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Abstract. Axiom pinpointing has been introduced in description logics
(DLs) to help the user understand the reasons why consequences hold
by computing minimal subsets of the knowledge base that have the con-
sequence in question. Until now, the pinpointing approach has only been
applied to the DL ALC and some of its extensions. This paper considers
axiom pinpointing in the less expressive DL £L£7, for which subsump-
tion can be decided in polynomial time. More precisely, we consider an
extension of the pinpointing problem where the knowledge base is di-
vided into a static part, which is always present, and a refutable part, of
which subsets are taken. We describe an extension of the subsumption
algorithm for ££% that can be used to compute all minimal subsets of
(the refutable part of) a given TBox that imply a certain subsumption
relationship. The worst-case complexity of this algorithm turns out to
be exponential. This is not surprising since we can show that a given
TBox may have exponentially many such minimal subsets. However, we
can also show that the problem is not even output polynomial, i.e., un-
less P=NP, there cannot be an algorithm computing all such minimal
sets that is polynomial in the size of its input and output. In addition,
we show that finding out whether there is such a minimal subset within
a given cardinality bound is an NP-complete problem. In contrast to
these negative results, we also show that one such minimal subset can
be computed in polynomial time. Finally, we provide some encouraging
experimental results regarding the performance of a practical algorithm
that computes one (small, but not necessarily minimal) subset that has
a given subsumption relation as consequence.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and bio-medical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [15] as standard
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ontology language for the semantic web. For a developer or user of a DL-based
ontology, it is often quite hard to understand why a certain consequence holds,
and even harder to decide how to change the ontology in case the consequence is
unwanted. For example, in the current version of the medical ontology SNOMED
[24], the concept Amputation-of-Finger is unintendedly classified as a subconcept
of Amputation-of-Arm. Finding the axioms that are responsible for this among
the more than 350,000 terminological axioms of SNOMED without support by
an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [22]
describe an algorithm for computing all the minimal subsets of a given knowl-
edge base that have a given consequence. In the following, we call such a set
a minimal aziom set (MinA). Tt helps the user to comprehend why a certain
consequence holds. The knowledge bases considered in [22] are so-called unfold-
able ALC-terminologies, and the unwanted consequences are the unsatisfiability
of concepts. The algorithm is an extension of the known tableau-based satis-
fiability algorithm for ALC [23], where labels keep track of which axioms are
responsible for an assertion to be generated during the run of the algorithm.
The authors also coin the name “axiom pinpointing” for the task of computing
these minimal subsets.

The problem of computing MinAs of a DL knowledge base was actually con-
sidered earlier in the context of extending DLs by default rules. In [3], Baader and
Hollunder solve this problem by introducing a labeled extension of the tableau-
based consistency algorithm for ALC-ABoxes [14], which is very similar to the
one described later in [22]. The main difference is that the algorithm described
in [3] does not directly compute minimal subsets that have a consequence, but
rather a monotone Boolean formula whose variables correspond to the axioms
of the knowledge bases and whose minimal satisfying valuations correspond to
the MinAs. Another difference between [3] and [22] is that in the former paper
the ABox is divided into a static and a refutable part, where the elements of the
static part are assumed to be always present, and subsets are built only of the
refutable part of the ABox.

The approach of Schlobach and Cornet [22] was extended by Parsia et al. [20]
to more expressive DLs, and the one of Baader and Hollunder [3] was extended
by Meyer et al. [19] to the case of ALC-terminologies with general concept in-
clusions (GCIs), which are no longer unfoldable. Axiom pinpointing has also
been considered in other research areas, though usually not under this name.
For example, in the SAT community, people have considered the problem of
computing minimally unsatisfiable (and maximally satisfiable) subsets of a set
of propositional formulae. The approaches for computing these sets developed
there include special purpose algorithms that call a SAT solver as a black box
[18, [7], but also algorithms that extend a resolution-based SAT solver directly
[9, 26].

Whereas the previous work on pinpointing in DLs considered fairly expressive
DLs that contain at least ALC, this work is concerned with pinpointing in the
inexpressive DL ££7, which allows for conjunction, existential restrictions, and
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complex role inclusion axioms. There are several good reasons for considering
ELT. First, several bio-medical ontologies such as SNOMED [24], the Gene On-
tology [25], and large parts of Galen [21] can be expressed in ££%. In particular,
both SNOMED and Galen require role inclusion axioms. Second, reasoning in
ELT and some of its extensions remains polynomial even in the presence of GCIs
[1], which are required by Galen. Third, ££% is the DL currently handled by
our reasoner CEL [5] [4], which behaves quite well on very large ontologies such
as SNOMED.

Although the polynomial-time subsumption algorithm for ££% described in
[1, [5] is not tableau-based, the ideas for extending tableau-based algorithms to
pinpointing algorithms employed in [3,[22] can also be applied to this algorithm.
However, we will see that the normalization phase employed by this algorithm
introduces an additional problem. We will also consider the complexity of pin-
pointing in ££. In contrast to the case of ALC, where the subsumption problem
is already quite complex (PSpace-complete), subsumption in ££V is polynomial,
which makes it easier to analyze in how far pinpointing is a source of additional
complexity. Not surprisingly, it turns out that there may be exponentially many
MinAs, which shows that an algorithm for computing all MinAs needs expo-
nential time in the size of the input TBox. Even worse, we can show that it is
not even possible to obtain an algorithm that is polynomial in the size of the
input and the output (unless P=NP). In addition, even testing whether there
is a MinA of cardinality < n for a given natural number n is an NP-complete
problem. On the positive side, one MinA can always be computed in polynomial
time. Finally, we will provide some experimental results regarding the perfor-
mance of a practical algorithm that computes one (not necessarily minimal) set
that has a given consequence.

2 The Description Logic ££T

In DLs, concept descriptions are inductively defined with the help of a set of
constructors, starting with a set N¢ of concept mames and a set Ng of role
names. ELT concept descriptions are formed using the three constructors shown
in the upper part of Table[l An EL" ontology or TBox is a finite set of general
concept inclusion (GCI) and role inclusion (RI) axioms, whose syntax is shown
in the lower part of Table [l The sublanguage of ££1 that does not allow for
RIs is called ££. We will also use the name HL for the sublanguage of ££ that
does not allow for existential restrictions. This name is motivated by the fact
that GClIs involving HL concepts are basically propositional Horn clauses.

The semantics of E£7 is defined in terms of interpretations T = (A%,-%),
where the domain A7 is a non-empty set of individuals, and the interpretation
function - maps each concept name A € Nc to a subset A7 of A% and each role
name r € Ngr to a binary relation r* on AZ. The extension of -Z to arbitrary
concept descriptions is inductively defined, as shown in the semantics column of
Table[Il An interpretation Z is a model of a TBox 7 if, for each inclusion axiom
in 7, the conditions given in the semantics column of Table [1] are satisfied.
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Table 1. Syntax and semantics of £E£T

Name Syntax Semantics

top T AT

conjunction cnbD ctnpD*

exists restriction Ir.C {zeA? |IyecAT: (x,y)crfAyecCr)
GCI CCD ctcp*

RI rio---or, Cs rfoiorl Cst

Since there is no constructor in ££7 that can cause logical inconsistencies,
satisfiability of concepts or consistency of the TBox are not interesting inference
problems. The main inference problem for ££V is the subsumption problem:

Definition 1 (concept subsumption). Given two ELT concept descriptions
C,D and an ELY TBox T, C is subsumed by D w.r.t. T (written C T D) if
C*T C D? in every model T of T.

In the following, we will restrict the attention to subsumption between concept
names. This is justified by the fact that subsumption between concept descrip-
tions can be reduced to subsumption between concept names: we have C Ty D
it A Crugace,pcpy B where A, B are new concept names not occurring in C, D
and 7.

In order to describe our pinpointing algorithm for subsumption in E£7, we
must briefly recall the known polynomial-time subsumption algorithm for ££*
1 5]@ First, this algorithm transforms a given TBox into a normal form where
all GCIs have one of the following forms: A;M...MA, C B, AC 3r.B, Ir.AC B,
and where all RIs are of the form r C s or ror’ C s, where r,7’,s € Ng,n > 1, and
A Ay, ..., A,, B are elements of Ng, i.e, concepts names or the top concept T.
This transformation can be achieved in linear time using simple transformation
rules, which basically break down complex GCIs into simpler ones (see [I] for
details).

Given a TBox 7 in normal form over the concept names N¢ and role names
Ng, the subsumption algorithm for ELT employs completion rules to extend
an initial set of assertions until no more assertions can be added. Assertions
are of the form (A, B) or (A,r, B) where A, B € N/, and r € Ng. Intuitively,
the assertion (A, B) expresses that A Tz B holds and (A, r, B) expresses that
A C7 Jr.B holds. The algorithm starts with a set of assertions A that contains
(A, T) and (A, A) for every concept name A, and then uses the rules shown in
Fig. Il to extend A. Note that such a rule is only applied if it really extends A,
i.e., if the assertion added by the rule is not yet contained in A. The following
theorem, which is shown in [I], summarizes the important properties of this
algorithm.

1 A polynomial-time subsumption algorithm for ££ with GCIs was first presented
in [8], and subsumption in HL with GClIs is basically the implication problem for
propositional Horn clauses, which is known to be solvable in linear time [10].
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IfAiN...NA, CBeT and {(X,A41),...,(X,A,)} C A then add (X, B) to A.

IfAC3rBeT and (X,A) e A then add (X, r, B) to A.
If3rACBeT and {(X,r,Y),(Y,A)} CA then add (X, B) to A.

IfrCseT and (X,r,Y)e A then add (X,s,Y) to A.
Ifror' CseT and {(X,n,Y),(Y,r',Z)} CA then add (X,s,Z) to A.

Fig. 1. Completion rules for subsumption in ££7

Theorem 1. Given an ELT ontology T in normal form, the subsumption al-
gorithm terminates in time polynomial in the size of T. After termination, the
resulting set of assertions A satisfies A Tr B iff (A, B) € A, for all concept
names A, B occurring in 7T .

3 A Pinpointing Algorithm for ££%

In many applications, it makes sense to distinguish two kinds of axioms in an
ontology: trusted ones whose correctness is no longer doubted, and refutable
ones for which the designer or user of the ontology is not yet sure whether they
are correct. For example, if an already well-established ontology is extended, one
might view the newly added GCIs as refutable, but trust the GCIs of the existing
ontology. From now on, we assume that TBoxes are of the form 7 = (7; W 7,.),
i.e., they are a disjoint union of a static TBox 7, (whose axioms are irrefutable)
and a refutable TBox 7,.

Definition 2 (MinA). Let 7 = (T, W 7,) be an ELT TBox and A, B concept
names occurring in it such that A Cr B. Then, a minimal axiom set (MinA)
for 7 wrt. A C B is a subset S of 7, such that A Cr,us B, but A Lr,us B
for all strict subsets S’ C S.

If 7, = 0, then all axioms are assumed to be refutable. This is the case considered,
e.g., in [22]. As an example, consider the TBox 7 = (f W 7)) consisting of the
(refutable) GClIs

ax;: AC 3Jr.A, axs: ACY, ax3: JIr.Y C B, axg: YT B. (1)

We have A Cr B, and it is easy to see that {axs,axs} and {axy,axs,axs} are
the MinAs for 7 w.r.t AC B.

In the following, we show how the polynomial-time subsumption algorithm
presented in the previous section can be modified to a pinpointing algorithm.
However, instead of computing the MinAs directly, we follow the approach intro-
duced in [3] that computes a monotone Boolean formula from which the MinAs
can be derived. To define this formula, which we will call pinpointing formula
in the following, we assume that every refutable axiom t € 7, is labeled with a
unique propositional variable, lab(t); axioms t € 7, are labeled with lab(t) :=t
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(for truth). Let lab(T) be the set of all propositional variables labeling axioms
in 7,. A monotone Boolean formula over lab(T) is a Boolean formula using
(some of) the variables in lab(7) and only the binary connectives conjunction
and disjunction and the nullary connective t (for truth). As usual, we identify a
propositional valuation with the set of propositional variables made true by this
valuation. For a valuation V C lab(7), let Ty := {t € 7, | lab(t) € V}.

Definition 3 (pinpointing formula). Given an ELT TBox T = (T, W T,)
and concept names A, B occurring in it, the monotone Boolean formula ¢ over
lab(T) is a pinpointing formula for 7 w.r.t A C B if the following holds for
every valuation V C lab(T): A Cr.ur, B iff V satisfies ¢.

In our example, we can take lab(7) = {axy,...,ax4} as set of propositional
variables. It is easy to see that axa A (ax4 V (ax3 Aaxs)) is a pinpointing formula
for 7 wr.t. AC B.

If we order valuations by set inclusion, then we obviously have the following
relation between MinAs and minimal satisfying valuations of the pinpointing
formula.

Proposition 1. Let ¢ be a pinpointing formula for T w.r.t AT B. Then
{Ty | V is a minimal valuation satisfying ¢}
is the set of all MinAs for T w.r.t AC B.

This shows that it is enough to design an algorithm for computing a pinpointing
formula to obtain all MinAs. For example, one possibility is to bring ¢ into
disjunctive normal form and then remove disjuncts implying other disjuncts.
Note that this may cause an exponential blowup, which means that, in some
cases, the pinpointing formula provides us with a compact representation of the
set of all MinAs. Also note that this blowup is not really in the size of the
pinpointing formula but rather in the number of variables. Thus, if the size of
the pinpointing formula is already exponential in the size of the TBox 7 (which
may well happen), computing all MinAs from it is still “only” exponential in
the size of 7. More about the complexity of computing all MinAs from a given
pinpointing formula can be found in Section 4

For the moment, let us assume that the TBox 7 = (7; W 7,.) is already in
normal form. Recall that the axioms in 7, have a unique propositional variable
as label, whereas the axioms in 7; have label t. In the pinpointing extension
of the subsumption algorithm for ££7, assertions a are labeled with monotone
Boolean formulae lab(a). The initial assertions (A, T) and (A, A) receive label
t. The definition of rule application is modified as follows. Assume that the pre-
conditions of a rule from Fig. [l are satisfied for the set of assertions A w.r.t.
the TBox 7. Let ¢ be the conjunction of the labels of the GCIs from 7 and
the assertions from A occurring in the precondition. If the assertion in the con-
sequence of the rule does not yet belong to A, then it is added with label ¢. If
the assertion is already there with label v, then its label is changed to ¥ V ¢ if
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this formula is not equivalent to 1; otherwise (i.e., if ¢ implies ¢) the rule is not
applied.

It is easy to see that this modified algorithm always terminates, though not
necessarily in polynomial time. In fact, there are polynomially many assertions
that can be added to A. If the label of an assertion is changed, then the new
label is a more general monotone Boolean formula, i.e., it has more models than
the original label. Since there are only exponentially many models, the label of a
given assertion can be changed only exponentially often. Accordingly, the size of
the label of an assertion can grow only exponentially. Equivalence of monotone
Boolean formulae is an NP-complete problem. However, given formulae over n
propositional variables whose size is exponential in n, equivalence can be tested
in time exponential in n. Thus, there are at most exponentially many rule appli-
cations, each of which takes at most exponential time. This yields an exponential
time bound for the execution of the pinpointing algorithm.

Regarding correctness of the pinpointing algorithm, it is easy to see that the
set of assertions A obtained after termination is identical to the one obtained
by the unmodified algorithm. In addition, we can show that, for all assertions
(A, B) € A, the formula lab((A4, B)) is a pinpointing formula for 7 w.r.t A = BJ

Theorem 2. Given an ELT TBox T = (T,wT,) in normal form, the pinpointing
algorithm terminates in time exponential in the size of T. After termination, the
resulting set of assertions A satisfies the following two properties for all concept
names A, B occurring in T :

1. ACT B iff (A,B) € A, and
2. lab((A, B)) is a pinpointing formula for T w.r.t AC B.

As an example, consider the TBox 7 consisting of the refutable GCIs given in
(@ and of no irrefutable axioms. The pinpointing algorithm proceeds as follows.
Sinceaxg : ACY € 7 and (4, A) € A with label t, the assertion (4,Y") is added
to A with label axy (actually with label axo At, which is equivalent to axs). Since
ax; : AC Ir.A € T and (A, A) € A with label t, (4,7, A) is added to A with
label ax;. Since axy : Y C B € 7 and (A,Y) € A with label axa, (A, B) is added
to A with label axa A axy. Finally, since axz : IrY T B € 7, (A,Y) € A with
label axg, and (A,r, A) € A with label ax;, the label of (A, B) € A is modified
from axg A axg to (axg A axg) V (axy A axg A axz). This final label of (A, B) is a
pinpointing formula for 7 w.r.t. AC B.

As described until now, our pinpointing algorithm for ££7 can only deal with
normalized TBoxes, i.e., the pinpointing formula ¢ it yields contains proposi-
tional variables corresponding to the normalized GCIs. We now show that the
algorithm for computing pinpointing formulae can easily be extended to one
dealing also with non-normalized TBoxes. First, note that the relationship be-
tween original axioms and normalized axioms is many to many: one axiom in
the original TBox can give rise to several axioms in the normalized one, and
one axiom in the normalized TBox can come from several axioms in the original

2 A proof of this fact in a more general setting can be found in [6].
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TBox. For example, consider the GCIs A C By N By, A C By M B3, which are
normalized to A C B, A C By, A C Bs. Each original GCI gives rise to two
normalized ones, and the normalized GCI A C By has two sources, i.e., it is
present in the normalized TBox if the first or the second original GCI is present
in the input TBox.

Now, assume that 7 is an unnormalized input TBox, and that 7 is the corre-
sponding normalized TBox where we view all axioms in 7 as being refutable. Let
¢ be a pinpointing formula for 7 w.r.t. A C B, where A, B are concept names
occurring in T (and thus also in 7). We can now modify ¢ to a pinpointing
Jormula for the original TBox T as follows. Assume that the refutable axioms in
T are associated with unique propositional variables, and the irrefutable ones in
7T with t. Each normalized axiom in 7 has a finite number of original axioms as
sources. We modify ¢ by replacing the propositional variable for each normalized
axiom by the disjunction of the labels of its sources. Note, in particular, that
the propositional variable of a normalized axiom that has an irrefutable axiom
as source is replaced by a formula that is equivalent to t.

4 The Complexity of Computing All MinAs

In this section we will show several hardness results regarding the computation
of all MinAs. We can actually show all of them already for the sublanguage HL
of ELT. Of course, these results then also hold for ££ and ££7T.

If we want to compute all MinAs, then in the worst case an exponential
runtime cannot be avoided since there may be exponentially many MinAs for a
given TBox. The following example shows that this is already the case for HL
TBoxes.

Ezxample 1. For all n > 1, the size of the HL TBox
T, ={Bi-1 EPNQ;BCB;,Q;CB[1<i<n}

is linear in n, and we have By C7, B,,. Assume that all axioms in 7,, are refutable.
Then, there are 2™ MinAs for 7,, w.r.t. Bg C B, since, for each 7,1 < i < n, it
is enough to have P; C B; or @; C B; in the set.

In Section [l we will show that a single MinA can be computed in polynomial
time. However, as soon as we want to know more about the properties of the set
of all MinAs, this cannot be achieved in polynomial time (unless P=NP). For
example, determining whether there is a MinA whose cardinality is bounded by
a given natural number n is NP-hard.

Theorem 3. Given an HL TBox T = (T, W7T,), concept names A, B occurring
in T, and a natural number n, it is NP-complete to decide whether or not there
is a MinA for T w.r.t. AC B of cardinality < n. This already holds in the case
where T, = ().
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Proof. The problem is in NP since one can simply guess a subset S of 7, with
cardinality n, and then check in polynomial time whether A Cr,us B. Clearly,
such a set exists iff there is a MinA of cardinality < n.

NP-hardness can be shown by a reduction of the NP-hard hitting set problem
[13]: given a collection Si,... Sk of sets and a natural number n, is there a set
S of cardinality < mn such that SNS; # () for i = 1,...,k. Such a set S is
called a hitting set. In the reduction, we use a concept name P for every element
p € S1U...US, as well as the additional concept names A, B, Q1, . .., Qk. Given
S1 =A{p11,---»P1es b+, Sk = {Pk1,- - -, Pit,, }» we define the TBox 7 = (D W 7;)
with

T, ={P;CQi|1<i<k1<j<{(}U
{ACP; |1 <i<k1<j<L3u{@in...NQxC B}.

It is easy to see that Sy, ..., Sk has a hitting set of cardinality < n iff there is a
MinA for 7 w.r.t. A C B of cardinality <n + k + 1. O

Given the fact that a TBox may have exponentially many MinAs, it is clear that
it is not possible to enumerate all MinAs in time polynomial in the size of the
input. However, in complexity theory one also considers other kinds of complexity
measures for the complexity of enumeration problems [16]. One possibility is to
ask whether there is an algorithm that enumerates all MinAs in time polynomial
in the size of the input and the output, i.e., in the size of the TBox and the number
of MinAs. We will call such an algorithm output polynomial. One advantage of
an output polynomial algorithm is that it runs in polynomial time in case there
are only polynomially many outputs.

The pinpointing algorithm for E£7 described in Section [ uses as a subpro-
cedure the enumeration of all minimal valuations satisfying a given monotone
Boolean formula. Unfortunately, already this problem is known not to have an
output polynomial solution (unless P=NP). A proof of this fact can be found in
the technical report [I1]; since this result is not included in the corresponding
journal paper [12], we provide our own proof for the sake of completeness.

Theorem 4. There is no output polynomial algorithm for computing all mini-
mal satisfying valuations of monotone Boolean formulae, unless P=NP.

To prove this theorem, it is enough to show (see [17]) that the following decision
problem is NP-hard:

Lemma 1. Given a monotone Boolean formula ¢ and a set M of minimal val-
uations satisfying ¢, deciding whether there exists a minimal valuation V ¢ M
satisfying ¢ is NP-hard in the size of ¢ and M.

Proof. The proof is by reduction of the NP-hard hypergraph 2-coloring problem
[13]: given a collection H = {E, ..., E,,} of subsets of a set of vertices V, each
of them of size 3, is there a set C such that CNE; # 0 and (V\C)NE; # 0 for

i:l,...,mﬁ

3 In other words, both C' and its complement must be hitting sets for Fi, ..., Fm.
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Let V ={v1,...,0,} and E; = {v;1,v;2,v;3} for alls = 1,..., m. We represent
every v; € V by a propositional variable p;, and construct the monotone Boolean
formula ¢ := ¢V \/~, 1;, where

m
P = /\pil VpieVpiz and ¥ = pi Api2 Api3
i=1
and the set M := {V; := {pi,pi2,pis} | 1 < i < m and no strict subset of V;
satisfies ¥ }.

It is easy to see that the formula ¢ as well as the set M can be constructed
in time polynomial in the size of V and H. Moreover, every valuation V; € M
satisfies the formula 1);, and hence also ¢. It is minimal since no strict subset
of V; satisfies (i) any of the ¢, (which require valuations of size at least 3 to be
satisfied) nor (ii) ¥ since otherwise the condition in the definition of M would
be violated. This shows that ¢ and M indeed form an instance of the problem
considered in the lemma.

To complete the proof of NP-hardness of this problem, it remains to be shown
that there is a minimal valuation V ¢ M satisfying ¢ iff there is a set C C V
such that CNE; # 0 and (V\C)NE; #0 for all 1 <4 < m.

For the if direction, let C be such a set, which we assume without loss of
generality to be minimal with respect to set inclusion. We define the valuation
Ve = {pi; | vi € C} and claim that it is the minimal valuation we are looking
for. For every 1 <4 < m, C N E; # () implies that there is a 1 < j < 3 such
that v;; € C, which means that p;; € V. This shows that V¢ satisfies ¢ and
thus also ¢. In addition, since (V' \ C) N E; # (), there is a 1 < k < 3 such that
v ¢ C. Thus, V¢ is different from all the valuations V; € M, and it does not
satisfy any of the formulae ;.

To show that V¢ is minimal, assume that V' C V¢. Since C' is minimal, the
set C" :={wv; | p; € V'} C C is such that thereis a 1 <i < m with C' N E; = .
This implies that V' does not satisfy p;1 V pi2 V psi3, and hence it does not satisfy
1. As a subset of V¢, it also does not satisfy any of the formulae v;, and thus it
does not satisfy ¢. This shows that V¢ is a minimal valuation satisfying ¢ that
does not belong to M.

For the only-if direction, assume that there is a minimal valuation V ¢ M
satisfying ¢. This valuation cannot satisfy any of the formulae ;. Indeed, (i) for
V; € M this would imply that V is a superset of one of the valuations in M,
which contradicts either the minimality of V or the fact that it does not belong
to M; (ii) for V; &€ M there would be a smaller valuation satisfying ¢, which
contradicts the minimality of V.

Since V is a model of ¢, it must thus satisfy ¢. Define the set C) = {v; |
p; € V}. Since V satisfies 1, for every 1 <4 < m there is a 1 < j < 3 such that
pij €V, and thus v;; € Cy N E;. On the other hand, since V does not satisfy
any of the formulae v;, for every 1 < i < m there must also be a 1 <[ < 3 such
that p; r ¢ V, which means that E; € Cy and hence (V \ C) N E; # 0. 0

Theorem [4] follows from this lemma since an output polynomial algorithm whose
runtime is bounded by the polynomial P(|¢|,|M|) (where ¢ is the input and M
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Algorithm 1. Compute one MinA for 7 = (0 W {t1,...,t,}) wrt. AC B.

if AZ7r B then
return no MinA

: Si={t1,...,tn}

cforl1<i<ndo

if A ES\{ti} B then
S =8\ {t}

return S

N W

the output) could be used to decide the problem introduced in the lemma in
polynomial time as follows: given ¢ and M, run the algorithm for time at most
P(|¢|,|M]) and check whether the generated valuations are exactly those in M.

Theorem (] shows that an algorithm for computing all MinAs based on com-
puting the pinpointing formula and then producing its minimal satisfying val-
uations cannot be output polynomial. However, we can also use Theorem [4] to
show that there cannot be any algorithm for computing MinAs that is output
polynomial.

Theorem 5. There is no output polynomial algorithm that computes, for a given
HL TBox T = (T, W7T,) and concept names A, B occurring in T, all MinAs for
T w.r.t. AC B, unless P=NP.

Proof. We show that the problem of computing minimal valuations of monotone
Boolean formulae can be reduced in polynomial time to the problem of comput-
ing MinAs of an HL TBox. Given a monotone Boolean formula ¢, we introduce
one concept name By for every subformula of ¢ of ¢, and one additional con-
cept name A. We define TBoxes 7y, for the subformulae ¢ of ¢ by induction: if
1 = p is a propositional variable, then 7, := {A C B,}; if ¥ = 91 A 1, then
Ty := {By, M By, T By }; if ¢ = 41 V 4y, then T, := {By, T By, By, C By}.
Obviously, the size of 74 is linear in the size of ¢. In 74, we declare the GCls
A T B, with p a propositional variable to be refutable, and the other GClIs to
be irrefutable. With this division of 7, into a static and a refutable part, it is
easy to see that there is a 1-1-correspondence between the minimal satisfying
valuations of ¢ and the MinAs for 74 w.r.t. A C By. In particular, given a MinA
S, the corresponding valuation Vs consists of all p such that A C B, € S. Thus,
if we could compute all MinAs with an output polynomial algorithm, we could
do the same for all minimal satisfying valuations. O

5 Computing One MinA

For the sake of simplicity, we restrict the attention in this section to the case
where all axioms in the TBox are assumed to be refutable. Note, however, the
results could easily be extended to the general case.

A single MinA can be computed in polynomial time by the simple Algorithm/[I]
which goes through all axioms (in a given fixed order) and throws away those
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that are not needed to obtain the desired subsumption relationship. Since the
algorithm performs n 4+ 1 subsumption tests (where n is the cardinality of 7),
and each such test takes only polynomial time, the overall complexity of this
algorithm is polynomial. It is easy to see that its output (in case A Ty B) is
indeed a MinA for 7 w.r.t. AC B.

Theorem 6. Given an ELY TBox T = (WW7,), Algorithm[dl terminates in time
polynomial in the size of T, and yields a MinA for T w.r.t. AC B if ACs B.

Although it requires only polynomial time, computing one MinA using Algo-
rithm [Il may still be impractical for very large TBoxes like SNOMED. In fact,
the algorithm has to make as many calls of the subsumption algorithm as there
are axioms in the TBox (in the case of SNOMED, more than 350,000). Here
we propose an improved algorithm that proceeds in two steps: (i) first compute
a small (though not necessarily minimal) subset of the TBox from which the
subsumption relationship follows; (ii) then minimize this set using Algorithm [l
Of course, this approach makes sense only if the algorithm used in step (i) is effi-
cient and produces fairly small sets. It wouldn’t help to use the trivial algorithm
that always produces the whole TBox. In the following, we denote by nMinA
such a (not necessarily minimal) subset obtained by step (i).

An algorithm that realize step (i) and runs in polynomial time can easily be
obtained from the pinpointing algorithm sketched in Section 3] by strengthening
the preconditions of rule applicability. The only modification is the following:
if an assertion in the consequence of a rule already belongs to the current set
of assertions, then this rule is not applied, i.e., once an assertion is there with
some label, the label remains unchanged. Thus, every assertion (A, B) in the
final set has a conjunction of propositional variables as its label, which clearly
corresponds to a subset of the TBox from which the subsumption relationship
A C B follows. In general, this subset is not minimal, however. (Because of the
space constraints, we cannot give an example demonstrating this.)

As described until now, this modified algorithm works on normalized TBoxes.
To get an appropriate subset of the original axioms, one can use a greedy strategy
for producing a set of original axioms that covers a given set S of normalized
axioms in the following sense. For each original axiom ¢, let S; be the set of
normalized axioms ¢ gives rise to. The set 7’ of original axioms covers S if
S C U,iers St The use of a greedy strategy adds another possible source of
non-minimality. (We use a non-optimal greedy strategy to keep the algorithm
polynomial. In fact, even determining whether there is a cover set of size < n is
another NP-complete problem [13].)

Our preliminary experimental results confirm that this algorithm is indeed
more practical than Algorithm [l Based on the refined algorithm underlying
the CEL reasoner [, [4], we have implemented the practical algorithm described
above for computing ezactly one MinA for each subsumption relationship in
ELT. The experiments were run on a variant of the Galen Medical Knowledge
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frequency

2000 “.‘ [194% has 10 or less
axioms

EnMinAs for normalized Galen
MinAs for normalized Galen
OnMinAs for Galen

EIMinAs for Galen

Fig. 2. Statistical data on the sizes of all computed axiom sets

Base [21] E which is a TBox consisting of more than 4,000 axioms. On the normal-
ized version of this TBox, CEL needs about 14 sec to compute all subsumption
relationships between concept names occurring in this TBox. Overall, over 27,000
subsumption relationships are computed. The overhead for computing for all of
these subsumption relationships (possibly non-minimal) subsets from which they
already follow was a bit more than 50%: the modified pinpointing algorithm de-
scribed above needed about 23 sec. Going from the nMinAs for the normalized
TBox to the corresponding nMinAs for the original Galen TBox with the greedy
strategy took 0.27 sec. Finally, the overall time required for minimizing these
sets using Algorithm [ (with CEL [4] as the subsumption reasoner) was 9:45 min.
For these last two numbers one should take into account, however, that these
involved treating more than 27,000 such sets. For a single such set, the average
post-processing time was negligible (on average 21 milliseconds). Also note that
applying Algorithm [ directly to the whole TBox for just one subsumption re-
lationship (between Renal-Artery and Artery- Which-Has-Laterality) took more
than 7 hours.

Thus, from the point of view of runtime, our practical algorithm behaves
quite well on Galen. The same can be said about the quality of its results.
Figure[2 displays the distribution graphs of the sizes of all computed nMinAs and
their corresponding MinAs. The average size of an axiom set computed by the
algorithm before using Algorithm[Ilto minimize it was 5 (with maximum size 31),

* Since Galen uses expressivity not available in ££7, we have simplified it by removing
inverse role axioms and treating functional roles as ordinary ones.
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which is quite small and thus means that this set can directly be given to the user
as an explanation for the subsumption relationship. Also, the computed nMinAs
were almost minimal: on average, the possibly non-minimal sets computed by
the algorithm were only 2.59% larger than the minimal ones. When considering
the normalized TBox (i.e., without translating back to the original TBox), this
number was even better (0.1%). This means that in most cases it is probably not
necessary to further minimize the sets using Algorithm [0l If demanded by the
user for a specific subsumption relationship it can still be done without taking
much time.

6 Additional and Future Work on Pinpointing

The pinpointing extension of the subsumption algorithm for ££ described in
Section [ as well as the pinpointing algorithm for ALC described in [3] are in-
stances of a general approach for modifying “tableau-like” reasoning procedures
to pinpointing procedures [6].

Instead of computing minimal subsets that have a given consequence, one
sometimes also wants to compute maximal subsets that do not have a given
consequence. Given the pinpointing formula ¢, these sets correspond to maximal
valuations that do not satisfy ¢. The complexity results from Section M hold
accordingly for such maximal sets. However, we currently do not know how to
obtain a practical algorithm computing one such set (i.e., the results of Section[H]
cannot be transferred to the case of maximal sets). Another open problem is the
question of whether Theorem [0 also holds in the special case where the static
TBox is empty.

Finally, space optimizations shall be studied to cater for large ontologies such
as SNOMED with up to ten million subsumptions, and thus nMinAs.

References

[1] Baader, F., Brandt, S., Lutz, C.: Pushing the £L envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI2005), Edinburgh (UK), pp. 364-369. Morgan Kaufmann, Los Altos (2005)

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

[3] Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. of Automated Reasoning 14, 149-180 (1995)

[4] Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287—-291. Springer, Heidelberg (2006)

[5] Baader, F., Lutz, C., Suntisrivaraporn, B.: Is tractable reasoning in extensions
of the description logic £L useful in practice. Journal of Logic, Language and
Information, Special Issue on Method for Modality on M4M (to appear, 2007)

[6] Baader, F., Penaloza, R.: Axiom pinpointing in general
tableaux. LTCS-Report LTCS-07-01, Germany, See (2006),
http://lat.inf.tu-dresden.de/research/reports.html


http://lat.inf.tu-dresden.de/research/reports.html

66

(7l

(22]

(23]

F. Baader, R. Penialoza, and B. Suntisrivaraporn

Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practi-
cal Aspects of Declarative Languages. LNCS, vol. 3350, pp. 174-186. Springer,
Heidelberg (2005)

Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mdntaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298-302
(2004)

Davydov, G., Davydova, 1., Biining, H.K.: An efficient algorithm for the minimal
unsatisfiability problem for a subclass of CNF. Ann. of Mathematics and Artificial
Intelligence 23(3-4), 229-245 (1998)

Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of
propositional horn formulae. Journal of Logic Programming 1(3), 267-284 (1984)
Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. Technical Report CD-TR 91/16, Christian Doppler Labor fiir
Expertensysteme, TU-Wien (1991)

Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. STAM J. Comput. 24(6), 1278-1304 (1995)

Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (1979)

Hollunder, B.: Hybrid inferences in KL-ONE-based knowledge representation sys-
tems. In: Proc. of the German Workshop on Artificial Intelligence, pp. 38-47.
Springer, Heidelberg (1990)

Horrocks, 1., Patel-Schneider, P.F., Van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7-26 (2003)

Johnson, D.S.; Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. (1988)

Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models
of a Boolean expression. Inf. Process. Lett. (2000)

Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformu-
las. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173-186.
Springer, Heidelberg (2005)

Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of the 21st Nat. Conf. on Artificial
Intelligence (AAAT 2006), AAAT Press/The MIT Press (2006)

Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web
(WWW’05), pp. 633-640. ACM Press, New York (2005)

Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In: Pro-
ceedings of the Workshop on Ontological Engineering, AAAT Spring Symposium
(AAAT97), Stanford, CA, AAAT Press (1997)

Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp.
355-362. Morgan Kaufmann, Los Altos (2003)

Schmidt-Schaufl; M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1-26 (1991)



(24]

25]

(26]

Pinpointing in the Description Logic ££% 67

Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference termi-
nology for health care. J. of the American Medical Informatics Association (Fall
Symposium Supplement), 640-644 (1997)

The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biol-
ogy. Nature Genetics, 25, 25-29 (2000)

Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In: Proc. of the
Conference on Design, Automation and Test in Europe (DATE’03), pp. 10880—
10885. IEEE Computer Society Press, Los Alamitos (2003)



	Introduction
	The Description Logic EL+
	A Pinpointing Algorithm for EL+
	The Complexity of Computing All MinAs
	Computing One MinA
	Additional and Future Work on Pinpointing


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


