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Abstract

Methods for computing the least common subsumer (lcs) are usually restricted to
rather inexpressive Description Logics (DLs) whereas existing knowledge bases are
written in very expressive DLs. In order to allow the user to re-use concepts defined
in such terminologies and still support the definition of new concepts by computing
the lcs, we extend the notion of the lcs of concept descriptions to the notion of the
lcs w.r.t. a background terminology. We will show both theoretical results on the
existence of the least common subsumer in this setting, and describe a practical
approach—based on a method from formal concept analysis—for computing good
common subsumers, which may, however, not be the least ones. We will also describe
results obtained in a first evaluation of this practical approach.
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1 Introduction

Description Logics (DLs) [1] are a class of knowledge representation formalisms
in the tradition of semantic networks and frames, which can be used to repre-
sent the terminological knowledge of an application domain in a structured and
formally well-understood way. The name description logics is motivated by the
fact that, on the one hand, the important notions of the domain are described
by concept descriptions, i.e., expressions that are built from atomic concepts
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(unary predicates) and atomic roles (binary predicates) using the concept and
role constructors provided by the particular DL. On the other hand, DLs differ
from their predecessors, such as semantic networks and frames [2,3], in that
they are equipped with a formal, logic-based semantics, which can, e.g., be
given by a translation into first-order predicate logic.

Knowledge representation systems based on description logics (DL systems)
[4,5] provide their users with various inference capabilities that allow them to
deduce implicit knowledge from the explicitly represented knowledge. Stan-
dard inference services are subsumption and instance checking. Subsumption
allows the user to determine subconcept-superconcept relationships, and hence
compute the concept hierarchy: C is subsumed by D iff all instances of C are
also instances of D, i.e., the first description is always interpreted as a subset
of the second description. Instance checking asks whether a given individual
necessarily belongs to a given concept, i.e., whether this instance relationship
logically follows from the descriptions of the concept and of the individual.

In order to ensure a reasonable and predictable behaviour of a DL reasoner,
these inference problems should at least be decidable for the DL employed by
the reasoner, and preferably of low complexity. Consequently, the expressive
power of the DL in question must be restricted in an appropriate way. If the
imposed restrictions are too severe, however, then the important notions of
the application domain can no longer be expressed. Investigating this trade-off
between the expressivity of DLs and the complexity of their inference prob-
lems has been one of the most important issues of DL research in the 1990ies.
As a consequence of this research, the complexity of reasoning in various DLs
of different expressive power is now well-investigated (see [6] for an overview of
these complexity results). In addition, there are highly optimized implemen-
tations of reasoners for very expressive DLs [7–9], which—despite their high
worst-case complexity—behave very well in practice [10,11].

DLs have been applied in many domains, such as medical informatics, software
engineering, configuration of technical systems, natural language processing,
databases, and web-based information systems (see Part III of [1] for details
on these and other applications). A recent success story is the use of DLs as
ontology languages [12,13] for the Semantic Web [14]. In particular, the W3C
recommended ontology web language OWL [15] is based on an expressive
description logic [16,17].

Editors—such as OilEd [18] and the OWL plug-in of Protégé [19]—supporting
the design of ontologies in various application domains usually allow their users
to access a DL reasoner, which realizes the aforementioned standard inferences
such as subsumption and instance checking. Reasoning is not only useful when
working with “finished” ontologies: it can also support the ontology engineer
while building an ontology, by pointing out inconsistencies and unwanted con-
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sequences. The ontology engineer can thus use reasoning to check whether
the definition of a concept or the description of an individual makes sense.
However, the standard DL inferences—subsumption and instance checking—
provide only little support for actually coming up with a first version of the
definition of a concept.

More recently, non-standard inferences [20] were introduced to support build-
ing and maintaining large DL knowledge bases. In particular, they overcome
the deficit mentioned above, by allowing the user to construct new knowledge
from the existing one. For example, such non-standard inferences can be used
to support the so-called bottom-up construction of DL knowledge bases, as
introduced in [21,22]: instead of directly defining a new concept, the knowl-
edge engineer introduces several typical examples as individuals, which are
then automatically generalized into a concept description by the system. This
description is offered to the knowledge engineer as a possible candidate for a
definition of the concept. The task of computing such a concept description
can be split into two subtasks: computing the most specific concepts of the
given individuals, and then computing the least common subsumer of these
concepts. The most specific concept (msc) of an individual i (the least com-
mon subsumer (lcs) of concept descriptions C1, . . . , Cn) is the most specific
concept description C expressible in the given DL language that has i as an in-
stance (that subsumes C1, . . . , Cn). The problem of computing the lcs and (to
a more limited extent) the msc has already been investigated in the literature
[23,24,21,22,25–29].

The methods for computing the least common subsumer are restricted to
rather inexpressive descriptions logics not allowing for disjunction (and thus
not allowing for full negation). In fact, for languages with disjunction, the lcs
of a collection of concepts is just their disjunction, and nothing new can be
learned from building it. In contrast, for languages without disjunction, the
lcs extracts the “commonalities” of the given collection of concepts. Modern
DL systems like FaCT [7] and Racer [8] are based on very expressive DLs,
and there exist large knowledge bases that use this expressive power and can
be processed by these systems [30,31,11]. In order to allow the user to re-use
concepts defined in such existing knowledge bases and still support the user
during the definition of new concepts with the bottom-up approach sketched
above, we propose in this work the following extended bottom-up approach. In
this approach we assume that there is a fixed background terminology defined
in an expressive DL; e.g., a large ontology written by experts, which the user
has bought from some ontology provider. The user then wants to extend this
terminology in order to adapt it to the needs of a particular application do-
main. However, since the user is not a DL expert, he employs a less expressive
DL and needs support through the bottom-up approach when building this
user-specific extension of the background terminology. There are several rea-
sons for the user to employing a restricted DL in this setting: first, such a
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restricted DL may be easier to comprehend and use for a non-expert; second,
it may allow for a more intuitive graphical or frame-like user interface; third,
to use the bottom-up approach, the lcs must exist and make sense, and it must
be possible to compute it with reasonable effort.

To make this more precise, consider a background terminology (TBox) T de-
fined in an expressive DL L2. When defining new concepts, the user employs
only a sublanguage L1 of L2, for which computing the lcs makes sense. How-
ever, in addition to primitive concepts and roles, the concept descriptions
written in the DL L1 may also contain names of concepts defined in T . Let
us call such concept descriptions L1(T )-concept descriptions. Given L1(T )-
concept descriptions C1, . . . , Cn, we are now looking for their lcs in L1(T ),
i.e., the least L1(T )-concept description that subsumes C1, . . . , Cn w.r.t. T .

In this article, we consider the case where L1 is the DL ALE and L2 is the
DL ALC. We first show (in Section 3) the following two results:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of ALE(T )-concept
descriptions always exists.

• If T is a general ALC-TBox allowing for general concept inclusion axioms
(GCIs), then the lcs w.r.t. T ofALE(T )-concept descriptions need not exist.

The result on the existence and computability of the lcs w.r.t. an acyclic
background terminology is theoretical in the sense that it does not yield a
practical algorithm.

In Section 4 we follow a more practical approach. Assume that L1 is a DL
for which least common subsumers (without background TBox) always ex-
ist. Given L1(T )-concept descriptions C1, . . . , Cn, one can compute a common
subsumer w.r.t. T by just ignoring T , i.e., by treating the defined names in
C1, . . . , Cn as primitive and computing the lcs of C1, . . . , Cn in L1. However,
the common subsumer obtained this way will usually be too general. In Sec-
tion 4 we sketch a practical method for computing “good” common subsumers
w.r.t. background TBoxes, which may not be the least common subsumers,
but which are better than the common subsumers computed by ignoring the
TBox. As a tool, this method uses attribute exploration (possibly with a priori
knowledge) [32–34], an algorithm developed in Formal Concept Analysis [35]
for computing concept lattices. The application of attribute exploration for
this purpose is described in Section 5.

In Section 6 we report on first experimental results. On the one hand, we
investigate whether using a priori knowledge in attribute exploration speeds
up the exploration process. On the other hand, we compare the approach
described above with two other approaches (introduced in Subsection 4.4)
for computing common subsumers: one based on approximating L2-concept
descriptions by L1-concept descriptions, and one using only the information
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provided by the subsumption relationships between concepts defined in the
background TBox T .

2 Basic definitions and results

In this section, we introduce basic notions from description logics and formal
concept analysis.

2.1 Description logic

In order to define concepts in a DL knowledge base, one starts with a set NC

of concept names (unary predicates) and a set NR of role names (binary pred-
icates), and defines more complex concept descriptions using the constructors
provided by the concept description language of the particular system. In this
paper, we consider the DL ALC and its sublanguages ALE and EL, which
allow for concept descriptions built from the indicated subsets of the con-
structors shown in Table 1. In this table, r stands for a role name, A for a
concept name, and C, D for arbitrary concept descriptions.

A concept definition (see Table 1) assigns a concept name A to a complex
concept description C. A finite set of such definitions is called an acyclic TBox
iff it is acyclic (i.e., no definition refers, directly or indirectly, to the name it
defines) and unambiguous (i.e., each name has at most one definition). If
the TBox is unambiguous, but not acyclic, then it is called a cyclic TBox.
The concept names occurring on the left-hand side of a concept definition are
called defined concepts, and the others primitive. A general concept inclusion
(GCI) (see Table 1) states a subconcept/superconcept constraint between two
(possibly complex) concept descriptions. A finite set of GCIs is called a general
TBox. If we say just TBox then this means an acyclic, a cyclic or a general
TBox. An acyclic or a cyclic ALE-TBox must satisfy the additional restriction
that no defined concept occurs negated in it (i.e., negation can only be applied
to primitive concepts).

The semantics of concept descriptions is defined in terms of an interpretation
I = (∆I , ·I). The domain ∆I of I is a non-empty set and the interpretation
function ·I maps each concept name A ∈ NC to a set AI ⊆ ∆I and each
role name r ∈ NR to a binary relation rI ⊆ ∆I×∆I . The extension of ·I
to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1. The interpretation I is a model of the (a)cyclic TBox T
iff it satisfies all its concept definitions, i.e., AI = CI holds for all A ≡ C in
T . It is a model of the general TBox T iff it satisfies all its concept inclusions,
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Name of constructor Syntax Semantics ALC ALE EL

top-concept > ∆I x x x

bottom-concept ⊥ ∅ x x

negation ¬C ∆I \ CI x

atomic negation ¬A ∆I \AI x x

conjunction C uD CI ∩DI x x x

disjunction C tD CI ∪DI x

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI

→ y ∈ CI}
x x

existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI

∧ y ∈ CI}
x x x

concept definition A ≡ C AI = CI (a)cyclic TBox

concept inclusion C v D CI ⊆ DI general TBox

Table 1
Syntax and semantics of concept descriptions, definitions, and inclusions.

i.e., CI v DI holds for all C v D in T .

Given this semantics, we can now define the most important traditional infer-
ence service provided by DL systems, i.e., computing subconcept/superconcept
relationships, so-called subsumption relationships.

Definition 1 The concept description C2 subsumes the concept description
C1 w.r.t. the TBox T (C1 vT C2) iff CI

1 ⊆ CI
2 for all models I of T . We

write C1 v C2 iff C1 is subsumed by C2 w.r.t. the empty TBox. Two concept
descriptions C1, C2 are called equivalent w.r.t. T iff they subsume each other,
i.e., C1 ≡T C2 iff C1 vT C2 and C2 vT C1. The concept description C is
unsatisfiable w.r.t. the TBox T iff it is subsumed by ⊥ w.r.t. T ; otherwise, it
is satisfiable w.r.t. T .

The subsumption relation vT is a preorder (i.e., reflexive and transitive), but
in general not a partial order since it need not be antisymmetric (i.e., there
may exist equivalent descriptions that are not syntactically equal). As usual,
the preorder vT induces a partial order v≡

T on the equivalence classes of
concept descriptions:

[C1]≡ v≡
T [C2]≡ iff C1 vT C2,

where [Ci]≡ := {D | Ci ≡T D} is the equivalence class of Ci (i = 1, 2).When
talking about the subsumption hierarchy, we mean this induced partial order.
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The complexity of the subsumption problem depends on the DL under consid-
eration, and on what kind of TBox formalism is used. Subsumption w.r.t. the
empty TBox (usually called subsumption of concept descriptions) is polyno-
mial for EL [22], NP-complete for ALE [36], and PSPACE-complete for ALC
[37]. Subsumption in EL stays polynomial both in the presence of (a)cyclic [38]
and general TBoxes [39]. Subsumption in ALC stays PSPACE-complete w.r.t.
acyclic TBoxes [40], but it becomes EXPTIME-complete in the presence of
general TBoxes [41]. EXPTIME-completeness already holds for subsumption
in ALE w.r.t. general TBoxes [42].

It should be noted that subsumption w.r.t. acyclic TBoxes can be reduced to
subsumption of concept descriptions by expanding the TBox, i.e. by replacing
the defined concepts by their definitions until no more defined concepts occur
in the concept descriptions to be tested for subsumption. To be more precise,
let C, D be concept descriptions and T an acyclic TBox. If C ′, D′ are the
concept descriptions obtained by expanding C, D w.r.t. T , then C vT D iff
C ′ v D′. However, this reduction cannot be used to obtain the complexity
results for subsumption w.r.t. acyclic TBoxes mentioned above since the ex-
pansion process may cause an exponential blow-up of the concept descriptions
[43].

In addition to standard inferences like computing the subsumption hierarchy,
so-called non-standard inferences have been introduced and investigated in
the DL community (see, e.g., [20]). In this paper, we concentrate on the prob-
lem of computing the least common subsumer. Originally, this problem was
introduced for concept descriptions (i.e., w.r.t. the empty TBox). In the pres-
ence of acyclic TBoxes, one can apply this inference if one first expands the
concept descriptions. Let L be some description logic.

Definition 2 Given a collection C1, . . . , Cn of L-concept descriptions, the
least common subsumer (lcs) of C1, . . . , Cn in L is the most specific L-concept
description that subsumes C1, . . . , Cn, i.e., it is an L-concept description D
such that

(1) Ci v D for i = 1, . . . , n (D is a common subsumer);
(2) if E is an L-concept description satisfying

Ci v E for i = 1, . . . , n, then D v E (D is least).

As an easy consequence of this definition, the lcs is unique up to equivalence,
which justifies talking about the lcs. In addition, the n-ary lcs as defined above
can be reduced to the binary lcs (the case n = 2 above). Indeed, it is easy to
see that the lcs of C1, . . . , Cn can be obtained by building the lcs of C1, C2,
then the lcs of this concept description with C3, etc. Thus, it is enough to
devise algorithms for computing the binary lcs.

It should be noted, however, that the lcs need not always exist. This can
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have different reasons: (a) there may not exist a concept description in L
satisfying (1) of the definition (i.e., subsuming C1, . . . , Cn); (b) there may be
several subsumption incomparable minimal concept descriptions satisfying (1)
of the definition; (c) there may be an infinite chain of more and more specific
descriptions satisfying (1) of the definition. Obviously, (a) cannot occur for
DLs containing the top-concept. It is easy to see that, for DLs allowing for
conjunction of descriptions, (b) cannot occur.

It is also clear that in DLs allowing for disjunction, the lcs of C1, . . . , Cn is their
disjunction C1 t . . .tCn. In this case, the lcs is not really of interest. Instead
of extracting properties common to C1, . . . , Cn, it just gives their disjunction,
which does not provide us with new information. For the DLs introduced
above, this means that it makes sense to look at the lcs in EL and ALE , but
not in ALC. Both for EL and ALE , the lcs always exists, and can be effectively
computed [22]. For EL, the size and computation time for the binary lcs is
polynomial, but exponential in the n-ary case. For ALE , already the size of the
binary lcs may grow exponentially in the size of the input concept descriptions.

Let us now define the new non-standard inference introduced in this paper,
which is a generalization of the lcs to (a)cyclic or general background TBoxes.
Let L1,L2 be DLs such that L1 is a sub-DL of L2, i.e., L1 allows for less
constructors. For a given L2-TBox T , we call L1(T )-concept descriptions those
L1-concept descriptions that may contain concepts defined in T .

Definition 3 Given an L2-TBox T and L1(T )-concept descriptions C1, . . . ,
Cn, the least common subsumer (lcs) of C1, . . . , Cn in L1(T ) w.r.t. T is the
most specific L1(T )-concept description that subsumes C1, . . . , Cn w.r.t. T ,
i.e., it is an L1(T )-concept description D such that

(1) Ci vT D for i = 1, . . . , n (D is a common subsumer);
(2) if E is an L1(T )-concept description satisfying

Ci vT E for i = 1, . . . , n, then D vT E (D is least).

Depending on the DLs L1 and L2, least common subsumers of L1(T )-concept
descriptions w.r.t. an L2-TBox T may exist or not. Note that this lcs may
use only concept constructors from L1, but may also contain concept names
defined in the L2-TBox T . This is the main distinguishing feature of this new
notion of a least common subsumer w.r.t. a background terminology. Let us
illustrate this by a trivial example.

Example 4 Assume that L1 is the DL ALE and L2 is ALC. Consider the
ALC-TBox T := {A ≡ P tQ}, and assume that we want to compute the lcs
of the ALE(T )-concept descriptions P and Q. Obviously, A is the lcs of P
and Q w.r.t. T . If we were not allowed to use the name A defined in T , then
the only common subsumer of P and Q in ALE would be the top-concept >.
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At first sight, one might think that, in the case of an acyclic background TBox,
the problem of computing the lcs in ALE(T ) w.r.t. an ALC-TBox T can be
reduced to the problem of computing the lcs in ALE by expanding the TBox
and using results on the approximation of ALC by ALE [44]. To make this
more precise, we must introduce the non-standard inference of approximating
concept descriptions of one DL by descriptions of another DL. Let L1,L2 be
DLs such that L1 is a sub-DL of L2.

Definition 5 Given an L2-concept description C, the L1-concept description
D approximates C from above iff D is the least L1-concept description satis-
fying C v D.

In [44] it is shown that the approximation from above of an ALC-concept de-
scription by an ALE-concept description always exists, and can be computed
in double-exponential time.

Thus, given an acyclic ALC-TBox T and a collection of ALE(T )-concept de-
scriptions C1, . . . , Cn, one can first expand C1, . . . , Cn w.r.t. T to concept de-
scriptions C ′

1, . . . , C
′
n. These descriptions are ALC-concept descriptions since

they may contain constructors of ALC that are not allowed in ALE . One can
then build the ALC-concept description C := C ′

1 t . . . t C ′
n, and finally ap-

proximate C from above by an ALE-concept description D. By construction,
D is a common subsumer of C1, . . . , Cn.

However, D does not contain concept names defined in T , and thus it is
not necessarily the least ALE(T )-concept description subsuming C1, . . . , Cn

w.r.t. T . Indeed, this is the case in Example 4 above, where the approach
based on approximation that we have just sketched yields > rather than the
lcs A. One might now assume that this can be overcome by applying known
results on rewriting concept descriptions w.r.t. a terminology [45]. However,
in Example 4, the concept description > cannot be rewritten using the TBox
T := {A ≡ P tQ}.

2.2 Formal concept analysis

We will introduce only those notions and results from formal concept analysis
(FCA) that are necessary for our purposes. Since it is the main FCA tool
that we will employ, we will describe how the attribute exploration algorithm
works. Note, however, that explaining why it works is beyond the scope of this
paper (see [35] for more information on this and FCA in general).

Definition 6 A formal context is a triple K = (O,P ,S), where O is a set of
objects, P is a set of attributes (or properties), and S ⊆ O × P is a relation
that connects each object o with the attributes satisfied by o.
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Let K = (O,P ,S) be a formal context. For a set of objects A ⊆ O, the intent
A′ of A is the set of attributes that are satisfied by all objects in A, i.e.,

A′ := {p ∈ P | ∀a ∈ A: (a, p) ∈ S}.

Similarly, for a set of attributes B ⊆ P, the extent B′ of B is the set of objects
that satisfy all attributes in B, i.e.,

B′ := {o ∈ O | ∀b ∈ B: (o, b) ∈ S}.

It is easy to see that, for A1 ⊆ A2 ⊆ O (resp. B1 ⊆ B2 ⊆ P), we have

• A′
2 ⊆ A′

1 (resp. B′
2 ⊆ B′

1),
• A1 ⊆ A′′

1 and A′
1 = A′′′

1 (resp. B1 ⊆ B′′
1 and B′

1 = B′′′
1 ).

A formal concept is a pair (A, B) consisting of an extent A ⊆ O and an
intent B ⊆ P such that A′ = B and B′ = A. Such formal concepts can be
hierarchically ordered by inclusion of their extents, and this order (denoted
by ≤ in the following) induces a complete lattice, the concept lattice of the
context. The supremum and infimum in the concept lattice induced by K can
be obtained as follows:

∨
i∈I(Ai, Bi) =

(
(
⋃

i∈I Ai)
′′ ,

⋂
i∈I Bi

)
,∧

i∈I(Ai, Bi) =
(⋂

i∈I Ai, (
⋃

i∈I Bi)
′′
)
.

The following are easy consequences of the definition of formal concepts and
the properties of the · ′ operation introduced above:

Lemma 7 All formal concepts are of the form (A′′, A′) for a subset A of O,
and any such pair is a formal concept. In addition, (A′′

1, A
′
1) ≤ (A′′

2, A
′
2) iff

A′
2 ⊆ A′

1.

The dual of this lemma is also true, i.e., all formal concepts are of the form
(B′, B′′) for a subset B of P , and any such pair is a formal concept. In addition,
(B′

1, B
′′
1 ) ≤ (B′

2, B
′′
2 ) iff B′

1 ⊆ B′
2.

Given a formal context, the first step for analyzing this context is usually to
compute the concept lattice. If the context is finite, then Lemma 7 implies that
the concept lattices can in principle be computed by enumerating the subsets
A of O, and applying the operations · ′ and · ′′. However, this näıve algorithm
is usually very inefficient. In many applications [46], one has a large (or even
infinite) set of objects, but only a relatively small set of attributes. In such a
situation, Ganter’s attribute exploration algorithm [32,35] has turned out to be
an efficient approach for computing the concept lattice. Before we can describe
this algorithm, we must introduce some notation. The most important notion

10



is the one of an implication between sets of attributes. Intuitively, such an
implication B1 → B2 holds if any object satisfying all elements of B1 also
satisfies all elements of B2.

Definition 8 Let K = (O,P ,S) be a formal context and B1, B2 be subsets
of P. The implication B1 → B2 holds in K (K |= B1 → B2) iff B′

1 ⊆ B′
2. An

object o violates the implication B1 → B2 iff o ∈ B′
1 \B′

2.

It is easy to see that an implication B1 → B2 holds in K iff B2 ⊆ B′′
1 . In

particular, given a set of attributes B, the implications B → B′′ and B →
(B′′ \B) always hold in K. We denote the set of all implications that hold in
K by Imp(K). This set can be very large, and thus one is interested in (small)
generating sets.

Definition 9 Let J be a set of implications, i.e., the elements of J are of
the form B1 → B2 for sets of attributes B1, B2 ⊆ P. For a subset B of P, the
implication hull of B with respect to J is denoted by J (B). It is the smallest
subset H of P such that

• B ⊆ H, and
• B1 → B2 ∈ J and B1 ⊆ H imply B2 ⊆ H.

The set of implications generated by J consists of all implications B1 → B2

such that B2 ⊆ J (B1). It will be denoted by Cons(J ). We say that a set of
implications J is a base of Imp(K) iff Cons(J ) = Imp(K) and no proper
subset of J satisfies this property.

From a logician’s point of view, computing the implication hull of a set of
attributes B is just computing logical consequences. In fact, the notions we
have just defined can easily be reformulated in propositional logic. To this
purpose, we view the attributes as propositional variables. An implication
B1 → B2 can then be expressed by the formula φB1→B2 :=

∧
p∈B1

p → ∧
p′∈B2

p′.
Let ΓJ be the set of formulae corresponding to the set of implications J . Then

J (B) = {b ∈ P | ΓJ ∪ {
∧

p∈B

p} |= b},

where |= stands for classical propositional consequence. Obviously, the formu-
lae in ΓJ are Horn clauses. For this reason, the implication hull J (B) of a
set of attributes B can be computed in time linear in the size of J and B
using methods for deciding satisfiability of sets of propositional Horn clauses
[47]. Alternatively, these formulae can be viewed as expressing functional de-
pendencies in relational database, and thus the linearity result can also be
obtained using methods for deriving new functional dependencies from given
ones [48].
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If J is a base for Imp(K), then it can be shown that B′′ = J (B) for all B ⊆ P.
Consequently, given a base J for Imp(K), any question of the form “B1 →
B2 ∈ Imp(K)?” can be answered in time linear in the size of J ∪ {B1 → B2}
since it is equivalent to asking whether B2 ⊆ B′′

1 = J (B1).

There may exist different implication bases of Imp(K), and not all of them
need to be of minimal cardinality. A base J of Imp(K) is called minimal
base iff no base of Imp(K) has a cardinality smaller than the cardinality of
J . Duquenne and Guigues have given a description of such a minimal base
[49]. Ganter’s attribute exploration algorithm computes this minimal base as a
by-product. In the following, we define the Duquenne-Guigues base and show
how it can be computed using the attribute exploration algorithm.

The definition of the Duquenne-Guigues base given below is based on a modi-
fication of the closure operator B 7→ J (B) defined by a set J of implications.
For a subset B of P , the implication pseudo-hull of B with respect to J is
denoted by J ∗(B). It is the smallest subset H of P such that

• B ⊆ H, and
• B1 → B2 ∈ J and B1 ⊂ H (strict subset) imply B2 ⊆ H.

Given J , the pseudo-hull of a set B ⊆ P can again be computed in time
linear in the size of J and B (e.g., by adapting the algorithms in [47,48]
appropriately). A subset B of P is called pseudo-closed in a formal context K
iff Imp(K)∗(B) = B and Imp(K)(B) = B′′ 6= B.

Definition 10 The Duquenne-Guigues base of a formal context K consists
of all implications B1 → B2 where B1 ⊆ P is pseudo-closed in K and B2 =
B′′

1 \B1.

When trying to use this definition for actually computing the Duquenne-
Guigues base of a formal context, one encounters two problems:

(1) The definition of pseudo-closed refers to the set of all valid implications
Imp(K), and our goal is to avoid explicitly computing all of them.

(2) The closure operator B 7→ B′′ is used, and computing it via B 7→ B′ 7→
B′′ may not be feasible for a context with a larger or infinite set of objects.

Ganter solves the first problem by enumerating the pseudo-closed sets of K
in a particular order, called lectic order. This order makes sure that it is
sufficient to use the already computed part J of the base when computing
the pseudo-hull. To define the lectic order, fix an arbitrary linear order on the
set of attributes P = {p1, . . . , pn}, say p1 < · · · < pn. For all j, 1 ≤ j ≤ n, and
B1, B2 ⊆ P we define

B1 <j B2 iff pj ∈ B2 \B1 and B1 ∩ {p1, . . . , pj−1} = B2 ∩ {p1, . . . , pj−1}.
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The lectic order < is the union of all relations <j for j = 1, . . . , n. It is a linear
order on the powerset of P . The lectic smallest subset of P is the empty set.

The second problem is solved by constructing an increasing chain of finite
subcontexts of K. The context Ki = (Oi,Pi,Si) is a subcontext of K iffOi ⊆ O,
Pi = P , and Si = S ∩ (Oi × P). The closure operator B 7→ B′′ is always
computed with respect to the current finite subcontext Ki. To avoid adding a
wrong implication, an “expert” is asked whether the implication B → B′′ \B
really holds in the whole context K. If it does not hold, the expert must provide
a counterexample, i.e., an object o from O \ Oi that violates the implication.
This object is then added to the current context. Technically, this means that
the expert must provide an object o, and must say which of the attributes in
P are satisfied for this object.

The following algorithm computes the set of all intents of formal concepts of
K as well as the Duquenne-Guigues base of K. The concept lattice is then
given by the inverse inclusion ordering between the intents.

Algorithm 11 (Attribute exploration)
Initialization: One starts with the empty set of implications, i.e., J0 := ∅, the
empty set of concept intents C0 := ∅, and the empty subcontext K0 of K, i.e.,
O0 := ∅. The lectic smallest subset of P is B0 := ∅.

Iteration: Assume that Ki, Ji, Ci, and Bi (i ≥ 0) are already computed. Com-
pute B′′

i with respect to the current subcontext Ki. Now the expert is asked
whether the implication Bi → B′′

i \Bi holds in K. 2

If the answer is “no”, then let oi ∈ O be the counterexample provided by the
expert. Let Bi+1 := Bi, Ji+1 := Ji, and let Ki+1 be the subcontext of K with
Oi+1 := Oi ∪ {oi}. The iteration continues with Ki+1, Ji+1, Ci+1, and Bi+1.

If the answer is “yes”, then Ki+1 := Ki and

(Ci+1,Ji+1) :=

 (Ci,Ji ∪ {Bi → B′′
i \Bi}) if B′′

i 6= Bi,

(Ci ∪ {Bi},Ji) if B′′
i = Bi.

To find the new set Bi+1, we start with j = n, and test whether

(∗) Bi <j Ji+1((Bi ∩ {p1, . . . , pj−1}) ∪ {pj})

holds. The index j is decreased until one of the following cases occurs:

2 If B′′
i \Bi = ∅, then it is not really necessary to ask the expert because implications

with empty right-hand side hold in any context.
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(1) j = 0: In this case, Ci+1 is the set of all concept intents and Ji+1 the
Duquenne-Guigues base of K, and the algorithm stops.

(2) (∗) holds for j > 0: In this case, Bi+1 := Ji+1((Bi∩{p1, . . . , pj−1})∪{pj}),
and the iteration is continued.

One may wonder why, in (∗), we compute the hull Ji+1(·) rather than the
pseudo-hull J ∗

i+1(·). One can show that in this case there actually is no differ-
ence between the hull and the pseudo-hull. This is a consequence of the fact
that the pseudo-closed sets are enumerated w.r.t. the lectic order.

3 Existence and non-existence of the lcs w.r.t. TBoxes

In this section, we assume that L1 is ALE and L2 is ALC. In addition, we
assume that the sets of concept and role names available for building concept
descriptions are finite.

Theorem 12 Let T be an acyclic ALC-TBox. The lcs of ALE(T )-concept
descriptions w.r.t. T always exists and can effectively be computed.

Since the n-ary lcs can be obtained by iterating the application of the binary
lcs, it is sufficient to show the theorem for the case where we want to build the
lcs of two ALE(T )-concept descriptions. To show the theorem in this case, we
first need to show two propositions.

Given an ALC- or ALE(T )-concept description C, its role depth is the maxi-
mal nesting of value restrictions and existential restrictions. For example, the
role depth of ∃r.∀r.A is 2, and the role depth of ∃r.∀r.A t ∃r.∃r.∃r.B is 3.

Proposition 13 For a given bound k on the role depth, there is only a finite
number of inequivalent ALE-concept descriptions of role depth at most k.

This is a consequence of the fact that we have assumed that the sets of concept
and role names are finite, and can easily be shown by induction on k. 3

Given this lemma, a first attempt to show Theorem 12 could be the following.
Let C1, C2 be ALE(T )-concept descriptions, and assume that the role depths
of the ALC-concept description C ′

1, C
′
2 obtained by expanding the descriptions

Ci w.r.t. T are bounded by k. If we could show that this implies that the role
depth of any common subsumer of C1, C2 w.r.t. T is also bounded by k, then
we could obtain the least common subsumer by simply building the (up to
equivalence) finite conjunction of all common subsumers of C1, C2 in ALE(T ).

3 In fact, this is a well-known result, which holds even for full first-order predicate
logic formulae of bounded quantifier depth over a finite vocabulary.
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However, due to the fact that in ALC and ALE we can define unsatisfiable
concepts, this simple approach does not work. In fact,⊥ has role depth 0, but it
is subsumed by any concept description. Given this counterexample, the next
conjecture could be that it is enough to prevent this pathological case, i.e.,
assume that at least one of the concept descriptions C1, C2 is satisfiable w.r.t.
T , i.e., not subsumed by ⊥ w.r.t. T . This assumption can be made without
loss of generality. In fact, if C1 is unsatisfiable w.r.t. T (i.e., equivalent to ⊥
w.r.t. T ), then C2 is the lcs of C1, C2 w.r.t. T . For the DL EL in place of ALE ,
this modification of the simple approach sketched above really works (see
[50] for details). However, due to the presence of value restrictions, it does not
work for ALE . For example, ∀r.⊥ is subsumed by ∀r.F for arbitrary ALE(T )-
concept descriptions F , and thus the role depth of common subsumers cannot
be bounded. However, we can show that common subsumers having a large
role depth are too general anyway.

Before giving a more formal statement of this result in Proposition 18, we
show some basic model-theoretic facts about ALE and ALC, which will be
employed in the proof of this proposition. An interpretation I is tree-shaped if
the role relationships in I form a tree, i.e., if the directed graph GI = (VI , EI)
with VI = ∆I and

EI = {(d, d′) | (d, d′) ∈ rI for some role r ∈ NR}

is a tree. An interpretation I is a tree-shaped counterexample to the subsump-
tion question C v?

T D iff I is a tree-shaped model of T with root d0 ∈ CI\DI .

Lemma 14 Let T be an acyclic ALC-TBox and C, D ALC-concept descrip-
tions. If C 6vT D, then the subsumption question C v?

T D has a tree-shaped
counterexample.

Proof. Assume that C 6vT D, and let C ′, D′ be the ALC-concept descrip-
tions obtained by expanding C, D w.r.t. T . Then C ′ u ¬D′ is satisfiable. It is
well-known that the tableau-based satisfiability procedure for ALC [37] then
produces a tree-shaped interpretation I whose root d0 satisfies d0 ∈ C ′I \D′I .
Since C ′, D′ do not contain concept names defined in T , and since T is acyclic,
we can assume without loss of generality that I is a model of T . In fact, oth-
erwise we can modify I by setting AI := C ′I

A for all defined concepts A, where
A ≡ CA is the definition of A in T , and C ′

A is the expansion of CA w.r.t. T .

In case D = ⊥, the statement C 6vT D is equivalent to saying that C is
satisfiable w.r.t. T , and thus the lemma also implies that any ALC-concept
description that is satisfiable w.r.t. T has a tree-shaped model, i.e., a tree-
shaped model of T with root d0 ∈ CI . Of course, this and the above lemma
also hold when the TBox is empty, i.e., for satisfiability and subsumption of
concept descriptions.
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Let I be a tree-shaped model of the acyclic ALC-TBox T , and C0 be an ALC-
concept description. An element d of I is at level k if the unique path from
the root d0 of I to d has length k. A subdescription F of C0 is at level k if it
occurs within k nestings of value and existential restrictions. For example, in
the description A u ∃r.(B t ∀r.C), the subdescription A occurs at level 0, B
occurs at level 1, and C occurs at level 2.

When evaluating C0 in I, i.e., when checking whether the root d0 of I belongs
to CI

0 , we can directly use the inductive definition of the semantics of ALC-
concept descriptions. During this evaluation process, one recursively checks
whether certain elements d of I belong to F I for subdescriptions F of C0. It
is easy to see that, in such a recursive test, the level of F in C0 always coincides
with the level of d in I. In particular, this means that elements of I that are
at a level higher than the role depth of C0 are irrelevant when evaluating C0.
The following lemma is an immediate consequence of this observation.

Lemma 15 Let C0 be an ALC-concept description of role depth `, and let
I, I ′ be tree-shaped interpretations that differ from each other only on elements
at levels larger than `. Then d0 ∈ CI

0 iff d0 ∈ CI′
0 , where d0 is the (common)

root of I and I ′.

In the proof of Proposition 18 we will need a specific result regarding the eval-
uation of ALC-concept descriptions that are obtained by expanding ALE(T )-
concept descriptions, where T is an acyclic ALC-TBox. Before we can formu-
late this result in Lemma 17, we must introduce some more notation.

Let C0 be an ALC-concept description. We define under what conditions a
subdescription F of C0 occurs conjunctively in C0 by induction on the level `
of F in C0:

• if ` = 0, then C0 must be of the form F0 u F ; 4

• if ` > 0, then C0 must be of the form F0 u ∃r.C ′ or F0 u ∀r.C ′, where F
occurs conjunctively in C ′ on level `− 1. 5

The following lemma, which can easily be proved by induction on `, links this
notion to ALE(T )-concept descriptions. Given an an acyclic ALC-TBox T
and an ALE(T )-concept description C0, the subdescription F of C0 is called
positive if it is not a concept name that occurs within an atomic negation. For
example, in the concept description C0 = ¬A u ∃r.¬B, the subdescriptions A
and B are not positive, but all other subdescriptions (e.g., ¬A or ∃r.¬B) are
positive.

4 The representation of C0 as F0 uF is meant modulo associativity and commuta-
tivity of conjunction, and the fact that > is a unit for conjunction.
5 Again, this representation of C0 should be read modulo associativity and com-
mutativity of conjunction, and the fact that > is a unit for conjunction.
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Lemma 16 Let T be an acyclic ALC-TBox, and C0 an ALE(T )-concept de-
scription that contains the positive subdescription F at some level `. In addi-
tion, let C ′

0, F
′ be the ALC-concept descriptions obtained by expanding C0, F

w.r.t. T . Then F ′ occurs conjunctively in C ′
0 on level `.

This lemma will be used to show that the next lemma is applicable in the
proof of Proposition 18.

Let C0 be an ALC-concept description that contains the subdescription F at
some level ` ≥ 0 conjunctively, and let I be a tree-shaped interpretation with
root d0 such that d0 ∈ CI

0 . We modify C0 into a new ALC-concept description
C⊥ by replacing the subdescription F by ⊥. Now, assume that

• this replacement changes the evaluation of the concept description in I, i.e.,
d0 6∈ CI

⊥.
• ¬F is satisfiable, and thus there is a tree-shaped interpretation J with root

e0 such that e0 6∈ FJ .

Without loss of generality we may assume that the domains of I and J are
disjoint.

Lemma 17 Let C0 and I satisfy the properties stated above. Then there is a
tree-shaped interpretation I ′ with root d0 that differs from I only on elements
at levels ≥ ` such that d0 6∈ CI′

0 .

Proof. We prove the lemma by induction on `.

Base case: ` = 0. In this case, C0 is of the form F0 u F . Let I ′ be a renamed
copy of J , whose root has the name d0 instead of e0. Obviously, e0 6∈ FJ then
implies d0 6∈ F I′ , and thus d0 6∈ CI′

0 .

Induction step: ` > 0. In this case, C0 is of the form F0 u ∃r.C ′ or F0 u ∀r.C ′,
where F is a conjunctive subdescription of C ′ at level ` − 1. Consequently,
C⊥ is of the form F0 u ∃r.C ′

⊥ or F0 u ∀r.C ′
⊥, where C ′

⊥ is obtained from C ′ by
replacing the subdescription F at level `− 1 by ⊥.

First, consider the case where C0 = F0u∃r.C ′ and C⊥ = F0u∃r.C ′
⊥. Obviously,

d0 ∈ CI
0 and d0 6∈ CI

⊥ imply that d0 ∈ (∃r.C ′)I and d0 6∈ (∃r.C ′
⊥)I . Let

d1, . . . , dm be all the elements of I that satisfy (d0, di) ∈ rI and di ∈ C ′I .
Now, d0 6∈ (∃r.C ′

⊥)I implies, for i = 1, . . . ,m, that di 6∈ C ′I
⊥ . Let I1, . . . , Im be

the tree-shaped interpretations obtained by respectively taking the subtrees
of I with roots d1, . . . , dm. For i = 1, . . . ,m, we then have di ∈ C ′Ii and
di 6∈ C ′Ii

⊥ . Since F occurs conjunctively at level ` − 1 in C ′, the induction
hypothesis yields a tree-shaped interpretation I ′i with root di that differs from
Ii only on elements at levels ≥ `− 1, and such that di 6∈ C ′I′i .
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The interpretation I ′ is obtained from I be replacing, for i = 1, . . . ,m, the
subtree Ii with root di by I ′i. Obviously, I is tree-shaped and it differs from
I ′ only on elements at levels ≥ `. We claim that d0 6∈ (∃r.C ′)I

′
, and thus

d0 6∈ CI′
0 . In fact, let d be such that (d0, d) ∈ rI

′
. By the definition of I ′, this

implies that (d0, d) ∈ rI . If d = di for some i, 1 ≤ i ≤ m, then d = di 6∈ C ′I′i ,
and thus d = di 6∈ C ′I′ since the subtree with root di of I ′ coincides with
I ′i. Otherwise, d 6∈ C ′I , and thus d 6∈ C ′I′ since I coincides with I ′ on the
respective subtrees with root d.

Second, consider the case where C0 = F0 u ∀r.C ′ and C⊥ = F0 u ∀r.C ′
⊥.

Obviously, d0 ∈ CI
0 and d0 6∈ CI

⊥ imply that d0 ∈ (∀r.C ′)I and d0 6∈ (∀r.C ′
⊥)I .

Let d1, . . . , dm be all the elements of I that satisfy (d0, di) ∈ rI . Now, d0 ∈
(∀r.C ′)I implies di ∈ C ′I for all i, 1 ≤ i ≤ m. In addition, d0 6∈ (∀r.C ′

⊥)I

implies that there exists a j, 1 ≤ j ≤ m, such that dj 6∈ C ′I
⊥ . Let Ij be the

tree-shaped interpretation obtained by taking the subtree of I with root dj.

Then, we have dj ∈ C ′Ij and dj 6∈ C
′Ij

⊥ . Since F occurs conjunctively at level
` − 1 in C ′, the induction hypothesis yields a tree-shaped interpretation I ′j
with root dj that differs from Ij only on elements at levels ≥ `− 1, and such

that dj 6∈ C ′I′j .

The interpretation I ′ is obtained from I be replacing the subtree Ij with root
dj by I ′j. Obviously, I is tree-shaped and it differs from I ′ only on elements

at levels ≥ `. We claim that d0 6∈ (∀r.C ′)I
′
, and thus d0 6∈ CI′

0 . This is an
immediate consequence of the following two facts: (i) (d0, dj) ∈ rI

′
, and (ii)

dj 6∈ C ′I′j , and thus dj 6∈ C ′I′ since the subtree with root dj of I ′ coincides
with I ′j.

We are now ready to prove the key proposition.

Proposition 18 Let C1, C2 be ALE(T )-concept descriptions that are both
satisfiable w.r.t. T , and assume that the role depths of the ALC-concept de-
scriptions C ′

1, C
′
2 obtained by expanding the descriptions C1, C2 w.r.t. T are

bounded by k. If the ALE(T )-concept description D is a common subsumer
of C1, C2 w.r.t. T , then there is an ALE(T )-concept description D0 vT D of
role depth at most k + 1 that is also a common subsumer of C1, C2 w.r.t. T .

Proof. Let D be an ALE(T )-concept description that is a common subsumer
of C1, C2 w.r.t. T . If the role depth of D is bounded by k+1, then we are done
since we can take D0 = D. Otherwise, D contains at least one subdescription
on level k+1 that is an existential or a value restriction. Choose such a subde-
scription F . Obviously, F is positive. We modify D into a concept description
D̂ as follows. We replace F by either > or ⊥:

• if F is equivalent to > w.r.t. T , then it is replaced by >;
• otherwise, F is replaced by ⊥.
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Since F is a positive subdescription of E and all the concept constructors
other than atomic negation available in ALE are monotonic, it is clear that
D̂ vT D. It remains to be shown that D̂ is a common subsumer of C1, C2

w.r.t. T . In fact, once we have shown this we can obtain D0 by applying
this construction until all subdescriptions at level k + 1 that are existential
or a value restrictions are replaced by either > or ⊥. Obviously, the resulting
description D0 has role depth at most k + 1 and satisfies D0 vT D.

If F was replaced by >, then F ≡T >, and thus D̂ ≡T D is a common
subsumer of C1, C2 w.r.t. T . Thus, assume that F was replaced by ⊥. To
show that also in this case D̂ is a common subsumer of C1, C2 w.r.t. T , we
assume to the contrary that Ci 6vT D̂ for i = 1 or i = 2. We show that this
assumption leads to a contradiction.

Let D′, D̂′, F ′ be the ALC-concept descriptions obtained by respectively ex-
panding D, D̂, F . By Lemma 16, F ′ is a subdescription of D′ that occurs
conjunctively in D′ at level k + 1. In addition, since F was replaced by ⊥, F
is not equivalent to > w.r.t. T , and thus ¬F ′ is satisfiable. Since Ci 6vT D̂,
we know that C ′

i 6v D̂′, and thus there is a tree-shaped interpretation I such
that the root d0 of this tree belongs to C ′I

i , but not to D̂′I . Since Ci vT D,
we also know that C ′

i v D′, and thus d0 ∈ D′I .

Now, d0 6∈ D̂′I and d0 ∈ D′I together with the satisfiability of ¬F ′ and the
way D̂ was constructed from D imply that Lemma 17 is applicable. Thus,
there is a tree-shaped interpretation I ′ with root d0 that differs from I only
on elements at levels ≥ k + 1, and such that d0 6∈ D′I′ .

Since a change of the interpretation at a level larger than k does not influence
the evaluation of a concept description of depth at most k (see Lemma 15),
d0 ∈ C ′I

i implies d0 ∈ C ′I′
i . However, since Ci vT D yields C ′

i v D′, this
implies d0 ∈ D′I′ , which yields the desired contradiction.

Theorem 12 is now an immediate consequence of Proposition 13 and Proposi-
tion 18. In fact, to compute the lcs of C1, C2 w.r.t. T , it is enough to compute
the (up to equivalence) finite set of all ALE(T )-concept descriptions of role
depth at most k + 1, check which of them are common subsumers of C1, C2

w.r.t. T , and then build the conjunction E of these common subsumers. Propo-
sition 13 ensures that the conjunction is finite. By definition, E is a common
subsumer of C1, C2 w.r.t. T , and Proposition 18 ensures that for any common
subsumer D of C1, C2 w.r.t. T , there is a conjunct D0 in E such that D0 vT D,
and thus E vT D.

If we allow for general TBoxes T , then the lcs w.r.t. T need not exist.

Theorem 19 Let T := {A v ∃r.A, B v ∃r.B}, where A, B are distinct
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concept names. Then, the lcs of the ALE(T )-concept descriptions A, B w.r.t.
T does not exist.

Proof. Consider a common subsumer E of A, B w.r.t. T . Without loss of gen-
erality we can assume that the ALE(T )-concept description E is a conjunction
of (negated) concept names, value restrictions, and existential restrictions. We
claim that this conjunction can actually only contain existential restrictions
for the role r.

Assume that the concept name P is contained in this conjunction. We restrict
our attention to the case where P is different from A (otherwise, P is different
from B, and we can proceed analogously). Consider the interpretation I that
consists of one element a, which belongs to A and to no other concept name,
and which is related to itself via the role r. Then I is a model of T , and
a ∈ AI . However, a 6∈ P I , which is a contradiction since P occurs in the
top-level conjunction of E, and we have assumed that A vT E. Similarly, we
can show that no negated concept name can occur in this conjunction.

For similar reasons, the conjunction cannot contain a value restriction ∀s.F
where F is not equivalent to > w.r.t. T . 6 In fact, if F is not equivalent to
> w.r.t. T , then there is a model I¬F of T that contains an element d0 with
d0 6∈ F I¬F . We extend I¬F to an interpretation I by adding a new element
a, which belongs to A and to no other concept name, and which is related to
itself via the role r, and to d0 via the role s. Then I is a model of T , and
a ∈ AI . However, a 6∈ (∀s.F )I , which is a contradiction since A vT E.

Thus, we may assume without loss of generality that both the conjunction of
(negated) concept names and the conjunction of value restrictions is empty.
Now, consider an existential restriction ∃s.F . By using a construction similar
to the ones above, we can show that s must in fact be equal to r, i.e., we have
an existential restriction of the form ∃r.F . We claim that F is again a common
subsumer of A, B w.r.t. T . Otherwise, we assume without loss of generality
that A 6vT F , i.e., there is a model I0 of T that contains an element d0 such
that d0 ∈ AI0 \ F I0 . This is a contradiction to A vT E vT ∃r.F since using
I0 we can easily construct a model I of T that contains an element a that
belongs to A, but not to ∃r.F . In fact, I is obtained from I0 by adding a new
element a, which belongs to A and to no other concept name, and which is
related to d0 via the role r.

We can now apply induction over the role depth of the common subsumer E
of A, B to show that E is equivalent w.r.t. T to an ALE-concept description
from the following set of descriptions: S is the smallest set of ALE-concept
descriptions such that

6 If F is equivalent to >, then ∀s.F is equivalent to >, and thus it can be removed.
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• > belongs to S;
• S is closed under conjunction;
• if F belongs to S, then ∃r.F also belongs to S.

Conversely, it is easy to show (by induction on the size of elements of S) that
any element of S is a common subsumer of A, B w.r.t. T .

Thus, a least common subsumer of A, B w.r.t. T must be a least element of S.
Since the elements of S do not contain A, B, least is meant w.r.t. subsumption
of concept descriptions (i.e., without a TBox). However, S does not have a least
element w.r.t. subsumption. On the one hand, S obviously contains elements
of arbitrary role depth. On the other hand, an element D of role depth `
cannot be subsumed by an element E of role depth k > `: if d ∈ EI for
some interpretation I and element d of I, then there is a path of length k
starting from d in the graph GI ; in contrast, there is an interpretation I0 and
an element d0 of I0 such that d0 ∈ DI0 , but all paths in GI0 starting with d0

have length ≤ ` < k.

It is easy to see that the same proof also works for the cyclic TBox T := {A ≡
∃r.A, B ≡ ∃r.B}.

Corollary 20 Let T := {A ≡ ∃r.A, B ≡ ∃r.B}, where A, B are distinct
concept names. Then, the lcs of the ALE(T )-concept descriptions A, B w.r.t.
T does not exist.

4 Good common subsumers

The brute-force algorithm for computing the lcs in ALE(T ) w.r.t. an acyclic
background ALC-TBox described in the previous section is not useful in prac-
tice since the number of concept descriptions that must be considered is very
large (super-exponential in the role depth). In addition, w.r.t. cyclic or general
TBoxes the lcs need not exist. In the bottom-up construction of DL knowl-
edge bases, it is not really necessary to take the least common subsumer, 7 a
common subsumer that is not too general can also be used. In this section, we
introduce an approach for computing such “good” common subsumers w.r.t.
a background TBox. In order to explain this approach, we must first recall
how the lcs of ALE-concept descriptions (without background TBox) can be
computed.

7 Using it may even result in over-fitting.
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4.1 The lcs of ALE-concept descriptions

Since the lcs of n concept descriptions can be obtained by iterating the applica-
tion of the binary lcs, we describe how to compute the least common subsumer
lcsALE(C, D) of two ALE-concept descriptions C, D (see [22] for more details
and a proof of correctness).

First, the input descriptions C, D are normalized by applying the following
equivalence-preserving rules modulo associativity and commutativity of con-
junction:

∀r.E u ∀r.F −→ ∀r.(E u F ), ∀r.E u ∃r.F −→ ∀r.E u ∃r.(E u F ),

∀r.> −→ >, E u > −→ E,

∃r.⊥ −→ ⊥, E u ⊥ −→ ⊥,

A u ¬A −→ ⊥ for each A ∈ NC .

Note that, due to the second rule in the first line, this normalization may lead
to an exponential blow-up of the concept descriptions. In the following, we
assume that the input descriptions C, D are normalized.

In order to describe the lcs algorithm, we need to introduce some notation.
Let C be a normalized ALE-concept description. Then names(C) (names(C))
denotes the set of (negated) concept names occurring in the top-level conjunc-
tion of C, roles∃(C) (roles∀(C)) the set of role names occurring in an existential
(value) restriction on the top-level of C, and restrict∃r (C) (restrict∀r (C)) denotes
the set of all concept descriptions occurring in an existential (value) restriction
on the role r in the top-level conjunction of C.

Now, let C, D be normalized ALE-concept descriptions. If C (D) is equivalent
to ⊥, then lcsALE(C, D) = D (lcsALE(C, D) = C). Otherwise, we have

lcsALE(C, D) = u
A∈names(C)∩names(D)

A u u
¬B∈names(C)∩names(D)

¬B u

u
r∈roles∃(C)∩roles∃(D)

u
E∈restrict∃r (C),F∈restrict∃r (D)

∃r.lcsALE(E, F ) u

u
r∈roles∀(C)∩roles∀(D)

u
E∈restrict∀r (C),F∈restrict∀r (D)

∀r.lcsALE(E, F ).

Here, the empty conjunction stands for the top-concept >. The recursive calls
of lcsALE are well-founded since the role depth decreases with each call.
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4.2 A good common subsumer in ALE w.r.t. a background TBox

Let T be a background TBox in some DL L2 extending ALE such that sub-
sumption in L2 w.r.t. this kind of TBoxes is decidable. 8 Let C, D be normal-
ized ALE(T )-concept descriptions. If we ignore the TBox, then we can simply
apply the above algorithm for ALE-concept descriptions without background
terminology to compute a common subsumer. However, in this context, taking

u
A∈names(C)∩names(D)

A u u
¬B∈names(C)∩names(D)

¬B

is not the best we can do. In fact, some of these concept names may be
constrained by the TBox, and thus there may be relationships between them
that we ignore by simply using the intersection. Instead, we propose to take
the smallest (w.r.t. subsumption w.r.t. T ) conjunction of concept names and
negated concept names that subsumes (w.r.t. T ) both

u
A∈names(C)

A u u
¬B∈names(C)

¬B and u
A′∈names(D)

A′ u u
¬B′∈names(D)

¬B′.

We modify the above lcs algorithm in this way, not only on the top-level of
the input concepts, but also in the recursive steps. It is easy to show that the
ALE(T )-concept description computed by this modified algorithm still is a
common subsumer of A, B w.r.t. T .

Proposition 21 The ALE(T )-concept description E obtained by applying the
modified lcs algorithm to ALE(T )-concept descriptions C, D is a common sub-
sumer of C and D w.r.t. T , i.e., C vT E and D vT E.

In general, this common subsumer will be more specific than the one obtained
by ignoring T , though it need not be the least common subsumer. In the
following, we will call the common subsumer computed this way good common
subsumer (gcs), and the algorithm that computes it the gcs algorithm.

Example 22 As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,

NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female t (Doctor u Rich)),

DaughterHappyDoctor ≡ ∀has-child.(¬Female t (Doctor u Happy)),

ChildrenDoctor ≡ ∀has-child.Doctor,

8 Note that the TBox T used as background terminology may be a general TBox.
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and the ALE-concept descriptions

C := ∃has-child.(NoSon u DaughterHappyDoctor),

D := ∃has-child.(NoDaughter u SonRichDoctor).

By ignoring the TBox, we obtain theALE(T )-concept description ∃has-child.>
as common subsumer of C, D. However, if we take into account that both
NoSonuDaughterHappyDoctor and NoDaughteruSonRichDoctor are subsumed
by the concept ChildrenDoctor, then we obtain the more specific common
subsumer ∃has-child.ChildrenDoctor. The gcs of C, D is even more specific.
In fact, the least conjunction of (negated) concept names subsuming both
NoSon u DaughterHappyDoctor and NoDaughter u SonRichDoctor is

ChildrenDoctor u DaughterHappyDoctor u SonRichDoctor,

and thus the gcs of C, D is

∃has-child.(ChildrenDoctor u DaughterHappyDoctor u SonRichDoctor).

The conjunct ChildrenDoctor is actually redundant since it is implied by the
remainder of the conjunction.

In order to implement the gcs algorithm, we must be able to compute the
smallest conjunction of (negated) concept names that subsumes two such con-
junctions C1 and C2 w.r.t. T . In principle, one can compute this smallest con-
junction by testing, for every (negated) concept name whether it subsumes
both C1 and C2 w.r.t. T , and then take the conjunction of those (negated)
concept names for which the test was positive. However, this results in a
large number of (possibly quite expensive) calls to the subsumption algorithm
for L2 w.r.t. (general or (a)cyclic) TBoxes. Since in our application scenario
(bottom-up construction of DL knowledge bases w.r.t. a given background ter-
minology), the TBox T is assumed to be fixed, it makes sense to precompute
this information. In Section 5 we will show that attribute exploration can be
used for this purpose.

4.3 Using ALE-expansion when computing the gcs

If the background terminology is an acyclic TBox T , then one can employ
an appropriate partial expansion of T in order to uncover ALE-parts hidden
within the defined concepts. The idea is that the gcs algorithm will possibly
yield a more specific common subsumer if it can make use of ALE-concepts
“hidden” within the defined concepts.
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For instance, in Example 22, the concepts defining NoSon and NoDaughter are
actually ALE(T )-concept descriptions, and thus C, D can be expanded to

C ′ := ∃has-child.(∀has-child.Female u DaughterHappyDoctor),

D′ := ∃has-child.(∀has-child.¬Female u SonRichDoctor),

before computing the gcs. The concepts defining DaughterHappyDoctor and
SonRichDoctor are notALE(T )-concept descriptions, and thus these two names
cannot be expanded. However, in this example, the common subsumer com-
puted by applying the gcs algorithm to the expanded concepts C ′, D′ is

∃has-child.>,

which is actually less specific than the result of applying the gcs algorithm to
the unexpanded concepts C, D. To overcome this problem, we do the partial
expansion, but also keep the defined concepts that we have expanded. In the
example, this yields the expanded concepts

C ′′ := ∃has-child.(∀has-child.Female u NoSon u DaughterHappyDoctor),

D′′ := ∃has-child.(∀has-child.¬Female u NoDaughter u SonRichDoctor).

If we apply the gcs algorithm to C ′′, D′′, then we obtain (up to equivalence
w.r.t. T ) the same common subsumer as obtained from C, D, i.e., in this case
the expansion does not yield a more specific result.

However, it is easy to construct examples where this kind of expansion leads to
better results. For instance, if we apply the gcs algorithm to ∀has-child.(Femaleu
Doctor) and NoSon u ∀has-child.Happy, then the result is >. In contrast, if we
apply it to the expanded concept descriptions ∀has-child.(Female u Doctor)
and NoSon u ∀has-child.Female u ∀has-child.Happy, then the result is the more
specific common subsumer ∀has-child.Female.

Before checking whether a defined concept can be expanded, it is useful to
transform it into negation normal form (NNF) by pushing all negations into
the description until they occur only in front of concept names, using de
Morgan’ rules and the facts that ¬¬D ≡ D and ¬> ≡ ⊥. For example, the
concept description ¬∀has-child.Female is not anALE-concept description, but
its negation normal form ∃has-child.¬Female is.

More formally, we define the ALE-expansion of (negated) concept names de-
fined in T and of ALE(T )-concept descriptions as follows.

Definition 23 (ALE-expansion) Let T be an acyclic TBox, let A be a con-
cept name defined in T , and let A ≡ C be its definition. We first build the
negation normal form C ′ of C. If C ′ is not an ALE(T )-concept description,
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then the ALE-expansion of A is A. Otherwise, it is A u C ′′, where C ′′ is
obtained from C ′ by replacing all (negated) defined concept names in C ′ by
their ALE-expansion. To obtain the ALE-expansion of ¬A, we just apply the
same approach to ¬C. The ALE-expansion of an ALE(T )-concept description
is obtained by replacing all (negated) defined concept names by their ALE-
expansions.

Note that this recursive definition of an ALE-expansion is well-founded since
the TBox is assumed to be acyclic. As an example, consider the TBox T
consisting of

A ≡ ¬∀r.(B1 tB2), B1 ≡ P tQ, B2 ≡ P uQ.

Then we obtain A u ∃r.(¬B1 u ¬P u ¬Q u ¬B2) as ALE-expansion of A.

It is easy to see that ALE-expansion may lead to more specific common sub-
sumers, but never to less specific ones.

Proposition 24 Let T be an acyclic L2-TBox, C, D ALE(T )-concept de-
scriptions with ALE-expansion C ′, D′, and let E (E ′) be the result of applying
the gcs algorithm to C, D (C ′, D′). Then E ′ is a common subsumer of C, D
that is at least as good as E, i.e., C vT E ′, D vT E ′, and E ′ vT E.

ALE-expansion can also be applied to cyclic L2-TBoxes, provided that the
cycles go through non-ALE parts of the TBox. This is, for example, the case
in the TBox T := {A ≡ ∃r.B, B ≡ P t A}.

4.4 Alternative approaches for computing common subsumers

In Section 2.1 we have already sketched an approach based on approximation,
which works if the TBox T is acyclic, L2 allows for disjunction, and one
can compute the approximation from above of L2-concept descriptions by
ALE-concept descriptions. For example, if we take ALC as L2, then all these
conditions are satisfied.

Definition 25 (Common subsumer by approximation) Assume that L2

allows for disjunction, and that one can compute the approximation from above
of L2-concept descriptions by ALE-concept descriptions. Let T be an acyclic
L2-TBox. Given ALE(T )-concept descriptions C, D, one first fully expands
them into L2-concept descriptions C ′, D′. Then one approximates their dis-
junction C ′ t D′ from above by an ALE-concept description. The common
subsumer of C, D obtained this way is called the common subsumer by ap-
proximation (acs) of C, D w.r.t. T .
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In Section 2.1, we have shown by an example that the acs can be less specific
than the lcs. In this example (Example 4), the gcs coincides with the lcs, and
thus is also more specific than the acs: in fact, w.r.t. the TBox T = {A ≡
P tQ}, the smallest conjunction of concept names above both P and Q is A,
and thus the gcs of P and Q is A.

There are, however, also examples where the gcs is less specific than the acs.
For instance, consider the TBox

T = {A ≡ ∃r.A1 t ∃r.A2, B ≡ ∃r.B1 t ∃r.B2}.

With respect to this TBox, the gcs of A, B is >, whereas the acs is the more
specific common subsumer ∃r.>.

The gcs algorithm makes use of the subsumption relationships between con-
junctions of (negated) concept names. Usually, these relationships are not
known for a given TBox, and thus we must either precompute them (see
Section 5) or compute them on the fly (as sketched in Section 4.2). Both
may be quite expensive. What is usually known for a given TBox T are all
subsumption relationships between the concept names occurring in T . 9 This
information can be used as follows. Given two conjunctions

u
A∈names(C)

A u u
¬B∈names(C)

¬B and u
A′∈names(D)

A′ u u
¬B′∈names(D)

¬B′,

the gcs algorithm takes the smallest (w.r.t. subsumption w.r.t. T ) conjunction
of concept names and negated concept names that subsumes (w.r.t. T ) both
conjunctions. In contrast, the algorithm that just ignores the TBox would take

u
A∈names(C)∩names(D)

A u u
¬B∈names(C)∩names(D)

¬B.

Using the subsumption relationships between concept names, we can come up
with a new approach that lies between these two approaches.

Definition 26 (Subsumption closure) Let T be a TBox, and S (S) a set
of (negated) concept names. The subsumption closure of S (S) w.r.t. T is a
set of (negated) concept names, which is defined as follows:

SC(S) := {A | ∃B ∈ S. B vT A},

SC(S) := {¬A | ∃¬B ∈ S. A vT B}.

Instead of using the intersection names(C)∩names(D) (names(C)∩names(D)),
as in the approach that ignores T , one can first build the subsumption closures,

9 Most DL system compute these automatically when reading in a TBox.

27



and then intersect the closures, i.e., use

u
A∈SC(names(C))∩SC(names(D))

A u u
¬B∈SC(names(C))∩SC(names(D))

¬B.

We call the algorithm for computing common subsumers obtained this way the
scs algorithm, and the result of applying it to ALE(T )-concept descriptions
C, D the scs of C, D w.r.t. T .

Proposition 27 Let T be an L2-TBox, C, D ALE(T )-concept descriptions,
and let E (E ′) be the result of applying the gcs (scs) algorithm to C, D. Then
E ′ is a common subsumer of C, D that is at most as good as the gcs E, i.e.,
C vT E ′, D vT E ′, and E vT E ′.

5 Computing the subsumption lattice of conjunctions of (negated)
concept names w.r.t. a TBox

To obtain a practical gcs algorithm, we must be able to compute in an effi-
cient way the smallest conjunction of (negated) concept names that subsumes
two such conjunctions w.r.t. T . Since in our application scenario (bottom-up
construction of DL knowledge bases w.r.t. a given background terminology),
the TBox T is assumed to be fixed, it makes sense to precompute this in-
formation. Obviously, a näıve approach that calls the subsumption algorithm
for each pair of conjunctions of (negated) concept names is too expensive for
TBoxes of a realistic size. Instead, we propose to use attribute exploration for
this purpose.

In order to apply attribute exploration to the task of computing the subsump-
tion lattice 10 of conjunctions of (negated) concept names (some of which may
be defined concepts in an L2-TBox T ), we define a formal context whose
concept lattice is isomorphic to the subsumption lattice we are interested in.

For the case of conjunctions of concept names (without negated names), this
problem was first addressed in [51], where the objects of the context were basi-
cally all possible counterexamples to subsumption relationships, i.e., interpre-
tations together with an element of the interpretation domain. The resulting
“semantic context” has the disadvantage that an “expert” for this context
must be able to deliver such counterexamples, i.e., it is not sufficient to have
a simple subsumption algorithm for the DL in question. One needs one that,
given a subsumption problem “C v D?”, is able to compute a counterexample

10 In general, the subsumption relation induces a partial order, and not a lattice
structure on concepts. However, in the case of conjunctions of (negated) concept
names, all infima exist, and thus also all suprema.
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if the subsumption relationship does not hold, i.e., an interpretation I and an
element d of its domain such that d ∈ CI \DI . Since the usual tableau-based
subsumption algorithms [52] in principle try to generate finite countermodels
to subsumption relationships, they can usually be extended such that they
yield such an object in case the subsumption relationship does not hold. For
instance, in [51], this is explicitly shown for the DL ALC. However, the highly
optimized algorithms in systems like FaCT and Racer do not produce such
countermodels as output. For this reason, we are interested in a context that
has the same attributes and the same concept lattice (up to isomorphism),
but for which a standard subsumption algorithm can function as an expert.
Such a context was first introduced in [53]:

Definition 28 Let T be an L2-TBox. The context KT = (O,P ,S) is defined
as follows:

O := {E | E is an L2-concept description},
P := {A1, . . . , An} is the set of concept names occurring in T ,

S := {(E, A) | E vT A}.

Before we can prove that this context has the desired properties, it is useful to
show the following lemma, which relates subsumption in T with implications
holding in KT . If B is a set of attributes of KT (i.e., a set of concept names

occurring in T ), then uB denotes their conjunction, i.e., uB := u
A∈B

A.

Lemma 29 Let B1, B2 be subsets of P. The implication B1 → B2 holds in
KT iff uB1 vT uB2.

Proof. First, we prove the only if direction. If the implication B1 → B2 holds
in KT , then this means that the following holds for all objects E ∈ O: if
E vT p holds for all p ∈ B1, then E vT p also holds for all p ∈ B2. Thus,
if we take uB1 as object E, we obviously have uB1 vT p for all p ∈ B1, and
thus uB1 vT p for all p ∈ B2, which shows uB1 vT uB2.

Second, we prove the if direction. If uB1 vT uB2, then any object E satisfying
E vT uB1 also satisfies E vT uB2 by the transitivity of the subsumption
relation. Consequently, if E is subsumed by all concepts in B1, then it is also
subsumed by all concepts in B2, i.e., if E satisfies all attributes in B1, it also
satisfies all attributes in B2. This shows that the implication B1 → B2 holds
in KT .

Given this lemma, we can now prove the main theorem of this section:

Theorem 30 The concept lattice of the context KT is isomorphic to the sub-
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sumption hierarchy of all conjunctions of subsets of P w.r.t. T .

Proof. In order to obtain an appropriate isomorphism, we define a mapping
π from the formal concepts of the context KT to the set of all (equivalence
classes of) conjunctions of subsets of P as follows:

π(A, B) = [uB]≡.

For formal concepts (A1, B1), (A2, B2) of KT we have (A1, B1) ≤ (A2, B2) iff
B2 ⊆ B1. Since B1 is the intent of the formal concept (A1, B1), we have B1 =
A′

1 = A′′′
1 = B′′

1 , and thus B2 ⊆ B1 iff B2 ⊆ B′′
1 iff the implication B1 → B2

holds in KT iff uB1 vT uB2. Overall, we have thus shown that π is an order
embedding (and thus injective): (A1, B1) ≤ (A2, B2) iff [uB1]≡ v≡

T [uB2]≡.

It remains to be shown that π is surjective as well. Let B be an arbitrary
subset of P . We must show that [uB]≡ can be obtained as an image under
the mapping π. We know that (B′, B′′) is a formal concept of KT , and thus it
is sufficient to show that π(B′, B′′) = [uB]≡, i.e., u(B′′) ≡T uB. Obviously,
B ⊆ B′′ implies u(B′′) vT uB. Conversely, the implication B → B′′ holds in
KT , and thus Lemma 29 yields uB vT uB′′.

Attribute exploration can be used to compute the concept lattice of KT since
any standard subsumption algorithm for the DL under consideration is an
expert for KT .

Proposition 31 Any decision procedure for subsumption w.r.t. TBoxes in L2

functions as an expert for the context KT .

Proof. The attribute exploration algorithm asks questions of the form “B1 →
B2?” By Lemma 29, we can translate these questions into subsumption ques-
tions of the form “uB1 vT uB2?” Obviously, any decision procedure for sub-
sumption can answer these questions correctly.

Now, assume that B1 → B2 does not hold in KT , i.e., uB1 6vT uB2. We
claim that uB1 is a counterexample, i.e., uB1 ∈ B′

1, but uB1 /∈ B′
2. This is

an immediate consequence of the facts that B′
i = {E | E vT uBi} (i = 1, 2)

and that uB1 vT uB1 and uB1 6vT uB2.

The expert must provide for each counterexample the information which at-
tributes it satisfies and which it does not. This can again be realized by the
subsumption algorithm: uB1 satisfies the attribute Ai iff uB1 vT Ai.

In order to compute the gcs, we consider not only conjunctions of concept
names, but rather conjunctions of concept names and negated concept names.
The above results can easily be adapted to this case. In fact, one can simply
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extend the TBox T by a definition for each negated concept name, and then
apply the approach to this extended TBox. To be more precise, if {A1, . . . , An}
is the set of concept names occurring in T , then we introduce new concept
names A1, . . . , An, and extend T to a TBox T̂ by adding the definitions A1 ≡
¬A1, . . . , An ≡ ¬An. 11

Corollary 32 The concept lattice of the context KT̂ is isomorphic to the sub-
sumption hierarchy of all conjunctions of concept names and negated concept
names occurring in T .

How can this result be used to support computing the gcs? The above corollary
together with Proposition 31 shows that attribute exploration applied to KT̂
can be used to compute the Duquenne-Guigues base of KT̂ . Given this base,
we can compute the supremum in the concept lattice of KT̂ as follows:

Lemma 33 Let J be the Duquenne-Guigues base of KT̂ , and let B1, B2 be
sets of attributes of KT̂ . Then J (B1) ∩ J (B2) is the intent of the supremum
of the formal concepts (B′

1, B
′′
1 ) and (B′

2, B
′′
2 ).

Proof. We know that the intent of the supremum of the formal concepts
(B′

1, B
′′
1 ) and (B′

2, B
′′
2 ) is just the intersection B′′

1 ∩ B′′
2 of their intents. In

addition, since Cons(J ) = Imp(KT̂ ), we know that B′′
i = J (Bi) for i = 1, 2.

As an immediate consequence of this lemma together with Theorem 30 and
its proof, the supremum in the hierarchy of all conjunctions of concept names
and negated concept names occurring in T can be computed as follows:

Proposition 34 Let J be the Duquenne-Guigues base of KT̂ , and let B1, B2

be sets of (negated) concept names occurring in T . Then

u
L∈J (B1)∩J (B2)

L

is the least conjunction of (negated) concept names occurring in T that lies

above both u
L∈B1

L and u
L∈B2

L.

As mentioned in Section 2.2, computing the implication hull J (B) for a set of
attributes B can be done in time linear in the size of J and B. This means that
the supremum can be computed efficiently as long as the Duquenne-Guigues
base of KT̂ is relatively small.

The experimental results reported in [53] show that using attribute explo-
ration for computing the subsumption lattice of all conjunctions of (negated)

11 For T̂ to be an L2-TBox, we must assume that L2 allows for full negation.
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concept names gives a huge increase of efficiency compared to the semi-näıve
approach, which introduces a new definition for each of the exponentially
many such conjunctions, and then applies the usual algorithm for comput-
ing the subsumption hierarchy. Nevertheless, these results also show that the
approach can only be applied if the number of concept names is relatively
small. Although these experiments were done almost 10 years ago on a rather
slow computer, using randomly generated TBoxes and the semantic context,
our more recent experiments (see Section 6) come to a similar result. For this
reason, we have also experimented with an improved algorithm for comput-
ing concept lattices [33,34], which can employ additional knowledge that is
readily available in our case, but not used by the basic attribute exploration
algorithm.

Using attribute exploration with a priori knowledge

When starting the exploration process, all the basic attribute exploration al-
gorithm knows about the context is the set of its attributes. It acquires all the
necessary knowledge about the context by asking the expert, which in our set-
ting means: by calling the subsumption algorithm for L2. Since L2 is usually
an expressive DL, the complexity of the subsumption problem is usually quite
high, and thus asking the expert may be expensive. For this reason it makes
sense to employ approaches that can avoid some of these expensive calls of
the subsumption algorithm.

In our application, we already have some a priori knowledge about relation-
ships between attributes. In fact, we know that the attributes Ai and Ai stand
for a concept and its negation. In addition, since the background TBox T is
assumed to be an existing terminology, we can usually assume that the sub-
sumption hierarchy between the concept names occurring in T has already
been computed. This provides us with the following a priori knowledge about
the relationships between attributes:

(1) If Ai vT Aj holds, then we know on the FCA side that in the context
KT̂ all objects satisfying the attribute Ai also satisfy the attribute Aj,
i.e., the implication {Ai} → {Aj} holds in KT̂ .

(2) Since Ai vT Aj implies ¬Aj vT ¬Ai, we also know that all objects sat-
isfying the attribute Aj also satisfy the attribute Ai, i.e., the implication
{Aj} → {Ai} holds in KT̂ .

(3) We know that no object can simultaneously satisfy Ai and Ai, and thus
the implication {Ai, Ai} → ⊥K

T̂ holds, where ⊥K
T̂ stands for the set of

all attributes of KT̂ .
(4) Every object satisfies either Ai or Ai.
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The a priori knowledge mentioned in (4) differs from the one mentioned in
the other points in that it cannot be represented by Horn clauses. This is
the reason why it does not correspond to an implication of the context. In
addition, whereas reasoning with respect to Horn clauses (implications) is
polynomial, the presence of knowledge of the form mentioned in (4) means
that reasoning about the a priori knowledge becomes NP-complete (since it is
general propositional reasoning).

Depending on the TBox, there may exist other relationships between at-
tributes that can be deduced, but it should be noted that deducing them
makes sense only if this can be done without too much effort: otherwise, the
advantage obtained by using the information might be outweighed by the
effort of obtaining the a priori knowledge.

Attribute exploration with a priori knowledge [54,33,34] is able to use such
additional information (like the one mentioned in (1)–(4)) to create less calls
to the expert and generate less additional implications. 12

If the a priori knowledge is purely implicational (in our case, if we use only
the implications mentioned in (1)–(3)), then it is easy to modify the attribute
exploration algorithm such that it takes this knowledge into account. In fact,
in the initialization phase we simply replace the assignment J0 := ∅ by

J0 := {{Ai} → {Aj} | Ai vT Aj} ∪

{{Aj} → {Ai} | Ai vT Aj} ∪

{{Ai, Ai} → ⊥K
T̂ | i = 1, . . . , n},

where ⊥K
T̂ = {A1, . . . , An, A1, . . . , An}. The effect of this modification is that,

when computing the implication hull Ji+1(·) during attribute exploration,
these a priori known implications are also taken into account. The other effect
is, of course, that the overall set of implications obtained by the exploration
process need not be of minimal cardinality or even free of redundancies.

In principle, non-implicational a priori knowledge (in our case, the one men-
tioned in (4)) can be utilized in the same way. In this case, the implication hull
Ji+1(·) is replaced by the deductive closure, i.e., given a set of computed im-
plications Ji+1, the a priori knowledge Γ (which is a finite set of propositional
formulae), and a set of attributes B (which we view as propositional variables),
we ask which other propositional variables follow from Γ ∪ ΓJi+1

∪ {∧b∈B b},
where ΓJi+1

is the set of propositional formulae obtained by translating the
implications in Ji+1 to the corresponding propositional formulae.

12 In [54,33,34], the a priori knowledge is actually called background knowledge.
Here we prefer the name “a priori knowledge” to avoid confusion with our notion
of a background TBox.
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The problem with using the non-implicational knowledge in this way is that
computing the deductive closure of propositional formulae is an NP-complete
problem, whereas computing the implication hull is polynomial. During the
attribute exploration process, it might make sense to use such a more complex
closure operator if this saves us calls to the (in general even more complex)
subsumption algorithm realizing the expert. However, we also need to use
this closure operation when computing the supremum of two conjunctions of
(negated) concept names during the gcs computation. Computing the con-
cept lattice is done only once for the given background TBox, whereas the
supremum operation is executed several times whenever the user wants the
system to compute a gcs. For this reason, the algorithm for computing the
supremum operation should be very efficient, and thus we do not want to use
full propositional reasoning when computing the supremum.

This does not mean that the non-implicational a priori knowledge cannot be
used at all during attribute exploration. For example, one can use it to opti-
mize the expert. In fact, assume that we use only the implicational knowledge
when computing the hull during attribute exploration. If the exploration pro-
cess generates an implication question “Bi → B′′

i \ Bi,” then one can first
check (by propositional reasoning) whether this implication follows from the
implications together with the non-implicational a priori knowledge. If the
answer is “yes,” then one knows that this is a valid implication. Only if the
answer is “no” does one need to call the expert. These propositional pre-test
make sense if the expert is realized by an algorithm that is more complex
than the algorithm used for propositional reasoning. Since this approach only
optimizes the expert, the set of implications computed by it is identical to the
one computed when using only the implicational a priori knowledge. Thus,
the supremum can be obtained by computing only the implication hull.

6 Experimental results

In order to obtain a first impression of the applicability of the gcs algorithm
and to identify parts where further optimization is necessary, we have done
experiments using several rather small background TBoxes. The reason for
using small knowledge bases is that computing the subsumption hierarchy of
all conjunctions of (negated) concept names is rather time consuming. In fact,
if the TBox contains n concept names (this includes the primitive ones), then
the corresponding context has 2n attributes, and in the worst case attribute
exploration must run through 22n iterations. Since this is done only once for a
given background TBox, long run-times are not prohibitive as long as the com-
puted implication base is rather small, and thus computing the supremum in
the gcs algorithm is fast. However, these long run-times would have prevented
us from experimenting with different kinds of TBoxes.
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TBox name DL number
concept
names

number
role
names

size ex-
panded
TBox

role
depth
expanded
TBox

layers
subs.
hier.

DICE1 ALC 10 5 88 1 4

DICE2 ALC 12 4 cyclic cyclic 3

DICE3 ALC 13 4 cyclic cyclic 3

PA-6 ALE 12 3 118 3 3

HC Boolean 14 0 33 0 4

Family ALC 9 1 18 1 2
Table 2
The background TBoxes used in our experiments

The experiments were performed on a machine with a Pentium 4 processor at
2.40 GHz and 2GB of memory, under Linux. The implementation was made in
LISP using version 19a of CMU Common Lisp. We used version 1.7.23 of the
DL System Racer [8] as the expert answering subsumption questions during
attribute exploration. For the computation of the implication hull, we imple-
mented the linear time implicational closure algorithm linclosure described in
Section 4.6 of [48].

6.1 The background TBoxes

In order to obtain experimental results that are relevant in practice, we used
TBoxes that closely resemble fragments of knowledge bases from applications.

Three such fragments, called DICE1, DICE2, and DICE3 in the following,
were obtained from the DICE knowledge base [55], which comes from a med-
ical application and defines concepts from the intensive care domain. The
original DICE knowledge base contains more than 2000 concept definitions,
is acyclic, and is written in the DL ALCQ, which extends ALC by so-called
qualified number restrictions [56]. The TBoxes DICE1, DICE2, and DICE3
were obtained from DICE by selecting a relatively small number of concept
definitions and modifying these definitions such that the obtained fragment
belongs to ALC and the number of concept names used in the TBox is small.
In addition, two of these TBoxes (DICE2 and DICE3) were modified such that
they contain cyclic concept definitions.

A fourth fragment, called PA-6 in the following, was obtained from a process
engineering application [57]. The original knowledge base describes reactor
models and parts of reactors from a polyamide process, consists of about 60
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acyclic concept definitions, and is an ALE knowledge base. Again, we selected
a small number of concept definitions from this knowledge base to construct
the TBox used in our experiments. Note that the fact that PA-6 is an ALE-
TBox does not mean that we can simply expand ALE(PA-6)-concept descrip-
tions into ALE-concept descriptions. The reason is that concepts defined in
PA-6 may occur negated in ALE(PA-6)-concept descriptions.

The other two knowledge bases used in our experiments were handcrafted. One
is the family TBox from Example 22, called Family in the following. The other
one is a small acyclic TBox, called HC, which uses only Boolean operations. It
was built such that there are relationships between conjunctions of (negated)
concept names that do not follow from the subsumption relationships between
the names. This was achieved by introducing concept names for disjunctions
of other concept names.

Table 2 contains information on the structure of the six TBoxes used in our
experiments. Most of the column names should be self-explaining. The most
important number is probably the number of concept names since this number
determines the number of attributes in the context: if it is n then we have 2n
attributes. The size of the expanded TBox gives an upper-bound on the size
of the concepts for which the expert must decide subsumption. The number of
layers of the subsumption hierarchy counts the maximal chain in the hierarchy,
not counting > or ⊥.

In order to obtainALE(T )-concept descriptions for which to compute common
subsumers, we randomly generated ALE-concept descriptions of size at least
6 using the concept and role names of the respective background KB. The size
bound was meant to ensure that the description has a significant ALE part.

6.2 Computing the subsumption lattice

We computed the subsumption lattices of all conjunctions of (negated) concept
names for the six TBoxes introduced in the previous subsection, using three
different variants of Ganter’s attribute exploration algorithm:

Type 0: The usual attribute exploration algorithm that does not use any a
priori knowledge.

Type 1: The attribute exploration algorithm that uses the implicational a pri-
ori knowledge (1)–(3) introduced in Section 5.

Type 2: Like Type 1, but now the non-implicational a priori knowledge (4) is
used to optimize the expert, as sketched at the end of Section 5. Proposi-
tional consequences are computed using an algorithm by Ganter [34], which
is linear in the size of the implicational part of the a priori knowledge, but
exponential in the size of the non-implicational part.
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a.k. number of calls cpu time (secs)

TBox type expert imp.
hull

pre
expert

expert imp.
hull

pre
expert

total

DICE1 0 1,309 4,537 - 2.13 1.22 - 23.81

10 1 1,290 3,905 - 2.18 0.72 - 23.78

names 2 1,288 3,905 1,290 1.83 0.70 1.15 21.33

DICE2 0 54,696 132,731 - 91.62 32.44 - 2,072.21

12 1 54,678 132,589 - 93.55 22.01 - 2,058.08

names 2 54,676 132,589 54,678 92.60 22.54 66.65 2,123.30

DICE3 0 91,880 246,616 - 157.66 90.83 - 4,862.17

13 1 91,860 246,437 - 154.33 57.78 - 4,795.51

names 2 91,856 246,437 91,860 154.96 56.68 183.62 5,021.54

PA-6 0 30,484 110,671 - 93.52 55.06 - 943.25

12 1 30,462 95,572 - 52.42 24.69 - 907.22

names 2 30,457 95,572 30,462 50.47 24.84 53.77 927.13

HC 0 4,794 17,816 - 8.19 33.86 - 131.34

14 1 4,776 17,629 - 7.89 19.18 - 112.99

names 2 4,755 17,629 4,776 7.79 19.21 77.35 129.81

Family 0 6,334 16,962 - 9.31 2.22 - 102.89

9 1 6,321 16,905 - 9.74 1.48 - 103.83

names 2 6,319 16,905 6,321 9.22 0.67 2.87 97.81

Table 3
Attribute exploration (part 1).

Table 3 shows the number of calls to the expert, the number of computations
of the implication hull during attribute exploration, and the number of calls
to the pre-expert realized using non-implicational a priori knowledge. It also
shows the time spent in the respective calls, where for the expert we only mea-
sured the time spent in answering the implication question, but not the time
spent to produce the counterexample (since only this part can be addressed
by the pre-expert).

The numbers show that using implicational a priori knowledge leads to an im-
provement of the attribute exploration algorithm since it reduces the number
of calls to the expert and the hull computation, and it also reduces the overall
run-time. However, these gains are rather marginal. Using non-implicational
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a priori knowledge in the way we currently do is not advisable: there is only
a very moderate reduction of the number of calls to the expert, and the ad-
ditional calls to the pre-expert often take more time than is is gained this
way. However, things may change if one uses a highly optimized propositional
reasoner to realize the pre-expert, and when calls to the expert become more
expensive for larger background TBoxes.

What Table 3 also shows is that most of the time spent in attribute explo-
ration is not spent answering implication questions or computing the implica-
tion hull. The major culprit actually turns out to be the computation of the
operation Bi 7→ B′′

i . The reason is that the number of objects in the contexts
computed during attribute exploration becomes very large. For example, con-
sider the DICE3 TBox. There, we have 91,880 calls to the expert, but only
27 implications (see Table 4 below). This means that in all but 27 cases, the
expert produces a counterexample. Thus, the final context consists of 91,853
objects. In addition to the problem caused by the large number of objects
when computing the operation Bi 7→ B′′

i , the expert also spends quite some
time actually producing the counterexample, i.e., checking by subsumption
tests which attributes the counterexample satisfies and which it does not. As
mentioned above, this time was not measured in the column for the run-time
of the expert. The high number of calls to the expert and the long run-times
for the TBoxes DICE-2, DICE-3, and PA-6 are due to the fact that for these
TBoxes (i) the number of concept names is relatively high, while (ii) there
are not many subsumption relationships between conjunctions of (negated)
concept names. For the TBox HC, the measured values are much lower, al-
though this TBox contains more concept names. As mentioned before, HC
was built to contain new subsumption relationships between conjunctions of
(negated) concept names, i.e., relationships that do not directly follow from the
subsumption relationships between the names. Thus, there are less counterex-
amples and more implications. This is the reason why computing the extended
subsumption hierarchy for this TBox takes much less time compared to the
TBoxes DICE-2, DICE-3, and PA-6.

Table 4 shows the sizes of the final set of implications computed by the at-
tribute exploration algorithm. Since the third variant of the attribute explo-
ration algorithm (type 2) only “optimizes” the expert, but does not change the
the attribute exploration process, the results for it coincide with the second
variant (type 1). Thus, it is not explicitly included in the table. For type 1 we
distinguish between the set of all implications and the ones computed during
the exploration process. For example, for PA-6 we had 24 implications as a
priori knowledge and computed 7 additional implications.

The most interesting result that can be drawn from this table is that the
number of implications stays rather small (in particular compared to the huge
number of objects in the final context). Consequently, computing implication

38



a.k. size of base

TBox type computed total

DICE1 0 24 24

10 names 1 3 25

DICE2 0 21 21

12 names 1 3 22

DICE3 0 27 27

13 names 1 6 28

a.k. size of base

TBox type computed total

PA-6 0 31 31

12 names 1 7 31

HC 0 56 56

14 names 1 32 62

Family 0 16 16

9 names 1 3 16

Table 4
Attribute exploration (part 2).

hulls for these sets of implications will be fast (see Subsection 6.4 below).

6.3 Computing the gcs

The first set of experiments was used to find out whether usingALE-expansion
leads to a more specific common subsumer. To this purpose we ran experiments
w.r.t. all six background TBoxes, computing the gcs of randomly generated
ALE(T )-concept descriptions once with ALE-expansion and once without,
and comparing the computed common subsumers w.r.t. subsumption. Table 5
summarizes the obtained results: the entries describe how often

• the gcs computed from the ALE-expanded concept descriptions was equiva-
lent to the gcs computed from the unexpanded descriptions (ALE-expansion
same);

• the gcs computed from the ALE-expanded concept descriptions was strictly
more specific than the gcs computed from the unexpanded descriptions
(ALE-expansion better);

• the gcs computed from the ALE-expanded concept descriptions was more
specific than > whereas the gcs computed from the unexpanded descriptions
was equivalent to > (ALE-expansion much better).

The results show that in the majority of the tests ALE-expansion does not
yield a more specific common subsumer. Nevertheless, the fact that in 13% of
all tests ALE-expansion results in a more specific common subsumer justifies
using it. The comparison with > was done since the common subsumer > is
totally useless, and thus the last column of Table 5 shows how often ALE-
expansion generated a useful result whereas the common subsumer obtained
from the unexpanded descriptions was useless.
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TBox
name

nr.
tests

ALE-expansion
same

ALE-expansion
better

ALE-expansion
much better

DICE1 52 48 (92.3 %) 4 (7.7 %) 0

DICE2 61 52 (85.2 %) 9 (14.8 %) 5 (8.2 %)

DICE3 66 61 (92.4 %) 5 (7.6 %) 2 (3.0 %)

PA-6 60 45 (75.0 %) 15 (25.0 %) 3 (5.0 %)

HC 20 20 (100.0 %) 0 0

Family 25 22 (88.0 %) 3 (12.0 %) 0
Table 5
Gcs with ALE-expansion versus gcs without ALE-expansion.

TBox
name

Nr.
tests

gcs < scs gcs < acs acs < gcs gcs < scs
= >

gcs < acs
= >

DICE1 52 3.8% 30.8% 15.4 % 3.8% 1.9%

DICE2 61 8.2% — — 3.3% —

DICE3 66 6.1% — — 1.5% —

PA-6 60 3.3% 25.0% 0.0% 0.0% 0.0%

HC 20 20.0% 40.0% 0.0% 0.0% 10.0%

Family 25 0.0% 28.0% 0.0% 0.0% 0.0%
Table 6
Gcs versus acs and scs.

In the second set of experiments, summarized in Table 6, we used the same
randomly generated ALE(T )-concept descriptions as in the first set. But this
time we checked how often the gcs was better than the scs and the acs (see
Subsection 4.4 for the definition of these to alternative ways of obtaining
common subsumers). Since the acs can also be more specific than the gcs,
we also checked for strict subsumption in the other direction in this case. In
addition, we again checked how often the gcs was much better than the other
common subsumer in the sense that it was not > in cases where the others
were. Note that the acs requires the TBox to be acyclic, and thus we could
note compute it for DICE2 and DICE3.

The results show that using the gcs is clearly better than using the acs. The
comparison between the gcs and the scs yields less conclusive results. Although
for all but one of the test TBoxes there were cases where the gcs turned out
to be more specific, there were relatively few such cases. Thus, it is not yet
clear whether this difference really justifies the additional effort required for
computing the gcs. The difference between the gcs and the scs might, how-
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ever, become more important for larger knowledge bases with more complex
relationships between the concept names occurring in them. This is also sup-
ported by the results for the handcrafted TBox HC, which was designed to
contain such relationships.

6.4 Computing the supremum

Table 7 shows the time spent in supremum calls that were generated during
the computation of the gcs in the experiments described in the previous sub-
section. We measured the run-time for three different methods of computing
the supremum:

Type 0: The supremum is computed by building the implication hull w.r.t.
the implication base computed without using a priori knowledge during
attribute exploration.

Type 1: The supremum is computed by building the implication hull w.r.t.
the implication base computed using a priori knowledge during attribute
exploration.

Type 2: The supremum is computed näıvely using iterated calls of the sub-
sumption algorithm, as sketched at the end of Subsection 4.2.

Since the implication base computed with a priori knowledge is usually a bit
larger than the one without, using this base takes a bit longer, but in both
cases the supremum is computed very fast. In contrast, the näıve approach is
two orders of magnitude slower. Thus, it really pays to have the implication
base available.

7 Related and future work

In a preliminary version of this paper [50], we have considered computing the
lcs in EL w.r.t. a background ALC-terminology. We have shown that the lcs
w.r.t. acyclic TBoxes always exists in this setting, and that the lcs w.r.t. gen-
eral TBoxes need not exist. We have also sketched a practical approach for
computing good common subsumers similar to the one described above. Since
EL does not allow for atomic negation, we only had to consider conjunctions of
concepts names (no negated names). The present version of the paper (which
was first published in a shorter version as [58]) improves on this by using the
considerably more expressive DL ALE in place of EL (which makes the proof
of Theorem 12 much harder), by extending the approach for computing the
subsumption lattice of all conjunctions of concept names to conjunctions of
concept names and negated concept names, by using attribute exploration
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exp. cpu time (secs) base

TBox type average total size

DICE1 0 0.00015 0.01 24

67 supremum 1 0.0003 0.02 25

calls 2 0.03045 2.04 –

DICE2 0 0.00016 0.02 21

121 supremum 1 0.00016 0.02 22

calls 2 0.04330 5.24 –

DICE3 0 0.00039 0.04 27

101 supremum 1 0.00049 0.05 28

calls 2 0.0403 4.07 –

PA-6 0 0.00046 0.11 31

237 supremum 1 0.00046 0.11 31

calls 2 0.04810 11.40 –

HC 0 0.00166 0.07 56

42 supremum 1 0.00238 0.10 62

calls 2 0.06 2.52 –

Family 0 0.0001 0.01 16

98 supremum 1 0.0002 0.02 16

calls 2 0.03775 3.70 –
Table 7
Computing the supremum of conjunctions of (negated) concept names.

with a priori knowledge and ALE-expansion, and by providing first experi-
mental results on the run-time for computing the subsumption lattice, and on
the quality of the computed gcs (compared to other approaches for computing
common subsumers).

It should be noted that formal concept analysis and attribute exploration have
already been applied in a different context to the problem of computing the
least common subsumer. In [59], the following problem is addressed: given
a finite collection C of concept descriptions, compute the subsumption hier-
archy of all least common subsumers of subsets of C. Again, this extended
subsumption hierarchy can be computed by defining a formal context whose
concept lattice is isomorphic to the subsumption lattice we are interested in,
and then applying attribute exploration (see [59] for details). In [53], it is
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shown that this approach and the one used in the present paper can be seen
as two instances of a more abstract approach.

On the theoretical side, the main topic for future research is to try to find
exact algorithms for computing the least common subsumer that are better
than the brute-force algorithm sketched in the proof of Theorem 12. On the
practical side, we will, on the one hand, try to improve the formal concept
analysis part of our approach by (i) improving the implementation of the at-
tribute exploration algorithm such that it can handle larger knowledge bases,
and (ii) checking whether efficient SAT solvers (see, e.g., [60]) can be used to
handle non-implicational a priori knowledge. On the other hand, we want to
integrate the implementation of the scs computation into our non-standard
inference system Sonic [61]. So far, this system offers the lcs and approxima-
tion inference as a plug-in of the ontology editor OilEd. The integration of
the scs in Sonic will enable us to see whether this fairly inexpensive way of
computing a common subsumer is already useful for practical applications, or
whether the more expensive gcs or lcs is needed.
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