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Abstract

The notion of a conservative extension plays a
central role in ontology design and integration:
it can be used to formalize ontology refinements,
safe mergings of two ontologies, and independent
modules inside an ontology. Regarding reasoning
support, the most basic task is to decide whether
one ontology is a conservative extension of an-
other. It has recently been proved that this prob-
lem is decidable and 2ExpTime-complete if on-
tologies are formulated in the basic description
logic ALC. We consider more expressive descrip-
tion logics and begin to map out the boundary
between logics for which conservativity is decid-
able and those for which it is not. We prove that
conservative extensions are 2ExpTime-complete in
ALCQI, but undecidable inALCQIO. We also
show that if conservative extensions are defined
model-theoretically rather than in terms of the con-
sequence relation, they are undecidable already in
ALC.

1 Introduction
The design and integration of ontologies formulated in mod-
ern ontology languages such as OWL is a serious challenge.
Experience shows that principled methodologies as well as
automated reasoning support are required to ensure that the
resulting ontologies are well-structured[6]. In the recent pa-
pers[4; 5; 3; 1], conservative extensions have been identified
as a crucial notion for formalizing central tasks in ontology
design and integration. Consequently, conservative exten-
sions can play a key role in design and integration method-
ologies[3], and reasoning about conservative extensions can
provide valuable support for the ontology designer.

Formally, an ontologyT1 ∪ T2 is a conservative extension
of an ontologyT1 w.r.t. a signatureΓ iff every consequence of
T1 ∪ T2 formulated inΓ is already a consequence ofT1. For
example, assume that ontologies are formalized in a descrip-
tion logic (DL) such as OWL-DL and its fragments[2]. Then
a signature is a set of concept and role names, an ontology
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is a DL TBox, and a consequence of a TBox is a subsump-
tion relationship between two concepts which follows from
the TBox. Intuitively,T1 ∪ T2 is a conservative extension of
T1 w.r.t. Γ if addingT2 to T1 does not change the ontology
T1 as far as concepts built only from concept and role names
in Γ are concerned. We give three examples of ontology re-
lated tasks that can be understood in terms of conservative
extensions.

– Ontology refinement. During ontology design, a frequent
task is to add more details to a part of the ontology that has
not yet been sufficiently described. Intuitively, such a refine-
ment should have no impact on other, unrelated parts of the
ontology. This requirement can be formalized by demand-
ing that the refined ontology is a conservative extension of
the original one w.r.t. the concept and role names that do not
belong to the refined part[4; 1].

– Ontology merging. The most straightforward way to inte-
grate two ontologies is to simply take their union. Such a
merging should not compromise the original ontologies. One
possible formalization of this requirement is to demand that
the united ontology is a conservative extension of the com-
ponent ontologies w.r.t. the set of all concept and role names
used in the respective components. Weaker formalizations are
obtained by excluding from the signature concept and role
names for which an interaction between the component on-
tologies is expected (and intended)[4].

– Defining Modules. A module inside an ontologyT that
describes an independent part of the application domain can
be defined as a subsetT ′ of T such thatT is a conservative
extension ofT ′ w.r.t. the concept names and role names that
belong toT ′ [5].

The most basic reasoning task regarding conservative exten-
sions is as follows: given ontologiesT1 andT2 and a signature
Γ, decide whetherT1 ∪ T2 is a conservative extension ofT1
w.r.t.Γ. In the following, we refer to this task asdeciding con-
servative extensions. In [4], this decision problem is investi-
gated for the basic DLALC and proved to be 2EXPTIME-
complete. The aim of the current paper is toinvestigate con-
servative extensions in more expressive DLs such as the ones
underlying the ontology language OWL-DL and to map out
the boundary between decidable and undecidable. Our main
results are as follows: (i) inALCQI, the extension ofALC
with inverse roles and qualifying number restrictions, decid-



Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

at-most number
restriction (6 n r C)

{d | #{e |(d, e) ∈ rI ∧
e ∈ CI} ≤ n}

Figure 1: Syntax and semantics ofALCQIO.

ing conservative extensions is 2-EXPTIME complete and thus
not more difficult than inALC; and (ii) if we further extend
ALCQI with nominals, conservative extensions in the result-
ing DL ALCQIO are undecidable. This shows that con-
servative extensions in OWL-DL, of whichALCQIO is a
fragment, is also undecidable. It also identifiesALCQI as
a significant fragment of OWL-DL in which conservative ex-
tensions are still decidable.

In mathematical logic, there exist (at least) two versions of
conservative extensions. One is based on the consequence re-
lation as sketched above. An alternative, stronger version is
defined in a model-theoretic way. We also consider deciding
the latter kind of conservative extensions and show that, al-
ready inALC, this problem is highly undecidable. Details of
all proofs can be found in the technical report[8].

2 Preliminaries

In DLs,conceptsare inductively defined with the help of a set
of constructors, starting with a setNC of concept names, a set
NR of role names, and (possibly) a setNI of individual names.
In this paper, we consider the DLALCQIO and its frag-
ments. The constructors available inALCQIO are shown
in Figure 1. There, the inverse constructor is the only role
constructor, whereas the remaining constructors are concept
constructors. In Figure 1 and the remainder of this paper, we
use#S to denote the cardinality of a setS, a andb to denote
individual names,r ands to denote roles (i.e., role names and
inverses thereof),A,B to denote concept names, andC,D
to denote (possibly complex) concepts. For an inverse role
s = r− we sets− := r. As usual, we use> as abbreviation
for an arbitrary (but fixed) propositional tautology,⊥ for ¬>,
t,→, and↔ for the usual Boolean abbreviations,(> n r C)
(at-least restriction) for ¬(6 n − 1 r C) if n > 0 and for
> if n = 0 , (= n r C) for (6 n r C) u (> n r C), ∃r.C
(existential restriction) for (> 1 r C), and∀r.C (universal
restriction) for (6 0 r ¬C). We assume that the numbers
inside number restrictions are coded in binary.

The DL that allows only for negation, conjunction, disjunc-
tion, and universal and existential restrictions is calledALC.
The availability of additional constructors is indicated by con-
catenation of a corresponding letter:Q stands for number
restrictions;I stands for inverse roles, andO for nominals.
This explains the nameALCQIO, and also allows us to re-
fer to its sublanguages in a simple way.

The formulation of ontologies in description logics is based
on TBoxes, and we will from now on use these two terms

interchangeably. Formally, aTBox is a finite set of concept
implicationsC v D.

The semantics ofALCQIO-concepts is defined in terms
of an interpretationI = (∆I , ·I). Thedomain∆I is a non-
empty set of individuals and theinterpretation function·I
maps each concept nameA ∈ NC to a subsetAI of ∆I , each
role namer ∈ NR to a binary relationrI on ∆I , and each
individual namea ∈ NI to an individualaI ∈ ∆I . The ex-
tension of·I to inverse roles and arbitrary concepts is defined
inductively as shown in the third column of Figure 1.

An interpretationI satisfiesan implicationC v D if
CI ⊆ DI , andI is a modelof a TBox T if it satisfies all
implications inT . A conceptC is satisfiable relative to a
TBoxT if there exists a modelI of T such thatCI 6= ∅. A
conceptC is subsumed by a conceptD relative to a TBoxT
(written T |= C v D) if every modelI of T satisfies the
implicationC v D.

Despite the fact that individual names are closer to con-
stants than to predicates, we henceforth use the termpredi-
catesto refer to elements ofNC ∪ NR ∪ NI. A signatureis a
finite set of predicates. The signaturesig(T ) of a TBoxT is
the set of all predicates that occur inT . Given a description
logic L and a signatureΓ, we useL(Γ) to denote the set of
L-concepts that use only predicates fromΓ.

Definition 1 (Conservative Extension)Let T1 and T2 be
TBoxes formulated in a DLL, and letΓ ⊆ sig(T1) be a sig-
nature. ThenT1 ∪ T2 is a Γ-conservative extension ofT1 if
for all C1, C2 ∈ L(Γ), we haveT1 |= C1 v C2 iff T1 ∪ T2 |=
C1 v C2.

Deciding conservative extensionsmeans to decide, given
two TBoxesT1 andT2 and a signatureΓ ⊆ sig(T1), whether
T1 ∪ T2 is aΓ-conservative extension ofT1.
If Γ = sig(T1), we simply dropΓ and only talk about conser-
vative extensions. It is not difficult to see that an alternative
definition of conservative extensions is as follows:T1 ∪ T2 is
a Γ-conservative extension ofT1 iff each conceptC ∈ L(Γ)
that is satisfiable relative toT1 is satisfiable relative toT1∪T2.
Therefore, a conceptC ∈ L(Γ) that is satisfiable relative to
T1, but not relative toT1 ∪ T2 witnesses thatT1 ∪ T2 is not a
conservative extension ofT1. We call such a concept awit-
ness concept.

Let us give an example for conservative extensions in the
description logicALCQI. Assume thatT1 is a TBox formal-
izing knowledge about universities:

Lecture v ∃has subject.Subject u ∃given by.Lecturer
Intro TCS v Lecture

Lecturer v Professor t TeachingAssistant
Lecturer v ∃employed by.University

University v ∀employed by−.(Academic t Admin)

The upper part ofT1 describes university lectures, saying,
e.g., that every introductory lecture on theoretical computer
science (TCS) is a lecture. The lower part ofT1 describes
universities and their employees. Suppose now that we want
to refine the part of the ontology that is concerned with lec-
tures. We extend the signature by adding the concept names
AutomataTheory andComplexityTheory and state inT2 that



these subjects are discussed in every introductory TCS lec-
ture. We also say that automata theory and complexity theory
are different things:

Intro TCS v ∃has subject.AutomataTheory
Intro TCS v ∃has subject.ComplexityTheory

⊥ w AutomataTheory u ComplexityTheory

Intuitively, this addition should have an impact on the up-
per part ofT1 since it adds information about lectures, but it
should not affect the lower part which is not concerned with
lectures. This intuition can be formally captured by conserva-
tive extensions: if we chooseΓ to be the set of all predicates
used in the lower part ofT1, thenT1 ∪ T2 is aΓ-conservative
extension ofT1. Thus, the lower part ofT1 is not affected
by the addition ofT2. If we chooseΓ to be the predicates
in the upper part ofT1, thenT1 ∪ T2 is not aΓ-conservative
extension, a witness concept being

IntroTCS u (6 1 has subject >).

By considering these two cases of conservative extensions,
the ontology designer can thus verify that his modification
changes the TBox (only) in the intended way.

This example also shows that conservative extensions de-
pend on the descripion logicL: the TBoxesT1 andT2 are
actually formulated inALCI and we have seen that ifΓ is
the set of predicates in the upper part ofT1, thenT1 ∪ T2
is not aΓ-conservative extension ofT1. However, this only
holds since we assumedALCQI to be the underlying DL
and thus allowed number restrictions in the witness concept.
If we switch the underlying DL toALCI, thenT1 ∪ T2 is a
Γ-conservative extension ofT1, for the sameΓ. In the next
section, we investigate a purely model-theoretic version of
convervative extension, which does not depend on the lan-
guage.

2.1 Model Conservative Extensions
In mathematical logic and software specification[9], there
are two different kinds of conservative extensions: one that
is based on the consequence relation “|=” as in Definition 1
and one that is based on models only . For simplicity, we
formulate this second notion only for the case whereΓ =
sig(T1).

Definition 2 (Model Conservative Extension)Let T1 and
T2 be TBoxes. We say thatT1 ∪ T2 is a model conserva-
tive extensionof T1 iff for every modelI of T1, there exists a
model ofT1 ∪ T2 which can be obtained fromI by modifying
the interpretation of the predicates insig(T2) \ sig(T1) while
leaving the predicates insig(T1) fixed.
To distinguish the two versions of conservative extensions, in
this section we call the one based on “|=” a deductive conser-
vative extension.

The notion of a model conservative extension is more strict
than the deductive one: ifT1 ∪ T2 is a model conservative
extension ofT1, then it is clearly also a deductive conservative
extension ofT1, but the converse does not hold. To see the
latter, consider the TBoxes

T1 = {∃r.> u ∃s.> = >}, T2 = {∃r.A u ∃s.¬A = >}.

It is not hard to see thatT1 ∪ T2 is a deductive conservative
extension ofT1 if ALC (or evenALCQI) is the language for
witness concepts, but it is not a model conservative extension.
The stronger notion of model conservative extensions is of
interest forquery answering modulo ontologies. In this case,
one might want to ensure that under the addition of any ABox
A (over the signature ofT1) the answers to queries (over the
signature ofT1) to T1∪T2∪A coincide with those toT1∪A.
This immedialy follows ifT1 ∪ T2 is a model conservative
extension ofT1, but it does not follow ifT1 ∪ T2 is just a
deductive conservative extension ofT1.

However, from an algorithmic viewpoint model conserva-
tive extensions are a problematic choice: we show that they
are highly undecidable even in the basic description logic
ALC (and therefore also in all its extensions). The proof of
the following result is by a reduction from the semantic con-
sequence problem in modal logic and can be found in[8].

Theorem 3 It is Π1
1-hard to decide whether for two given

ALC TBoxesT1 and T2, the TBoxT1 ∪ T2 is a model con-
servative extension ofT1.

3 Decidability in ALCQI
We give a tight complexity bound for deciding conservative
extensions inALCQI. We use|C| to denote the length of a
conceptC, and|T | to denote thesize

∑
CvD∈T (|C| + |D|)

of a TBoxT .

Theorem 4 It is 2-EXPTIME-complete to decide conserva-
tive extensions inALCQI. In the case thatT1 ∪ T2 is not
a conservative extension ofT1, there exists a witness concept
C of length at most 3-exponential in|T1 ∪ T2| that can be
computed in time polynomial in|C|.
The lower bound can be proved exactly in the same way as
the 2-EXPTIME lower bound for conservative extensions in
ALC [4]. However, the lower bounds fromALC do not sim-
ply transferto ALCQI and it is necessary to walk through
the proof in[4] and check that it also works for the case of
ALCQI. In the following, we concentrate on proving the
upper bound. It is established by devising a 2-EXPTIME al-
gorithm that, for convenience, decidesnon-conservative ex-
tensions.

We start by reminding thatALCQI has the tree model
property. More precisely, atree interpretationis an inter-
pretationI = (∆I , ·I , <I) equipped with an additional re-
lation <I ⊆ ∆I × ∆I such that (i)(∆I , <I) is a tree,
(ii)

⋃
r∈NR

rI ∪ r−
I = < ∪ <−1, and (iii) sI and rI are

disjoint for all distinct roless andr. In ALCQI, every con-
ceptC that is satisfiable relative to a TBoxT is satisfiable in
a tree modelof T , i.e., a model ofT that is a tree interpreta-
tion [7]. In this section, when talking of an interpretation or
model of a TBox we always mean a tree interpretation.

To develop the algorithm for deciding non-conservative ex-
tensions inALCQI, we introduce a new kind of witness for
non-conservativity. The new witnesses are very similar to fi-
nite tree interpretations and easier to work with than witness
concepts. For a signatureΓ, let a literal type S for Γ be a
subset oflit(Γ) := {A,¬A | A ∈ Γ ∩ NC} such that for each



A ∈ Γ ∩ NC, A ∈ S iff ¬A /∈ S. A Γ-role is a roler such
thatr or r− is in Γ.

Definition 5 (Γ-tree) A Γ-treeT = (W,<,L,O) is a finite
intransitive tree(W,<) such that each nodew ∈ W is la-
beled by a literal typeL(w) for Γ, each edge(w,w′) is la-
beled by aΓ-role L(w,w′), andO ⊆ W is a set of leafs of
(W,<).

Essentially, aΓ-tree is a finite tree interpretation equipped
with an additional unary predicateO denoting a subset of the
leafs. The following definition provides a way to relateΓ-
trees and actual interpretations.

Definition 6 (Γ-embedding) Let T = (W,<,L,O) be aΓ-
tree with rootw ∈ W , andI an interpretation with rootd ∈
∆I . A Γ-embeddingf : T → I is an injection fromW to
∆I such that

• f(w) = d,

• L(v, v′) = r iff f(v)rIf(v′), for all v, v′ ∈ W andΓ-
rolesr,

• C ∈ L(v) iff f(v) ∈ CI , for all v ∈W andC ∈ lit(Γ),
• if v 6∈ O, then everyd′ ∈ ∆I with f(v)rId′ for some

Γ-role r is in the range off .

T is called Γ-embeddable intoI if there is aΓ-embedding
f : T→ I.
The definition illustrates thatΓ-trees represent a (finite) initial
part of (potentially infinite) tree interpretations. This explains
the predicateO of Γ-trees:O marks those leafs in theΓ-tree
that are not necessarily leafs in the tree interpretationI that
we embed into. We can now establishΓ-trees as witnesses
for non-conservativity.

Lemma 7 T1 ∪ T2 is not a conservative extension ofT1 w.r.t.
Γ iff there exists aΓ-tree T = (W,<,L,O) which is Γ-
embeddable into a model ofT1 but not into any model of
T1 ∪ T2.
The general idea behind the algorithm is as follows: by
Lemma 7, to decide whetherT1 ∪ T2 is not a conservative
extension ofT1, it suffices to decide whether there exists aΓ-
tree that isΓ-embeddable into a model ofT1, but not into any
model ofT1∪T2. This is what our algorithm will do. Alas, we
conjecture that there are cases in which the smallest such tree
is 3-exponential in|T1 ∪ T2|, and therefore a 2-exponential
algorithm cannot simply try to construct such a tree. Instead,
we check the existence of theΓ-tree by searching for certain
witnesses for the existence of such a tree. Before we can in-
troduce these witnesses (which should not be confused with
Γ-trees as witnesses for non-conservativity), we need to in-
troduce the notion of a type.

Definition 8 (Type) Let T be a TBox. We usecl(T ) to de-
note the smallest set that contains all concepts inT and is
closed under single negations and under subconcepts. AT -
typet is a subset ofcl(T ) such that

• ¬C ∈ t iff C 6∈ t, for all ¬C ∈ cl(T );
• C1 u C2 ∈ t iff C1 ∈ t andC2 ∈ t, for all C1 u C2 ∈

cl(T ).

Given an interpretationI andu ∈ ∆I , the set

tTI (u) = {C ∈ cl(T ) | u ∈ CI}
is aT -type. In what follows, we will not always distinguish
between the typet and the conjunction of all members oft.
We now introduce a witness for the existence of aΓ-tree that
is Γ-embeddable into a model ofT1, but not into any model
of T1 ∪ T2. To avoid writing sub- and superscripts, from now
on we assume the inputT1, T2, andΓ to be fixed.

Definition 9 (Root pair, Internal pair) A root pair (t, U)
consists of aT1-typet and a setU of T1 ∪ T2-types. Aninter-
nal pair(t′ →r t, U) consists of aΓ-role r, T1-typest′ and
t, and a functionU mapping eachT1 ∪ T2-type to a set of
T1 ∪ T2-types.
Intuitively, each (root or internal) pair encodes relevant infor-
mation about possible embeddings of aΓ-tree into models of
T1 andT1 ∪ T2. This is made precise by the notion of realiz-
ability.

Definition 10 (Realizable root pair) Let T = (W,<,L,O)
be aΓ-tree. A root pair(t, U) is realizedbyT iff

1. there exist a modelI of T1 with root d ∈ tI and aΓ-
embeddingf : T→ I;

2. for everyT1 ∪ T2-types, we haves ∈ U iff there exist a
modelI of T1 ∪T2 with rootd ∈ sI and aΓ-embedding
f : T→ I.

While root pairs encode information about possible embed-
dings of aΓ-tree into models ofT1 andT1 ∪T2, internal pairs
encode information about possible embeddings of aΓ-tree
into rooted submodelsof models ofT1 andT1 ∪ T2. In the
following, if I is a (tree) interpretation andd ∈ ∆I , we write
Id to denote the sub-tree interpretation ofI rooted atd.

Definition 11 (Realizable internal pair) Let T =
(W,<,L,O) be aΓ-tree. An internal pair(t′ →r t, U) is
realized byT iff

• there exist a modelI of T1 and d′, d ∈ ∆I such that
d′ ∈ (t′)I , d′rId, d ∈ tI , and there is aΓ-embedding
f : T→ Id;

• for all T1 ∪ T2-typess, s′, we haves′ ∈ U(s) iff there
exist a modelI of T1 ∪ T2 and d′, d ∈ ∆I such that
d′ ∈ (s′)I , d′rId, d ∈ sI , and there is aΓ-embedding
f : T→ Id.

A (root or internal) pair isrealizableif there exists aΓ-treeT
which realizes it.
Observe that internal pairs store information not only about
the elementd ∈ ∆I to which the root ofT is mapped, but also
comprise the typet′ of the predecessord′ of d in I and the
(unique!) roler which connectsd′ andd. This is necessary
due to the presence of inverse roles and number restrictions
and bears some similarity to thedouble blockingtechnique in
tableau algorithms; see[7]. Also note that theU -component
of internal pairs is a function rather than a set because, intu-
itively, the possible types ofd in models ofT1 ∪ T2 depend
on the type of the predecessord′ in such models.

Let us now describe the algorithm. By Lemma 7 and defi-
nition of realizability, there exists a realizable root pair of the



form (t, ∅) iff T1 ∪ T2 is not a conservative extension ofT1
w.r.t. Γ. The algorithm for deciding non-conservative exten-
sions searches for such a root pair. The easiest case is that a
root pair(t, ∅) is realized by asingletonΓ-tree, i.e., aΓ-tree
that consists of only a single node. This special case is tested
first. If the test is not successful, we must check whether
there is a root pair(t, ∅) that is realized by a non-singleton
treeT = (W,<,L,O). Assume that this is the case and that
the root ofT is w. Then each subtree ofT rooted at a succe-
sor nodew′ of w realizes an internal pair(t̂′ →r̂ t̂, Û) with
t̂′ = t andr̂ = L(w,w′). Intuitively, this means that we can
check realization of the root pair(t, ∅) in T based on the re-
alization of internal pairs in trees of strictly smaller height.
Similarly, we can check the realizability ofinternalpairs in a
Γ-tree based on the realizability of internal pairs inΓ-trees of
strictly smaller height. Based on these observations, our algo-
rithm repeatedly generates internal pairs that are realized by
Γ-trees of larger and larger height until all such pairs are gen-
erated. It then checks whether there exists a root pair(t, ∅)
that is realizable based on the generated internal pairs. The
following definition formalizes one step of the algorithm in
which root pairs or new internal pairs are generated from an
existing set of internal pairs.

In the following, if T is aΓ-tree andw ∈ W , we writeTw

to denote the sub-tree ofT rooted atw.

Definition 12 (One step) Let R be a set of internal pairs.
A root pair (t, U) (resp. internal pair(t′ →r t, U)) can be
obtained in one stepfrom R if there exists aΓ-tree T =
(W,<,L,O) with rootw such that

• T realizes(t, U) (resp.(t′ →r t, U));

• for all w′ ∈ W with w < w′, there exists an internal
pair p = (t̂′ →r̂ t̂, Û) ∈ R such thatt̂′ = t, r̂ =
L(w,w′), andp is realized byTw′ .

The details of our algorithm are given in Figure 2, where

mT1,T2 := 2× |T1 ∪ T2| × 23×|T1∪T2|.

Intuitively, considering only a subset ofRi of cardinality
mT1,T2 means that we limit our attention toΓ-trees of out-
degreemT1,T2 . This is justified by the following lemma.

Lemma 13 If T1 ∪ T2 is not a conservative extension ofT1
w.r.t. Γ, then there exists a root pair(t, ∅) realized by aΓ-tree
T of outdegree at mostmT1,T2 .

It remains to be shown that each step of the algorithm can
be carried out effectively and that the algorihm yields the 2-
EXPTIME upper bound stated in Theorem 4. We start with
the former. The proof of the following lemma relies on the
fact that satisfiability inALCQI relative to TBoxes can be
decided in EXPTIME [10].

Lemma 14 It can be checked in 2-exponential time (in the
size ofT1, T2) whether a (root or internal) pair can be ob-
tained in one step from a setR of realizable internal pairs
with |R| ≤ mT1,T2 .

Suppose TBoxesT1 andT2, and a signatureΓ ⊆ sig(T1)
are given.

1. Determine the setRr
0 of root pairs realized by single-

ton Γ-trees. IfRr
0 = ∅, then reject the input (because

T1 is not satisfied in any model). IfRr
0 contains a root

pair (t, U) such thatU = ∅, then accept. Else,

2. Determine the setR0 of internal pairs realizable by
singletonΓ-trees. IfR0 = ∅, then reject the input.
Else,

3. Generate the sequenceR1,R2, . . . of sets of internal
pairs such that

Ri+1 = Ri ∪R′
i,

whereR′
i is the set internal pairs which can be ob-

tained from some non-empty subset ofRi of cardinal-
ity not exceedingmT1,T2 in one step. This is done until
Ri = Ri ∪ R′

i. Then accept the input if there exists
a root pair(t, U) with U = ∅ which can be obtained
in one step from some subset ofRi of cardinality not
exceedingmT1,T2 . If no such root pair exists, reject
the input.

Figure 2: Algorithm for non-conservativeness w.r.t.Γ.

The number of internal pairs is bounded double exponentially
in the size of|T1 ∪ T2|. Therefore, the third step of the al-
gorithm stabilizes after at most double exponentially many
rounds. Together with Lemma 14, it follows that our algo-
rithm is a 2-ExpTime one.

Theorem 15 The algorithm in Figure 2 accepts inputT1, T2,
Γ iff T1 ∪ T2 is not a conservative extension ofT1 w.r.t. Γ. It
runs in 2-exponential time.
To show the upper bound on the size of witness concepts
stated in Theorem 4, we proceed as follows: first, we ob-
serve that if the algorithm finds a realizable root pair(t, ∅),
then this pair is realized by aΓ-tree of at most double expo-
nential depth and single exponential outdegree. Second, we
show how to convert such aΓ-tree into a witness concept of
three-exponential size.

4 Undecidability in ALCQIO
We show that conservative extensions are undecidable in
ALCQIO. The proof is by a reduction of the following un-
decidable tiling problem.

Definition 16 A domino systemD = (T,H, V, R,L, T,B)
consists of a finite setT of tiles, horizontal and vertical
matching relationsH,V ⊆ T × T , and setsR,L, T,B ⊆ T
of right tiles, left tiles, top tiles, andbottom tiles. A so-
lution to D is a triple (n, m, τ) where n, m ∈ N and
τ : {0, . . . , n − 1} × {0, . . . ,m − 1} → T such that the
following hold:

1. (τ(i, j), τ(i + 1, j)) ∈ H, for all i < n andj ≤ m;

2. (τ(i, j), τ(i, j + 1)) ∈ V , for all i ≤ n andj < m;

3. τ(0, j) ∈ L andτ(n, j) ∈ R, for all j ≤ m;



4. τ(i, 0) ∈ B andτ(i,m) ∈ T , for all i ≤ n.

Using proof methods from[11], it is easy to show that it is
undecidable whether a given domino systemD has a solution.
We show how to convert a domino systemD into TBoxes
T1 and T2 such thatD has a solution iffT1 ∪ T2 is not a
conservative extension ofT1. In particular, models of witness
concepts will correspond to solutions ofD.

Let D = (T,H, V, R,L, T,B) be a domino system. The
TBox T1 uses the following signature: an indidual nameo,
role namesrx andry, concept namestop, bottom, left, and
right and each element ofT as a concept name. The TBoxT1
contains the following:
• The rolesrx, ry, and their inverses are functional:

> v (6 1 r >), for r ∈ {rx, ry, r−x , r−y }
• Every position in then×m grid is labeled with exactly

one tile and the matching conditions are satisfied:

> v t
t∈T

(t u u
t′∈T, t′ 6=t

¬t′)

> v u
t∈T

(t→ ( t
(t,t′)∈H

∀rx.t′ u t
(t,t′)∈V

∀ry.t′))

• The conceptsleft, right, top, bottom mark the bound-
aries of the grid in the expected way:

right v ¬∃rx.> u ∀ry.right u ∀r−1
y .right

¬right v ∃rx.>
and similarly forleft, top, andbottom.

• The individual nameo marks the origin:

{o} v left u bottom.

The TBoxT2 introduces two new concept namesQ andP . It
contains the following two concept inclusions:

{o} v Q v ∃rx.Q t ∃ry.Q t (∃rx.∃ry.P u ∃ry∃rx.¬P )
The idea behind this definition ofT2 is to enforce that mod-
elsI of witness concepts are such that (i) there is no infinite
outgoingrx/ry-path starting atoI and (ii)rx andry commute
in the connected part ofI rooted atoI . This is achieved as
follows: if (i) is violated, then we can find an assignment of
Q in I that satisfiesT2. Similarly, if (ii) is violated, then we
can find an assignment of (Q and)P in I that satisfiesT2.

It can be checked that, as intended,D has a solution iff
T1 ∪ T2 is not a conservative extension ofT1. Here, we only
show how to construct a witness concept in the case thatD
has a solution. Such a witness conceptC has to ensure that
for all modelsI of C andT1, the connected part ofI rooted
atoI is isomorphic to then×m-grid.

For every wordw ∈ {rx, ry}∗, denote by←−w the word that
is obtained by reversingw and then adding·− to each symbol.
Let |w|r denote the number of occurrences of the symbolr in
w. Now,C is the conjunction of

{o} u ∀rn
x .right u ∀rm

y .top

and for everyw ∈ {rx, ry}∗ such that|w|rx
< n and|w|ry

<
m, the concept

∃(w · rxryr−x r−y · ←−w ).{o},
where∃w.D abbreviates∃r1. · · · ∃rk.D if w = r1 · · · rk. It
is readily checked thatC enforces ann×m-grid as required.

Theorem 17 In ALCQIO, conservative extensions are un-
decidable.
Note that the theorem applies even to the case whereΓ =
sig(T1) and we allow(6 1 r >) as the only form of number
restriction.

5 Conclusion
Although the high computational complexity suggests that ef-
ficient tools for deciding conservative extensions will be diffi-
cult to attain, our results and techniques lay theoretical foun-
dations that are important for practical applications of conser-
vative extensions. These could be based on approximations,
semi-decision procedures, and on syntactic restrictions in a
normative framework such as[3]. Finally, transitive roles are
a main ingredient of DLs underlying OWL-DL. It remains
an important open problem to investigate conservative exten-
sions for DLs containing transitive roles and role hierarchies.
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