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1. Introduction

For a developer or user of a DL-based ontology, it is often quite hard to un-
derstand why a certain consequence holds, and even harder to decide how to
change the ontology in case the consequence is unwanted. For example, in the
current version of the medical ontology SNOMED [16], the concept Amputation-
of-Finger is classified as a subconcept of Amputation-of-Arm. Finding the axioms
that are responsible for this among the more than 350,000 terminological axioms
of SNOMED without support by an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [14]
describe an algorithm for computing all the minimal subsets of a given knowl-
edge base that have a given consequence. In the following, we call such a set
a minimal axiom set (MinA). It helps the user to comprehend why a certain
consequence holds. The knowledge bases considered in [14] are so-called unfold-
able ALC-terminologies, and the unwanted consequences are the unsatisfiability
of concepts. The algorithm is an extension of the known tableau-based satis-
fiability algorithm for ALC [15], where labels keep track of which axioms are
responsible for an assertion to be generated during the run of the algorithm.
The authors also coin the name “axiom pinpointing” for the task of computing
these minimal subsets.

The problem of computing MinAs of a DL knowledge base was actually con-
sidered earlier in the context of extending DLs by default rules. In [2], Baader and
Hollunder solve this problem by introducing a labeled extension of the tableau-
based consistency algorithm for ALC-ABoxes [9], which is very similar to the
one described later in [14]. The main difference is that the algorithm described
in [2] does not directly compute minimal subsets that have a consequence, but
rather a monotone Boolean formula whose variables correspond to the axioms
of the knowledge bases and whose minimal satisfying valuations correspond to
the MinAs.

The approach of Schlobach and Cornet [14] was extended by Parsia et al. [12]
to more expressive DLs, and the one of Baader and Hollunder [2] was extended
by Meyer et al. [11] to the case of ALC-terminologies with general concept in-
clusions (GCIs), which are no longer unfoldable. Axiom pinpointing has also
been considered in other research areas, though usually not under this name.
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For example, in the SAT community, people have considered the problem of
computing minimally unsatisfiable (and maximally satisfiable) subsets of a set
of propositional formulae. The approaches for computing these sets developed
there include special purpose algorithms that call a SAT solver as a black box
[10, 5], but also algorithms that extend a resolution-based SAT solver directly
[7, 18].

Whereas the previous work on pinpointing in DLs considered fairly expres-
sive DLs that contain at least ALC, this work is concerned with pinpointing in
the inexpressive DL EL, which has recently drawn considerable attention. On
the one hand, several bio-medical ontologies such as SNOMED [16], the Gene
Ontology [17], and large parts of Galen [13] can be expressed in EL. On the
other hand, reasoning in EL and some of its extensions remains polynomial even
in the presence of GCIs [6, 1]. Although the polynomial-time subsumption al-
gorithm for EL described in [6, 1] is not tableau-based, the ideas for extending
tableau-based algorithms to pinpointing algorithms employed in [2, 14] can also
be applied to this algorithm. However, we will see that the normalization phase
employed by this algorithm introduces an additional problem. We will also con-
sider the complexity of pinpointing in EL. In contrast to the case of ALC, where
the subsumption problem is already highly complex, subsumption in EL is poly-
nomial, which makes it easier to analyze the extent to which pinpointing is a
source of additional complexity. Not surprisingly, it turns out that there may be
exponentially many MinAs. In addition, even testing whether there is a MinA
of cardinality ≤ n for a given natural number n is an NP-complete problem.
However, one MinA can always be computed in polynomial time. Finally, we
will provide some experimental results regarding the performance of a practi-
cal algorithm that computes one (not necessarily minimal) set that has a given
consequence.

2. A pinpointing algorithm for EL

Recall that EL allows for conjunction (⊓), existential restrictions (∃r.C), and the
top concept (⊤). We consider general EL-TBoxes T consisting of GCIs C ⊑ D,
where C,D are arbitrary EL-concept descriptions, and are interested in the
subsumption relation between concept names occurring in T , which is denoted
as ⊑T . Given such a TBox T and concept names A,B occurring in it, a MinA
for T w.r.t. A ⊑ B is a subset S of T such that A ⊑S B, but A 6⊑S′ B for all
strict subsets S′ ⊂ S. For example, consider the TBox T consisting of the GCIs

ax1: A ⊑ ∃r.A, ax2: A ⊑ Y, ax3: ∃r.Y ⊑ B, ax4: Y ⊑ B. (1)

We have A ⊑T B, and it is easy to see that {ax2, ax4} and {ax1, ax2, ax3} are
the MinAs of T w.r.t. A ⊑ B.

In the following, we show how the polynomial-time subsumption algorithm
for EL with GCIs [6, 1] can be modified to a pinpointing algorithm. However,
instead of computing the MinAs directly, we follow the approach introduced
in [2] that computes a monotone Boolean formula from which the MinAs can



be derived. To define this formula, which we will call a pinpointing formula
in the following, we assume that every GCI t ∈ T is labeled with a unique
propositional variable, lab(t). Let lab(T ) be the set of all propositional variables
labeling GCIs in T . A monotone Boolean formula over lab(T ) is a Boolean
formula using (some of) the variables in lab(T ) and only the binary connectives
conjunction and disjunction and the nullary connective t (for truth). As usual,
we identify a propositional valuation with the set of propositional variables it
makes true. For a valuation V ⊆ lab(T ), let TV := {t ∈ T | lab(t) ∈ V}.

Definition 1 (pinpointing formula). Given an EL-TBox T and concept names
A,B occurring in it, the monotone Boolean formula φ over lab(T ) is a pin-
pointing formula for T w.r.t. A ⊑ B if the following holds for every valuation
V ⊆ lab(T ): A ⊑TV

B iff V satisfies φ.

In our example, we can take lab(T ) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that ax2 ∧ (ax4 ∨ (ax1 ∧ ax3)) is a pinpointing formula
for T w.r.t. A ⊑ B.

Let φ be a pinpointing formula for T w.r.t. A ⊑ B. If we order valuations by
set inclusion, then we obviously have that

{TV | V is a minimal valuation satisfying φ}

is the set of all MinAs for T w.r.t. A ⊑ B. This shows that it is enough to
design an algorithm for computing a pinpointing formula to obtain all MinAs.
For example, one possibility is to bring φ into disjunctive normal form and
then remove disjuncts implying other disjuncts. Note that this may cause an
exponential blowup, which means that, in some cases, the pinpointing formula
provides us with a compact representation of the set of all MinAs. Also note
that this blowup is not really in the size of the pinpointing formula but rather in
the number of variables. Thus, if the size of the pinpointing formula is already
exponential in the size of the TBox T (which may well happen), computing all
MinAs from it is still “only” exponential in the size of T .

In order to describe our algorithm for computing pinpointing formulae for
subsumption in EL, we must briefly recall the subsumption algorithm for EL
[6, 1]. First, this algorithm transforms a given TBox into a normal form where
all GCIs have one of the following forms: A1⊓. . .⊓An ⊑ B, A ⊑ ∃r.B, ∃r.A ⊑ B,
where n ≥ 1 and A,A1, . . . , An, B are concept names (including ⊤). This trans-
formation can be achieved in linear time using simple transformation rules, which
basically break down complex GCIs into simpler ones (see [6, 1] for details). For
the pinpointing extension it is relevant that the relationship between original ax-
ioms and normalized axioms is many to many: one axiom in the original TBox
can give rise to several axioms in the normalized one, and one axiom in the
normalized TBox can come from several axioms in the original TBox. For ex-
ample, consider the GCIs A ⊑ B1 ⊓ B2, A ⊑ B2 ⊓ B3, which are normalized
to A ⊑ B1, A ⊑ B2, A ⊑ B3. Each original GCI gives rise to two normalized
ones, and the normalized GCI A ⊑ B2 has two sources, i.e., it is present in the
normalized TBox if the first or the second original GCI is present in the input
TBox.



If A1 ⊓ . . . ⊓ An ⊑ B ∈ T and {(X, A1), . . . , (X, An)} ⊆ A then add (X, B) to A.

If A ⊑ ∃r.B ∈ T and (X, A) ∈ A then add (X, r, B) to A.

If ∃r.A ⊑ B ∈ T and {(X, r, Y ), (Y,A)} ⊆ A then add (X, B) to A.

Fig. 1. Completion rules for subsumption in EL.

Given a TBox T in normal form, the subsumption algorithm for EL employs
completion rules to extend an initial set of assertions until no more assertions can
be added. Assertions are of the form (A,B) or (A, r,B) where A,B are concept
names occurring in T or ⊤, and r is a role name occurring in T . Intuitively,
the assertion (A,B) expresses that A ⊑T B holds and (A, r,B) expresses that
A ⊑T ∃r.B holds. The algorithm starts with a set of assertions A that contains
(A,⊤) and (A,A) for every concept name A, and then uses the rules shown in
Fig. 1 to extend A. Note that such a rule is only applied if it really extends A,
i.e., if the assertion added by the rule is not yet contained in A. As shown in
[6, 1], rule application terminates after a polynomial number of steps, and the
set of assertions A obtained after termination satisfies A ⊑T B iff (A,B) ∈ A
for all concept names A,B occurring in T .

In the pinpointing extension of this algorithm, assertions a are also labeled
with monotone Boolean formulae lab(a). The initial assertions (A,⊤) and (A,A)
receive label t. The definition of rule application is modified as follows. Assume
that the precondition of a rule from Fig. 1 are satisfied for the set of assertions
A w.r.t. the TBox T . Let φ be the conjunction of the labels of the GCIs from T
and the assertions from A occurring in the precondition. If the assertion in the
consequence of the rule does not yet belong to A, then it is added with label φ.
If the assertion is already there with label ψ, then its label is changed to ψ ∨ φ
if this formula is not equivalent to ψ; otherwise (i.e., if φ implies ψ) the rule is
not applied.

It is easy to see that this modified algorithm always terminates, though not
necessarily in polynomial time. In fact, there are polynomially many assertions
that can be added to A. If the label of an assertion is changed, then the new
label is a more general monotone Boolean formula, i.e., it has more models than
the original label. Since there are only exponentially many models, the label of a
given assertion can be changed only exponentially often. In addition, the set of
assertions A obtained after termination is identical to the one obtained by the
unmodified algorithm, and for all assertions (A,B) ∈ A we have that lab((A,B))
is a pinpointing formula for T w.r.t. A ⊑ B.

As an example, consider the TBox consisting of the GCIs given in (1). The
pinpointing algorithm proceeds as follows. Since ax2 : A ⊑ Y ∈ T and (A,A) ∈
A with label t, the assertion (A, Y ) is added to A with label ax2 (actually
with label ax2 ∧ t, which is equivalent to ax2). Since ax1 : A ⊑ ∃r.A ∈ T
and (A,A) ∈ A with label t, (A, r,A) is added to A with label ax1. Since
ax4 : Y ⊑ B ∈ T and (A, Y ) ∈ A with label ax2, (A,B) is added to A with label
ax2 ∧ ax4. Finally, since ax3 : ∃r.Y ⊑ B ∈ T , (A, Y ) ∈ A with label ax2, and
(A, r,A) ∈ A with label ax1, the label of (A,B) ∈ A is modified from ax2 ∧ ax4



Algorithm 1 Compute one MinA for T = {t1, . . . , tn} w.r.t. A ⊑ B.

1: if A 6⊑T B then

2: return no MinA
3: S := T .
4: for 1 ≤ i ≤ n do

5: if A ⊑S\{ti} B then

6: S := S \ {ti}
7: return S

to (ax2 ∧ ax4) ∨ (ax1 ∧ ax2 ∧ ax3). This final label of (A,B) is a pinpointing
formula for T w.r.t. A ⊑ B.

As described until now, our pinpointing algorithm for EL can only deal with
normalized TBoxes, i.e., the pinpointing formula φ it yields contains proposi-
tional variables corresponding to the normalized GCIs. However, modifying φ to
a pinpointing formula for the original TBox is quite simple. Assume that the
original GCIs are also associated with propositional variables. Each normalized
GCI has a finite number of original GCIs as sources. We modify φ by replacing
the propositional variable for each normalized axiom by the disjunction of the
propositional variables of its sources.

3. The complexity of pinpointing in EL

If we want to compute all MinAs, then in the worst case an exponential runtime
cannot be avoided since there may be exponentially many MinAs for a given
TBox. This is shown by the following example.

Example 1. For all n ≥ 1, the size of the TBox

Tn := {Bi−1 ⊑ Pi ⊓Qi, Pi ⊑ Bi, Qi ⊑ Bi | 1 ≤ i ≤ n}

is linear in n, and we have B0 ⊑Tn
Bn. There are 2n MinAs for Tn w.r.t. B0 ⊑ Bn

since, for each i, 1 ≤ i ≤ n, it is enough to have Pi ⊑ Bi or Qi ⊑ Bi in the set.

On the other hand, a single MinA can be computed in polynomial time by
the simple Algorithm 1, which goes through all GCIs (in a given fixed order)
and throws away those that are not needed to obtain the desired subsumption
relationship. Since the algorithm performs n+ 1 subsumption tests (where n is
the cardinality of T ), and each such test takes only polynomial time, the overall
complexity of this algorithm is polynomial. It is easy to see that its output (in
case A ⊑T B) is indeed a MinA for T w.r.t. A ⊑ B.

However, as soon as we want to know more about the properties of the set
of all MinAs, this cannot be achieved in polynomial time (unless P=NP). For
example, the following minimum cardinality problem is NP-complete: given an
EL-TBox T , concept names A,B occurring in T , and a natural number n, is
there a MinA for T w.r.t. A ⊑ B of cardinality ≤ n? The problem is in NP,
since one can simply guess a subset S of T cardinality n, and then check in



polynomial time whether A ⊑S B. Clearly, such a set exists iff there is a MinA
of cardinality ≤ n.

NP-hardness can be shown by a reduction of the NP-hard hitting set problem
[8]: given a collection S1, . . . Sk of sets and a natural number n, is there a set
S of cardinality ≤ n such that S ∩ Si 6= ∅ for i = 1, . . . , k. Such a set S is
called a hitting set. In the reduction, we use a concept name P for every element
p ∈ S1∪ . . .∪Sn as well as the additional concept names A,B,Q1, . . . , Qk. Given
S1 = {p11, . . . , p1ℓ1}, . . . , Sk = {pk1, . . . , pkℓk

}, we define the TBox

T := {Pij ⊑ Qi | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi} ∪
{A ⊑ Pij | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi} ∪ {Q1 ⊓ . . . ⊓Qk ⊑ B}.

It is easy to see that S1, . . . , Sk has a hitting set of cardinality ≤ n iff there is a
MinA for T w.r.t. A ⊑ B of cardinality ≤ n+ k + 1.

4. A practical algorithm for computing one MinA

Although it requires only polynomial time, computing one MinA using Algo-
rithm 1 may still be impractical for very large TBoxes like SNOMED. In fact,
the algorithm has to make as many calls of the subsumption algorithm as there
are axioms in the TBox (in the case of SNOMED, more than 350,000). Here
we propose an improved algorithm that proceeds in two steps: (i) first compute
a (not necessarily minimal) subset of the TBox from which the subsumption
relationship follows; (ii) then minimize this set using Algorithm 1. Of course,
this approach makes sense only if the algorithm used in step (i) is efficient and
produces fairly small sets. It would not help to use the trivial algorithm that
always produces the whole TBox.

An algorithm that realizes step (i) and runs in polynomial time can easily be
obtained from the pinpointing algorithm sketched in Section 2. The only mod-
ification is the following: if an assertion in the consequence of a rule already
belongs to the current set of assertions, then this rule is not applied, i.e., once
an assertion is there with some label, the label remains unchanged. Thus, ev-
ery assertion (A,B) in the final set has a conjunction of propositional variables
as its label, which clearly corresponds to a subset of the TBox from which the
subsumption relationship A ⊑ B follows. In general, this subset is not minimal,
however. (Because of the space constraints, we cannot give an example demon-
strating this.)

As described until now, this modified algorithm works on normalized TBoxes.
To get an appropriate subset of the original axioms, one can use a greedy strategy
for producing a set of original axioms that covers a given set S of normalized
axioms in the following sense. For each original axiom t, let St be the set of
normalized axioms t gives rise to. The set T ′ of original axioms covers S if
S ⊆

⋃
t∈T ′ St. The use of a greedy strategy adds another possible source of

non-minimality. (We use a non-optimal greedy strategy to keep the algorithm
polynomial. In fact, even determining whether there is a cover set of size ≤ n is
another NP-complete problem [8].)



Our preliminary experimental results confirm that this algorithm is indeed
more practical than Algorithm 1. Based on the CEL reasoner [3], we have im-
plemented a slightly extended version of the practical algorithm for computing
one MinA in EL+, which is EL extended with complex role inclusions, and thus
can express role hierarchies and transitive roles. The experiments were run on a
variant of the Galen Medical Knowledge Base [13],3 which is a TBox consisting
of more than 4,000 axioms. On the normalized version of this TBox, CEL needs
about 14 sec to compute all subsumption relationships between concept names
occurring in this TBox. Overall, more than 27,000 subsumption relationships are
computed. The overhead for computing for all of these subsumption relationships
(possibly non-minimal) subsets from which they already follow was a bit more
than 50%: the modified pinpointing algorithm described above needed about 23
sec. Going from the subsets of the normalized TBox to the corresponding (still
possibly non-minimal) subsets of the original Galen TBox took 0.27 sec. Finally,
the overall time required for minimizing these sets using Algorithm 1 (with
CEL as the subsumption reasoner) was 9:45 min. For these last two numbers one
should take into account, however, that these involved treating more then 27,000
such sets. For a single such set, the average post-processing time was negligible
(on average 21 milliseconds). Also note that applying Algorithm 1 directly to
the whole TBox for just one subsumption relationship (between Renal-Artery
and Artery-Which-Has-Laterality) took more than 7 hours.

Thus, from the point of view of runtime, our practical algorithm behaves
quite well on Galen. The same can be said about the quality of its results. The
average size of an axiom set computed by the algorithm before using Algorithm 1
to minimize it was 5 (with maximum size 31), which is quite small and thus
means that this set can directly be given to the user as an explanation for
the subsumption relationship. Also, the computed sets were almost minimal: on
average, the possibly non-minimal sets computed by the algorithm were only
2.59% larger than the minimal ones. When considering the normalized TBox
(i.e., without translating back to the original TBox), this number was even better
(0.1%). This means that in most cases it is probably not necessary to further
minimize the sets using Algorithm 1. If demanded by the user for a specific
subsumption relationship it can still be done without taking much time.

5. Additional work on pinpointing

The pinpointing extension of the subsumption algorithm for EL described in
Section 2 as well as the pinpointing algorithm for ALC described in [2] are in-
stances of a general approach for modifying “tableau-like” reasoning procedures
to pinpointing procedures [4].

Instead of computing minimal subsets that have a given consequence, one
sometimes also wants to compute maximal subsets that do not have a given
consequence. Given the pinpointing formula φ, these sets correspond to maximal

3 Since Galen uses expressivity not available in EL+, we have simplified it by removing
inverse role axioms and treating functional roles as ordinary ones.



valuations that do not satisfy φ. The complexity results from Section 3 hold
accordingly for such maximal sets. However, we currently do not know how to
obtain a practical algorithm computing one such set (i.e., the results of Section 4
cannot be transferred to the case of maximal sets).
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