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Abstract. Axiom pinpointing has been introduced in description logics
(DLs) to help the user to understand the reasons why consequences hold
and to remove unwanted consequences by computing minimal (maximal)
subsets of the knowledge base that have (do not have) the consequence
in question. The pinpointing algorithms described in the DL literature
are obtained as extensions of the standard tableau-based reasoning algo-
rithms for computing consequences from DL knowledge bases. Although
these extensions are based on similar ideas, they are all introduced for a
particular tableau-based algorithm for a particular DL.
The purpose of this paper is to develop a general approach for extending
a tableau-based algorithm to a pinpointing algorithm. This approach is
based on a general definition of “tableaux algorithms,” which captures
many of the known tableau-based algorithms employed in DLs, but also
other kinds of reasoning procedures.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and bio-medical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [13] as standard
ontology language for the semantic web. As a consequence of this standardiza-
tion, several ontology editors support OWL [15, 18, 14], and ontologies written in
OWL are employed in more and more applications. As the size of such ontologies
grows, tools that support improving the quality of large DL-based ontologies be-
come more important. Standard DL reasoners [12, 10, 24] employ tableau-based
algorithms [6], which can be used to detect inconsistencies and to infer other
implicit consequences, such as subsumption relationships between concepts or
instance relationships between individuals and concepts.

For a developer or user of a DL-based ontology, it is often quite hard to
understand why a certain consequence holds,1 and even harder to decide how to
? Funded by the German Research Foundation (DFG) under grant GRK 446.
1 Note that this consequence may also be the inconsistency of the knowledge base or

the unsatisfiability of a concept w.r.t. the knowledge base.



change the ontology in case the consequence is unwanted. For example, in the
current version of the medical ontology SNOMED [25], the concept Amputation-
of-Finger is classified as a subconcept of Amputation-of-Arm. Finding the axioms
that are responsible for this among the more than 350,000 terminological axioms
of SNOMED without support by an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [22]
describe an algorithm for computing all the minimal subsets of a given knowledge
base that have a given consequence. To be more precise, the knowledge bases
considered in [22] are so-called unfoldable ALC-terminologies, and the unwanted
consequences are the unsatisfiability of concepts. The algorithm is an extension of
the known tableau-based satisfiability algorithm for ALC [23], where labels keep
track of which axioms are responsible for an assertion to be generated during
the run of the algorithm. The authors also coin the name “axiom pinpointing”
for the task of computing these minimal subsets. Following Reiter’s approach for
model-based diagnosis [20], Schlobach [21] uses the minimal subsets that have
a given consequence together with the computation of Hitting Sets to compute
maximal subsets of a given knowledge base that do not have a given (unwanted)
consequence.2 Whereas the minimal subsets that have the consequence help the
user to comprehend why a certain consequence holds, the maximal subsets that
do not have the consequence suggest how to change the knowledge base in a
minimal way to get rid of a certain unwanted consequence.

The problem of computing minimal (maximal) subsets of a DL knowledge
base that have (do not have) a given consequence was actually considered earlier
in the context of extending DLs by default rules. In [4], Baader and Hollunder
solve this problem by introducing a labeled extension of the tableau-based consis-
tency algorithm for ALC-ABoxes [11], which is very similar to the one described
later in [22]. The main difference is that the algorithm described in [4] does not
directly compute minimal subsets that have a consequence, but rather a mono-
tone Boolean formula, called clash formula in [4], whose variables correspond
to the axioms of the knowledge bases and whose minimal satisfying (maximal
unsatisfying) valuations correspond to the minimal (maximal) subsets that have
(do not have) a given consequence.

The approach of Schlobach and Cornet [22] was extended by Parsia et al. [19]
to more expressive DLs, and the one of Baader and Hollunder [4] was extended by
Meyer et al. [17] to the case of ALC-terminologies with general concept inclusions
(GCIs), which are no longer unfoldable. The choice of the DL ALC in [4] and [22]
was meant to be prototypical, i.e., in both cases the authors assumed that their
approach could be easily extended to other DLs and tableau-based algorithms
for them. However, the algorithms and proofs are given for ALC only, and it is
not clear to which of the known tableau-based algorithms the approaches really
generalize. For example, the pinpointing extension described in [17] follows the
approach introduced in [4], but since GCIs require the introduction of so-called

2 Actually, he considers the complements of these sets, which he calls minimal diag-
noses.



blocking conditions into the tableau-based algorithm to ensure termination, there
are some new problems to be solved.

Thus, one can ask to which DLs and tableau-based algorithms the approaches
described in [4, 22] apply basically without significant changes, and with no
need for a new proof of correctness. This paper is a first step towards answering
this question. We develop a general approach for extending a tableau-based
algorithm to a pinpointing algorithm, which is based on the the ideas underlying
the pinpointing algorithm described in [4]. To this purpose, we define a general
notion of “tableaux algorithm,” which captures many of the known tableau-
based algorithms for DLs and Modal Logics,3 but also other kinds of decision
procedures, like the polynomial-time subsumption algorithm for the DL EL [1].
This notion is simpler than the tableau systems introduced in [3] in the context of
translating tableaux into tree automata, and it is not restricted to tableau-based
algorithms that generate tree-like structures.

Axiom pinpointing has also been considered in other research areas, though
usually not under this name. For example, in the SAT community, people have
considered the problem of computing maximally satisfiable and minimally unsat-
isfiable subsets of a set of propositional formulae. The approaches for computing
these sets developed there include special purpose algorithms that call a SAT
solver as a black box [16, 7], but also algorithms that extend a resolution-based
SAT solver directly [8, 26]. To the best of our knowledge, extensions of tableau-
based algorithms have not been considered in this context, and there are no
general schemes for extending resolution-based solvers.

In the next section, we define the notions of minimal (maximal) sets having
(not having) a given consequence in a general setting, and show some interesting
connections between these two notions. In Section 3 we introduce our general
notion of a tableau, and in Section 4 we show how to obtain pinpointing extension
of such tableaux. Because of the space restriction, we cannot give complete proofs
of our results. They can be found in [5].

2 Basic definitions

Before we can define our general notion of a tableau algorithm, we need to define
the general form of inputs to which these algorithms are applied, and the decision
problems they are supposed to solve.

Definition 1 (Axiomatized input, c-property). Let I be a set, called the
set of inputs, and T be a set, called the set of axioms. An axiomatized input
over these sets is of the form (I, T ) where I ∈ I and T ∈ Pfin(T) is a finite
subset of T. A consequence property (c-property) is a set P ⊆ I×Pfin(T) such
that (I, T ) ∈ P implies (I, T ′) ∈ P for every T ′ ⊇ T .

3 Note that these algorithms are decision procedures, i.e., always terminate. Currently,
our approach does not cover semi-decision procedures like tableaux procedures for
first-order logic.



Intuitively, c-properties on axiomatized inputs are supposed to model conse-
quence relations in logic, i.e., the c-property P holds if the input I “follows” from
the axioms in T . The monotonicity requirement on c-properties corresponds to
the fact that we want to restrict the attention to consequence relations induced
by monotonic logics. In fact, for non-monotonic logics, looking at minimal sets
of axioms that have a given consequence does not make much sense.

To illustrate Definition 1, assume that I is a countably infinite set of proposi-
tional variables, and that T consists of all Horn clauses over these variables, i.e.,
implications of the form p1∧. . .∧pn → q for n ≥ 0 and p1, . . . , pn, q ∈ I. Then the
following is a c-property according to the above definition: P := {(p, T ) | T |= p},
where T |= q means that all valuations satisfying all implications in T also sat-
isfy q. As as concrete example, consider Γ := (p, T ) where T consists of the
following implications:

ax1: → q, ax2: → s, ax3: s→ q, ax4: q ∧ s→ p (1)

It is easy to see that Γ ∈ P. Note that Definition 1 also captures the following
variation of the above example, where I′ consist of tuples (p, T1) ∈ I ×Pfin(T)
and the c-property is defined as P ′ := {((p, T1), T2) | T1 ∪T2 |= p}. For example,
if we take the axiomatized input Γ ′ := ((p, {ax3, ax4}), {ax1, ax2}), then Γ ′ ∈ P ′.

Definition 2. Given an axiomatized input Γ = (I, T ) and a c-property P, a
set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P if
(I,S) ∈ P and (I,S ′) /∈ P for every S ′ ⊂ S. Dually, a set of axioms S ⊆ T
is called a maximal non-axiom set (MaNA) for Γ w.r.t. P if (I,S) /∈ P and
(I,S ′) ∈ P for every S ′ ⊃ S. The set of all MinA (MaNA) for Γ w.r.t. P will
be denoted as MINP(Γ ) (MAXP(Γ )).

Note that the notions of MinA and MaNA are only interesting in the case where
Γ ∈ P. In fact, otherwise the monotonicity property satisfied by P implies that
MINP(Γ ) = ∅ and MAXP(Γ ) = {T }. In the above example, where we have Γ ∈ P,
it is easy to see that MINP(Γ ) = {{ax1, ax2, ax4}, {ax2, ax3, ax4}}. In the variant
of the example where only subsets of the facts {ax1, ax2} can be taken, we have
MINP′(Γ ′) = {{ax2}}.

The set MAXP(Γ ) can be obtained from MINP(Γ ) by computing the minimal
hitting sets of MINP(Γ ), and then complementing these sets [22, 16]. A set S ⊆
T is a minimal hitting set of MINP(Γ ) if it has a nonempty intersection with
every element of MINP(Γ ), and no strict subset of S has this property. In our
example, the minimal hitting sets of MINP(Γ ) are {ax1, ax3}, {ax2}, {ax4}, and
thus MAXP(Γ ) = {{ax2, ax4}, {ax1, ax3, ax4}, {ax1, ax2, ax3}}. Intuitively, to
get a set of axioms that does not have the consequence, we must remove from
T at least one axiom for every MinA, and thus the minimal hitting sets give us
the minimal sets to be removed.

The reduction we have just sketched shows that it is enough to design an
algorithm for computing all MinA, since the MaNA can then be obtained by a
hitting set computation. It should be noted, however, that this reduction is not
polynomial: there may be exponentially many hitting sets of a given collection of



sets, and even deciding whether such a collection has a hitting set of cardinality
≤ n is an NP-complete problem [9]. Also note that there is a similar reduction
involving hitting sets for computing the MinA from all MaNA.

Instead of computing MinA or MaNA, one can also compute the pinpointing
formula.4 To define the pinpointing formula, we assume that every axiom t ∈ T
is labeled with a unique propositional variable, lab(t). Let lab(T ) be the set of
all propositional variables labeling an axiom in T . A monotone Boolean formula
over lab(T ) is a Boolean formula using (some of) the variables in lab(T ) and only
the connectives conjunction and disjunction. As usual, we identify a propositional
valuation with the set of propositional variables it makes true. For a valuation
V ⊆ lab(T ), let TV := {t ∈ T | lab(t) ∈ V}.

Definition 3 (pinpointing formula). Given a c-property P and an axiom-
atized input Γ = (I, T ), a monotone Boolean formula φ over lab(T ) is called
a pinpointing formula for P and Γ if the following holds for every valuation
V ⊆ lab(T ): (I, TV) ∈ P iff V satisfies φ.

In our example, we can take lab(T ) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that (ax1 ∨ ax3) ∧ ax2 ∧ ax4 is a pinpointing formula
for P and Γ .

Valuations can be ordered by set inclusion. The following is an immediate
consequence of the definition of a pinpointing formula [4].

Lemma 1. Let P be a c-property, Γ = (I, T ) an axiomatized input, and φ a
pinpointing formula for P and Γ . Then

MINP(Γ ) = {TV | V is a minimal valuation satisfying φ}
MAXP(Γ ) = {TV | V is a maximal valuation falsifying φ}

This shows that it is enough to design an algorithm for computing a pinpointing
formula to obtain all MinA and MaNA. However, like the previous reduction
from computing MaNA from MinA, the reduction suggested by the lemma is
not polynomial. For example, to obtain MINP(Γ ) from φ, one can bring φ into
disjunctive normal form and then remove disjuncts implying other disjuncts. It
is well-known that this can cause an exponential blowup. Conversely, however,
the set MINP(Γ ) can directly be translated into the pinpointing formula∨

S∈MINP(Γ )

∧
s∈S

lab(s).

In our example, the pinpointing formula obtained from the set MINP(Γ ) =
{{ax1, ax2, ax4}, {ax2, ax3, ax4}} is (ax1 ∧ ax2 ∧ ax4) ∨ (ax2 ∧ ax3 ∧ ax4).

4 This corresponds to the clash formula introduced in [4]. Here, we distinguish between
the pinpointing formula, which can be defined independently of a tableau algorithm,
and the clash formula, which is induced by a run of a tableau algorithm.



3 A general notion of tableaux

Before introducing our general notion of a tableau-based decision procedure,
we want to motivate it by first modelling a simple decision procedure for the
property P introduced in the Horn clause example from the previous section, and
then sketching extensions to the model that are needed to treat more complex
tableau-based decision procedures.

Motivating examples

To decide whether (p, T ) ∈ P, we start with the set A := {¬p}, and then use
the rule

If {p1, . . . , pn} ⊆ A and p1 ∧ . . . ∧ pn → q ∈ T then A := A ∪ {q} (2)

to extend A until it is saturated, i.e., it can no longer be extended with the
above rule. It is easy to see that (p, T ) ∈ P (i.e., T |= p) iff this saturated set
contains both p and ¬p. For example, for the axioms in (1), one can first add s
using ax2, then q using ax3, and finally p using ax4. This yields the saturated
set {¬p, p, q, s}.

Abstracting from particularities, we can say that we have an algorithm that
works on a set of assertions (in the example, assertions are propositional vari-
ables and their negation), and uses rules to extend this set. A rule is of the form
(B0,S) → B1 where B0, B1 are finite sets of assertions, and S is a finite set of
axioms (in the example, axioms are Horn clauses). Given a set of axioms T and
a set of assertions A, this rule is applicable if B0 ⊆ A, S ⊆ T , and B1 6⊆ A. Its
application then extends A to A∪B1.5 Our simple Horn clause algorithm always
terminates in the sense that any sequence of rule applications is finite (since only
right-hand sides of implications in T can be added). After termination, we have
a saturated set of assertions, i.e., one to which no rule applies. The algorithm
accepts the input (i.e., says that it belongs to P) iff this saturated set contains
a clash (in the example, this is the presence of p and ¬p in the saturated set).

The model of a tableau-based decision procedure introduced until now is
too simplistic since it does not capture two important phenomena that can be
found in tableau algorithms for description and modal logics: non-determinism
and assertions with an internal structure. Regarding non-determinism, assume
that instead of Horn clauses we have more general implications of the form
p1 ∧ . . . ∧ pn → q1 ∨ . . . ∨ qm in T . Then, if {p1, . . . , pn} ⊆ A, we need to choose
(don’t know non-deterministically) with which of the propositional variables qj
to extend A. In our formal model, the right-hand side of a non-deterministic rule
consists of a finite set of sets of assertions rather than a single set of assertions,
i.e., non-deterministic rules are of the more general form (B0,S) → {B1, . . . , Bm}
where B0, B1, . . . , Bm are finite sets of assertions and S is a finite set of axioms.
Instead of working on a single set of assertions, the non-deterministic algorithm
5 The applicability condition B1 6⊆ A ensures that rule application really extends the

given set of assertions.



thus works on a finite set M of sets of assertions. The non-deterministic rule
(B0,S) → {B1, . . . , Bm} is applicable to A ∈ M if B0 ⊆ A and S ⊆ T , and its
application replaces A ∈M by the finitely many sets A∪B1, . . . , A∪Bm provided
that each of these sets really extends A. For example, if we replace ax1 and ax2

in (1) by ax5: → p∨ s, then starting with {{¬p}}, we first get {{¬p, p}, {¬p, s}}
using ax5, then {{¬p, p}, {¬p, s, q}} using ax3, and finally {{¬p, p}, {¬p, s, q, p}}
using ax4. Since each of these sets contains a clash, the input is accepted.

Regarding the structure of assertions, in general it is not enough to use propo-
sitional variables. Tableau-based decision procedures in description and modal
logic try to build finite models, and thus assertions must be able to describe the
relational structure of such models. For example, assertions in tableau algorithms
for description logics [6] are of the form r(a, b) and C(a), where r is a role name,
C is a concept description, and a, b are individual names. Again abstracting from
particularities, a structured assertion is thus of the form P (a1, . . . , ak) where P
is a k-ary predicate and a1, . . . , ak are constants. As an example of the kind of
rules employed by tableau-based algorithms for description logics, consider the
rule treating existential restrictions:

If {(∃r.C)(x)} ⊆ A then A := A ∪ {r(x, y), C(y)}. (3)

The variables x, y in this rule are place-holders for constants, i.e., to apply the
rule to a set of assertions, we must first replace the variables by appropriate
constants. Note that y occurs only on the right-hand side of the rule. We will
call such a variable a fresh variable. Fresh variables must be replaced by new
constants, i.e., a constant not occurring in the current set of assertions. For
example, let A := {(∃r.C)(a), r(a, b)}. If we apply the substitution σ := {x 7→
a, y 7→ c} that replaces x by a and y by the new constant c, then the above
rule is applicable with σ since (∃r.C)(a) ∈ A. Its application yields the set of
assertions A′ = A∪{r(a, c), C(c)}. Of course, we do not want the rule to be still
applicable to A′. However, to prevent this it is not enough to require that the
right-hand side (after applying the substitution) is not contained in the current
set of assertions. In fact, this would not prevent us from applying the rule to A′

with another new constant, say c′. For this reason, the applicability condition
for rules needs to check whether the assertions obtained from the right-hand side
by replacing the fresh variables by existing constants yields assertions that are
already contained in the current set of assertions.

The formal definition

In the following, V denotes a countably infinite set of variables, andD a countably
infinite set of constants. A signature Σ is a set of predicate symbols, where
each predicate P ∈ Σ is equipped with an arity. A Σ-assertion is of the form
P (a1, . . . , an) where P ∈ Σ is an n-ary predicate and a1, . . . , an ∈ D. Likewise,
a Σ-pattern is of the form P (x1, . . . , xn) where P ∈ Σ is an n-ary predicate
and x1, . . . , xn ∈ V. If the signature is clear from the context, we will often just
say pattern (assertion). For a set of assertions A (patterns B), cons(A) (var(B))
denotes the set of constants (variables) occurring in A (B).



A substitution is a mapping σ : V → D, where V is a finite set of variables.
If B is a set of patterns such that var(B) ⊆ V , then Bσ denotes the set of
assertions obtained from B by replacing each variable by its σ-image. We say
that σ : V → D is a substitution on V . The substitution θ on V ′ extends σ on
V if V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V .

Definition 4 (Tableau). Let I be a set of inputs and T a set of axioms. A
tableau for I and T is a tuple S = (Σ, ·S ,R, C) where

– Σ is a signature;
– ·S is a function that maps every I ∈ I to a finite set of finite sets of Σ-

assertions;
– R is a set of rules of the form (B0,S) → {B1, . . . , Bm} where B0, . . . , Bm

are finite sets of Σ-patterns and S is a finite set of axioms;
– C is a set of finite sets of Σ-patterns, called clashes.

Given a rule R : (B0,S) → {B1, . . . , Bm}, the variable y is a fresh variable in R
if it occurs in one of the sets B1, . . . , Bm, but not in B0.

An S-state is a pair S = (A, T ) where A is a finite set of assertions and T a
finite set of axioms. We extend the function ·S to axiomatized inputs by defining
(I, T )S := {(A, T ) | A ∈ IS}.

Intuitively, on input (I, T ), we start with the initial set M = (I, T )S of S-
states, and then use the rules in R to modify this set. Each rule application picks
an S-state S from M and replaces it by finitely many new S-states S1, . . . ,Sm

that extend the first component of S. If M is saturated, i.e., no more rules are
applicable to M, then we check whether all the elements of M contain a clash.
If yes, then the input is accepted; otherwise, it is rejected.

Definition 5 (rule application, saturated, clash). Given an S-state S =
(A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this
rule is applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every
i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪ Bi) extending ρ we have
Biρ

′ 6⊆ A.
Given a set of S-states M and an S-state S = (A, T ) ∈ M to which the

rule R is applicable with substitution ρ, the application of R to S with ρ in M
yields the new set M′ = (M\ {S}) ∪ {(A ∪ Biσ, T ) | i = 1, . . . ,m}, where σ is
a substitution on the variables occurring in R that extends ρ and maps the fresh
variables of R to distinct new constants, i.e., constants not occurring in A.

If M′ is obtained from M by the application of R, then we write M→R M′,
or simply M→S M′ if it is not relevant which of the rules of the tableau S was
applied. As usual, the reflexive-transitive closure of →S is denoted by ∗−→S. A set
of S-states M is called saturated if there is no M′ such that M→S M′.

The S-state S = (A, T ) contains a clash if there is a C ∈ C and a substitution
ρ on var(C) such that Cρ ⊆ A, and the set of S-states M is full of clashes if all
its elements contain a clash.

We can now define under what conditions a tableau S is correct for a c-property.



Definition 6 (correctness). Let P be a c-property on axiomatized inputs over
I and T, and S a tableau for I and T. Then S is correct for P if the following
holds for every axiomatized input Γ = (I, T ) over I and T:

1. S terminates on Γ , i.e., there is no infinite chain of rule applications M0 →S

M1 →S M2 →S . . . starting with M0 := ΓS.
2. For every chain of rule applications M0 →S . . .→S Mn such that M0 = ΓS

and Mn is saturated we have Γ ∈ P iff Mn is full of clashes.

The simple decision procedure sketched in our Horn clause example is a cor-
rect tableau in the sense of this definition. More precisely, it is a tableau with
unstructured assertions (i.e., the signature contains only nullary predicate sym-
bols) and deterministic rules. It is easy to see that also the polynomial-time
subsumption algorithm for the DL EL and its extensions introduced in [1] can
be viewed as a correct deterministic tableau with unstructured assertions. The
standard tableau-based decision procedure for concept unsatisfiability in the DL
ALC [23] is a correct tableau that uses structured assertions and has a non-
deterministic rule.

In 2. of Definition 6, we require that the algorithm gives the same answer
independent of what terminating chain of rule applications is considered. Thus,
the choice of which rule to apply next is don’t care non-deterministic in a correct
tableau. This is important since a need for backtracking over these choices would
render a tableau algorithm completely impractical. However, in our framework
this is not really an extra requirement on correct tableaux: it is built into our
definition of rules and clashes.

Proposition 1. Let Γ be an axiomatized input and M0 := ΓS. If M and M′

are saturated sets of S-states such that M0
∗−→S M and M0

∗−→S M′, then M
is full of clashes iff M′ is full of clashes.

4 Pinpointing extensions of general tableaux

Given a correct tableau, we show how it can be extended to an algorithm that
computes a pinpointing formula. As shown in Section 2, all minimal axiom sets
(maximal non-axiom sets) can be derived from the pinpointing formula φ by
computing all minimal (maximal) valuations satisfying (falsifying) φ. Recall that,
in the definition of the pinpointing formula, we assume that every axiom t ∈ T is
labeled with a unique propositional variable, lab(t). The set of all propositional
variables labeling an axiom in T is denoted by lab(T ). In the following, we assume
that the symbol >, which always evaluates to true, also belongs to lab(T ). The
pinpointing formula is a monotone Boolean formula over lab(T ), i.e., a Boolean
formula built from lab(T ) using conjunction and disjunction only.

To motivate our pinpointing extension of general tableaux, we first describe
such an extension of the simple decision procedure sketched for our Horn clause
example. The main idea is that assertions are also labeled with monotone Boolean
formulae. In the example, where T consists of the axioms of (1) and the axioma-
tized input is (p, T ), the initial set of assertions consists of ¬p. The label of this



initial assertion is > since its presence depends only on the input p, and not on
any of the axioms. By applying the rule (2) using axiom ax2, we can add the
assertion s. Since the addition of this assertion depends on the presence of ax2,
it receives label ax2. Then we can use ax3 to add q. Since this addition depends
on the presence of ax3 and of the assertion s, which has label ax2, the label of
this new assertion is ax2 ∧ ax3. There is, however, also another possibility to
generate the assertion q: apply the rule (2) using axiom ax1. In a “normal” run
of the tableau algorithm, the rule would not be applicable since it would add an
assertion that is already there. However, in the pinpointing extension we need to
register this alternative way of generating q. Therefore, the rule is applicable us-
ing ax1, and its application changes the label of the assertion q from ax2∧ax3 to
ax1∨(ax2∧ax3). Finally, we can use ax4 to add the assertion p. The label of this
assertion is ax4∧ax2∧(ax1∨(ax2∧ax3)) since the application of the rule depends
on the presence of ax4 as well as the assertions s and q. The presence of both p
and ¬p gives us a clash, which receives label >∧ ax4 ∧ ax2 ∧ (ax1 ∨ (ax2 ∧ ax3)).
This so-called clash formula is the output of the extended algorithm. Obviously,
it is equivalent to the pinpointing formula (ax1 ∨ ax3) ∧ ax2 ∧ ax4 that we have
constructed by hand in Section 2.

The formal definition

Given a tableau S = (Σ, ·S ,R, C) that is correct for the c-property P, we show
how the algorithm for deciding P induced by S can be modified to an algorithm
that computes a pinpointing formula for P. Given an axiomatized input Γ =
(I, T ), the modified algorithm also works on sets of S-states, but now every
assertion a occurring in the assertion component of an S-state is equipped with
a label lab(a), which is a monotone Boolean formula over lab(T ). We call such S-
states labeled S-states. In the initial set of S-states M = (I, T )S , every assertion
is labeled with >.

The definition of rule application must take the labels of assertions and
axioms into account. Let A be a set of labeled assertions and ψ a monotone
Boolean formula. We say that the assertion a is ψ-insertable into A if (i) either
a /∈ A, or (ii) a ∈ A, but ψ 6|= lab(a). Given a set B of assertions and a set
A of labeled assertions, the set of ψ-insertable elements of B into A is defined
as insψ(B,A) := {b ∈ B | b is ψ-insertable into A}. By ψ-inserting these in-
sertable elements into A, we obtain the following new set of labeled assertions:
A dψ B := A ∪ insψ(B,A), where each assertion a ∈ A \ insψ(B,A) keeps its
old label lab(a), each assertion in insψ(B,A) \A gets label ψ, and each assertion
b ∈ A ∩ insψ(B,A) gets the new label ψ ∨ lab(b).

Definition 7 (pinpointing rule application). Given a labeled S-state S =
(A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0),
this rule is pinpointing applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and
(iii) for every i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪Bi) extending
ρ we have insψ(Biρ′, A) 6= ∅, where ψ :=

∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s).



Given a set of labeled S-states M and a labeled S-state S ∈M to which the
rule R is pinpointing applicable with substitution ρ, the pinpointing application
of R to S with ρ in M yields the new set M′ = (M\ {S}) ∪ {(A dψ Biσ, T ) |
i = 1, . . . ,m}, where the formula ψ is defined as above and σ is a substitution
on the variables occurring in R that extends ρ and maps the fresh variables of R
to distinct new constants.

If M′ is obtained from M by the pinpointing application of R, then we write
M→Rpin M′, or simply M→Spin M′ if it is not relevant which of the rules of
the tableau S was applied. As before, the reflexive-transitive closure of →Spin is
denoted by ∗−→Spin . A set of labeled S-states M is called pinpointing saturated if
there is no M′ such that M→Spin M′.

To illustrate the definition of rule application, let us look back at the example
from the beginning of this section. There, we have looked at a situation where
the current set of assertions is A := {¬p, s, q} where lab(¬p) = >, lab(s) = ax2,
and lab(q) = ax2 ∧ ax3. In this situation, the rule (1) is pinpointing applicable
using ax1. In fact, in this case the formula ψ is simply ax1. Since this formula
does not imply lab(q) = ax2 ∧ ax3, the assertion q is ψ-insertable into A. Its
insertion changes the label of q to ax1 ∨ (ax2 ∧ ax3).

Consider a chain of pinpointing rule applications M0 →Spin . . . →Spin Mn

such that M0 = ΓS for an axiomatized input Γ and Mn is pinpointing satu-
rated. The label of an assertion in Mn expresses which axioms are needed to
obtain this assertion. A clash in an S-state of Mn depends on the joint presence
of certain assertions. Thus, we define the label of the clash as the conjunction of
the labels of these assertions. Since it is enough to have just one clash per S-state
S, the labels of different clashes in S are combined disjunctively. Finally, since
we need a clash in every S-state of Mn, the formulae obtained from the single
S-states are again conjoined.

Definition 8 (clash set, clash formula). Let S = (A, T ) be a labeled S-
state and A′ ⊆ A. Then A′ is a clash set in S if there is a clash C ∈ C and
a substitution ρ on var(C) such that A′ = Cρ. The label of this clash set is
ψA′ :=

∧
a∈A′ lab(a).

Let M = {S1, . . . ,Sn} be a set of labeled S-states. The clash formula induced
by M is defined as

ψM :=
n∧
i=1

∨
A′ clash set in Si

ψA′ .

Recall that, given a set T of labeled axioms, a propositional valuation V in-
duces the subset TV := {t ∈ T | lab(t) ∈ V} of T . Similarly, for a set A of labeled
assertions, the valuation V induces the subset AV := {a ∈ A | V satisfies lab(a)}.
Given a labeled S-state S = (A, T ) we define its V-projection as V(S) :=
(AV , TV). The notion of a projection is extended to sets of S-states M in the
obvious way: V(M) := {V(S) | S ∈ M}. The following lemma is an easy
consequence of the definition of the clash formula:



Lemma 2. Let M be a finite set of labeled S-states and V a propositional val-
uation. Then we have that V satisfies ψM iff V(M) is full of clashes.

There is also a close connection between pinpointing saturatedness of a set
of labeled S-states and saturatedness of its projection:

Lemma 3. Let M be a finite set of labeled S-states and V a propositional val-
uation. If M is pinpointing saturated, then V(M) is saturated.

Given a tableau that is correct for a property P, its pinpointing extension is
correct in the sense that the clash formula induced by the pinpointing saturated
set computed by a terminating chain of pinpointing rule applications is indeed
a pinpointing formula for P and the input.

Theorem 1 (correctness of pinpointing). Let P be a c-property on axiom-
atized inputs over I and T, and S a correct tableau for P. Then the following
holds for every axiomatized input Γ = (I, T ) over I and T:

For every chain of rule applications M0 →Spin . . .→Spin Mn such that
M0 = ΓS and Mn is pinpointing saturated, the clash formula ψMn

induced by Mn is a pinpointing formula for P and Γ .

To prove this theorem, we want to consider projections of chains of pin-
pointing rule applications to chains of “normal” rule applications. Unfortunately,
things are not as simple as one might hope for since in general M →Spin M′

does not imply V(M) →S V(M′). First, the assertions and axioms to which the
pinpointing rule was applied in M may not be present in the projection V(M)
since V does not satisfy their labels. Thus, we may also have V(M) = V(M′).
Second, a pinpointing application of a rule may change the projection (i.e.,
V(M) 6= V(M′)), although this change does not correspond to a normal ap-
plication of this rule to V(M). For example, consider the tableau rule (3) treat-
ing existential restrictions in description logics, and assume that we have the
assertions (∃r.C)(a) with label ax1 and r(a, b), C(b) with label ax2. Then the
rule (3) is pinpointing applicable, and its application adds the new assertions
r(a, c), C(c) with label ax1, where c is a new constant. If V is a valuation that
makes ax1 and ax2 true, then the V projection of our set of assertions contains
(∃r.C)(a), r(a, b), C(b). Thus rule (3) is not applicable, and no new individual
c is introduced. To overcome this second problem, we define a modified version
of rule application, where the applicability condition (iii) from Definition 5 is
removed.

Definition 9 (modified rule application). Given an S-state S = (A, T ), a
rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this rule is
m-applicable to S with ρ if (i) S ⊆ T and (ii) B0ρ ⊆ A. In this case, we write
M→Sm M′ if S ∈ M and M′ = (M\ {S}) ∪ {(A ∪ Biσ, T ) | i = 1, . . . ,m},
where σ is a substitution on the variables occurring in R that extends ρ and maps
the fresh variables of R to distinct new constants.



The next lemma relates modified rule application with “normal” rule appli-
cation, on the one hand, and pinpointing rule application on the other hand.
Note that “saturated” in the formulation of the first part of the lemma means
saturated w.r.t. →S , as introduced in Definition 5.

Lemma 4. Let Γ = (I, T ) be an axiomatized input and M0 = ΓS.

1. Assume that M0
∗−→S M and M0

∗−→Sm M′ and that M and M′ are sat-
urated finite sets of S-states. Then M is full of clashes iff M′ is full of
clashes.

2. Assume that M and M′ are finite sets of labeled S-states, and that V is
a propositional valuation. Then M →Spin M′ implies V(M) →Sm V(M′)
or V(M) = V(M′). In particular, this shows that M0

∗−→Spin M implies
V(M0)

∗−→Sm V(M).

We are now ready to prove Theorem 1. Let Γ = (I, T ) be an axiomatized
input, and assume that M0 →Spin . . .→Spin Mn such that M0 = ΓS and Mn

is pinpointing saturated. We must show that the clash formula ψ := ψMn
is a

pinpointing formula for the property P. This is an immediate consequence of
the next two lemmas.

Lemma 5. If (I, TV) ∈ P then V satisfies ψ.

Proof. Let N0 := (I, TV)S . Since S terminates on every input, there is a satu-
rated set N such that N0

∗−→S N . Since S is correct for P and (I, TV) ∈ P, we
know that N is full of clashes.

By 2. of Lemma 4, M0
∗−→Spin Mn implies V(M0)

∗−→Sm V(Mn). In addition,
we know that V(M0) = N0, and Lemma 3 implies that V(Mn) is saturated.
Thus, 1. of Lemma 4, together with the fact that N is full of clashes, implies
that V(Mn) is full of clashes.

By Lemma 2, this implies that V satisfies ψ = ψMn
. ut

Lemma 6. If V satisfies ψ then (I, TV) ∈ P.

Proof. Consider again a chain of rule applications N0 = (I, TV)S ∗−→S N where
N is saturated. We have (I, TV) ∈ P if we can show that N is full of clashes.

As in the proof of the previous lemma, we have that V(M0)
∗−→Sm V(Mn),

V(M0) = N0, and V(Mn) is saturated. Since V satisfies ψ, Lemma 2 implies
that V(Mn) is full of clashes.

By 1. of Lemma 4, this implies that N is full of clashes. ut

This completes the proof of Theorem 1. The theorem considers a terminating
chain of pinpointing rule applications. Unfortunately, termination of a tableau
S in general does not imply termination of its pinpointing extension. The reason
is that a rule may be pinpointing applicable in cases where it is not applicable
in the normal sense (see the discussion above Definition 9).



Example 1. Consider the tableau S that has the following three rules

R1 : ({P (x)}, {ax1}) → {{P ′(x), Q1(x)}},
R2 : ({P (x)}, {ax2}) → {{P ′(x), Q2(x)}},
R3 : ({P ′(x)}, ∅) → {{r(x, y), P ′(y)}, {Q1(x)}, {Q2(x)}},

and where the function ·S maps every input I ∈ I to the singleton set {{P (a)}},
and the set of axioms is T = {ax1, ax2}.

For any axiomatized input Γ = (I, T ), we have ΓS = {({P (a)}, T )}, and
thus R3 is not applicable to ΓS . Depending on which axioms are contained in T ,
the rules R1 and/or R2 may be applicable. However, their application introduces
Q1(a) or Q2(a) into the set of assertions, and thus the non-deterministic and
potentially non-terminating rule R3 is not applicable. Consequently, S terminates
on every axiomatized input Γ .

It is possible, however, to construct an infinite chain of pinpointing rule ap-
plications starting with ΓS = {({P (a)}, {ax1, ax2})} where lab(P (a)) = >. In
fact, we can first apply the rule R1. This adds the assertions P ′(a) and Q1(a),
both with label ax1. An application of the rule R2 adds the assertion Q2(a)
with label ax2, and it modifies the label of the assertion P ′(a) to lab(P ′(a)) =
ax1 ∨ ax2. At this point, we have reached an S-state S containing the asser-
tions P (a), P ′(a), Q1(a), Q2(a) with labels lab(P (a)) = >, lab(P ′(a)) = ax1 ∨
ax2, lab(Q1(a)) = ax1, and lab(Q2(a)) = ax2. The rule R3 is pinpointing applica-
ble to this S-state. Indeed, although both Q1(a) and Q2(a) are contained in the
assertion set of S, their labels are not implied by lab(P ′(a)). The application of
R3 to S replaces S by three new S-states. One of these new S-states contains
the assertion P ′(b) for a new constant b. Thus, R3 is again applicable to this
S-state, generating a new S-state with an assertion P ′(c) for a new constant
c, etc. It is easy to see that this leads to an infinite chain of pinpointing rule
applications.

The example shows that, to ensure termination of the pinpointing extension
of a tableau, termination of this tableau on every axiomatized input is not suf-
ficient. From the example one also gets the intuition that the reason why the
tableau terminates, but its pinpointing extensions does not, is related to the ap-
plicability condition for non-deterministic rules. In fact, this condition ensures
that the rule R3, which causes non-termination, cannot be applied. The reason
is that the assertion P ′(a) can only be generated together with Q1(a) or Q2(a).
Once Qi(a) for i ∈ {1, 2} is present, the definition of rule appication prevents
R3 from being applied. In the pinpointing case, this is no longer true since the
labels must be taken into account, and thus the pure presence of Qi(a) is not
sufficient to prevent the application of R3.

Unfortunately, non-deterministic rules are not the only culprit that prevent
transfer of termination. The following example introduces a terminating tableau
with purely deterministic rules whose pinpointing extension is non-terminating.



Example 2. Consider the tableau S that has the following three rules

R1 : ({P (x)}, {ax1}) → R,

R2 : ({P (x)}, {ax2}) → R,

R3 : ({Q1(x), Q2(y)}, ∅) → {{r(x, y, z), Q1(y), Q2(z)}},

with R = {Q1(x), Q1(y), Q2(x), Q2(y), r(x, x, x), r(x, y, x), r(y, x, x), r(y, y, x)},
and where the function ·S maps every input I ∈ I to the singleton set {{P (a)}},
and the set of axioms is T = {ax1, ax2}. For any axiomatized input Γ = (I, T ),
we have ΓS = {({P (a)}, T )}. Depending on which axioms are contained in T ,
the rules R1 and/or R2 may be applicable, but R3 is not. Notice that R1 and
R2 have the same right-hand side, and thus application of R1 or R2 to ΓS leads
to the same S-state, modulo the chosen new constant introduced for the fresh
variable y. Suppose we apply one of these two rules, introducing b as the new
constant. Then the resulting S-state is be given by S = (A, T ) where

A = {P (a), Q1(a), Q1(b), Q2(a), Q2(b), r(a, a, a), r(a, b, a), r(b, a, a), r(b, b, a)}.

No rule is applicable to S. In fact, in order to apply rule R1 or R2, the only way
to satisfy Condition (ii) in the definition of rule application is to use a valuation
that maps x to the constant a. Extending this valuation to map y to a as well
violates Condition (iii) of the definition of rule application since the assertions
Q1(a), Q2(a) and r(a, a, a) were already introduced by the first rule application.
To satisfy Condition (ii) for rule R3, we must choose a valuation ρ mapping x
to a or b and y to a or b. In any case, the assertions r(ρ(x), ρ(y), a), Q1(ρ(x))
and Q2(a) belong to A, and thus extending ρ by mapping z to a violates Con-
dition (iii). This shows that S indeed terminates on every axiomatized input.

It is possible to construct an infinite chain of pinpointing rule applications
starting with ΓS = {({P (a)}, {ax1, ax2})} where lab(P (a)) = >. We can first
apply rule R1 leading to the S-state S described above, where all the assertions,
except P (a) are labeled with ax1. Rule R2 is pinpointing applicable to S since,
although there is an extension of the valuation such that all the assertions exist
already in S, these assertions are labeled with the formula ax1, which is not
implied by ax2. The pinpointing application of R2 to S adds the assertions
Q1(c), Q2(c), r(a, c, a), r(c, a, a), r(c, c, a) with label ax2, and modifies the label
of Q1(a), Q2(a), r(a, a, a) to ax1 ∨ ax2. We can now apply R3 to the resulting S-
state S′ with the valuation ρ mapping x and y to b and c, respectively. Since the
S-state S′ does not contain any assertion of the form r(b, c, ), Condition (iii) is
not violated anymore. This rule application adds the assertions r(b, c, d), Q2(d)
with label ax1 ∧ ax2. It is easy to see that the rule R3 can now be repeatedly
applied, producing an infinite chain of pinpointing rule applications.

5 Conclusion

We have introduced a general notion of tableaux, and have shown that tableaux
that are correct for a consequence property can be extended such that a ter-
minating run of the extended procedure computes a pinpointing formula. This



formula can then be used to derive minimal axiom sets and maximal non-axiom
sets from it.

We have also shown that, in general, termination of a tableau does not imply
termination of its pinpointing extension, even if all tableau rules are determin-
istic. The most important topic for future research is to address the termination
issue: under what additional conditions does termination of a tableau transfer
to its pinpointing extension?

In addition, our current framework has two restrictions that we will try to
overcome in future work. First, our tableau rules always extend the current set of
assertions. We do not allow for rules that can modify existing assertions. Thus,
tableau-based algorithms that identify constants, like the rule treating at-most
number restrictions in description logics (see, e.g., [6]), cannot be modelled. A
similar problem occurs for the tableau systems introduced in [3]. There, it was
solved by modifying the definition of rule application by allowing rules that intro-
duce new individuals (in our notation: rules with fresh variables) to reuse existing
individuals. However, this makes such rules intrinsically non-deterministic. In our
setting, we believe that we can solve this problem more elegantly by introducing
equality and inequality predicates.

Second, our approach currently assumes that a correct tableau always ter-
minates, without considering additional blocking conditions. As shown in [17],
extending a tableau with blocking to a pinpointing algorithm requires some ad-
ditional effort. Solving this for the case of general tableaux will be a second
important direction for future research.
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