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Abstract. The DIG Interface provides an implementation-neutral mech-
anism for accessing Description Logic reasoner functionality. At a high
level the interface can be realised as XML messages sent to the reasoner
over HTTP connections, with the reasoner responding as appropriate.
Key changes in the current version (DIG 2.0) include support for OWL
1.1 and well-defined mechanisms for extensions to the basic interface.

1 Introduction

The DL Implementation Group (DIG) is a self-selecting assembly of researchers
and developers associated with implementations of Description Logic (DL) sys-
tems. One of the main tasks of DIG has been the specification of a standardised
interface for Description Logic reasoners: the DIG Interface [1, 2].

The DIG Interface (also known as “DIG”) is a lightweight mechanism provid-
ing access to reasoning functionality. The specification of DIG 2.0 will be given
by an abstract model in UML. This abstract model can be realised in different
techniques. One of these techniques is XML messages sent over HTTP connec-
tions. To highlight the changes to DIG 1.1 we refer to the realisation in XML in
this paper.

The XML statements specify a tell/ask interface, which provides DIG ap-
plications with the facility to send their knowledge bases to the DIG server by
using the tells statements and then using the asks interface to get inferred
information from the reasoner. This approach has several advantages: the issue
of implementation language is finessed; the API can be defined in some standard
formalism intended for the purpose; a mechanism is provided for applications to
communicate with the DL system, either locally or remotely; and alternative DL
components can be substituted without affecting the application.

DIG 1.0 and DIG 1.1 specifications provide each an interface for classical
DL reasoning services for the DL SHOIQ(D)−. Thus it supports more lan-
guage constructs than the web ontology language OWL DL. The existing DIG
specifications have had a significant impact in the use of DL reasoners within
tools such as ontology editors like OilEd, Protégé and OntoTrack [3]. DIG is not



solely intended to support ontology editors, however - middleware and applica-
tions making use of DIG include the Instance Store [4], OntoXpl [5] and Jena [6]
for example. Key DL reasoner implementations such as CEL [7] FaCT++ [8],
KAON2 [9] Pellet [10] and Racer [11] all provide DIG interfaces.

Despite its successful application there are some shortcomings in the DIG 1.1
interface that will be remedied in DIG 2.0. For example, facilities for querying
property axioms or equality of individuals were missing [12] and will be added
in DIG 2.0. Furthermore, DIG 2.0 introduces a number of enhancements and
changes from previous versions. Key changes include support for operators in
the proposed OWL 1.1 extensions and well-defined mechanisms for extension to
the basic interface along with examples of extensions supporting query for told
information, retraction and non-standard inferences. DIG 2.0 will thus provide a
flexible mechanism for interfacing with systems that provide reasoning services
in Web Ontology Languages, as needed in many Semantic Web applications.

2 DIG 2.0 Overview

In order to address the above mentioned issues, the DIG Working Group pro-
posed a new, standardised Description Logic interface DIG 2.0. DIG provides a
basic functionality to allow tools such as ontology editors, middleware, and DL
reasoners to interoperate seamlessly in some application system and to enable
plug-and-play of a component by another without affecting the application. The
DIG interface is composed of a “core DIG interface”, which covers the basic
services and a number of extensions, which provide additional reasoning service
or extend the expressivity of the core DIG.

However, DIG does not intend to provide what we might truly call a reasoning
service, but rather helps insulate applications from the location and implemen-
tation language of a DL reasoner. The specification does not address issues such
as stateful connections, transactions, concurrency, multiple clients and so on.
Hereby, the DIG interface makes a number of assumptions.

The core DIG is agnostic as to multiple client connections. Multi-threaded
implementations of a reasoner may be provided, but no guarantees are made
as to the semantics when clients attempt to simultaneously update and query.
The connection to the reasoner is effectively stateless. There is no identification
process between clients and reasoners. Neither the server nor the client has a
way of ensuring that the state of its counterpart is the same since its last com-
munication. There is no explicit classification request. The reasoner will decide
when it is appropriate to, for example, build a classification hierarchy of con-
cepts. This may happen incrementally after each tells request, alternatively it
may be done only when necessary or even when there is a lull in traffic. The
specification is not intended as a “database system” for knowledge bases. It is
simply a protocol that exposes and utilises the reasoning capabilities provided
by a DL reasoner. A DIG reasoner or DIG extensions may be used to implement
services that provide concurrent access, transactions etc, such functionality is
not inherently supported by DIG.



DIG 2.0 is intended to be a lightweight mechanism providing access to reason-
ing functionality, and not to cover everything that reasoning services might need.
A DIG reasoner is expected to be a part of a larger architecture. The underlying
language for DIG 2.0 is designed to support OWL 1.1 so that DIG reasoners can
fully support applications making use of OWL DL or OWL 1.1. The support also
extends to some metalogical features such as annotations, which can be parsed
in, but are ignored by the DIG 2.0 reasoner during reasoning.

It is worth noting that the combination of all DIG 2.0 language elements is
computationally undecidable. This is, however, not a problem since not all the
language elements are to be used simultaneously. In fact, different DL reasoners
(applications) support (require) different logics and different reasoning facilities.
To partly support these differences and also to cope with undecidability, DIG 2.0
predefines some well-known DL dialects, for example, SHOIQ [13] and EL++

[14]. Additionally, DIG 2.0 is designed to be as flexible as possible to embrace
upcoming needs, while most common features are standardised and governed
by DIG 2.0 core XML Schema and additional functionality can be proposed in
terms of DIG 2.0 extensions (See Section 3). It should also be possible through
extensibility mechanism to define a new DL dialect.

The core DIG can be specified by a XML Schema for a DL concept language,
tell/ask functionality and a description of a protocol used to communicate
these operations. Like many other initiatives, DIG builds a messaging protocol
using XML and uses HTTP as the underlying transfer protocol. The messaging
protocol essentially consists of request and response. Similar to DIG 1.1, each of
these is an XML document with one root element. The server will use the root
element of the message to determine the message type, namely, configuration,
management and axioms for asks and tells .

A number of configuration requests are available to allow clients to in-
terrogate a reasoner to discover its identity, and adjust settings of the reasoner
(such as optimisations). With management, clients are able to create or release
a knowledge base. To support identification of different knowledge bases, URIs
are used. When a request for a new knowledge base is made, the reasoner (if suc-
cessful) will return to the client a URI which the client can then use to identify
the knowledge base during tells /asks requests or to release it.

The central part of DIG 2.0 is, of course, the requests that manipulate and
access knowledge bases. Tells requests, several of which can be bundled into
a single message, allow the construction of arbitrary OWL 1.1 (or, equivalently,
SROIQ(D)−) knowledge bases. Basically, each tells request adds an OWL
1.1 axiom to the current or named knowledge base, in the XML syntax1 for the
forthcoming OWL 1.1 standard. Identifiers can also be supplied for each axiom.
Responses to tells requests simply acknowledge receipt.

1 Available under http://dig.cs.manchester.ac.uk/; whilst small differences between
the current DIG 2.0 and OWL 1.1 XML syntaxes are being ironed out.



<dig>
...
<tells>

<equivalentClasses>

<class URI="Herbivore"/>

<intersectionOf>

<class URI="Animal">

<allValuesFrom>

<objectProperty URI="eats"/>

<class URI="Plant"/>

</allValuesFrom>

</intersectionOf>

</equivalentClasses>

</tells>
...
<asks>

<isSatisfiable ID="id01">

<class URI="Herbivore"/>

</isSatisfiable>

</asks>

</dig>

Fig. 1: DIG 2.0 tells/asks request

Asks request statements,
which can similarly be bun-
dled into a single DIG 2.0
message, correspond to the
standard Description Logic
inference services in a knowl-
edge base (either the cur-
rent knowledge base or the
one named), including sat-
isfiability, subsumption, in-
stance checking and finding
parents and children in the
subsumption hierarchy. Re-
sponses to asks requests are
either simple boolean answers
or sets of names from the
knowledge base. Identifiers
can be supplied for each asks
request and these identifiers
are used in the response state-
ment to match parts of the
response to the asks request.

The specifications of the tells /asks requests are quite standard and are not
given here in detail to save space. Instead, we illustrate tells/asks statements
in Figure 1 by a small example defining the concept “Herbivore” and asking
whether its definition is satisfiable.

3 Current DIG 2.0 Extensions

Different DL reasoners support different DLs or reasoning facilities and possi-
bly provide other services which are beyond standard DIG 2.0. One can think
of particular query languages, non-standard inference services, or specific KB
management as extra functionality. Even if those services or languages are not
in the common intersection of all DL systems, it is a declared goal of DIG 2.0 to
provide a mechanism which allows system independent access to such function-
ality. Therefore, DIG 2.0 provides an extensibility mechanism in order to define
interfaces which provide additional service features or languages, which might be
needed in a Semantic Web application using a Web Ontology Language similar
to OWL. This utilises the DIG communication channel for almost any kind of
extended functionality without being forced to establish a proprietary link-up
for commands which are not within the least common service set.

Technically an extension consists of two documents namely an XML Schema
document defining the syntax of messages and an associated HTML document
providing a detailed account of the extension. The first specifies the offered
service syntactically. The latter should, at a minimum, describe the service re-



sults as well as error messages of the extension and provide meaning for all the
messages supported in the extension to a level of detail sufficient to support im-
plementation and usage of the extension. Both documents should be available on
the web, and, by convention, their URIs must differ only in their extension (i.e.
XSD resp. HTML extension). Note that it depends on the extension whether
it either defines additional asks operators (such as a query language), tells
operators (such as data processable by a specialised calculus), management op-
erations (e.g. to temporarily dump the knowledge base in a reasoner-dependent
format or a transaction model), or if the extension provides further reasoning
services (such as explaining, debugging, etc.).

The DL Implementation Group has developed a selection of extensions, which
provide interfaces to some functionality the DL community has frequently been
asked for in the past. We therefore expect these extensions to become a first stan-
dard set of extensions supported by many DIG servers. Note however, that there
is no official distinction between standardised and non-standardised extensions.

In the following we will take a deeper look at some of the standard exten-
sions developed by the working group. Here, we will refer to the extension-free
functionality offered by DIG 2.0 as the core DIG.

3.1 Told Information Access Extension

In many applications it is useful to be able to access the unprocessed information
sent to a Description Logic reasoner. Examples of such applications are adjunct
reasoning components which debug KBs or explain inferences as well as many
other non-standard reasoning services. In addition, providing access to previously
submitted information by a DIG application would allow a third component to
readout axioms and assertions for back up purposes or visualisation in parallel.

To this end, the DIG 2.0 told extension has been defined which provides the
ability to retrieve the information that has been explicitly given to the reasoner
as axioms or assertions. This allows clients to distinguish between explicitly given
and inferred information.

The told extension comes with two levels: a set of canned queries at level 1
and freely definable queries at level 2. Level 1 is intended to provide the basic
set of queries sufficient for most told-aware applications and offers the essen-
tial part of the told interface. It contains queries in order to retrieve axioms
about classes, properties, assertions about individuals as well as general concept
inclusion axioms (GCIs). In addition, there are some more sophisticated told
ABox queries for retrieving property fillers, related individuals, etc. All of these
queries retrieve told information on top-level granularity. This means that they
only address entire axioms rather than fractions. The returned axioms are struc-
turally exactly as given in previous DIG 2.0 tells messages following an axiom
preservation approach.

Level 2 is a superset of level 1 providing unrestricted access to any portions
of previous told KB data for all those applications which need more flexibility
than available within level 1.



3.2 Retraction Mechanism

In dynamic applications, ABox assertions will inherently change over time. One
example here are so-called “context- and situation-aware” applications in the
mobile world. Here, the user’s context is used to reason upon his constantly
changing situation. As a consequence, the corresponding ABox needs to be fre-
quently updated in terms of additions and retractions of assertions. Beyond
that, in the area of ontology authoring the retraction of TBox definitions has
been considered as useful.

This does not only apply to ontology editing tools which provide instant-
reasoning feedback [3] but also to non-standard inference services such as di-
agnosing inconsistencies using a “black-box” approach in which the reasoner is
frequently used as an oracle for a certain set of inferences about a decreasing set
of KB axioms [15].

The core DIG 2.0 specification defines a communication interface which re-
flects some kind of batch-oriented reasoning procedure that builds up a knowl-
edge base monotonically. Note that it is always possible to interleave queries and
new definitions and assertions. However, the only procedure for removing infor-
mation is by starting over from an empty knowledge base and retransmitting the
non-changed axioms and facts. As a matter of course, such a procedure can only
be considered as a work-around because the ratio between retracted information
and the non-changed part of the ontology usually tends to be very low. In ad-
dition, in the case of large ontologies such an approach is very time-consuming
with respect to the serialisation, transmission, and un-serialisation work flow.
The DIG 2.0 retraction extension provides a simple method for retracting infor-
mation from a KB. Even if current reasoner implementations need to perform a
complete reclassification regardless of the amount or number of retractions, this
extension at least minimises the communication overhead.

The retraction extension is a straightforward mechanism for withdrawing
previously added axioms and assertions from the KB. It only allows to retract
top-level statements syntactically rather than semantical entities such as classes
or individuals in order to avoid side-effects. For instance, the consequences of
retracting the class B as a semantical entity in the presents of the axioms A v B
and B v C is not obvious and requires a formal update semantics. Replacing B
by the most general class > would result in an equivalence of > and C whereas
one very likely would expect the result A v C.

Therefore, retraction is restricted to the entire removal of top-level axioms
and assertions with the semantics of deleting this statement syntactically from
the set of previously told statements. For this reason the retraction extension is
build upon the told extension. If a client wants to retract an axiom or fact, the
retraction mechanism checks whether the expression actually has been previously
told and in case of a match it is deleted from the KB.

3.3 Extensions providing Non-standard Inferences

The so-called non-standard inferences (NSI) are a collection of relatively new
inferences, that are mainly applied to extend and maintain DL knowledge bases.



There are currently two proposals for DIG 2.0 NSI extensions – one for Explana-
tions and one for a collection of different NSIs containing least common subsumer
(LCS), approximation, rewriting and matching [16].

The explanation extension offers an interface to inference services of explain-
ing certain logical entailments, e.g., concept unsatisfiability. The current proposal
covers only explanation by means of axiom pinpointing, in which the response
to an explanation query is essentially a minimal set of told axioms (or their IDs)
that are responsible for the logical entailment in question.

The other NSI extension offers for example computing the LCS of a set of
concepts, which yields a concept that is a generalisation of all input concepts.
Thus for ontologies with a flat concept hierarchy computing the LCS can provide
concepts that augment the concept hierarchy by an intermediate level which
helps browsing the ontology. Obviously, this non-standard inferences extension
adds new asks statements for each NSI. Besides this the core DIG has to be
extended by a mechanism to declare concept patterns and variables, which are
the input for the matching reasoning service. Most NSIs from this extension
return complex concept descriptions and not Boolean values as most standard
inferences do. These NSI take into account the “target DL” for which they are
applied. For example concept approximation “translates” concept descriptions
from one DL L1 to another DL L2. Thus the extension must provide means to
specify a target DL.

While methods for Explanation often need to be integrated in a DL standard
reasoner, since they access the internal data structures, the other NSIs can be
realised as a stand-alone application. However, they require access to told in-
formation and to the DL standard reasoner. Thus such NSI extensions will be
realised as a DIG server and a DIG client at the same time.

The first system that offers this collection of NSI services is Sonic [17]. Be-
sides the DIG server, Sonic implements also a DIG 2.0 NSI extension client by
providing a plug-in for ontology editors Protégé and OilEd.

3.4 Query Interface Extension

In many practical applications based on DLs, a powerful ABox query language
is one of the main requirements. Such a query language is provided in DIG 2.0.
A query consists of a head and a body. The head lists variables for which the user
would like to compute bindings. The body consists of query atoms (see below)
in which all variables from the head must be mentioned. If the body contains
additional variables, they are seen as existentially quantified. A query answer is
a set of tuples representing bindings for variables mentioned in the head.

Query atoms can be concept query atoms, role query atoms, same-as query
atoms as well as concrete domain query atoms. The latter are introduced to
provide support for querying the concrete domain part of a knowledge base.
Complex queries are built from query atoms using boolean constructs for con-
junction, union and negation (for the latter, for instance, negation as failure
semantics is assumed). In addition, a projection operator is supported in or-



der to reduce the dimensionality of an intermediate tuple set. This operator is
particularly important in combination with negation (complement).

In the literature, two different semantics for these kinds of queries are dis-
cussed. In standard conjunctive queries, variables are bound to (possibly anony-
mous) domain objects. In so-called grounded conjunctive queries, variables are
bound to named domain objects (object constants). However, in grounded con-
junctive queries the standard semantics can be obtained for so-called tree-shape
queries by using existential restrictions in query atoms. For an ABox query
language as part of DIG 2.0 we do not commit to a certain semantics. The se-
mantics depends on the reasoner. The standard semantics is implemented in the
system QuOnto [18] (for a Description Logic of the DL-Lite family) whereas the
grounded semantics is implemented in RacerPro [19] and also KAON2 [9]. For
all systems, an interface corresponding to the DIG 2.0 standard will be devel-
oped. A possibility to identify the fragment of the query language supported by
a reasoner is foreseen in the DIG 2.0 protocol.

In case a reasoner has to deal large result sets for queries, iterative query
answering can help to improve performance. Therefore, in DIG 2.0, result sets
can be retrieved iteratively using small chunks of tuples. A reasoner can indicate
if resource consumption is likely to increase if further tuples are retrieved. In
addition, DIG 2.0 supports instructions to let a query answering engine compute
results proactively to support faster retrieval of subsequent chunks of triples.

4 Reference Middleware

With the new DIG specification system developers face the challenge of adapting
their implementations to the new interface. To support this transition the DL
Implementation Group decided to develop a reference middleware, rather than
reference implementations of DIG 2.0 clients and servers. The purpose of the
middleware is to lower the burden of adapting the new specification, to provide
the developers a reliable tool for testing, and finally to constitute a proof of
concept for the new specification.

The DIG 2.0 Reference Middleware is able to extend a DIG 1.1 reasoner
or client with a DIG 2.0 interface. Therefore it mediates between a DIG client
and a DIG server regardless of the version they implement. Internally, a Told
Knowledge Base (ToldKB) keeps track of previously sent axioms, able to process
told queries and retraction requests. This way, the middleware also provides an
implementation of the DIG 2.0 told and retraction extensions. To summarise,
the DIG 2.0 Reference Middleware offers the following functionalities:

– Mediation between DIG 1.1 and DIG 2.0 components
– Query processing for told information
– Realization of a naive retraction mechanism

The processing steps of the middleware (depicted in Figure 2) are as follows:
Received DIG requests (1) are translated into the internal DIG 2.0 representation
(if necessary). Axioms are copied into the ToldKB and told queries as well as
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Fig. 2. DIG 2.0 Reference Middleware Architecture

retraction requests are processed (2). The reminder of the request is sent to
the reasoner (3). The answer received from the reasoner (4) is merged with the
results of the internal processing (5), translated (if necessary) and sent back to
the DIG client (6).

The ToldKB is used to answer told requests, in case the reasoner itself is
unable to do so. If a told query is identified within a DIG message, the ToldKB
is scanned for matching axioms which are then returned.

The ToldKB also enables retraction, if the connected reasoner does not sup-
port this extension natively. Retraction requests are applied to the ToldKB.
Once all corresponding axioms have been removed, the resulting ToldKB is sent
to the reasoner, replacing the previously loaded knowledge base.

5 Open Issues and Future Work

The on-going work for the DIG interface regards the expressivity of the DLs
supported by the interface as well as general structural issues. The core DIG is
to be extended to include also “extralogical” language features that are covered
by the OWL 1.1 standard, such as annotations and deprecations. Furthermore,
there is a proposal for concrete domains extension.

One of the open issues for DIG 2.0 is the choice of the underlying proto-
col. It is planned to offer different realisations (such as for example WSDL or
even in process communication) for that. For an overview of the recent discus-
sion around the DIG 2.0 interface please refer to the DIG document index at
http://dig.cs.manchester.ac.uk/.

Acknowledgements

We would like to thank the following DIG working group members for their
contribution: Yusri Bong, Sebastian Böhm, Matthew Horridge, Ian Horrocks and
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