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Abstract. In a series of previous work, we have presented how attribute
exploration can be used in the bottom-up construction of DL knowledge
bases to compute a concept lattice that is isomorphic to the subsumption
hierarchy of all conjunctions of concept names occurring in a knowledge
base, and the negations of these concept names. This work is a con-
tinuation in the line of the previous work, that makes a step towards
more efficient computation of the mentioned hierarchy. Its specific ac-
complishment is reducing the number of questions asked to the expert
and the number of objects produced during the computation of this hier-
archy, thus speeding up the computation. Despite its simple nature, the
approach speeds up the computation of this hierarchy drastically.

1 Introduction

Formal Concept Analysis (FCA) [17] is a field of applied mathematics based on a
lattice-theoretic formalization of the notions of concept and conceptual hierarchy.
It thereby facilitates mathematical reasoning for conceptual data analysis and
knowledge processing. On the other hand, Description Logics (DL) [4] are a class
of logic-based knowledge representation formalisms that are used to represent the
knowledge of an application domain in a structured and formally well-understood
way. Although both aim to represent knowledge of an application domain and
make reasoning using this knowledge, they follow different methodologies.

In FCA, one starts with a formal context, which in its simplest form is a
way of specifying which attributes are satisfied by which objects. A formal con-
cept is a pair consisting of an object set called the extent and an attribute set
called the intent of the concept. The objects in the extent of a formal context
have precisely the attributes in the intent, and the attributes in the intent are
satisfied by precisely the objects in the extent. Once all formal concepts of a
formal context are obtained, one orders them w.r.t. the inclusion of their extents
(equivalently, inverse inclusion of their intents) and uses the resulting complete
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lattice, called the concept lattice, for querying the knowledge. In DL, the knowl-
edge of an application domain is captured by first defining relevant concepts of
the application domain using unary predicates called atomic concepts (corre-
sponding to attributes in FCA language), binary predicates called atomic roles,
and logical constructors of the particular DL language in use, called concept
constructors. Then in a second step, these defined concepts are used to describe
properties of objects and the roles are used to describe relations between objects.
In DLs, there is an obvious distinction between the intensional and the exten-
sional part of knowledge. In FCA, the intensional knowledge is obtained from
the extensional part of the knowledge. Furthermore, DLs usually provide a rich
language to define concepts, whereas in FCA one can only form conjunctions of
attributes. Nevertheless, there have been several efforts [22–24, 27] to use ideas
and techniques from one field in the other field.

In this work, we talk about using an FCA tool, attribute exploration [14, 17],
in the DL domain. Traditionally, DL knowledge bases are built in a top-down
manner. In order to support the knowledge engineer in construction and mainte-
nance of knowledge bases, and at the same time to allow him to re-use concepts
defined in an existing background knowledge base, a new bottom-up approach [5,
6] was introduced. The approach needs to use subsumption relationships between
conjunctions of concept names occurring in the background knowledge base, and
negations of these concept names. In a series of previous papers [9–12], we have
presented how attribute exploration can be used in the bottom-up construction
of DL knowledge bases to compute a concept lattice that is isomorphic to the
subsumption hierarchy mentioned above. This work is a continuation in the line
of the previous work, which makes a step towards more efficient computation of
the hierarchy. Its specific accomplishment is reducing the number of questions
asked to the expert and the number of objects produced during the computation
of this hierarchy, thus speeding up the computation. The main idea is making
use of the special context considered here: the attributes are dichotomic. We will
take this fact into account while producing counterexamples during attribute ex-
ploration. Despite its simple nature, the idea speeds up the computation of this
hierarchy drastically. We support our argument in favour of this approach with
both theoretical and experimental results.

2 Description Logics

In DL, the knowledge of an application domain is captured by first defining rele-
vant concepts of this domain. For defining concepts, one starts with a set NC of
concept names (unary predicates), a set NR of role names (binary predicates),
and builds complex concept descriptions out of them by using the concept con-
structors provided by the particular DL language being used. As an example,
suppose we want to create a small knowledge base on the types of guitars:

Guitar ≡ MusicalInstrument u ∃has-part.String



Table 1. Syntax and semantics of concept descriptions and definitions.

Name of constructor Syntax Semantics ALC ALE
top-concept > ∆I x x

bottom-concept ⊥ ∅ x x

negation ¬C ∆I \ CI x

atomic negation ¬A ∆I \AI x x

conjunction C uD CI ∩DI x x

disjunction C tD CI ∪DI x

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI} x x

existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x

concept definition A ≡ C AI = CI x x

AcousticGuitar ≡ Guitar u ∃has-part.Resonator

ElectricGuitar ≡ Guitar u ¬∃has-part.Resonator u ∃has-part.Pickup

In the first line, we define a guitar as a musical instrument, which has a part
that is a string. Using this newly defined concept, in the second line we define
an acoustic guitar as a guitar, which has a part that is a resonator. Finally in
the third line, we define an electric guitar as a guitar which does not have a
resonator part, but has a part that is a pickup.

DL languages are distinguished based on the concept constructors they allow
for. In this paper, we consider the language ALC and its sub-language ALE ,
whose constructors are shown in Table 1. In the table, r stands for a role name,
A stands for a concept name, and C, D stand for arbitrary concept descriptions.
As seen in the last row of the table, assigning a name to a complex concept
description is called a concept definition. The concept names occurring on the
left-hand side of a concept definition are called defined concepts and the others
are called primitive concepts. Again, as we see in the table, ALE allows for
negation of concept names only, whereas ALC allows for negation of arbitrary
concept descriptions as well as concept names. We call a finite set of concept
definitions a TBox iff it is acyclic, that is, no concept definition refers directly
or indirectly to the name it defines, and unambiguous which means that each
name has at most one definition.

The semantics of concept expressions is given in terms of an interpretation
I = (∆I , ·I), where ∆I is the domain and ·I is the interpretation function of
I. The domain ∆I is a non-empty set and the interpretation function ·I is a
function which maps each concept name A ∈ NC to a set AI ⊆ ∆I and each role
name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . The semantics of arbitrary
concept descriptions is defined inductively as seen in the third column of the
table. An interpretation I of a TBox T is a model of T , iff it satisfies all concept
definitions in T , i.e. AI = CI holds for all A ≡ C in T .

Once we get a description of an application domain, we can make infer-
ences using this knowledge. One of the most important traditional inference



services provided by DL systems is subsumption, which is computing the sub-
concept/superconcept relationships between concept descriptions. We say that
the concept description C2 subsumes the concept description C1 w.r.t. the TBox
T (written C1 vT C2) iff CI1 ⊆ CI2 for all models I of T . The problem of check-
ing subsumption is extensively investigated in the literature [25, 1, 7, 8]. Besides
subsumption, in this work we are interested in a non-standard inference [20] used
in bottom-up construction of DL knowledge bases.

In bottom-up approach, instead of directly defining a new concept, the knowl-
edge engineer introduces several typical examples as objects, which are then au-
tomatically generalized into a concept description by the system. The task of
computing such a concept description can be split into two subtasks: computing
the most specific concepts of the given objects, and then computing the least
common subsumer of these concepts. The most specific concept (msc) of an ob-
ject o is the most specific concept description C expressible in the given DL
language that has o as an instance. The least common subsumer (lcs) of concept
descriptions C1, . . . , Cn is the most specific concept description C expressible in
the given DL language that subsumes C1, . . . , Cn. The problem of computing
the lcs and the msc has already been investigated in the literature [3, 5, 6].

For a different setting, the non-standard inference least common subsumer
w.r.t. a background terminology, was recently introduced in [11, 12]. Consider
a scenario, where the knowledge engineer wants to construct a knowledge base
in the bottom-up fashion, but he wants to re-use concepts from an existing
background terminology T , defined in an expressive DL L2 where computing
lcs is computationally very costly, or even meaningless due to the disjunction
operator in the language. In order to overcome this problem, when defining new
concepts he uses only a sub-language L1 of L2, for which computing the lcs
makes sense, and is feasible. However, his L1-concept descriptions are allowed
to contain concept names defined in the background terminology T , which is
written in the more expressive DL L2. When computing subsumption between
such newly defined concepts, this is done w.r.t. T , using a subsumption algorithm
for the expressive DL L2. When computing the lcs of such concepts, we employ
an extended version of the lcs algorithm for L1, which can take into account
the subsumption relationships between conjunctions of concepts defined in T .
Let L1, L2 be DLs such that L1 is a sub-language of L2, that is L1 allows
only a subset of the constructors that L2 allows. For a given L2-TBox T , we
call L1(T )-concept descriptions those L1-concept descriptions that may contain
concepts defined in T .

Definition 1 (lcs w.r.t. a background terminology). Given an L2-TBox
T and a collection C1, . . . , Cn of L1(T )-concept descriptions, the least common
subsumer (lcs) of C1, . . . , Cn w.r.t. T is the most specific L1(T )-concept descrip-
tion C that subsumes C1, . . . , Cn w.r.t. T , i.e., it is an L1(T )-concept description
D such that

1. Ci vT D for i = 1, . . . , n; (D is a common subsumer)
2. if E is an L1(T )-concept description satisfying

Ci vT E for i = 1, . . . , n, then D vT E. (D is least)



Let us demonstrate the setting by a trivial example. Assume we have a toy ALC-
TBox defining the concept of bass guitar as the union of the concepts electric
bass guitar and acoustic bass guitar:

T := {BassGuitar ≡ AcousticBassGuitar t ElectricBassGuitar}

If we want to compute the lcs of ALE(T )-concepts AcousticBassGuitar and Elec-
tricBassGuitar without taking into account the TBox T , we get the top-concept
> as the result, which does not help much as the lcs, since it subsumes every-
thing. On the other hand, if we were allowed to use the name BassGuitar defined
in T , the lcs w.r.t. T would obviously be BassGuitar, which is more specific than
>.

Depending on the languages L1 and L2, the least common subsumer of
L1(T )-concept descriptions w.r.t an L2-TBox T may exist or not. In [10], the
DLs EL and ALC were considered as L1 and L2 respectively, and it was shown
that the lcs of EL(T )-concept descriptions w.r.t an ALC-TBox T always exists
and can effectively be computed. In [11], the result was extended to the case
where L1 is ALE , and it was shown that the lcs of ALE(T )-concept descrip-
tions w.r.t. an ALC-TBox T always exists, and can effectively be computed.
Unfortunately, these theoretical results are not useful in practice, due to the
high computational complexity of the brute-force lcs algorithm following from
these results. In fact, in the bottom-up construction of knowledge bases, it is not
really necessary to take the least common subsumer. It can even result in over-
fitting. Instead of taking the least one, a common subsumer of the given concept
descriptions, which is not too general, can also be used. Such “good” common
subsumers (gcs) w.r.t. a background terminology were introduced in [10, 11] as
a practical alternative to the lcs w.r.t. a background terminology. In order to
compute a good common subsumer of ALE(T )-concepts, the gcs algorithm (see
[11] for the details of the algorithm) needs to incorporate knowledge from the
subsumption hierarchy of the conjunctions of concept names occurring in the
ALC-TBox T , and the negations of these concept names. Let us demonstrate
the use of this hierarchy by extending our small example on the types of guitars.

BassInstrument ≡ MusicalInstrument u ∀produces-tone.Bass

AcousticBassGuitar ≡ AcousticGuitar u ∀produces-tone.Bass

ElectricBassGuitar ≡ ElectricGuitar u ∀produces-tone.Bass

BassGuitar ≡ AcousticBassGuitar t ElectricBassGuitar

Assume that we have the above concept definitions in our ALC-TBox T , in
addition to the ones given in the previous example, and we want to compute the
lcs of the ALE(T )-concept descriptions C, D defined as follows:

C ≡ ∃plays.(ElectricGuitar u BassInstrument)
D ≡ ∃plays.(AcousticGuitar u BassInstrument)



If we ignore the TBox T by treating all concept names as primitive, and just
compute the lcs of C,D, we obtain the concept description ∃plays.BassInstrument
which is a common subsumer of C and D, but a too general one. However, if
we take into account the TBox T and consider the fact that both descriptions
ElectricGuitaruBassInstrument and AcousticGuitaruBassInstrument are subsumed
by the concept BassGuitar, then we obtain the common subsumer

∃plays.BassGuitar

which is more specific than ∃plays.BassInstrument. In this particular example,
the result coincides with the least common subsumer, but as stated before it
need not be the case in general.

As the example shows, knowing about the subsumption hierarchy of all con-
junctions of concept names occurring in a given TBox, and the negations of these
concept names helps us to compute more specific common subsumers of some
given ALE(T ) concept descriptions. This motivates our interest in computing
this hierarchy. Since the background terminology is fixed in our application, it
makes sense to precompute it. The point is to compute this hierarchy, whose size
is exponential in the number of the concept names, efficiently without having to
check subsumption relationships between each pair of conjunctions of concept
names and negated concept names. This is the point where FCA comes into play.

3 Hierarchy of conjunctions of DL concept names and
their negations

As mentioned in Section 2, the gcs algorithm needs to make use of the hierarchy
of all conjunctions of the concept names occurring in the background terminology
and the negations of these concept names. Since the background terminology is
fixed in our application scenario, it makes sense to precompute this information.
Obviously, a naive approach that tests the subsumption relationships between
each pair of conjunctions is too expensive for TBoxes of realistic sizes. Instead,
we can compute it more efficiently by defining a formal context whose concept
lattice is going to be isomorphic to this hierarchy and exploring this context
with the help of an expert, which in this case is a subsumption algorithm.

For the hierarchy of conjunctions of concept names only (i.e. without negated
concept names), such a formal context, called the semantic context, was first
defined in [2]. The semantic context needs an expert that is able to come up with
counter-models in case an implication question does not hold. The problem with
this approach is that the standard subsumption algorithms and their optimized
implementations like FaCT [19] and Racer [18] do not produce such counter-
models in case a subsumption does not hold. To overcome this problem, a new
formal context, called the syntactic context, for which a standard subsumption
algorithm can act as an expert, was defined in [9] for the same purpose. Let
{A1, . . . , An} be the set of concept names occurring in a TBox T defined in the
language L.



Definition 2. Then the syntactic context is defined as follows.
KT = (G,M, I) such that:

G := {C | C is a concept description in L},
M := {A1, . . . , An},
I := {(C,Ai) | C vT Ai, 1 ≤ i ≤ n}

The following three results were shown in [9]:

Lemma 1. Let B1, B2 ⊆ M and let
d
Bj (j = 1, 2) denote the conjunction

Ar1 u . . . u Arm for a non-empty Bj = {Ar1 , . . . , Arm}. Then the implication
B1 → B2 holds in KT iff

d
B1 vT

d
B2.

Lemma 2. Any decision procedure for subsumption w.r.t. TBoxes in L func-
tions as an expert for the context KT .

Theorem 1. The concept lattice of the context KT is isomorphic to the sub-
sumption hierarchy of all conjunctions of the concept names occurring in T .

Lemma 1 states that implication questions in KT correspond to subsumption
tests w.r.t. T , and Lemma 2 states that a standard subsumption algorithm can
be used to answer these questions. Finally, Theorem 1 states that context KT
serves our purpose of computing the compact representation of a hierarchy that
is isomorphic to the one we are interested in. During the exploration of KT ,
whenever an implication question B1 → B2 does not hold, we insert the concept
description uB1 into KT as the counterexample to this question, and for each
Ai ∈M such that

d
B1 vT Ai, we put a cross in its row in KT .

For computing gcs, the hierarchy of conjunctions of concept names only does
not suffice. The gcs algorithm needs to make use of the hierarchy of conjunctions
of concept names and the negations of these concept names. To compute this
extended hierarchy, the approach was improved in [11] by simply extending the
TBox T with new names for the negations of the concept names occurring in
it. To be more precise, if {A1, . . . , An} is the set of concept names occurring
in T , then we introduce the concept names A1, . . . , An, and extend T to T̂
by adding the definitions A1 ≡ ¬A1, . . . , An ≡ ¬An. As a result of this, the
formal context KT̂ following from this extended TBox has the attribute set
{A1, . . . , An, A1, . . . , An}. Obviously, the theoretical results given above also hold
for KT̂ .

We can produce counterexamples for KT̂ , by using the same method used for
KT , which is briefly described above. However, some of the examples produced
by this method are reducible. Our experiments showed that this results in huge
contexts that are difficult to process. We know that reducing a context does
not change the structure of the concept lattice. One idea could be to use the
method described for KT , as counterexample generator for KT̂ , and during the
exploration of KT̂ reduce it from time to time. However, since context reduction
is a costly operation this approach is not feasible. Instead, by using the dichotomy



of the attributes we can improve the method for this particular type of context to
produce only irreducible objects. The objects that have either Ai or Ai for each
1 ≤ i ≤ n (i.e., objects that have exactly n attributes) are irreducible. Because
their intents can not be written as the intersection of other object intents. The
following theorem shows that whenever an object with m < n attributes is a
counterexample to an implication question, then there is an object with m + 1
attributes, which is also a counterexample to this implication.

Theorem 2. Assume that the implication question B1 → B2 is asked to the
expert and he replies that it does not hold in KT̂ . If

d
C is a counterexample to

this implication with
d
C 6vT̂ Ai and

d
C 6vT̂ Ai for some 1 ≤ i ≤ n, then one

of
d
C uAi or

d
C uAi is also a counterexample to this implication.

Proof. According to the argument,
d
C u Ai 6vT̂

d
B2 or

d
C u ¬Ai 6vT̂

d
B2.

Assume this were not true. Then,
d
C uAi vT̂

d
B2 and

d
C u ¬Ai vT̂

d
B2.

Then the following also holds (
d
C uAi) t (

d
C u ¬Ai) vT̂

d
B2, which meansd

C u (Ait¬Ai) vT̂
d
B2. Equivalently,

d
C vT̂

d
B2. This is a contradiction.

Because, we assumed that B1 → B2 does not hold in KT̂ . By Lemma 1 this
means that,

d
B1 6vT̂

d
B2. We further assumed that

d
C is a counterexample

to this implication, that is
d
C vT̂

d
B1 and

d
C 6vT̂

d
B2. Thus, one of the

objects in the argument is a counterexample to this implication. �

By successive applications of the argument, we can produce counterexamples
that have exactly n attributes, i.e., irreducible counterexamples. Algorithm 1
describes the idea formally.

Algorithm 1 Counterexample generation for KT̂
Assume that during the exploration of KT̂ , for B1, B2 ⊆ M , the question B1 → B2?
(i.e.

d
B1 vT̂

d
B2? by Lemma 1) is asked to the expert and the expert replies that

it does not hold. We create the counterexample as follows:

– Initialization: Start with C0 := B1

– Iteration: Assume Cj is already computed. Let I be the set of indices s.t. for all
i ∈ I, Ai 6∈ Cj and Ai 6∈ Cj .
• For each i ∈ I, check if

d
Cj uAi vT̂

d
B2 holds

∗ if yes, then Cj+1 = Cj ∪ {Ai}
∗ if no, then Cj+1 = Cj ∪ {Ai}

– return uCj

Proposition 1. Given an implication B1 → B2 that is rejected by the expert,
Algorithm 1 terminates and upon termination it returns a counterexample to this
implication, which has either Ai or Ai for each 1 ≤ i ≤ n.

Proof. The algorithm iterates over a finite set of indices I, so it terminates.
A valid counterexample to B1 → B2 should contain all the attributes in B1,



and should not contain at least one of the attributes in B2. The object
d
B1

is a counterexample to this implication. It has all the attributes in B1, and
does not have all the attributes in B2. So, the algorithm starts generating the
counterexample with C0 := B1. In the iteration, for an i ∈ I assume thatd
Cj uAi vT̂

d
B2 does not hold. Then

d
Cj uAi is a counterexample. So, we

add Ai to the intent of
d
Cj . If it holds, then by Theorem 2,

d
Cj u Ai is a

counterexample and we add Ai to the intent of
d
Cj . Once we iterate over all

i ∈ I in this way, the resultant
d
Cj has either Ai or Ai for each 1 ≤ i ≤ n and

it is a counterexample to B1 → B2. �

The objects generated with the above algorithm are irreducible. Thus the
resultant context KT̂ obtained from the exploration, which uses this algorithm
for counterexample generation, is row-reduced. Using a background terminology
which contains n concept names, the upper bound on the size of the resulting
formal context obtained by using the new method is 2n, whereas it was 22n−1

using the previous method. Moreover, generating these objects does not cost
more in the number of subsumption tests, compared to the previous method.
Assuming that the size of B1 is k, and the size of M is 2n, we make exactly n−k
subsumption tests to generate a counterexample, which is the same number of
subsumption tests we make in the naive version.

4 Experimental results

In order to see the performance gain obtained by the new counterexample gen-
eration method, we have performed a series of experiments on several small
background TBoxes. Three of these TBoxes are fragments of the medical knowl-
edge base DICE [13], which defines concepts from the intensive care domain.
These three TBoxes, called DICE1, DICE2, DICE3 in the tables, are obtained
from the original DICE knowledge base by selecting a small number of concept
definitions and modifying them such that the fragment belongs to ALC and
such that the number of the concept names occurring in it is small enough to
be able to deal with during attribute exploration. The fragment DICE1 contains
10, DICE2 contains 12, and DICE3 contains 13 concept names. One of the other
three TBoxes, called PA-6 in the tables, is obtained from a process engineer-
ing application [26] which describes reactor models and parts of reactors from
a polyamid process. From this knowledge base, we selected a small fragment
containing 12 concept names. The other two TBoxes are handcrafted TBoxes.
The one called Family is a toy family TBox with 9 concept names, and the other
one called HC contains 14 concept names. It should be noted that the formal
contexts derived from these examples contain twice as many attributes as the
concept names in the examples, due to dichotomizing the attributes.

We computed the subsumption lattice of all conjunctions of concept names
occurring in the above example TBoxes, and negations of these concept names
using three different variants of Ganter’s attribute exploration algorithm. In
Tables 2 and 3 below, the field bg. k. type (standing for background knowledge
type) has values:



– Type 0 : The usual attribute exploration algorithm that does not use any
background knowledge

– Type 1 : The attribute exploration algorithm that uses the following impli-
cational background knowledge [15]:
• If Ai vT̂ Aj holds, then we know on the FCA side that in the context
KT̂ all objects satisfying the attribute Ai also satisfy the attribute Aj ,
i.e., the implication {Ai} → {Aj} holds in KT̂ .
• Since Ai vT̂ Aj implies ¬Aj vT̂ ¬Ai, we also know that all objects sat-

isfying the attribute Aj also satisfy the attribute Ai, i.e., the implication
{Aj} → {Ai} holds in KT̂ .

• We know that no object can simultaneously satisfy Ai and Ai, and thus
the implication {Ai, Ai} → ⊥KT̂ holds, where ⊥KT̂ stands for the set of
all attributes of KT̂ .

– Type 2 : In addition to the implicational background knowledge in Type 1,
it uses the following non-implicational background knowledge as pre-expert
to optimize the expert. Propositional consequences are computed using the
algorithm in [16], which is linear in the size of the implicational part of the
background knowledge, but exponential in the size of the non-implicational
part.
• Every object satisfies either Ai or Ai, i.e. > → Ai ∨ Ai In contrast

to the other forms of background knowledge mentioned until now, this
knowledge cannot be encoded in an implication.

The experiments were performed on a computer with one Pentium 4 proces-
sor at 2.40 GHz and 2GB of memory, under the Linux operating system. The
implementation was made in the LISP programming language using the version
19a of the CMU Common Lisp interpreter. We used the version 1.7.23 of the
Description Logic System Racer as the expert for attribute exploration. For
implicational closure calculation, we implemented the linear time implicational
closure algorithm linclosure in Section 4.6 of [21].

Tables 2 and 3 below show the number of calls to the expert, implicational
closure calculation, the pre-expert, and the respective CPU times. The numbers
show that when the improved version of the counterexample generation method
is used, number of calls to the expert and the respective CPU times decrease
by drastic amounts up to 90%. This drastic decrease is due to the sizes of the
formal contexts obtained by using the improved version, which are much smaller
compared to the ones obtained by using the naive method. Our experiments
using the naive method showed that, when the context sizes get large, most of
the time is spent computing the double-prime (

′′
) operator. Using implicational

background knowledge speeds up the computation of the hierarchy by reducing
the number of expert calls, although the speed up is rather moderate. However,
using non-implicational background knowledge in some cases even slows down
the process due to high complexity of reasoning with non-implicational knowl-
edge. The results also show that the gain obtained by the improved method is
independent of using background knowledge. The percentage of the speed up ob-
tained is the same whether we use background knowledge or not. Table 4 gives



bg. k. number of calls cpu time (secs)
TBox type expert imp.

clos.
pre
expert

expert imp.
clos.

pre
expert

total

DICE1 0 96 3,124 - 0.15 0.37 - 1.14
10 1 75 2,999 - 0.18 0.90 - 1.89
names 2 73 2999 75 0.05 0.93 0.15 2.14

DICE2 0 853 163,375 - 1.52 26.62 - 59.030
12 1 835 163,245 - 1.27 36.3 - 68.17
names 2 833 163,245 835 1.18 37.49 2.56 72.28

DICE3 0 1,115 327,526 - 1.78 81.61 - 147.86
13 1 1,094 327,363 - 1.73 108.4 - 172.77
names 2 1090 327,363 1,094 2.06 107.99 4.16 178.94

PA-6 0 559 77,767 - 0.97 16.04 - 31.87
12 1 535 77,580 - 0.73 26.88 - 41.91
names 2 530 77,580 535 0.75 26.88 1.68 44.28

HC 0 184 21,356 - 0.30 19.25 - 22.43
14 1 160 21,164 - 0.23 35.59 - 38.50
names 2 140 21,164 160 0.22 35.67 3.40 42.68

Family 0 240 16,925 - 0.30 1.49 - 4.84
9 1 227 16,868 - 0.29 1.62 - 4.80
names 2 225 16,868 227 0.4 1.54 0.26 5.28

Table 2. Experimental results using the improved version

bg. k. number of calls cpu time (secs)
TBox type expert imp.

clos.
pre
expert

expert imp.
clos.

pre
expert

total

DICE1 0 1,309 4,537 - 2.13 1.22 - 23.81
10 1 1,290 3,905 - 2.18 0.72 - 23.78
names 2 1,288 3,905 1,290 1.83 0.70 1.15 21.33

DICE2 0 54,696 132,731 - 91.62 32.44 - 2072.21
12 1 54,678 132,589 - 93.55 22.01 - 2058.08
names 2 54,676 132,589 54,678 92.60 22.54 66.65 2123.30

DICE3 0 91,880 246,616 - 157.66 90.83 - 4862.17
13 1 91,860 246,437 - 154.33 57.78 - 4795.51
names 2 91,856 246,437 91,860 154.96 56.68 183.62 5021.54

PA-6 0 30,484 110,671 - 93.52 55.06 - 943.25
12 1 30,462 95,572 - 52.42 24.69 - 907.22
names 2 30,457 95,572 30,462 50.47 24.84 53.77 927.13

HC 0 4,794 17,816 - 8.19 33.86 - 131.34
14 1 4,776 17,629 - 7.89 19.18 - 112.99
names 2 4,755 17,629 4,776 7.79 19.21 77.35 129.81

Family 0 6,334 16,962 - 9.31 2.22 - 102.89
9 1 6,321 16,905 - 9.74 1.48 - 103.83
names 2 6,319 16,905 6,321 9.22 0.67 2.87 97.81

Table 3. Experimental results using the naive version



number DICE1 DICE2 DICE3 PA-6 HC Family
of objects 10 names 12 names 13 names 12 names 14 names 9 names

improved
version

72 832 1088 528 128 224

naive ver-
sion

1285 54675 91853 30453 4738 6318

Table 4. Comparison of context sizes

the sizes of the formal contexts obtained at the end of attribute exploration us-
ing the improved counterexample generation method and the naive method. As
seen in the table, the improved method enables up to 90% decrease in the size
of the formal contexts obtained.

5 Conclusion

We presented how counterexample generation method could be improved in our
application where we compute the subsumption hierarchy of all conjunctions
of concept names occurring in a Description Logic TBox, and the negations of
these concept names, by using attribute exploration method of Formal Concept
Analysis. The hierarchy obtained at the end of the exploration is used to sup-
port knowledge engineer during the bottom-up construction of knowledge bases.
The improved method is obtained by a minor modification of the algorithm we
have used in our previous works for the same purpose. The main idea of the im-
provement is taking into account the fact that the attributes of formal context
used, are dichotomic. We have given both theoretical and experimental results
to support our argument. The experimental results show that the improvement
speeds up the calculation of this hierarchy quite considerably.

As future work, we are going to investigate if the pseudo-intents of the formal
context used have regularities which makes it possible to compute them without
having to go over all intents, and thus without suffering from the exponential
nature of the attribute exploration algorithm.

References

1. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In J. Mylopoulos and R. Reiter, editors, Proceedings
of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91).
Morgan Kaufmann, 1991.

2. F. Baader. Computing a minimal representation of the subsumption lattice of
all conjunctions of concepts defined in a terminology. In G. Ellis, R. A. Levinson,
A. Fall, and V. Dahl, editors, Knowledge Retrieval, Use and Storage for Efficiency:
Proceedings of the 1st International KRUSE Symposium, pages 168–178, 1995.

3. F. Baader. Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In Proceedings of the



18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pages
319–324, 2003.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.
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