C) that incorporates constraint systems and
general TBoxes. The tableau algorithm for deciding satisfiability in
ALC(C) is developed in Section 4. In Section 5, we discuss the feasi-
bility of our algorithm and identify a fragment for which the tableau
algorithm is implementable in a particularly straightforward way.

2. Constraint Systems

We introduce a general notion of constraint system that is intended to
capture standard constraint systems based on a set of jointly-exhaustive
and pairwise-disjoint (JEPD) binary relations. Examples for such sys-
tems include spatial constraint networks based on the RCC8 relations
[9, 6, 30] or on cardinal direction relations [10], and temporal constraint
networks based on Allen’s relations of time intervals [1, 34, 28] or on
relations between time points [33, 34].

Definition 1 (Rel-network). Let Var be a countably infinite set of
variables and Rel a finite set of binary relation symbols. A Rel-constraint

jar.tex; 10/08/2006; 18:48; p.3

4 Lutz and Miličić

is an expression (x r y) with x, y ∈ Var and r ∈ Rel. A Rel-network is a
(finite or infinite) set of Rel-constraints. For N a Rel-network, we use
VN to denote the variables used in N . We say that N is complete if,
for all x, y ∈ VN , there is exactly one constraint (x r y) ∈ N .

We define the semantics of Rel-network by using complete Rel-net-
works as models. Intuitively, the nodes in these complete networks
should be viewed as concrete values rather than as variables. Equiva-
lently to our network-based semantics, we could proceed as in constraint
satisfaction problems, associate each variable with a set of values, and
view relations as constraints on these values, see e.g. [31].

Definition 2 (Model, Constraint System). Let N be a Rel-network
and N ′ a complete Rel-networks. We say that N ′ is a model of N if
there is a mapping τ : VN → VN ′ such that (x r y) ∈ N implies
(τ(x) r τ(y)) ∈ N ′.

A constraint system C = 〈Rel, M〉 consists of a finite set of binary
relation symbols Rel and a set M of complete Rel-networks (the models
of C). A Rel-network N is satisfiable in C if M contains a model of N .

To emphasize the different role of variables in Rel-networks and in
models, we denote variables in the former with x, y, . . . and in the
latter with v, v′, etc. Note that Rel-networks used as models have to
be complete, which corresponds to the relations in Rel to be jointly
exhaustive and mutually exclusive.

Equivalently to our network-based semantics, we could proceed as
in constraint satisfaction problems, associate each variable with a set of
values, and view relations as constraints on these values, see e.g. [31].

In the following two subsections, we introduce two example con-
straint systems: one for spatial reasoning based on the RCC8 topolog-
ical relations in the real plane, and one for temporal reasoning based
on the Allen relations in the real line.

2.1. RCC8

The RCC8 relations, which are illustrated in Figure 1, are intended to
describe the relation between regions in topological spaces [29]. In this
paper, we will use the standard topology of the real plane which is one
of the most appropriate topologies for spatial reasoning. Let

RCC8 = {eq, dc, ec, po, tpp, ntpp, tppi, ntppi}

denote the RCC8 relations. Recall that a topological space is a pair
T = (U, I), where U is a set and I is an interior operator on U , i.e., for

jar.tex; 10/08/2006; 18:48; p.4

Description Logics with Concrete Domains and General TBoxes 5

s t s t ts ts

s po t s eq t

stt ss t s t

s ntppi ts tppi t

s tpp t s ntpp ts dc t s ec t

Figure 1. The eight RCC8 relations.

all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s

I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

As usual, the closure operator C is defined as C(s) = I(s), where t =
U \ t, for t ⊆ U . As the regions of a topological space T = (U, I), we
use the set of non-empty, regular closed subsets of U , where a subset
s ⊆ U is called regular closed if CI(s) = s. Given a topological space T

and a set of regions UT, we define the extension of the RCC8 relations
as the following subsets of UT × UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t 6= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) 6= ∅ ∧ s \ t 6= ∅ ∧ t \ s 6= ∅
(s, t) ∈ eqT iff s = t

(s, t) ∈ tppT iff s ∩ t = ∅ ∧ s ∩ I(t) 6= ∅ ∧ s 6= t

(s, t) ∈ ntppT iff s ∩ I(t) = ∅ ∧ s 6= t

(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Let T �
2 be the standard topology on

� 2 induced by the Euclidean
metric, and let RS �

2 be the set of all non-empty regular closed subsets
of T �

2 . Then we define the constraint system

RCC8 �
2 = 〈RCC8, M �

2〉

by setting M �
2 := {N �

2}, where N �
2 is defined by fixing a variable

vs ∈ Var for every s ∈ RS �
2 and setting

N �
2 := {(vs r vt) | r ∈ RCC8, s, t ∈ RS �

2 and (s, t) ∈ rT � 2}.

Note that using only regular closed sets excludes sub-dimensional re-
gions such as points and lines. This is necessary for the RCC8 relations
to be jointly exhaustive and pairwise disjoint.

jar.tex; 10/08/2006; 18:48; p.5

6 Lutz and Miličić

black b gray
gray a black

black m gray
gray mi black

black o gray
gray oi black

black d gray
gray di black

black s gray
gray si black

black f gray
gray fi black

Figure 2. The thirteen Allen relations.

2.2. Allen’s Relations

In artificial intelligence, constraint systems based on Allen’s interval
relations are a popular tool for the representation of temporal knowl-
edge [1]. Let

Allen = {b, a, m, mi, o, oi, d, di, s, si, f, fi, =}

denote the thirteen Allen relations. Examples of these relations are
given in Figure 2. As the flow of time, we use the real numbers with the
usual ordering. Let Int � denote the set of all closed intervals [r1, r2] over�

with r1 < r2, i.e., point-intervals are not admitted. The extension
r

�
of each Allen relation r is a subset of Int � × Int � . It is defined in

terms of the relationships between endpoints in the obvious way, c.f.
Figure 2. We define the constraint system

Allen � = 〈Allen, M � 〉

by setting M � := {N � }, where N � is defined by fixing a variable
vi ∈ Var for every i ∈ Int � and setting

N � := {(vi r vj) | r ∈ Allen, i, j ∈ Int � and (i, j) ∈ r
�
}.

We could also define the constraint system Allen � based on the rationals
rather than on the reals: this has no impact on the satisfiability of
finite and infinite Allen-networks (which are countable by definition).
If we use the natural numbers or the integers, this still holds for finite
networks, but not for infinite ones: there are infinite Allen-networks that
are satisfiable over the reals and rationals, but not over the natural
number and integers.

jar.tex; 10/08/2006; 18:48; p.6

Description Logics with Concrete Domains and General TBoxes 7

2.3. Properties of Constraint Systems

We will use constraint systems as a concrete domain for description
logics. To obtain sound and complete reasoning procedures for DLs
with such concrete domains, we require that constraint systems satisfy
certain properties. First, we need to ensure that satisfiable networks
(satisfying some additional conditions) can be “patched” together to a
joint network that is also satisfiable. This is ensured by the patchwork
property.

Definition 3 (Patchwork Property). Let C = 〈Rel, M〉 be a con-
straint system, and let N, M be finite complete Rel-networks such that,
for the intersection parts

IN,M := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈ N}

IM,N := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈ M}

we have IN,M = IM,N . Then the composition of N and M is defined
as N ∪ M . We say that C has the patchwork property if the following
holds: if N and M are satisfiable then N ∪ M is satisfiable.

The patchwork property is similar to the property of constraint
networks formulated by Balbiani in [5], where constraint networks are
combined with linear temporal logic.

For using constraint systems with the DL tableau algorithm pre-
sented in this paper, we must be sure that, even if we patch together an
infinite number of satisfiable networks, the resulting (infinite) network
is still satisfiable. This is guaranteed by the compactness property.

Definition 4 (Compactness). Let C = 〈Rel, M〉 be a constraint sys-
tem. If N is a Rel-network and V ⊆ VN , we write N |V to denote the
network {(x r y) ∈ N | x, y ∈ V } ⊆ N . Then C has the compactness
property if the following holds: a Rel-network N with VN infinite is
satisfiable in C if and only if, for every finite V ⊆ VN , the network N |V
is satisfiable in C.

Finally, our tableau algorithm has to check satisfiability of certain
C-networks. Thus, we have to assume that C-satisfiability is decidable.
The properties of constraint systems we require are summarized in the
following definition.

Definition 5 (ω-admissible). Let C = (Rel, M) be a constraint sys-
tem. We say that C is ω-admissible iff the following holds:

1. satisfiability of finite C-networks is decidable;

jar.tex; 10/08/2006; 18:48; p.7

8 Lutz and Miličić

2. C has the patchwork property (c.f. Definition 3);

3. C has the compactness property (c.f. Definition 4).

In Appendixes A and B, we prove that RCC8 �
2 and Allen � satisfy

the patchwork property and the compactness property. Moreover, satis-
fiability of finite networks is NP-complete (and thus decidable) in both
systems: this is proved in [34] for Allen � and in [30] for RCC8 �

2 . Thus,
RCC8 �

2 and Allen � are ω-admissible.

3. Syntax and Semantics

We introduce the description logic ALC(C) that allows to define con-
cepts with reference to the constraint system C. Different incarnations
of ALC(C) are obtained by instantiating it with different constraint
systems.

Definition 6 (ALC(C)-concepts). Let C = (Rel, M) be a constraint
system, and let NC, NR, and NcF be mutually disjoint and countably
infinite sets of concept names, role names, and concrete features. We
assume that NR is partitioned into two countably infinite subsets NaF

and NsR. The elements of NaF are called abstract features and the
elements of NsR standard roles. A path of length k + 1 with k ≥ 0
is a sequence R1 · · ·Rkg consisting of roles R1, . . . , Rk ∈ NR and a
concrete feature g ∈ NcF. A path R1 · · ·Rkg with {R1, . . . , Rk} ⊆ NaF

is called feature path. The set of ALC(C)-concepts is the smallest set
such that1

1. every concept name A ∈ NC is a concept,

2. if C and D are concepts and R ∈ NR, then ¬C, C u D, C t D,
∀R.C, and ∃R.C are concepts;

3. if u1 and u2 are feature paths and r1, . . . , rk ∈ Rel, then the follow-
ing are also concepts:

∃u1, u2.(r1 ∨ · · · ∨ rk) and ∀u1, u2.(r1 ∨ · · · ∨ rk);

4. if U1 and U2 are paths of length at most two and r1, . . . , rk ∈ Rel,
then the following are also concepts:

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk);

1 This is an extension of the language introduced in the conference version of this
paper [26].

jar.tex; 10/08/2006; 18:48; p.8

Description Logics with Concrete Domains and General TBoxes 9

A concept inclusion is an expression of the form C v D, where C and
D are concepts. We use C

.
= D as abbreviation for the two concept

inclusions C v D and D v C. A finite set of concept inclusions is
called a TBox.

Observe that we restrict the length of paths inside the constraint-
based constructor to two only if at least one of the paths contains a
standard role. The TBox formalism introduced in Definition 6 is often
called general TBox [4] since it subsumes several weaker variants [7,
19]. Throughout this paper, we use > as abbreviation for an arbitrary
propositional tautology and C → D for ¬C t D.

Definition 7 (ALC(C) Semantics). An interpretation I is a tuple
(∆I , ·I , MI), where ∆I is a set called the domain, ·I is the interpreta-
tion function, and MI ∈ M. The interpretation function maps

− each concept name C to a subset CI of ∆I ;

− each role name R to a subset RI of ∆I × ∆I ;

− each abstract feature f to a partial function fI from ∆I to ∆I ;

− each concrete feature g to a partial function gI from ∆I to the
set of variables VMI

of MI .

If r = r1 ∨ · · · ∨ rk, where r1, . . . , rk ∈ Rel, we write MI |= (x r y) iff
there exists an i ∈ {1, . . . , k} such that (x ri y) ∈ MI . The interpreta-
tion function is then extended to arbitrary concepts as follows:

¬CI := ∆I \ CI ,

(C u D)I := CI ∩ DI ,

(C t D)I := CI ∪ DI ,

(∃R.C)I := {d ∈ ∆I | ∃e ∈ ∆I with (d, e) ∈ RI and e ∈ CI},

(∀R.C)I := {d ∈ ∆I | ∀e ∈ ∆I , if (d, e) ∈ RI , then e ∈ CI},

(∃U1, U2.r)
I := {d ∈ ∆I | ∃v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d)

with MI |= (v1 r v2)},

(∀U1, U2.r)
I := {d ∈ ∆I | ∀v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d),

we have MI |= (v1 r v2)}

where for a path U = R1 · · ·Rkg and d ∈ ∆I , UI(d) is defined as

{v ∈ VMI
| ∃e1, . . . , ek+1 : d = e1,

(ei, ei+1) ∈ RI
i for 1 ≤ i ≤ k, and gI(ek+1) = v}.

An interpretation I is a model of a concept C iff CI 6= ∅. I is a model
of a TBox T iff it satisfies CI ⊆ DI for all concept inclusions C v D
in T .

jar.tex; 10/08/2006; 18:48; p.9

10 Lutz and Miličić

Room

CarPark

Reception

Hotel

Figure 3. An example of a CarFriendlyHotel.

Observe that the network M in Definition 7 is a model of the con-
straint system C, whence variables in this network correspond to values
in C and are denoted with v, v′ rather than x, y.

The following example TBox describes some properties of a ho-
tel using the constraint system RCC8 �

2 , where has-room is a role,
has-reception and has-carpark are abstract features (assuming that a
hotel has at most a single reception and car park), loc is a concrete
feature, and all capitalized words are concept names.

Hotel v ∀has-room.Room u ∀has-reception.Reception

u ∀has-carpark.CarPark

Hotel v ∀(has-room loc), (loc).tpp ∨ ntpp

u ∀(has-room loc), (has-room loc).dc ∨ ec ∨ eq

CarFriendlyHotel
.
= Hotel u ∃(has-reception loc), (loc).tpp

u ∃(has-carpark loc), (loc).ec

u ∃(has-carpark loc), (has-reception loc).ec

The first concept inclusion expresses that hotels are related via the
three roles to objects of the proper type. The second concept inclusion
says that the rooms of a hotel are spatially contained in the hotel, and
that rooms do not overlap. Finally, the last concept inclusion describes
hotels that are convenient for car owners: they have a carpark that is
directly next to the reception. This situation is illustrated in Figure 3.

The most important reasoning tasks for DLs are satisfiability and
subsumption: a concept C is called satisfiable with respect to a TBox T
iff there exists a common model of C and T . A concept D subsumes a
concept C with respect to T (written C vT D) iff CI ⊆ DI holds

jar.tex; 10/08/2006; 18:48; p.10

Description Logics with Concrete Domains and General TBoxes 11

for each model I of T . It is well-known that subsumption can be
reduced to (un)satisfiability: C vT D iff C u ¬D is unsatisfiable w.r.t.
T . This allows us to concentrate on concept satisfiability when devising
reasoning procedures.

4. A Tableau Algorithm for ALC(C)

We present a tableau algorithm that decides satisfiability of ALC(C)-
concepts w.r.t. TBoxes. Tableau algorithms are among the most pop-
ular decision procedures for description logics since they are amenable
to various optimization techniques and often can be efficiently imple-
mented. Therefore, we view the algorithm presented in this paper as
a first step towards practicable reasoning with concrete domains and
general TBoxes. On the flipslide, algorithms such as the one developed
in this section usually do not yield tight upper complexity bounds.

The algorithm developed in the following is independent of the con-
straint system C. This is achieved by delegating reasoning in C to an
external reasoner that decides satisfiability of C-networks. Throughout
this section, we assume C to be ω-admissible.

4.1. Normal Forms

It is convenient to first convert the input concept and TBox into an
appropriate syntactic form. More precisely, we convert concepts and
TBoxes into negation normal form (NNF) and restrict the length of
paths that appear inside the constraint-based concept constructors.
We start with describing NNF conversion. A concept is said to be in
negation normal form if negation occurs only in front of concept names.
The following lemma shows that NNF can be assumed without loss of
generality. For a path U = R1 · · ·Rkg, we write ud(U) to denote the
concept ∀R1. · · · ∀Rk.(∀g, g.r u ∀g, g.r′) where r, r′ ∈ Rel are arbitrary
such that r 6= r′.2

Lemma 1 (NNF Conversion). Exhaustive application of the fol-
lowing rewrite rules translates ALC(C)-concepts to equivalent ones in
NNF.

¬¬C ; C

¬(C u D) ; ¬C t ¬D

¬(C t D) ; ¬C u ¬D

¬(∃R.C) ; (∀R.¬C)

2 This presupposes the natural assumptions that Rel has cardinality at least two.

jar.tex; 10/08/2006; 18:48; p.11

12 Lutz and Miličić

¬(∀R.C) ; (∃R.¬C)

¬(∀U1, U2.(r1 ∨ · · · ∨ rk)) ;

⊥ if Rel = {r1, . . . , rk}

∃U1, U2.(
∨

r∈Rel\{r1,...,rk}

r) otherwise

¬(∃U1, U2.(r1 ∨ · · · ∨ rk)) ;

ud(U1) t ud(U2) if Rel = {r1, . . . , rk}

∀U1, U2.(
∨

r∈Rel\{r1,...,rk}

r) otherwise

By nnf(C), we denote the result of converting C into NNF using the
above rules.

In Lemma 1, the last two transformations are equivalence preserving
since the Rel-networks used as models in C are complete.

We now show how to restrict the length of paths by converting
concepts and TBoxes into path normal form. This normal form was
first considered in [24] in the context of the description logic T DL and
in [20] in the context of � -SHIQ.

Definition 8 (Path Normal Form). An ALC(C)-concept C is in
path normal form (PNF) if it is in NNF and for all subconcepts

∃U1, U2.(r1 ∨ . . . ∨ rk) and ∀U1, U2.(r1 ∨ . . . ∨ rk)

of C, the length of U1 and U2 is at most two. An ALC(C)-TBox T is
in path normal form iff T is of the form {> v C}, with C in PNF.

The following lemma shows that we can w.l.o.g. assume ALC(C)-
concepts and TBoxes to be in PNF.

Lemma 2. Satisfiability of ALC(C)-concepts w.r.t. TBoxes can be re-
duced in polynomial time to satisfiability of ALC(C)-concepts in PNF
w.r.t. TBoxes in PNF.

Proof. We first define an auxiliary mapping and then use this mapping
to translate ALC(C)-concepts into equivalent ones in PNF. Let C be
an ALC(C)-concept. By Lemma 1, we may assume w.l.o.g. that C is
in NNF. For every feature path u = f1 · · · fng used in C, we assume
that [g], [fng], . . . , [f1 · · · fng] are fresh concrete features. We inductively
define a mapping λ from feature paths u in C to concepts as follows:

λ(g) = >

λ(fu) = (∃f [u], [fu]. =) u ∃f.λ(u)

jar.tex; 10/08/2006; 18:48; p.12

Description Logics with Concrete Domains and General TBoxes 13

For every ALC(C)-concept C, a corresponding concept ρ(C) is obtained
as follows: first replace all subconcepts ∀u1, u2.(r1 ∨ · · · ∨ rk) (with u1,
u2 feature paths) with

ud(u1) t ud(u2) t ∃u1, u2.(r1 ∨ · · · ∨ rk)

Then replace all subconcepts ∃u1, u2.(r1 ∨ · · · ∨ rk) with

∃[u1], [u2].(r1 ∨ · · · ∨ rk) u λ(u1) u λ(u2).

We extend the mapping ρ to TBoxes. For a TBox T we define

DT := u
CvD∈T

nnf(C → D).

and set
ρ(T) = {> v ρ(DT)}.

Clearly, ρ(C) and ρ(T) are in PNF and the translation can be done
in polynomial time. Moreover, it is easy to check that C is satisfiable
w.r.t. T iff ρ(C) is satisfiable w.r.t. ρ(T): if I is a model of ρ(C) and
ρ(T), then it can be seen that I is also a model of C and T as well. For
the other direction, let I be a model of C and T . A model J of ρ(C)
and ρ(T) is obtained by extending I with the interpretion of freshly
introduced concrete features in the following way:

[f1 . . . fng]J := fJ
1 ◦ . . . ◦ fJ

n ◦ gJ .

The previous lemma shows that, in what follows, we may assume
w.l.o.g. that all concepts and TBoxes are in PNF.

4.2. Data Structures

We introduce the data structures underlying the tableau algorithm,
an operation for extending this data structure, and a cycle detection
mechanism that is needed to ensure termination of the algorithm. As
already said, we assume that the input concept C0 is in PNF, and that
the input TBox T is of the form T = {> v CT }, where CT is in PNF.

The main ingredient of the data structure underlying our algorithm
is a tree that, in case of a successful run of the algorithm, represents
a single model of the input concept and TBox. Due to the presence
of the constraint system C, this tree has two types of nodes: abstract
ones that represent individuals of the logic domain ∆I and concrete
ones that represent values of the concrete domain. We use sub(C) to
denote the set of subconcepts of the concept C and set sub(C0, T) :=
sub(C0) ∪ sub(CT).

jar.tex; 10/08/2006; 18:48; p.13

14 Lutz and Miličić

Definition 9 (Completion system). Let Oa and Oc be disjoint and
countably infinite sets of abstract nodes and concrete nodes. A com-
pletion tree for an ALC(C)-concept C and a TBox T is a finite, labeled
tree T = (Va, Vc, E,L) with nodes Va∪Vc and edges E ⊆ (Va×(Va∪Vc))
such that Va ⊆ Oa and Vc ⊆ Oc. The tree is labeled as follows:

1. each node a ∈ Va is labeled with a subset L(a) of sub(C, T),

2. each edge (a, b) ∈ E with a, b ∈ Va is labeled with a role name
L(a, b) occurring in C or T ;

3. each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labeled with a
concrete feature L(a, x) occurring in C or T .

A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and
L(a, b) = R, while x ∈ Vc is a g-successor of a if (a, x) ∈ E and
L(a, x) = g. The notion U -successor for a path U is defined in the
obvious way.

A completion system for an ALC(C)-concept C and a TBox T is a
pair S = (T,N) where T = (Va, Vc, E,L) is a completion tree for C
and T and N is a Rel-network with VN = Vc.

We now define an operation that is used by the tableau algorithm
to add new nodes to completion trees. The operation respects the
functionality of abstract and concrete features.

Definition 10 (⊕ Operation). An abstract or concrete node is called
fresh in a completion tree T if it does not appear in T . Let S = (T,N)
be a completion system with T = (Va, Vc, E,L). We use the following
operations:

− if a ∈ Va, b ∈ Oa fresh in T , and R ∈ NR, then S ⊕ aRb yields
the completion system obtained from S in the following way:

• if R 6∈ NaF or R ∈ NaF and a has no R-successors, then add
b to Va, (a, b) to E and set L(a, b) = R, L(b) = ∅.

• if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and
L(a, c) = R then rename c in T with b.

− if a ∈ Va, x ∈ Oc fresh in T , and g ∈ NcF, then S ⊕ agx yields
the completion system obtained from S in the following way:

• if a has no g-successors, then add x to Vc, (a, x) to E and set
L(a, x) = g;

• if a has a g-successor y, then rename y in T and N with x.

jar.tex; 10/08/2006; 18:48; p.14

Description Logics with Concrete Domains and General TBoxes 15

Let U = R1 · · ·Rng be a path. With S ⊕ aUx, where a ∈ Va and x ∈ Oc

is fresh in T , we denote the completion system obtained from S by
taking distinct nodes b1, ..., bn ∈ Oa which are fresh w.r.t. T and setting

S′ := S ⊕ aR1b1 ⊕ · · · ⊕ bn−1Rnbn ⊕ bngx

The tableau algorithm works by starting with an initial completion
system that is then successively expanded with the goal of constructing
a model of the input concept and TBox. To ensure termination, we
need a mechanism for detecting cyclic expansions, which is commonly
called blocking. Informally, we detect nodes in the completion tree that
are similar to previously created ones and then block them, i.e., stop
further expansion at such nodes. To introduce blocking, we start with
some preliminaries. For a ∈ Va, we define the set of features of a as

feat(a) := { g ∈ NcF | a has a g-successor }.

Next, we define the concrete neighborhood of a as the constraint network

N (a) := { (x r y) | there exist g, g′ ∈ feat(a) s.t. x is a g-succ.
of a, y is a g′-succ. of a, and (x r y) ∈ N }

Finally, if a, b ∈ Va and feat(a) = feat(b), we write N (a) ∼ N (b) to
express that N (a) and N (b) are isomorphic, i.e., that the mapping
π : VN (a) → VN (b) defined by mapping the g-successor of a to the
g-successor of b for all g ∈ feat(a) is an isomorphism.

If T is a completion tree and a and b are abstract nodes in T , then
we say that a is an ancestor of b if b is reachable from a in the tree T .

Definition 11 (Blocking). Let S = (T,N) be a completion system for
a concept C0 and a TBox T with T = (Va, Vc, E,L), and let a, b ∈ Va.
We say that a ∈ Va is potentially blocked by b if the following holds:

1. b is an ancestor of a in T,

2. L(a) ⊆ L(b),

3. feat(a) = feat(b).

We say that a is directly blocked by b if the following holds:

1. a is potentially blocked by b,

2. N (a) and N (b) are complete, and

3. N (a) ∼ N (b).

Finally, a is blocked if it or one of its ancestors is directly blocked.

jar.tex; 10/08/2006; 18:48; p.15

16 Lutz and Miličić

Ru if C1 u C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a),
then set L(a) := L(a) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅,
then set L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor b of
a such that C ∈ L(b)
then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := L(b) ∪ {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a
such that C 6∈ L(b)
then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there exist no
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) ∈ N for some i with 1 ≤ i ≤ k
then set S := S ⊕ aU1x1 ⊕ aU2x2 with x1, x2 ∈ Oc fresh and
N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

R∀c if ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there are
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) 6∈ N for all i with 1 ≤ i ≤ k
then set N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

Rnet if a is potentially blocked by b or vice versa and N (a) is not complete
then non-deterministically guess a completion N ′ of N (a) and set
N := N ∪N ′

Rtbox if CT 6∈ L(a)
then set L(a) := L(a) ∪ {CT }

Figure 4. The completion rules.

4.3. The Tableau Algorithm

To decide the satisfiability of an ALC(C)-concept C0 w.r.t. a TBox T ,
the tableau algorithm is started with the initial completion system
SC0 = (TC0 , ∅), where the initial completion tree TC0 is defined by
setting

TC0 := ({a0}, ∅, ∅, {a0 7→ {C0}}).

The algorithm then repeatedly applies the completion rules given in
Figure 4. In the formulation of Rnet, a completion of a Rel-network N
is a satisfiable and complete Rel-network N ′ such that VN = VN ′ and
N ⊆ N ′. Later on, we will argue that the completion to be guessed
always exists.

jar.tex; 10/08/2006; 18:48; p.16

Description Logics with Concrete Domains and General TBoxes 17

As has already been noted above, rule application can be understood
as the step-wise construction of a model of C0 and T . Among the
rules, there are four non-deterministic ones: Rt, R∃c, R∀c, and Rnet.3

Rules are applied until an obvious inconsistency (as defined below) is
detected or the completion system becomes complete, i.e., no more rules
are applicable. The algorithm returns “satisfiable” if there is a way to
apply the rules such that a complete completion system is found that
does not contain a contradiction. Otherwise, it returns “unsatisfiable”.

All rules except Rnet are rather standard, see for example [2, 21].4

The purpose of Rnet is to resolve a potential blocking situation between
two nodes a and b into either an actual blocking situation or a non-
blocking situation. This is achieved by completing the networks N (a)
and N (b). For ensuring termination, an appropriate interplay between
this rule and the blocking condition is crucial. Namely, we have to
apply Rnet with highest precedence. It can be seen that the blocking
mechanism obtained in this way is a refinement of pairwise blocking
as known from [18]. In particular, the conditions L(a) ⊆ L(b) and
feat(a) = feat(b) are implied by the standard definition of pairwise
blocking due to path normal form.

We now define what we mean by an obvious inconsistency. As soon
as such an inconsistency is encountered, the tableau algorithm returns
“unsatisfiable”.

Definition 12 (Clash). Let S = (T,N) be a completion system for a
concept C and a TBox T with T = (Va, Vc, E,L). S contains a clash
if one of the following conditions holds:

1. there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a);

2. N is not satisfiable in C.

If S does not contain a clash, S is called clash-free.

We present the tableau algorithm in pseudo-code notation in Figure 5.
It is started with the initial completion system as argument, i.e., by
calling sat(SC0).

Note that checking for clashes before rule application is crucial for
Rnet to be well-defined: if Rnet is applied to a node a, we must be
sure that there indeed exists a completion N ′ of N (a) to be guessed,
i.e., a satisfiable network N ′ such that V ′

N = VN (a) and N (a) ⊆ N ′.

3 By disallowing disjunctions of relations in the constraint-based concept con-
structors, R∃c and R∀c can easily be made deterministic.

4 Note that our version of the R∃ rule uses the operation S⊕aRb which initializes
the label L(b), and thus the rule only adds C to the already existing label.

jar.tex; 10/08/2006; 18:48; p.17

18 Lutz and Miličić

procedure sat(S)
if S contains a clash then return unsatisfiable
if S is complete then return satisfiable
if Rnet is applicable
then S′ := application of Rnet to S
else S′ := application of any applicable completion rule to S

return sat(S ′)

Figure 5. The (non-deterministic) algorithm for satisfiability in ALC(C).

Clash checking before rule application ensures that the network N is
satisfiable when Rnet is applied. Clearly, this implies the existence of
the required completion.

4.4. Correctness

We prove termination, soundness and completeness of the presented
tableau algorithm. In the following, we use |M | to denote the cardinality

of a set M . With NC0,T
C

, NC0,T
R

and NC0,T
cF

, we denote the sets of concept
names, role names, and concrete features that occur in the concept C0

and the TBox T . We use |C| to denote the length of a concept C and
|T | to denote

∑
CvD∈T

(|C| + |D|).

Lemma 3 (Termination). The tableau algorithm terminates on every
input.

Proof. Let S0, S1, . . . be the sequence of completion systems generated
during the run of the tableau algorithm started on input C0, T , and let
Si = (Ti,Ni). Set n := |C0|+ |T |. Obviously, we have |sub(C0, T)| ≤ n.
We first show the following:

(a) For all i ≥ 0, the out-degree of Ti is bounded by n.

(b) For i ≥ 0, the depth of Ti is bounded by ` = 22n · |Rel|n
2
+ 2.

First for (a). Nodes from Vc do not have successors. Let a ∈ Va. Succes-
sors of a are created only by applications of the rules R∃ and R∃c. The
rule R∃ generates at most one abstract successor (i.e., element of Va) of
a for each ∃R.C ∈ sub(C0, T), and R∃c generates at most two abstract
successors of a for every ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ sub(C0, T). Moreover,
R∃c generates at most one concrete successor for every element of
NC0,T

cF
. It is not difficult to verify that this implies that the number

of (abstract and concrete) successors of a is bounded by n.

Now for (b). Assume, to the contrary of what is to be shown, that

there is an i ≥ 0 such that the depth of Ti exceeds ` = 22n · |Rel|n
2
+ 2.

jar.tex; 10/08/2006; 18:48; p.18

Description Logics with Concrete Domains and General TBoxes 19

Moreover, let i be smallest with this property. This means that Si has
been obtained from Si−1 by applying one of the rules R∃ and R∃c to a
node on level `, or by applying R∃c to a node on level ` − 1.

Let Ti−1 = (Va, Vc, E,L). Since Ti is obtained from Ti−1 by applica-
tion of R∃ or R∃c and since Rnet is applied with highest precedence,
Rnet is not applicable to Ti−1. This means that, for every a, b ∈ Va such
that b is potentially blocked by a, Ni−1(a) and Ni−1(b) are complete.
Let us define a binary relation ≈ on Va as follows:

a ≈ b iff L(a) = L(b), feat(a) = feat(b), and Ni−1(a) ∼ Ni−1(b).

Obviously, ≈ is an equivalence relation on Va. The definition of blocking
implies that if a is an ancestor of b and a ≈ b, then b is blocked by
a in Si−1. Let Va/≈ denote the set of ≈-equivalence classes and set

m := |NC0,T
cF

|. Since L(a) ⊆ sub(C0, T), and Ni−1(a) is a complete Rel-
network with |VNi−1(a)| ≤ m for all a ∈ Va, it is not difficult to verify
that

|Va/≈| ≤ 2|sub(C0,T)|
m∑

i=0

(
m

i

)
|Rel|i

2

Since m ≤ n, we obtain |Va/≈| ≤ 2n·2n·|Rel|n
2

= 22n·|Rel|n
2
. Let a ∈ Va

be the node to which a rule is applied in Ti−1 to obtain Ti. As already
noted, the level k of a in Ti−1 is at least `−1 ≥ |Va/≈|+1. Let a0, . . . , ak

be the path in Ti−1 leading from the root to a. Since k > |Va/≈|, we
have ai ≈ aj for some i, j with 0 ≤ i < j ≤ k. This means that a
is blocked and contradicts the assumption that a completion rule was
applied to a. Thus, the proof of (b) is finished.

The tableau algorithm terminates due to the following reasons:

1. It constructs a finitely labeled completion tree T of bounded out-
degree and depth (by (a) and (b)) in a monotonic way, i.e., no nodes
are removed from T and no concepts are removed from node labels.
Also, no constraints are removed from the constraint system N ;

2. every rule application adds new nodes or node labels to T , or new
constraints to N ;

3. the cardinality of node labels is bounded by |sub(C0, T)| and the
number of constraints in N is bounded by |Rel| · k2, with k the
(bounded) number of concrete nodes.

Lemma 4 (Soundness). If the tableau algorithm returns satisfiable,
then the input concept C0 is satisfiable w.r.t. the input TBox T .

jar.tex; 10/08/2006; 18:48; p.19

20 Lutz and Miličić

Proof. If the tableau algorithm returns satisfiable, then there exists a
complete and clash-free completion system S = (T,N) for C0 and T .
Our aim is to use S for defining a model I for C0 and T . We start with
a brief outline of the proof.

To obtain the desired model I, the completition tree T is unrav-
elled to another (possibly infinite) tree by replacing directly blocked
nodes with nodes that block them. The second condition of “potentially
blocked” ensures that by doing this, we do not violate any existential
or universal conditions in the predecessor of a directly blocked node.
This yields only the abstract part of I. Defining the concrete part is
less straightforward. To start with, the described unravelling process
can be seen as follows. We start with the tree T where all indirectly
blocked nodes are dropped, and then repeatedly patch subtrees of T to
the existing tree. More precisely, such a patched subtree is rooted by a
node that blocks the node onto which the root of the subtree is patched.
The third condition of “directly blocked” ensures that the networks
N (a) and N (b) (which comprise only the concrete successors a and b)
are complete and identical if a is blocked by b. This means that we can
obtain a (possibly infinite) constraint network N that corresponds to
the unravelled tree by patching together fragments of N which coincide
on overlapping parts. Since N is satisfiable, patchwork and compactness
property ensure that the network N is satisfiable as well and thus we
can use a model of N to define the concrete part of the model I.

Formally, we proceed in several steps. Let S = (T,N) be as above,
T = (Va, Vc, E,L), and let root ∈ Va denote the root of T . Let blocks be
a function that for every directly blocked b ∈ Va, returns an unblocked
a ∈ Va such that b is blocked by a in S. It is easily seen that, by
definition of blocking, such node a always exists. A path in S is a
(possibly empty) sequence of pairs of nodes a1

b1
, . . . , an

bn
, with a1, . . . , an

and b1, . . . , bn nodes from Va, such that, for 1 ≤ i < n, one of the
following holds:

1. ai+1 is a successor of ai in T , ai+1 is unblocked, and bi+1 = ai+1;

2. bi+1 is a successor of ai in T and ai+1 = blocks(bi+1).

Intuitively, a path a1
b1

, . . . , an

bn
represents the sequence of nodes a1, . . . , an,

and the bi provide justification for the existence of the path in case of
blocking situations. Observe that bi+1 is always a successor of ai. We
use Paths to denote the set of all paths in S including the empty path.
For p ∈ Paths nonempty, tail(p) denotes the last pair of p. We now
define the “abstract part” of the model I we are constructing:

∆I := {p ∈ Paths | p non-empty and first pair is
root

root
}

jar.tex; 10/08/2006; 18:48; p.20

Description Logics with Concrete Domains and General TBoxes 21

AI := {p ∈ ∆I | tail(p) =
a

b
and A ∈ L(a)}, A ∈ NC0,T

C

RI := {(p, p ·
a

b
) ∈ ∆I × ∆I | tail(p) =

a′

b′
and b is

R-successor of a′ in T }, R ∈ NC0,T
R

Observe that

(i) ∆I is non-empty, since root

root
∈ ∆I .

(ii) fI is functional for every f ∈ NaF: this is ensured by the “⊕”
operation which generates at most one f -successor per abstract
node, and by the definition of Paths in which we choose only a
single blocking node to be put into a path.

Intuitively, the abstract part of I as defined above is obtained by
“patching together” parts of the completion tree T . For defining the
concrete part of I, we make this patching explicit: For p ∈ ∆I , p is
called a hook if p = root

root
or tail(p) = a

b
with a 6= b (and thus b is blocked

by a). We use Hooks to denote the set of all hooks. Intuitively, the
hooks, which are induced by blocking situations in T , are the points
where we patch together parts of T . The part of T patched at a hook p
with tail(p) = a

b
is comprised of (copies of) all the nodes c in T that are

reachable from a, except indirectly blocked ones. Formally, for p ∈ ∆I

and q ∈ Hooks, we call p a q-companion if there exists q′ ∈ Paths such
that p = qq′ and all nodes a

b
in q′ satisfy a = b, with the possible

exception of tail(q′). Then, the part of I patched at p is defined as

P (p) := {q ∈ ∆I | q is a p-companion}.

For p, q ∈ Hooks, q is called a successor of p if q is a p-companion and
p 6= q. Observe that, for each hook p, P (p) includes p and all successor
hooks of p. Intuitively, this means that the parts patched together to
obtain the abstract part of I are overlapping at the hooks.

To define the concrete part of I, we need to establish some additional
notions. Since S is clash-free, N is satisfiable. It is an easy exercise to
show that then there exists a completion of N . We fix such a completion
N c with the nodes renamed as follows: each concrete node x that is a
g-successor of an abstract node a is renamed to the pair (a, g). This
naming scheme is well-defined since the “⊕” operation ensures that
every abstract node a has at most one g-successor, for every g ∈ NcF.
We now define a network N which, intuitively, describes the constraints
put on the concrete part of the model. If q ∈ Hooks, p ∈ P (q), and
tail(p) = a

b
, we set

repq(p) :=

{
b if p 6= q and a 6= b

a otherwise

jar.tex; 10/08/2006; 18:48; p.21

22 Lutz and Miličić

Intuitively, this notion is needed for the following reason: let p, q ∈
Hooks with q a successor of p. Then tail(q) = a

b
with b blocked by a,

q ∈ P (p), and q ∈ P (q). As part of P (p), q represents the blocked node
b. As part of P (q), q represents the blocking node a. This overlapping
of patched parts at hooks is made explicit via the notion repq(p). Now
define N as follows:

N := {((p, g) r (p′, g′)) | there is a q ∈ Hooks such that p, p′ ∈ P (q)

and ((repq(p), g) r (repq(p
′), g′)) ∈ N c}

Our next aim is to show that N is satisfiable. To this end, we first show
that N is patched together from smaller networks: every hook p gives
rise to a part of N as follows:

N(p) := N|{(q,g)∈VN|q∈P (p)},

i.e, N(p) is the restriction of N to those variables (q, g) such that q is
a p-companion.

The following claim shows that N is patched together from the
networks N(p), p ∈ Hooks.

Claim 1. The following holds:

(a) N =
⋃

p∈Hooks
N(p).

(b) if p, q ∈ Hooks, p 6= q, q is not a successor of p, and p is not a
successor of q, then VN(p) ∩ VN(q) = ∅;

(c) if p, q ∈ Hooks and q is a successor of p, then N(p)|VN(p)∩VN(q)
=

N(q)|VN(p)∩VN(q)
;

Proof. (a) As N ⊇
⋃

p∈Hooks
N(p) is immediate by definition of N(p),

it remains to show N ⊆
⋃

p∈Hooks
N(p). Thus, let ((p, g) r (p′, g′)) ∈ N.

Then there is a q ∈ Hooks such that p, p′ ∈ P (q). By definition of N(q),
this implies ((p, g) r (p′, g′)) ∈ N(q).

(b) We show the contrapositive. Let (q∗, g) ∈ VN(p) ∩ VN(q). It follows
that q∗ ∈ P (p)∩P (q), i.e., there are q′, q′′ ∈ Paths such that (i) q∗ = pq′,
q∗ = qq′′, and (ii) all nodes a

b
in q′, q′′ satisfy a = b, with the possible

exception of the last one. Due to (i), p = q, p is a prefix of q, or
vice versa. In the first case, we are done. In the second case, since
q ∈ Hooks we have that tail(q) = a

b
for some a, b with a 6= b. Together

with q∗ = pq′, (ii), and since p is a prefix of q is a prefix of q∗, this
implies that q = q∗. Thus q = pq′. Again by (ii), we have that q is a
successor of p. The third case is analogous to the second.

(c) By definition of N(p) and N(q), we have N(p)|VN(p)∩VN(q)
=

N|VN(p)∩VN(q)
= N(q)|VN(p)∩VN(q)

for all p, q ∈ Hooks.

jar.tex; 10/08/2006; 18:48; p.22

Description Logics with Concrete Domains and General TBoxes 23

Claim 1 shows that N is patched together from smaller networks.
Our aim is to apply the patchwork and compactness property to derive
satisfiability of N. For being able to do this, we additionally need to
know that the smaller networks are complete and satisfiable, and that
they agree on overlapping parts. Before we prove this, we establish
some crucial properties.

(P1) If q, q′ ∈ Hooks with q′ successor of q, then VP (q) ∩ VP (q′) = {q′}.

(P2) If ((q, g) r (q′, g′)) ∈ N(p) then ((repp(q), g) r (repp(q
′), g′)) ∈ N c.

(P1) is obvious by definition of hooks and q-companions. For (P2), let
((q, g) r (q′, g′)) ∈ N(p). Then q, q′ ∈ P (p). Since N(p) ⊆ N, there is a
p′ ∈ Hooks such that q, q′ ∈ P (p′) and

(∗) ((repp′(q), g) r (repp′(q
′), g′)) ∈ N c.

If p = p′, we are done. Thus, let p 6= p′. By Claim 1(b) and (P1),
q, q′ ∈ P (p) ∩ P (p′) implies that q = q′ = p and p is a successor-
hook of p′, or q = q′ = p′ and p′ is a successor-hook of p. W.l.o.g.,
assume that the former is the case. Let tail(q) = a

b
. Since q = p and

p is a hook, we have a 6= b, and thus b is blocked by a in T . By
definition of rep, we have repp′(q) = b and repp(q) = a. Thus, (∗) yields
((b, g) r (b, g′)) ∈ N c. Since b is blocked by a, the blocking condition
yields ((a, g) r (a, g′)) ∈ N c and we are done. This finshes the proof of
Claim 1.

Claim 2. For every p ∈ Hooks, N(p) is finite, complete, and satisfiable.

Proof. Let p ∈ Hooks. Since the completion tree T is finite, so are P (p)
and N(p). Next, we show that N(p) is complete. This involves two
subtasks: showing that (i) for all (q, g), (q′, g′) ∈ VN(p), there is at least
one relation r with ((q, g) r (q′, g′)) ∈ N(p); and (ii) there is at most
one such relation.

For (i), let (q, g), (q′, g′) ∈ VN(p). By (P2), we obtain that (repp(q), g),
(repp(q

′), g′) ∈ VN c . Since N c is complete, there is an r such that
((repp(q), g) r (repp(q

′), g′)) ∈ N c. By definition of N and N(p), we have
((q, g) r (q′, g′)) ∈ N(p). For (ii), assume that ((q, g) r (q′, g′)) ∈ N(p),
for each r ∈ {r1, r2}. Then, (P2) implies ((repp(q), g) ri (repp(q

′), g′)) ∈
N c for each r ∈ {r1, r2}. Thus, completeness of N c implies that r1 = r2

as required.
Finally, we show satisfiability of N(p). By (P2), ((q, g) r (q′, g′)) ∈

N(p) implies ((repp(q), g) r (repp(q
′), g′)) ∈ N c. Thus, satisfiability of

N c, yields satisfiability of N(p).

We are now ready to apply the patchwork and compactness proper-
ties.

jar.tex; 10/08/2006; 18:48; p.23

24 Lutz and Miličić

Claim 3. N is satisfiable.

Proof. First assume that there are no blocked nodes in S. Then, Hooks =
{ root

root
}. By Claim 1(a), we have that N = N(root

root
), and by Claim 2 we

obtain that N is satisfiable. Now assume that there are blocked nodes
in S. Since Va is finite (c.f. Lemma 3), Hooks is a countably infinite set.
Moreover, the “successor” relation on Hooks is easily seen to arrange
Hooks in an infinite tree whose out-degree is bounded by the cardinality
of Va. Therefore, we can fix an enumeration {p0, p1, ...} of Hooks such
that:

− p0 = root

root
,

− if pi is a successor of pj , then i > j.

By Claim 1(a), we have that N =
⋃

i≥0 N(pi). We first show by induc-
tion that, for all k ≥ 0, the network Nk :=

⋃
0≤i≤k N(pi) is satisfiable.

− k = 0: N0 = N(p0) is satisfiable by Claim 2.

− k > 0. We have that Nk = Nk−1 ∪ N(pk). By induction, Nk−1

is satisfiable. Let Nc
k−1 be a completion of Nk−1 and let N′

k =
Nc

k−1 ∪N(pk). There exists a unique pn ∈ Hooks, n < k, such that
pk is a successor of pn. By definition of Nk−1 and Claim 1(b), and
since VN

c
k−1

= VNk−1
, we have that

VN
c
k−1

∩ VN(pk) = VN(pn) ∩ VN(pk).

Moreover, by Claim 2, N(pn) is complete, and thus

Nc
k−1|VN(pn)∩VN(pk)

= N(pn)|VN(pn)∩VN(pk)
.

Finally, Claim 1(c) yields

N(pn)|VN(pn)∩VN(pk)
= N(pk)|VN(pn)∩VN(pk)

.

Summing up, we obtain that the intersection parts of Nc
k−1 and

N(pk) are identical:

Nc
k−1|VN

c
k−1

∩VN(pk)
= Nc

k−1|VN(pn)∩VN(pk)

= N(pn)|VN(pn)∩VN(pk)

= N(pk)|VN(pn)∩VN(pk)

= N(pk)|VN
c
k−1

∩VN(pk)

By Claim 2, we have that N(pk) is finite, complete and satisfiable.
The same holds for Nc

k−1. Thus, the patchwork property of C yields
that N′

k is satisfiable. Since Nk ⊆ N′
k, Nk is satisfiable.

jar.tex; 10/08/2006; 18:48; p.24

Description Logics with Concrete Domains and General TBoxes 25

Now, satisfiability of the networks Nk, k ≥ 0, and the compactness
property of C imply satisfiability of N. This finishes the proof of Claim 3.

We are now ready to define the concrete part of the model I. Since N
is satisfiable, there is an MI ∈ M and a mapping τ : VN → VMI

such
that (x r y) ∈ N implies (τ(x) r τ(y)) ∈ VMI

. Define I = (∆I , ·I , MI)
with ∆I and ·I defined as above, and, additionally:

gI := {(p, τ(p, g)) ∈ ∆I×VMI
| tail(p) =

a

b
and g ∈ feat(a)}, g ∈ NC0,T

cF

Note that, by definition, gI is functional for every g ∈ NcF. In order to
show that I is a model of C0 and T , we require one more claim:

Claim 4. For all s ∈ ∆I and C ∈ sub(C0, T), if tail(s) = a
b

and

C ∈ L(a), then s ∈ CI .

Proof. We prove the claim by structural induction on C. Let s ∈ ∆I ,
tail(s) = a

b
, and C ∈ L(a). In the following, we will implicitly use the

fact that, by construction of Paths, a is not blocked in S. We make a
case distinction according to the topmost operator in C:

1. C is a concept name. By construction of I, we have s ∈ CI .

2. C = ¬D. Since C is in NNF, D is a concept name. Clash-freeness
of S implies D 6∈ L(a). The construction of I implies s 6∈ DI which
yields s ∈ (¬D)I .

3. C = D u E. The completeness of S implies {D, E} ⊆ L(a). The
induction hypothesis yields s ∈ DI and s ∈ EI , therefore s ∈
(D u E)I .

4. C = D t E. The completeness of S implies {D, E} ∩ L(a) 6= ∅. By
induction hypothesis it holds that s ∈ DI or s ∈ EI , and therefore
s ∈ (D t E)I .

5. C = ∃R.D. Since the R∃ rule is not applicable, a has an R-successor
c such that D ∈ L(c). By definition of I, there is a t = s · d

c
∈ ∆I

such that either c = d or c is blocked by d in S. Since L(c) ⊆ L(d)
in both cases, we have that D ∈ L(d). By induction, it holds that
t ∈ DI . By definition of I, we have (s, t) ∈ RI and this implies
s ∈ CI .

6. C = ∀R.D. Let (s, t) ∈ RI . By construction of I, t = s · d
c

such
that c is an R-successor of a. Since R∀ is not applicable, we have
that D ∈ L(c). Since L(c) ⊆ L(d) (as in the previous case), we have
C ∈ L(d), and by induction t ∈ CI . Since this holds independently
of the choice of t, we obtain s ∈ CI .

jar.tex; 10/08/2006; 18:48; p.25

26 Lutz and Miličić

7. C = ∃U1, U2.(r1 ∨ · · · ∨ rk). Since C is in PNF, Ui is either a
concrete feature or of the form Rg, for each i ∈ {1, 2}. We con-
sider only the case U1 = R1g1, U2 = R2g2, as the remaining
cases are similar but easier. Since the R∃c rule is not applicable,
there exists an Rj-successor cj of a and a gj-successor yj of cj for
j = 1, 2 such that (y1 ri y2) ∈ N for some 1 ≤ i ≤ k. Then

((c1, g1) ri (c2, g2)) ∈ N c. Moreover, there is a tj = s ·
dj

cj
∈ ∆I

such that cj = dj or cj is blocked by dj , j = 1, 2. By definition of
RI

j , we have that (s, tj) ∈ RI
j , j = 1, 2. Moreover, since a is not

blocked and c1 and c2 are its successors, there is a p ∈ Hooks such
that t1 and t2 are p-companions and repp(t1) = c1, repp(t2) = c2.
Thus, by definition of N we obtain ((t1, g1) ri (t2, g2)) ∈ N, im-
plying (τ(t1, g1) ri τ(t2, g2)) ∈ MI . Since gI1 (t1) = τ(t1, g1) and
gI2 (t2) = τ(t2, g2), we obtain that s ∈ CI .

8. C = ∀U1, U2.(r1 ∨ · · · ∨ rk). As in the previous case, we will assume
that U1 and U2 are of the form U1 = Rg1, U2 = R2g2. Let t1, t2 be
such that (s, tj) ∈ RI

j and gIj (tj) is defined, j = 1, 2. By definition

of I, we have that tj = s ·
dj

cj
∈ ∆I such that cj is an Rj-successor

of a, j = 1, 2. Moreover, there is a gj-successor yj of cj for j = 1, 2.
Since R∀c is inapplicable, ∀U1, U2.(r1∨· · ·∨rk) ∈ L(a) implies that
(y1 ri y2) ∈ N for some 1 ≤ i ≤ k. Thus, ((c1, g1) r (c2, g2)) ∈ N c.
Moreover, since a is unblocked there is a p ∈ Hooks such that t1
and t2 are p-companions and repp(t1) = c1, repp(t2) = c2. Thus,
by definition of N, we have that ((t1, g1) ri (t2, g2)) ∈ N, which
implies (τ(t1, g1) ri τ(t2, g2)) ∈ MI . Thus, s ∈ CI .

This finishes the proof of Claim 4.

Since C0 ∈ L(root) and root

root
∈ ∆I , Claim 4 implies that I is a

model of C0. Finally, let us show that I is a model of the input TBox
T = {> v CT }. Choose an s ∈ ∆I . Let tail(s) = a

b
. Since S is complete,

Rtbox is not applicable, and thus CT ∈ L(a). By Claim 4 we have
that s ∈ CI

T . Since this holds independtly of the choice of s, we have
CI = ∆I as required.

Lemma 5 (Completeness). If the input concept C0 is satisfiable
w.r.t. the input TBox T , then the algorithm returns satisfiable.

Proof. Let C0 be satisfiable w.r.t. T , I = (∆I , ·I , MI) a common model
of C0 and T , and a0 ∈ ∆I such that a0 ∈ CI

0 . We use I to guide
(the non-deterministic parts of) the algorithm such that it constructs a
complete and clash-free completion system. A completion system S =
(T,N) with T = (Va, Vc, E,L) is called I-compatible if there exist

jar.tex; 10/08/2006; 18:48; p.26

Description Logics with Concrete Domains and General TBoxes 27

mappings π : Va → ∆I and τ : Vc → VMI
(i.e., to the variables used in

MI) such that

(Ca) C ∈ L(a) ⇒ π(a) ∈ CI

(Cb) b is an R-successor of a ⇒ (π(a), π(b)) ∈ RI

(Cc) x is a g-successor of a ⇒ gI(π(a)) = τ(x)

(Cd) (x r y) ∈ N ⇒ (τ(x) r τ(y)) ∈ MI

We first show the following.

Claim 1: If a completion system S is I-compatible and a rule R is
applicable to S, then R can be applied such that an I-compatible
completion system S ′ is obtained.

Proof. Let S = (T,N) be an I-compatible completion system with
T = (Va, Vc, E,L), let π and τ be functions satisfying (Ca) to (Cd), and
let R be a completion rule applicable to S. We make a case distinction
according to the type of R.

Ru The rule is applied to a concept C1 u C2 ∈ L(a). By (Ca), C1 u
C2 ∈ L(a) implies π(a) ∈ (C1 u C2)

I and hence π(a) ∈ CI
1 and

π(a) ∈ CI
2 . Since the rule adds C1 and C2 to L(a), it yields a

completion system that is I-compatible via π and τ .

Rt The rule is applied to C1 t C2 ∈ L(a). C1 t C2 ∈ L(a) implies
π(a) ∈ CI

1 or π(a) ∈ CI
2 . Since the rule adds either C1 or C2 to

L(a), it can be applied such that it yields a completion system
that is I-compatible via π and τ .

R∃ The rule is applied to ∃R.C ∈ L(a). By (Ca), π(a) ∈ (∃R.C)I and
hence there exists a d ∈ ∆I such that (π(a), d) ∈ RI and d ∈ CI .
By definition of R∃ and the “⊕” operation, rule application either
(i) adds a new R-successor b of a and sets L(b) = {C}; or (ii) re-
uses an existing R-successor, renames it to b in T and sets L(b) =
L(b)∪{C}. Extend π by setting π(b) = d. The resulting completion
system is I-compatible via the extended π and the original τ .

R∀ The rule is applied to ∀R.C ∈ L(a) and it adds C to the label L(b)
of an existing R-successor of a. By (Ca), π(a) ∈ (∀R.C)I and by
(Cb), (π(a), π(b)) ∈ RI . Therefore, π(b) ∈ CI and the resulting
completion system is I-compatible via π and τ .

R∃c The rule is applied to a concept ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a).
We assume that U1 = R1g1 and U2 = R2g2. The case where one

jar.tex; 10/08/2006; 18:48; p.27

28 Lutz and Miličić

or both of U1, U2 are only concrete features is similar, but easier.
The rule application generates new abstract nodes b1 and b2 and
concrete nodes x1 and x2 (or re-uses existing ones and renames
them) such that

− bj is an Rj-successor of a and

− xj is a gj-successor of bj for j = 1, 2.

By (Ca), we have π(a) ∈ (∃U1, U2.(r1 ∨ · · · ∨ rk))
I . Thus, there

exist d1, d2 ∈ ∆I , v1, v2 ∈ VMI
and an i with 1 ≤ i ≤ k such that

− (π(a), dj) ∈ RI
j ,

− gIj (dj) = vj for j = 1, 2, and

− (v1 ri v2) ∈ MI .

Thus, the rule can be guided such that it adds (x1 ri x2) to N .
Extend π by setting π(bj) := dj , and extend τ by setting τ(xj) :=
vj for j = 1, 2. It is easily seen that the resulting completion system
is I-compatible via the extended π and τ .

R∀c The rule is applied to an abstract node a with ∀U1, U2.(r1 ∨ · · · ∨
rk) ∈ L(a) such that there are x1, x2 ∈ Vc with xi a Ui-successor
of a, for i = 1, 2. By (Ca), π(a) ∈ (∀U1, U2.(r1 ∨ · · · ∨ rk))

I . By
(Cb) and (Cc), we have (π(a), τ(x1)) ∈ UI

1 and (π(a), τ(x2)) ∈ UI
2 .

By the semantics, it follows that there is an i with 1 ≤ i ≤ k such
that (τ(x1) ri τ(x2)) ∈ MI . The application rule can be guided
such that it adds (x1 ri x2) to N . Thus, the resulting completion
system is I-compatible via π and τ .

Rnet The rule is applied to an abstract node a such that a is poten-
tially blocked by an abstract node b and N (a) is not complete
(the symmetric case is analogous). The rule application guesses a
completion N ′ of N (a), and sets N := N ∪N ′. Define

N ′ := {(x r y) | x is a g-successor of a,

y is a g′-successor of a, and (τ(x) r τ(y)) ∈ MI}.

By definition of N (a), we have VN (a) = VN ′ . By (Cd), we have
N (a) ⊆ N ′. Since MI is complete, N ′ is complete. Finally, τ
witnesses that MI is a model of N ′, and thus N ′ is satisfiable. It
follows that N ′ is a completion of N (a). Apply Rnet such that N ′

is guessed. Then, the resulting completion system is I-compatible
via π and τ .

jar.tex; 10/08/2006; 18:48; p.28

Description Logics with Concrete Domains and General TBoxes 29

Rtbox The rule application adds CT to L(a), for some a ∈ Va. Since I
is a model of T , we have π(a) ∈ CI

T . Thus, the resulting completion
system is I-compatible via π and τ .

We now show that I-compatibility implies clash-freeness.

Claim 2: Every I-compatible completion system is clash-free.

Proof. Let S = (T,N) be an I-compatible completion system with
T = (Va, Vc, E,L). Consider the two kinds of a clash:

− Due to (Ca), a clash of the form {A,¬A} ∈ L(a) contradicts the
semantics.

− Property (Cd) implies that MI is a model of N . Thus, N is
satisfiable.

We can now describe the “guidance” of the tableau algorithm by the
model I: we ensure that, at all times, the considered completion sys-
tems are I-compatible. This obviously holds for the initial completion
system. By Claim 1, we can guide the rule applications such that only
I-compatible completion systems are obtained. By Lemma 3, the algo-
rithm always terminates, hence also when guided in this way. Since, by
Claim 2, we will not find a clash, the algorithm returns satisfiable.

As an immediate consequence of Lemmas 3, 4 and 5, we get the follow-
ing theorem:

Theorem 1. If C is an ω-admissible constraint system, the tableau al-
gorithm decides satisfiability of ALC(C) concepts w.r.t. general TBoxes.

5. Practicability

With Theorem 1, we have achieved the main aim of this paper: pro-
viding a general decidability result for description logics with both
general TBoxes and concrete domains. Our second aim is to identify
an algorithm that is more practicable than the existing approaches
based on automata [24, 20], i.e., that can be implemented such that an
acceptable runtime behaviour is observed on realistic inputs. Since we
have not yet implemented our algorithm,5 an empirical evaluation is
out of reach. In the following, we discuss the practicability on a general
level.

5 This is a non-trivial task since a large number of sophisticated optimization
techniques is required, c.f. [15].

jar.tex; 10/08/2006; 18:48; p.29

30 Lutz and Miličić

Regarding an efficient implementation, the main difficulties of our
algorithm compared with successfully implemented tableau algorithms
such as the ones in [32, 16] are the following:

− Our algorithm requires satisfiability checks of the network N con-
structed as part of the completion system. The problem is that this
check involves the whole network N rather than only small parts of
it. In practice, the constructed completion systems (and associated
networks) are often too large to be considered as a whole.

− The rules R∃c, R∀c, and Rnet introduce additional non-deter-
minism. In implementations, this non-determinism induces back-
tracking.

It is possible that these difficulties can be overcome by developing
appropriate heuristics and optimization techniques. However, there is
also an easy way around them. In the following, we argue that there
is a fragment of our language that still provides interesting expressive
power and in which the implementation difficulties discussed above are
non-existent.

The fragment of ALC(C) that we consider is obtained by making
the following assumptions:

− There is only a single concrete feature g. Note that this is accept-
able with constraint systems such as RCC8 �

2 and Allen � , where g
could be has-extension and has-lifetime, respectively.

− There are no paths of length greater than 2, i.e., Clause 3 is
eliminated from Definition 6. This is necessary since we need to
introduce additional concrete features to establish path normal
form if Clause 3 is present. We believe that paths of length three
or more are only needed in exceptional cases, anyway.

− There exists a unique equality predicate eq in C, i.e., for all models
N ∈ M and all v ∈ VN , we have (v eq v) ∈ N .

Going to this fragment of ALC(C) allows the following simplification of
our tableau algorithm.

1. The non-deterministic Rnet rule can simply be dropped because, for
each abstract node a, the network N (a) is either empty or consists
of a single node that is related to itself via eq. Thus, every potential
blocking situation is an actual blocking situation.

2. We can localize the satisfiability check of the network N as follows.
For a ∈ Va, let N̂ (a) denote the restriction of N to the g-successor

jar.tex; 10/08/2006; 18:48; p.30

Description Logics with Concrete Domains and General TBoxes 31

of a and the g-successors of all abstract successors of a. Instead of
checking the whole network N for satisfiability, we separately check,
for each a ∈ Va, satisfiability of N̂ (a). It can be seen as follows
that this is equivalent to a global check: first, C has the patchwork
property. Second, due to the fact that there is only a single concrete
feature g, the networks N̂ (a) overlap at single nodes only. Due to
the presence of the equality predicate eq, the overlapping part of
two such networks is thus complete. Finally, it is easy to see that the
patchwork property implies a more general version of itself where
only the overlapping part of the two involved networks is complete,
but the networks themselves are not.

Hence, the only difficulty that remains is the non-determinism of the
rules R∃c and R∀c. However, we believe that this non-determinism
is not too difficult to deal with. To see this, observe that the non-
deterministic choices made by these rules have only a very local impact:
they only influence the outcome of the satisfiability check of the relevant
local network N̂ (a). Therefore, it does not seem necessary to implement
a complex backtracking/backjumping machinery. If the concrete do-
main reasoner used for deciding C-satisfiability supports disjunctions,
it is even possible to push the non-determinism out of the tableau
algorithm into the reasoner for C-satisfiability. Roughly, one would need
to allow disjunctions in the constraint network N and pass these on to
the reasoner for C.

6. Conclusion

We have proved decidability of ALC with ω-admissible constraint sys-
tems and general TBoxes. A close inspection of our algorithm shows
that it runs in 2-NExpTime if C-satisfiability is in NP. We conjecture
that, by mixing the techniques from the current paper with those from
[24, 20], it is possible to prove ExpTime-completeness of satisfiability
in ALC(C) provided that satisfiability in C can be decided in Exp-

Time. Various language extensions such as transitive roles and number
restrictions should also be possible in a straightforward way.

We also exhibited the first tableau algorithm for DLs with concrete
domains and general TBoxes in which the concrete domain constructors
are not limited to concrete features. The algorithm has some aspects
that are likely to have a negative impact on practicability unless ad-
dressed by dedicated optimization techniques. However, in Section 5 we
have identified a useful fragment of ALC(C) in which these impairing
aspects of the algorithm can be avoided.

jar.tex; 10/08/2006; 18:48; p.31

32 Lutz and Miličić

While we have proved that ω-admissibility of C is a sufficient condi-
tion for decidability of ALC(C), it is not clear whether it is also a neces-
sary one. We leave this question open, conjecturing that ω-admissibility
is not a necessary condition.

Acknowledgements

The first authorwas supported by the EU funded IST-2005-7603 FET
Project Thinking Ontologies (TONES). The second author was sup-
ported by the DFG Graduiertenkolleg 334.

References

1. Allen, J.: 1983, ‘Maintaining Knowledge about Temporal Intervals’. Commu-
nications of the ACM 26(11).

2. Baader, F. and P. Hanschke: 1991, ‘A Scheme for Integrating Concrete Do-
mains into Concept Languages’. In: Proceedings of the 12th International
Joint Conference on Artificial Intelligence, IJCAI-91. Sydney (Australia), pp.
452–457.

3. Baader, F., I. Horrocks, and U. Sattler: 2003a, ‘Description Logics as Ontology
Languages for the Semantic Web’. In: D. Hutter and W. Stephan (eds.):
Festschrift in honor of Jörg Siekmann.

4. Baader, F., D. L. McGuiness, D. Nardi, and P. Patel-Schneider: 2003b,
The Description Logic Handbook: Theory, implementation and applications.
Cambridge University Press.

5. Balbiani, P. and J.-F. Condotta: 2002, ‘Computational complexity of proposi-
tional linear temporal logics based on qualitative spatial or temporal reasoning’.
In: Frontiers of Combining Systems (FroCoS 2002). pp. 162–176.

6. Bennett, B.: 1997, ‘Modal Logics for Qualitative Spatial Reasoning’. Journal
of the Interest Group in Pure and Applied Logic 4(1).

7. Calvanese, D.: 1996, ‘Reasoning with Inclusion Axioms in Description Log-
ics: Algorithms and Complexity’. In: Proceedings of the Twelfth European
Conference on Artificial Intelligence (ECAI-96). pp. 303–307.

8. Calvanese, D., M. Lenzerini, and D. Nardi: 1998, ‘Description Logics for Con-
ceptual Data Modeling’. In: J. Chomicki and G. Saake (eds.): Logics for
Databases and Information Systems. Kluwer Academic Publisher, pp. 229–263.

9. Egenhofer, M. J. and R. Franzosa: 1991, ‘Point-set topological spatial re-
lations.’. International Journal of Geographical Information Systems 5(2),
161–174.

10. Frank, A.: 1996, ‘Qualitative Spatial Reasoning: Cardinal Directions as an
Example’. International Journal of Geographical Information Systems 10(3),
269–290.

11. Gabbay, D. M., A. Kurucz, F. Wolter, and M. Zakharyaschev: 2003, Many-
Dimensional Modal Logics: Theory and Applications, No. 148 in Studies in
Logic and the Foundations of Mathematics. Elsevier.

12. Haarslev, V. and R. Möller: 2001, ‘RACER system description’. In: R. Goré,
A. Leitsch, and T. Nipkow (eds.): Proceedings of the First International Joint
Conference on Automated Reasoning (IJCAR’01). pp. 701–705.

jar.tex; 10/08/2006; 18:48; p.32

Description Logics with Concrete Domains and General TBoxes 33

13. Haarslev, V., R. Möller, and M. Wessel: 2001, ‘The Description Logic
ALCNHR+ Extended with Concrete Domains: A Practically Motivated Ap-
proach’. In: R. Goré, A. Leitsch, and T. Nipkow (eds.): Proceedings of the First
International Joint Conference on Automated Reasoning IJCAR’01. pp. 29–44.

14. Horrocks, I.: 1998, ‘Using an Expressive Description Logic: FaCT or Fiction?’.
In: Proceedings of the Sixth International Conference on the Principles of
Knowledge Representation and Reasoning (KR98). pp. 636–647.

15. Horrocks, I. and P. F. Patel-Schneider: 1999, ‘Optimising Description Logic
Subsumption’. Journal of Logic and Computation 9(3), 267–293.

16. Horrocks, I. and U. Sattler: 1999, ‘A Description Logic with Transitive and
Inverse Roles and Role Hierarchies’. Journal of Logic and Computation 9(3).

17. Horrocks, I. and U. Sattler: 2001, ‘Ontology Reasoning in the SHOQ(D) De-
scription Logic’. In: B. Nebel (ed.): Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI’01). pp. 199–204.

18. Horrocks, I., U. Sattler, and S. Tobies: 1999, ‘Practical Reasoning for Ex-
pressive Description Logics’. In: H. Ganzinger, D. McAllester, and A.
Voronkov (eds.): Proceedings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR’99). pp. 161–180.

19. Lutz, C.: 1999, ‘Complexity of Terminological Reasoning Revisited’. In: H.
Ganzinger, D. McAllester, and A. Voronkov (eds.): Proceedings of the 6th In-
ternational Conference on Logic for Programming and Automated Reasoning
(LPAR’99). pp. 181–200.

20. Lutz, C.: 2002a, ‘Adding Numbers to the SHIQ Description Logic—First Re-
sults’. In: Proceedings of the Eighth International Conference on Principles of
Knowledge Representation and Reasoning (KR2002). pp. 191–202.

21. Lutz, C.: 2002b, ‘PSpace Reasoning with the Description Logic ALCF(D)’.
Logic Journal of the IGPL 10(5), 535–568.

22. Lutz, C.: 2002c, ‘Reasoning about Entity Relationship Diagrams with Complex
Attribute Dependencies’. In: I. Horrocks and S. Tessaris (eds.): Proceedings of
the International Workshop in Description Logics 2002 (DL2002). pp. 185–194.

23. Lutz, C.: 2003, ‘Description Logics with Concrete Domains—A Survey’. In:
Advances in Modal Logics Volume 4. pp. 265–296.

24. Lutz, C.: 2004a, ‘Combining Interval-based Temporal Reasoning with General
TBoxes’. Artificial Intelligence 152(2), 235–274.

25. Lutz, C.: 2004b, ‘NExpTime-complete Description Logics with Concrete
Domains’. ACM Transactions on Computational Logic 5(4), 669–705.

26. Lutz, C. and M. Milicic: 2005, ‘A Tableau Algorithm for Description Logics
with Concrete Domains and GCIs’. In: Proceedings of the 14th Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related
Methods TABLEAUX 2005. Koblenz, Germany, pp. 201–216.

27. Lutz, C. and F. Wolter: 2004, ‘Modal Logics of Topological Relations’. In:
Proceedings of Advances in Modal Logics 2004.

28. Nebel, B. and H.-J. Bürckert: 1995, ‘Reasoning about Temporal Relations: A
Maximal Tractable Subclass of Allen’s Interval Algebra’. Journal of the ACM
42(1), 43–66.

29. Randell, D. A., Z. Cui, and A. G. Cohn: 1992, ‘A spatial logic based on regions
and connection’. In: B. Nebel, C. Rich, and W. Swartout (eds.): Proceedings of
the Third International Conference on Principles of Knowledge Representation
and Reasoning (KR’92). pp. 165–176.

jar.tex; 10/08/2006; 18:48; p.33

34 Lutz and Miličić

30. Renz, J. and B. Nebel: 1999, ‘On the Complexity of Qualitative Spatial Rea-
soning: A Maximal Tractable Fragment of the Region Connection Calculus’.
Artificial Intelligence 108(1–2), 69–123.

31. Russell, S. J. and P. Norvig: 1995, Artificial Intelligence: A Modern Approach.
Prentice Hall.

32. Schmidt-Schauß, M. and G. Smolka: 1991, ‘Attributive concept descriptions
with complements’. Artificial Intelligence 48(1), 1–26.

33. Vilain, M. and H. Kautz: 1986, ‘Constraint Propagation Algorithms for Tem-
poral Reasoning’. In: National Conference on Artificial Intelligence of the
American Association for AI (AAAI 86). pp. 377–382.

34. Vilain, M., H. Kautz, and P. van Beek: 1990, ‘Constraint propagation algo-
rithms for temporal reasoning: a revised report’. In: Readings in qualitative
reasoning about physical systems. San Francisco, CA, USA: Morgan Kaufmann,
pp. 373–381.

jar.tex; 10/08/2006; 18:48; p.34

Description Logics with Concrete Domains and General TBoxes 35

Appendix

A. Properties of RCC8

We show that RCC8 �
2 has the patchwork property and the compactness

property. To this end, we consider a different variant of the constraint
system RCC8 �

2 . To introduce it, we need a couple of definitions. A fork
F is a structure 〈WF , RF , πF 〉, where

− WF is a set {bF , rF , `F } of cardinality three,

− RF is the reflexive closure of {(bF , rF), (bF , `F)}, and

− πF : Var → 2WF is a valuation such that, for each x ∈ Var, we have

bF ∈ πF (x) iff `F ∈ πF (x) or rF ∈ πF (x).

A fork model M is a (finite or infinite) disjoint union of forks F0, F1,
We write WM for

⋃
i≥0 WFi

, RM for
⋃

i≥0 RFi
, and πM (x) for

⋃
i≥0 πFi

(x).
We may interpret the RCC8 relations on a fork model M by associating
a topological space TM with M : define an interior operator IM by
setting, for all X ⊆ WM ,

IMX := {x ∈
⋃

i≥0

WM | ∀y (xRMy → y ∈ X)}

(and thus CMX = {x ∈ WM | ∃y (xRMy ∧ y ∈ X)}). Let RSM denote
the set of non-empty regular closed subsets of WM . We now define the
constraint system

RCC8Fork := 〈RCC8, MFork〉

by setting MFork := {NM | M a fork model}, where NM is defined by
fixing a variable vX ∈ Var for every X ∈ RSM and setting

NM := {(vX r vX′) | r ∈ RCC8, X, X ′ ∈ RSM , and (X, X ′) ∈ rTM }.

It was shown by Renz and Nebel that satisfiability of finite constraint
networks in RCC8 �

2 coincides with satisfiability in RCC8Fork [30]. This
was extended to infinite networks in [27]:

Theorem 2. An RCC8-network is satisfiable in RCC8 �
2 iff it is satis-

fiable in RCC8Fork.

Due to Theorem 2, it suffices to prove the patchwork property and
compactness for RCC8Fork. This is what we do in the following. Our
proof of the patchwork property is based on a result of Gabbay et

jar.tex; 10/08/2006; 18:48; p.35

36 Lutz and Miličić

al. [11]. To formulate it, we need to introduce the standard translation
[6, 30] of RCC8-networks to the modal logic S4u, i.e., Lewis’ (uni-modal)
S4 enriched with the universal modality. We refrain from giving the
syntax and semantics of S4u and refer, e.g., to [11] for more information.
Note, however, that formulas of S4u can be interpreted in fork models.

We use I to denote the S4 box operator, 2u to denote the universal
box, and write 3uϕ for ¬2u¬ϕ as usual. Given an RCC8-constraint
(x r y), we define a corresponding S4u-formula (x r y)./ as follows:

(x eq y)./ = 2u(x ↔ y)

(x dc y)./ = 2u(¬x ∨ ¬y)

(x ec y)./ = 3u(x ∧ y) ∧ 2u(¬Ix ∨ ¬Iy)

(x po y)./ = 3u(Ix ∧ Iy) ∧ 3u(x ∧ ¬y) ∧ 3u(¬x ∧ y)

(x tpp y)./ = 2u(x → y) ∧ 3u(x ∧ ¬Iy) ∧ 3u(¬x ∧ y)

(x ntpp y)./ = 2u(x → Iy) ∧ 3u(¬x ∧ y)

Constraints (x tppi y) and (x ntppi y) are converted into (y tpp x) and
(y ntpp x), respectively, and then translated as above. Observe that
variables of the network are translated into propositional variables of
S4u. For every RCC8-constraint network N , we define a corresponding
set of S4u formulas N./ by setting N./ := {(x r y)./ | (x r y) ∈ N}.
The most important property of the translation ·./ is the following, as
established in [30]:

Theorem 3. Let N be a finite RCC8-network. Then N is satisfiable in
RCC8Fork iff the set of S4u formulas N./ is satisfiable in a fork model.

For a constraint (x r y), we use (x r y)∀ to denote the formula ob-
tained from (x r y)./ by dropping all conjuncts starting with 3u (as-
suming that (x r y)∀ is the constant true if all conjuncts are dropped),
and likewise for (x r y)∃ and 2u. For networks, the notions N∀ and N∃

are defined in the obvious way.
For what follows, it will be important to identify a particular class

of forks induced by a constraint network. Intuitively, this class of forks
can be viewed as a canonical model for the inducing network, if this
network is satisfiable. For N an RCC8-network, we set

ForkN := {F a fork | F satisfies N∀}.

We say that two forks F and F ′ are V -equivalent, for V a set of vari-
ables, when for all x ∈ V , we have that (i) rF ∈ πF (x) iff rF ′ ∈ πF ′(x)
and (ii) `F ∈ πF (x) iff `F ′ ∈ πF ′(x) (recall that by definition of forks,
the value of bF is determined by those of rF and `F). The following
theorem forms the basis for our proof that RCC8Fork has the patchwork

jar.tex; 10/08/2006; 18:48; p.36

Description Logics with Concrete Domains and General TBoxes 37

property. It is a reformulation of Theorem 16.17 in [11]. For r ∈ RCC8,
we use Inv(r) to denote the inverse of the relation r, e.g. Inv(po) = po.

Theorem 4 (Gabbay et al.). Let N be a finite, complete, satisfiable
RCC8-network, x /∈ VN , and

N ′ = N ∪ {(x ry y), (y Inv(ry) x) | y ∈ VN}

for some family of relations (ry)y∈VN
, such that N ′ is satisfiable. Then,

for each F ∈ ForkN , there exists an F ′ ∈ ForkN ′ such that F and F ′

are VN -equivalent.

The following corollary is easily proved by induction on the cardi-
nality of VM \ VN .

Corollary 1. Let N and M be two finite complete satisfiable RCC8-
networks, such that N ⊆ M . Then, for each F ∈ ForkN , there exists an
F ′ ∈ ForkM such that F and F ′ are VN -equivalent.

We may now establish the patchwork property.

Lemma 6. RCC8 �
2 has the patchwork property.

Proof. By Theorem 2, it suffices to show that RCC8Fork has the patch-
work property. Let N and M be finite and complete RCC8-networks
that are satisfiable in RCC8Fork and whose intersection parts IN,M and
IM,N (as defined in Definition 3) are identical. We have to prove that
N ∪M is also satisfiable in RCC8Fork. By Theorem 3, it suffices to show
that (N ∪M)./ is satisfiable in a fork model. We show that a satisfying
model is provided by FN,M := ForkN ∩ ForkM . We distinguish between
the universal and existential part of (N ∪ M)./.

(i) FN,M satisfies (N ∪ M)∀ = N∀ ∪ M∀. It suffices to show that
every F ∈ FN,M satisfies N∀ and M∀. The former is an immediate
consequence of FN,M ⊆ ForkN and the definition of ForkN . The
argument for the latter is analogous.

(ii) FN,M satisfies (N∪M)∃ = N∃∪M∃. To show this, it is sufficient
to show that (a) for every F ∈ ForkN , there is an F ′ ∈ FM,N which
is VN -equivalent to F and (b) for every F ∈ ForkM , there is an
F ′ ∈ FM,N which is VM -equivalent to F . Then, since ForkN satisfies
N./, all 3uϕ ∈ N∃ will be satisfied by FM,N , and likewise for M .
We only show (a) as (b) is analogous. For brevity, let I denote IN,M

(=IM,N). Take an F ∈ ForkN . Clearly, since I ⊆ N , we have that
F ∈ ForkI . Moreover, I is finite, complete, and satisfiable since N
and M are. Thus, by Corollary 1 there exists an F ′ ∈ ForkM that

jar.tex; 10/08/2006; 18:48; p.37

38 Lutz and Miličić

is VI -equivalent to F . Now define a fork F ′′ = (WF ′′ , RF ′′ , πF ′′) as
follows:

πF ′′(x) :=

{
πF (x) if x ∈ VN

πF ′(x) otherwise

It is not difficult to see that F ′′ is VN -equivalent to F and VM -
equivalent to F ′. Since VN is clearly closed under VN -equivalence
(and likewise for VM), this yields F ′′ ∈ ForkN ∩ ForkM = FM,N .

It remains to treat compactness.

Lemma 7. RCC8 �
2 has the compactness property.

Proof. It is easily seen that satisfiability of an infinite RCC8-network N
implies satisfiability of N |V , for every finite V ⊆ VN . To show the con-
verse, we give a satisfiability preserving translation of RCC8-networks
N to a set Γ(N) of first-order sentences in the following signature: a
binary predicate R representing the partial order in fork frames and
unary predicates (Px)x∈Var for variables. We then use compactness of
first-order logic to deduce that RCC8Fork has the compactness property.
By Theorem 2, it follows that RCC8 �

2 has the compactness property.
Let N be a (possibly infinite) RCC8-network. The set of first-order
sentences Γ(N) consists of the following:

− a formula stating that R is a disjoint union of forks:

∀w∃x, y, z(xRx ∧ yRy ∧ zRz ∧ xRy ∧ xRz∧
∀u(xRu → (u = x ∨ u = y ∨ u = z))∧
∀u(yRu → u = y)∧
∀u(zRu → u = z)∧
∀u(uRx → u = x)∧
∀u(uRy → (u = x ∨ u = y))∧
∀u(uRz → (u = x ∨ u = z))∧
x 6= y ∧ x 6= z ∧ y 6= z∧
(w = x ∨ w = y ∨ w = z))

− to ensure the restriction that is imposed on valuations of fork
models, for each unary predicate P , we add the following formula:

∀x(root(x) → (P (x) ↔ ∃y(xRy ∧ x 6= y ∧ P (y))))

where root(x) := ∀y(yRx → x = y) expresses that x is the root of
a fork.

jar.tex; 10/08/2006; 18:48; p.38

Description Logics with Concrete Domains and General TBoxes 39

− the translation of each constraint in N . We only treat the case
(x ec y) explicitly:

∃z(Px(z) ∧ Py(z)) ∧ ¬∃z(Intx(z) ∧ Inty(z))

where Intx(z) := Px(z)∧ ∀z′(zRz′ → Py(z
′)) describes the interior

points of Px (to see this, consider the way in which fork frames
induce topologies). The other cases are easily obtained by referring
to the semantics of the RCC8 relations.

Now let N be an infinite RCC8-network such that N |V is satisfiable in
RCC8Fork for every finite V ⊆ VN . We have to show that N is satisfiable.
Let Ψ be a finite subset of Γ(N), and let N ′ be the fragment of N
that contains precisely those constraints whose translation is in Ψ. By
Theorem 3, N ′ has a model that is the topology of a fork model M .
Define a first-order structure M with domain WM by setting RM := RM

and PM
x := πM (x) for all x ∈ V . It is readily checked that M is a model

of Ψ. Thus, every finite subset of Γ(N) is satisfiable and compactness of
first-oder logic implies that Γ(N) is satisfiable. Take a model N of Γ(N)
with domain A. Clearly, M ′ = (A, RN, {x 7→ PN

x }) is a fork model. It
is readily checked that the topology TM ′ is a model of N .

B. Properties of Allen

We prove that the constraint system Allen � has both the patchwork
property and the compactness property.

Lemma 8. Allen � has the patchwork property.

Proof. Let N and M be finite complete Allen-networks that are satis-
fiable in Allen � and whose intersection parts IN,M and IM,N (defined
as in Definition 3) are identical. We have to prove that N ∪ M is
also satisfiable. Satisfiability of N means that there exists a mapping
τN : VN → Int � such that (x r y) ∈ N implies (τN (x), τN (y)) ∈ r

�
, and

an analogous mapping τM for M . Define

SN := {(x, L, r) | x ∈ VIN,M
and τN (v) = [r, r′] for some r′ ∈

�
}∪

{(x, R, r) | x ∈ VIN,M
and τN (v) = [r′, r] for some r′ ∈

�
}

Now arrange the elements of SN in a sequence (v0, D0, r0), . . . , (vk, Dk, rk)
such that i < j implies ri ≤ rj . Define a corresponding sequence
(v0, D0, r

′
0), . . . , (vk, Dk, r

′
k) for M by setting, for i ≤ k,

r′i :=

{
r if Di = L and τM (xi) = (r, r′) for some r′ ∈

�

r if Di = R and τM (xi) = (r′, r) for some r′ ∈
�

.

jar.tex; 10/08/2006; 18:48; p.39

40 Lutz and Miličić

Since IN,M = IM,N , we have that i < j implies r′i ≤ r′j . Fix, for

each i < k, a bijection πi from the interval [r′i, r
′
i+1) to the interval

[ri, ri+1) that is an isomorphism w.r.t. “<”. Moreover, fix additional
isomorphisms π∗ : (−∞, r′0) to (−∞, r0) and π† : [r′k,∞) to [rk,∞).
For r ∈

�
, set

π(r) :=

π∗(r) if r < r′0
πi(r) if ri ≤ r < r′i+1

π†(r) if r ≥ rk

Now define a mapping τ ′
M : VM → Int � by setting τ ′

M (x) := [π(r), π(r′)]
if τM (x) = [r, r′]. It is readily checked that τN and τ ′

M agree on VIN,M
,

and that τN ∪ τ ′
M witnesses satisfaction of N ∪ M in Allen � .

Lemma 9. Allen � has the compactness property.

Proof. As in the case of RCC8, it is easily seen that satisfiability of an
infinite Allen-network N implies satisfiability of N |V , for every finite
V ⊆ VN . To show the converse, we give a satisfiability preserving
translation of Allen-networks N to a set Γ(N) of first-order sentences in
the following signature: a binary predicate < representing the ordering
on

�
, and constants (bx)x∈Var and (ex)x∈Var denoting the begin and end

points of intervals. Let N be a (possibly infinite) constraint network.
The set of first-order sentences Γ(N) consists of the following:

− one sentence for each constraint in N . The translation is easily
read off from the definition of the Allen relations. E.g., (x m y)
translates to ex = by;

− for each x ∈ VN , a sentence ensuring the correct ordering of
endpoints: bx < ex.

It is easily seen that each finite or infinite Allen-network N is satisfiable
in Allen � iff Γ(N) is satisfiable in a structure (

�
, <, P M

1 , PM
2 , . . .). Thus,

compactness of first-order logic on such structures implies that Allen �
has the compactness property.

jar.tex; 10/08/2006; 18:48; p.40

