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Abstract. Conjunctive query answering is an important DL reasoning task. Al-
though this task is by now quite well-understood, tight complexity bounds for
conjunctive query answering in expressive DLs have never been obtained: all
known algorithms run in deterministic double exponential time, but the existing
lower bound is only an EXPTIME one. In this paper, we prove that conjunctive
query answering in ALCI is 2-EXPTIME-hard (and thus complete), and that it
becomes NEXPTIME-complete under some reasonable assumptions.

1 Introduction

When description logic (DL) knowledge bases are used in applications with a large
amount of instance data, ABox querying is the most important reasoning problem. The
most basic query mechanism for ABoxes is instance retrieval, i.e., returning all the indi-
viduals from an ABox that are known to be instances of a given query concept. Instance
retrieval can be viewed as a well-behaved generalization of subsumption and satisfia-
bility, which are the standard reasoning problems on TBoxes. In particular, algorithms
for the latter can typically be adapted to instance retrieval in a straightforward way, and
the computational complexity coincides in almost all cases (see [12] for an exception).
In 1998, Calvanese et al. introduced conjunctive query answering as a more powerful
query mechanism for DL ABoxes. Since then, conjunctive queries have received con-
siderable interest in the DL community, see for example the papers [2, 3, 5–8, 11]. In a
nutshell, conjunctive query answering generalizes instance retrieval by admitting also
queries whose relational structure is not tree-shaped. This generalization is both natural
and useful because the relational structure of ABoxes is usually not tree-shaped as well.

In contrast to the case of instance retrieval, developing algorithms for conjunctive
query answering is not merely a matter of extending algorithms for satisfiability, but
requires developing new techniques. In particular, all hitherto known algorithms for
DLs that include ALC as a fragment run in deterministic double exponential runtime,
in contrast to algorithms for deciding subsumption and satisfiability which require only
exponential time even for DLs much more expressive than ALC. Since the introduction
of conjunctive query answering as a reasoning problem for DLs, it has remained an open
question whether or not this increase in runtime can be avoided. In other words, it has
not been clear whether generalizing instance retrieval to the more powerful conjunctive
query answering is penalized by higher computational complexity. In this paper, we
answer this question by showing that conjunctive query answering is computationally
more expensive than instance retrieval when inverse roles are present. More precisely,



we prove the following two results about ALCI, the extension of ALC with inverse
roles:
(1) Rooted conjunctive query answering in ALCI is co-NEXPTIME-complete, where
rooted means that conjunctive queries are required to be connected and contain at least
one answer variable. The phrase “rooted” derives from the fact that every match of
such a query is rooted in at least one ABox individual. The lower bound even holds for
ABoxes of the form {C(a)} and w.r.t. empty TBoxes.
(2) Conjunctive query answering in ALCI is 2-EXPTIME-complete. The lower bound
even holds for ABoxes of the form {C(a)} and when queries do not contain any answer
variables (or when they contain answer variables, but are not connected).
In the conference version of this paper, we will complement these results by showing
that the high computational complexity of conjunctive query answering is indeed due
to inverse roles. We will show that conjunctive query answering in ALC and SHQ, the
fragment of SHIQ without inverse roles, is only EXPTIME-complete. In this abstract,
we concentrate on the lower bounds due to space limitations.

2 Preliminaries

We assume standard notation for the syntax and semantics of ALCI knowledge bases [1].
In particular, a TBox is a set of concept inclusions C v D and a knowledge base (KB) is
a pair (T ,A) consisting of a TBox T and an ABox A. Let NV be a countably infinite set
of variables. An atom is an expression C(v) or r(v, v′), where C is an ALCI concept,
r is a (possibly inverse) role, and v, v′ ∈ NV. A conjunctive query q is a finite set of
atoms. We use Var(q) to denote the set of variables occurring in the query q. Let A be
an ABox, I a model of A, q a conjunctive query, and π : Var(q) → ∆I a total function.
We write I |=π C(v) if (π(v)) ∈ CI and I |=π r(v, v′) if (π(v), π(v′)) ∈ rI . If
I |=π at for all at ∈ q, we write I |=π q and call π a match for I and q. We say that I
satisfies q and write I |= q if there is a match π for I and q. If I |= q for all models I
of a KB K, we write K |= q and say that K entails q. The query entailment problem is,
given a knowledge base K and a query q, to decide whether K |= q. This is the decision
problem corresponding to query answering (which is a search problem), see e.g. [6] for
details.

3 Rooted Query Entailment in ALCI is co-NEXPTIME-complete

Let ALCrs be the variation of ALC in which all roles are interpreted as reflexive and
symmetric relations. Our proof of the lower bound stated as (1) above proceeds by
first polynomially reducing rooted query entailment in ALC rs w.r.t. the empty TBox to
rooted query entailment in ALCI w.r.t. the empty TBox. Then, we prove co-NEXP-
TIME-hardness of rooted query entailment in ALC rs.

Regarding the first step, we only sketch the basic idea, which is simply to replace
each symmetric role r with the composition of r− and r. Although r is not interpreted
in a symmetric relation in ALCI, the composition of r− and r is clearly symmetric.
To achieve reflexivity, we ensure that ∃r−.> is satisfied by all relevant individuals and



for all relevant roles r. Thus, every individual can reach itself by first travelling r− and
then r, which corresponds to a reflexive loop. Since we are working without TBoxes
and thus cannot use statements such as > v ∃r−.>, a careful manipulation of the ABox
and query is needed. Details are given in appendix A.

Before we prove co-NEXPTIME-hardness of rooted query entailment in ALC rs, we
discuss a preliminary. An interpretation I of ALC rs is tree-shaped if there is a bijection
f from ∆I into the set of nodes of a finite undirected tree (V,E) such that (d, e) ∈ sI ,
for some role name s, implies that d = e or {f(d), f(e)} ∈ E. The proof of the
following result is standard, using unravelling of non-tree-shaped models.

Lemma 1. If A is an ALCrs-ABox and q a conjunctive query, then A 6|= q implies that
there is a tree-shaped model I of A such that I 6|= q.

Because A |= q clearly implies that I |= q for all tree-shaped models I of A, this
lemma means that we can concentrate on tree-shaped interpretations when deciding
conjunctive query entailment. We will exploit this fact to give an easier explanation of
the reduction that is to follow.

We now give a reduction from a NEXPTIME-complete variant of the tiling problem
to the complement of rooted query entailment in ALC rs.

Definition 1 (Domino System). A domino system D is a triple (T,H, V ), where T =
{0, 1, . . . , k − 1}, k ≥ 0, is a finite set of tile types and H,V ⊆ T × T repre-
sent the horizontal and vertical matching conditions. Let D be a domino system and
c = c0, . . . , cn−1 an initial condition, i.e. an n-tuple of tile types. A mapping τ :
{0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → T is a solution for D and c iff for all
x, y < 2n+1, the following holds (where ⊕i denotes addition modulo i):

– if τ(x, y) = t and τ(x ⊕2n+1 1, y) = t′, then (t, t′) ∈ H
– if τ(x, y) = t and τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V
– τ(i, 0) = ci for i < n.

For a proof of NEXPTIME-hardness of this version of the domino problem, see e.g.
Corollary 4.15 in [9].

We show how to translate a given domino system D and initial condition c =
c0 · · · cn−1 into an ABox AD,c and query qD,c such that each (tree-shaped) model I
of AD,c that satisfies I 6|= qD,c encodes a solution to D and c, and conversely each so-
lution to D and c gives rise to a (tree-shaped) model of AD,c with I 6|= qD,c. The ABox
AD,c contains only the assertion CD,c(a), with CD,c a conjunction C1

D,c u · · · u C7
D,c

whose conjuncts we define in the following. For convenience, let m = 2n+2. The pur-
pose of the first conjunct C1

D,1 is to enforce a binary tree of depth m whose leaves are
labelled with the numbers 0, . . . , 2m−1 of a binary counter implemented by the concept
names A0, . . . , Am−1. We use concept names L0, . . . , Lm to distinguish the different
levels of the tree. This is necessary because we work with reflexive and symmetric roles.
In the following ∀si.C denotes the i-fold nesting ∀s. · · · ∀s.C. In particular, ∀s0.C is C.

C1
D,c := L0 uu

i<m
∀si.

(

Li →
(

∃s.(Li+1 u Ai) u ∃s.(Li+1 u ¬Ai)
))

u

u
i<m

∀si.u
j<i

(

(Li u Aj) → ∀s.(Li+1 → Aj) u

(Li u ¬Aj) → ∀s.(Li+1 → ¬Aj)
)



From now on, leafs in this tree are called Lm-nodes. Intuitively, each Lm-node cor-
responds to a position in the 2n+1 × 2n+1-grid that we have to tile: the counter Ax

realized by the concept names A0, . . . , An binarily encodes the horizontal position, and
the counter Ay realized by An+1, . . . , Am encodes the vertical position. We now ex-
tend the tree with some additional nodes. Every Lm-node gets three successor nodes
labelled with F , and each of these F -nodes has a successor node labelled G. To dis-
tinguish the three different G-nodes below each Lm-node, we additionally label them
with the concept names G1, G2, G3.

C2
D,c := ∀sm.

(

Lm →
( u

1≤i≤3
∃s.(F u ∃s.(G u Gi))

))

We want that each G1-node represents the grid position identified by its ancestor Lm-
node, the sibling G2 node represents the horizontal neighbor position in the grid, and
the sibling G3-node represents the vertical neighbor.

C3
D,c := ∀sm.

(

Lm →
(u

i≤n

(

(Ai → ∀s2.(G1 t G3 → Ai)) u

(¬Ai → ∀s2.(G1 t G3 → ¬Ai))
)

u

u
n<i<m

(

(Ai → ∀s2.(G1 t G2 → Ai)) u

(¬Ai → ∀s2.(G1 t G2 → ¬Ai))
)

u

E2 u E3

))

where E2 is an ALC-concept ensuring that the Ax value at each G2-node is obtained
from the Ax-value of its G-node ancestor by incrementing modulo 2n+1; similarly,
E3 expresses that the Ay value at each G3-node is obtained from the Ay-value of its
G-node ancestor by incrementing modulo 2n+1. It is not hard to work out the details
of these concepts, see e.g. [10] for more details. The grid representation that we have
enforced is shown in Figure 1. To represent tiles, we introduce a concept name Di for
each i ∈ T and put

C4
D,c := ∀sm+2.

(

G →
(t

i∈T
Di u u

i,j∈T,i6=j
¬(Di u Dj)

))

The initial condition is easily guaranteed by

C5
D,c :=u

i<n
∀sm+2.

( ( u
j≤n,bitj(i)=0

¬Aj u u
j≤n,bitj(i)=1

Aj u u
n<j<m

¬Aj

)

→ Tci

)

,

where bitj(i) denotes the value of the j-th bit in the binary representation of i. To
enforce the matching conditions, we proceed in two steps. First we ensure that they are
satisfied locally, i.e., among the three G-nodes below each Lm-node:

C6
D,c := ∀sm+2.

(

Lm →
(u

i∈T

(

∃s2.(G1 u Di) → ∀s2.(G2 → t
(i,j)∈H

Dj)
)

u

u
i∈T

(

∃s2.(G1 u Di) → ∀s2.(G3 → t
(i,j)∈V

Dj)
)))

Second, we enforce the following condition, which together with local satisfaction of
the matching conditions ensures their global satisfaction:
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Fig. 1. The structure encoding the 2
n+1

× 2
n+1-grid.

(∗) if the Ax and Ay-values of two G-nodes coincide, then their tile types coincide.

In (∗), a G-node can by any of a G1-, G2-, or G3-node. To enforce (∗), we use the query.
Before we give details, let us finish the definition of the concept CD,c. The last conjunct
C7

D,c enforces two technical conditions that will be explained later: if d is an F -node
and e its G-node successor, then

(T1) d and e are labelled dually regarding Ai, ¬Ai for all i < m, i.e., d satisfies Ai iff
e satisfies ¬Ai;

(T2) d and e are labelled dually regarding D0, . . . , Dk−1, i.e., for all j < k, if d satisfies
Dj , then e satisfies D0, . . . , Dj−1,¬Dj , Dj+1, . . . , Dk−1.

We use the following concept:

C7
D,c := ∀sm+1.

(

F →
(u

i<m
(Ai → ∀s.(G → ¬Ai)) u

(¬Ai → ∀s.(G → Ai)) u

u
i∈T

∃s.(G u Di) → (¬Di u u
j<k,j 6=i

Di)
))

We now construct the query qD,c that does not match the grid representation iff (∗) is
satisfied. In other words, qD,c matches the grid representation if there are two G-nodes
that agree on the value of the counters Ax and Ay , but are labelled with different tile
types. Because of Lemma 1, we can concentrate on the grid representation as shown in
Figure 1 while constructing qD,c, and need not worry about models in which domain
elements that are different in Figure 1 are identified.

The construction of qD,c is in several steps, starting with the query qi
D,c on the left-

hand side of Figure 2, where i ∈ {0, . . . ,m − 1}. In the queries qi
D,c, all the edges
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Fig. 2. The query q
i
D,a (left) and two of its collapsings (middle and right).

represent the role s and vans is the only answer variable. The edges are undirected
because we are working with symmetric roles. Formally,

qi
D,c := { s(vi,0, vi,1), . . . , s(vi,2m+2, vi,2m+3),

s(v′
i,0, v

′
i,1), . . . , s(v

′
i,2m+2, v

′
i,2m+3),

s(vi,0, v
′
i,0), s(vi,2m+3, v

′
i,2m+3),

s(v, vi,0), s(v, v′
i,0),

s(v′, vi,2m+3), s(v
′, v′

i,2m+3),
s(vans, vi,m+1), s(vans, vi,m+2), s(vans, v

′
i,m+1), s(vans, v

′
i,m+2),

G(v), G(v′), Ai(vi,0),¬Ai(v
′
i,0),¬Ai(vi,2m+3), Ai(v

′
i,2m+3) }

Observe that we dropped the index “i” to variables in Figure 2. Also observe that all the
queries qi

D,c, i < m, share the variables v, v′, and vans.

The purpose of the query qi
D,a is to relate any two G-nodes that agree on the value

of the concept name Ai. To explain how this works, we need a few preliminaries. First,
a cycle in a query is a sequence of distinct nodes v0, . . . , vn−1 such that n ≥ 2, and
s(vi, vi+1) ∈ q or s(vi+1, vi) ∈ q for all i < n, where vn := v0. A query q′ is a
collapsing of a query q if q′ is obtained from q by identifying variables. Each match
of qi

D,c in our tree-structured grid representation gives rise to a collapsing of qi
D,c that

does not comprise any cycles. To explain how qi
D,c works, it is helpful to analyze its

cycle-free collapsings. We start with the two cycles v, v0, v
′
0 and v′, v2m+3, v

′
2m+3. For

eliminating each of these, we have two options:

– to remove the upper cycle, we can identify v with v0 or v′
0;

– to remove the lower cycle, we can identify v′ with v2m+3 or v′
2m+3.

Observe that if we identify v0 and v′
0 (or v2m+3 and v′

2m+3) to collapse the cycle, there
will be no matches of the query in any model.



Together, this gives four options for removing the two mentioned length-three cy-
cles. However, two of these options are ruled out because the resulting collapsings have
no match in the grid representation. The first such case is when we identify v with v0

and v′ with v2m+3. Then v0 and v2m+3 have to satisfy G. To continue our argument,
we make a case distinction on the two options that we have for eliminating the cycle
{vans, vm+1, vm+2}.

Case (1). If we identify vans and vm+1, the path from the G-variable v0 to vans is only of
length m+1. In our grid representation, all paths from a G-node to an ABox individual
(i.e., the root) are of length m + 2, so there can be no match of this collapsing.

Case (2). If we identify vans and vm+2, the path from vans to the G-variable v2m+3 is
only of length m + 1 and again there is no match.

We can argue analogously for the case where we identify v with v′
0 and and v′ with

v′
2m+3. Therefore, the two remaining collapsings for eliminating the cycles {v, v0, v

′
0}

and {v′, v2m+3, v
′
2m+3} are the following:

(a) identify v with v0 and v′ with v′
2m+3;

(b) identify v with v′
0 and v′ with v2m+3.

In the first case, we further have to identify vans with vm+2 and v′
m+1, for otherwise we

can argue as above that there is no match. In the second case, we have to identify vans

with vm+1 and v′
m+2. After this has been done, there is only one way to eliminate the

cycle v = v0, . . . , v2m+3, v
′ = v′

2m+3, . . . , v
′
0 such that the result is a chain of length

2m + 4 with the G-variables at both ends and the answer variable exactly in the middle
(any other way to collapse means that there are no matches). The reflexive loops at the
endpoints of the resulting chain and at vans can simply be dropped since we work with
reflexive roles. The resulting cycle-free queries are shown in the middle and right part
of Figure 2.

Note that the middle query has Ai at both ends of the chain, and the right one has
¬Ai at the ends. According to our above argumentation, the original query qi

D,c has
a match in the grid representation iff one of these two collapsings has a match. Thus,
every match π of qi

D,c in the grid representation is such that π(v) and π(v′) are (not
necessarily distinct) instances of G that agree on the value of Ai. Informally, we say
that qi

D,c connects G-nodes that have the same Ai-value.
At this point, a technical remark is in order. Observe that the two relevant collaps-

ings of qi
D,c are such that the nodes next to the outer nodes are labelled dually w.r.t.

Ai compared to the outer nodes. This is an artifact of query construction and cannot be
avoided. It is the reason for introducing the F -nodes into our grid representation, and
for ensuring that they satisfy Property (T1) from above.

Now set qcnt :=
⋃

i<m qi
D,c. It is easy to see that qcnt connects G-nodes that have

the same Ai-value, for all i < m. The query qcnt is almost the desired query qD,c.
Recall that we want to enforce Condition (∗) from above, and thus need to talk about
tile types in the query. The query qtile is given in the left-hand side of Figure 3 for the
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Fig. 3. The query qtile (left) and one of its collapsings (right).

case of three tiles, i.e., T = {0, 1, 2}. In general, for T = {1, . . . , k − 1}, we define

qtile :=
⋃

i<k

{s(wi,0, wi,1), . . . , s(wi,2m+2, wi,2m+3),
s(wans, wi,m+1), s(wans, wi,m+2),
s(v, wi,0), s(v

′, wi,2m+3),
Di(wi,0), Di(wi,2m+3)}

∪
⋃

i<j<k

{s(wi,0, wj,0), s(wi,2m+3, wj,2m+3)}

∪ {G(v), G(v′)}

Observe that qcnt and qtile share the variables v, v′, and vans. Also observe that qtile is
very similar to the queries qi

D,c, the main difference being the number of vertical chains.
Whereas the queries qi

D,c have two collapsings that are cycle-free and can have matches
in the grid representation, qtile has k·(k−1) such collapsings: for all i, j ∈ T with i 6= j,
there is a collapsing into a linear chain of length 2m+4 whose end nodes are labelled Di

and Dj . An example of such a collapsing is presented on the right-hand side of Figure 3.
The arguments for how to obtain these collapsing and why other collapsings have no
matches in the grid representation are very similar to the line of argumentation used
for qi

D,c. We only give a brief walkthrough. First, the cycle v, w0,0, . . . , wk−1,0 can be
eliminated by identifying v with one of the wi,0. Note that we cannot eliminate the cycle
by identifying all of w0,0, . . . , wk−1,0, because then there would be no match in the grid
representation. Similarly, the cycle v′, w0,2m+3, . . . , wk−1,2m+3 can be eliminated by
identifying v′ with one of the wi,2m+3. We can show that i 6= j by analyzing the two
cases of vans being identified with wi,m+1 or wi,m+2. In the first case, there is no match
in the grid representation because the path from v to wi,m+1 is too short, and in the
second case the same holds for the path from wi,m+2 to v′. Thus, i 6= j is shown. Also



because of paths lengths, we have to identify vans with vi,m+1 and vj,m+2. Next, we
consider the cycle v = wi,0, . . . , wi,2m+3, v

′ = wj,2m+3, . . . , wj,0. As in the case of
qi
w, there is only one way to eliminate this cycle such that the result is a chain of length

2m+4 with the G-variables at both ends and the answer variable exactly in the middle,
and any other way to collapse means that there are no matches. It remains to eliminate
the cycles v = wi,0, . . . , wi,2m+3, v

′, w`,2m+3, . . . , w`,0 with ` 6= j. What is important
here is that we have to identify wi,1 with w`,0 and wi,2m+3 with w`,2m+3. This is the
case since the alternative (identifying wi,0 with w`,0 or v′ = 2j,2m+2 with w`,2m+3)
leads to a variabe labelled with G, D`, and Di (resp. Dj), and thus there is no match.
Once these two identifications have been done, there is more than one way to identify
the remaining nodes on the mentioned cycle, but the resulting query is always the same.

In summary, it is not hard to see that qtile connects those G-nodes that are labelled
by different tile types. Observe that we need property (T2) for this query to match at
all.

Now, the desired query qD,c is simply the union of qcnt and qtile. From what was
already said about qcnt and qtile, it is easily derived that qD,c does not match the grid
representation iff Property (∗) is satisfied. It is possible to show that there is a solution
for D and c iff (∅,AD,c) 6|= qD,c. We have thus proved that rooted query entailment in
ALCI is co-NEXPTIME-hard. A matching upper bound can be obtained by adapting
the techniques in [6]. More details are given in the full version of this paper.

Theorem 1. Rooted query entailment in ALCI is co-NEXPTIME-complete. This holds
even w.r.t. knowledge bases in which the TBox is empty and the ABox is a singleton.

4 Boolean Query Entailment in ALCI is 2-EXPTIME-complete

If we drop the requirement that queries are connectes and have at least one answer
variable, query entailment in ALCI becomes 2-EXPTIME-complete. An upper bound
can be taken e.g. from [6]. To prove the lower bound, we again proceed in two steps:
first, we polynomially reducing rooted query entailment in ALC rs w.r.t. general TBox to
rooted query entailment in ALCI w.r.t. general TBoxes. Then, we prove 2-EXPTIME-
hardness of Boolean query entailment in ALC rs.

The first step is very similar to the corresponding one in Section 3. Details can
be found in Appendix B. To show 2-EXPTIME-hardness of Boolean query entailment
in ALCrs, we reduce the word problem of exponentially space bounded alternating
Turing machines (ATMs), see [4]. An Alternating Turing Machine (ATM) is of the form
M = (Q,Σ, Γ, q0,∆). The set of states Q = Q∃ ] Q∀ ] {qa} ] {qr} consists of
existential states in Q∃, universal states in Q∀, an accepting state qa, and a rejecting
state qr; Σ is the input alphabet and Γ the work alphabet containing a blank symbol ¤
and satisfying Σ ⊆ Γ ; q0 ∈ Q∃ ∪Q∀ is the starting state; and the transition relation ∆

is of the form
∆ ⊆ Q × Γ × Q × Γ × {L,R}.

We write ∆(q, σ) to denote {(q′, σ′,M) | (q, σ, q′, σ′,M) ∈ ∆} and assume w.l.o.g.
that ∆(qr, a) = ∅ for all a ∈ Γ .



A configuration of an ATM is a word wqw′ with w,w′ ∈ Γ ∗ and q ∈ Q. The
intended meaning is that the one-side infinite tape contains the word ww′ with only
blanks behind it, the machine is in state q, and the head is on the symbol just after w.
The successor configurations of a configuration wqw′ are defined in the usual way in
terms of the transition relation ∆. A halting configuration is of the form wqw′ with
q ∈ {qa, qr}.

A computation of an ATM M on a word w is a (finite or infinite) sequence of con-
figurations K0,K1, . . . such that K0 = q0w and Ki+1 is a successor configuration of
Ki for all i ≥ 0. The ATMs considered in the following have only finite computations
on any input. Since this case is simpler than the general one, we define acceptance for
ATMs with finite computations, only. Let M be such an ATM. A halting configuration
is accepting iff it is of the form wqaw′. For other configurations K = wqw′, acceptance
depends on q: if q ∈ Q∃, then K is accepting iff at least one successor configuration
is accepting; if q ∈ Q∀, then K is accepting iff all successor configurations are ac-
cepting. Finally, the ATM M with starting state q0 accepts the input w iff the initial
configuration q0w is accepting. We use L(M) to denote the language accepted by M.

There is an exponentially space bounded ATM M whose word problem is 2-EXP-
TIME-hard and we may assume that the length of every computation path of M on
w ∈ Σn is bounded by 22n

, and all the configurations wqw′ in such computation paths
satisfy |ww′| ≤ 2n, see [4]. We may also assume w.l.o.g. that M never attempts to
move left on the left-most tape cell.

Let w = σ0 · · ·σm−1 ∈ Σ∗ be an input to M. We construct an ABox Aw, a
TBox Tw, and a query qw such that M accepts w iff (Aw, Tw) 6|= qw. Since a version
of Lemma 1 for general TBoxes (and infinite trees) is easily established, we can con-
centrate on interpretations that have the shape of an (infinite) tree. Thus, tree-shaped
models I of Aw and Tw that satisfy I 6|= q represent accepting computations of M on
w and, conversely, any such computation gives rise to a tree-shaped model of Aw and
Tw with I 6|= q.

In models of Aw and Tw, we represent each configuration of a computation of M
by the leafs of a tree of depth n, very similar to the representation of the 2n+1 × 2n+1-
grid in Section 3. The trees representing configurations are then interconnected to a tree
representing the computation of M on w. This situation is illustrated in Figure 4. Each
of the Ti is a tree of depth n that is built using the role name s. The leafs of each such
tree represent a configuration. The tree T1 represents an existential configuration, and
thus has only one successor configuration, which is represented by T2 and connected
via the same role name s also used inside the Ti trees. In contrast, the tree T2 represents
a universal configuration with two successor configurations T3 and T4. In the follow-
ing, we will call the trees T1, T2, . . . configuration trees and the tree of interconnected
configuration trees the computation tree.

As in Section 3, a large part of the reduction can already been done without using
the query qw. We start with this part. The ABox Aw is simply

{a : R u I}

where R is a concept name identifying the roots of configuration trees and I is a concept
name identifying the root of the initial configuration. We now assemble the TBox Tw.
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Fig. 4. Representing ATM computations.

First, we establish the configuration trees, using a construction very similar to that used
in Section 3. Recall that m is the length of w and put

R v L0

Li v ∃s.(Li+1 u Ai) u ∃s.(Li+1 u ¬Ai) for all i < m

Li u Aj v ∀s.(Li+1 → Aj) for j < i < m

Li u ¬Aj v ∀s.(Li+1 → ¬Aj) for j < i < m

As in Section 3, the leafs of the configuration trees are called Lm-nodes. Also as in that
section, we add additional successors to each Lm-node: every Lm node gets two succes-
sor nodes labelled with F , and each of these F -nodes has a successor node labelled G.
To distinguish the two different G-nodes below each Lm-node, we additionally label
them with the concept names Gp and Gh (where h stands for here and p for previous,
to be explained below). Thus, a configuration tree looks similar to what is shown in
Figure 1, but with only two G-nodes below each Lm-node. The following concept in-
clusions generate the additional nodes and ensure that all G-nodes below an Lm-node
are labelled by the concept names A0, . . . , Am−1 in the same way as the Lm-node:

Lm v
(

∃s.(F u ∃s.(G u Gh)) u ∃s.(F u ∃s.(G u Gn)) u

u
i<m

(

(Ai → ∀s2.(G → Ai)) u

(¬Ai → ∀s2.(G → ¬Ai))
) ))

The Gh-nodes of a configuration tree describe the configuration represented by that
tree, with the binary counter A0, . . . , Am−1 describing the position of tape cells on the
tape. The Gp-nodes describe the previous configuration in the computation (if any). To
describe computations, we use the symbols from Q and Γ as concept names. Obviously,
the symbols from Γ are used to represent the tape contents. The symbols from Q denote
the current state and also indicate the head position. We describe some obvious facts
about configurations: each tape cell is labelled with exactly one symbol and the state



and head position are unique.

G vt
a∈Γ

a u u
a,a′∈Γ,a6=a′

¬(a u a′)

G v u
q,q′∈Q,q 6=q′

¬(q u q′)

L0 v H

(Li u H) v (∀s.((Li+1 u Ai) → H) u ∀s.((Li+1 u ¬Ai) → ¬H))
t (∀s.((Li+1 u ¬Ai) → H) u ∀s.((Li+1 u Ai) → ¬H)) for all i < m

(Li u ¬H) v (∀s.(Li+1 → ¬H) for all i < m

Lm u H v ∀s2.(Gh →t
q∈Q

q)

Lm u ¬H v ∀s2.(Gh →u
q∈Q

¬q)

Next, we describe the initial configuration. Let w = a0, . . . , am−1, q0 be the initial
state, and b the blank symbol.

I v ∀sm+2.((Gh u (pos = i)) → ai) for all i < m

I v ∀sm+2.((Gh u (pos = 0) → q0)
I v ∀sm+2.((Gh u (pos ≥ m)) → b) for all i < m

Here, (pos = i) and (pos ≥ m) are the obvious (Boolean) concepts expressing that the
value of the counter A0, . . . , Am−1 equals i and is at least m, respectively.

So far, we have been concerned with single configuration trees. Let us now turn
to the computation tree. To enforce it, we introduce a concept name Tq,a,M for every
q ∈ Q, a ∈ Γ , and M ∈ {L,R}. If such a marker Tq,a,M labels the root of a con-
figuration tree T , this means that the transition q, a,M has been executed to obtain the
configuration described by T . We use the following inclusions:

R u ∃sm+2.(q u a) v t
(q′,a′,M)∈δ(q,a)

∃s.(R u Tq′,a′,M ) for all q ∈ Q∃, a ∈ Γ

R u ∃sm+2.(q u a) v u
(q′,a′,M)∈δ(q,a)

∃s.(R u Tq′,a′,M ) for all q ∈ Q∀, a ∈ Γ

The next step is to implement the transitions described by markers locally, i.e., inside
a single configuration tree with respect to the current configuration represented by the
Gh-nodes and the predecessor configuration represented by the Gp-nodes. To do this,
it is convenient to introduce two additional concept names S` and Sr that distinguish
left successors in a configuration tree from right successors. Clearly, a node is a left
successor if it is labelled Li and ¬Ai+1 for some i < m, and it is a right successor if it
is labelled Li and Ai+1. Thus, we put for all i < m:

Li u ¬Ai+1 v S`

Li u Ai+1 v Sr

In the following, we use ∃(r;C)n.D to denote the n-fold composition

∃r.(C u ∃r.(C u · · · (C u ∃r.D)) · · · ),



and ∀(r;C)n.D to denote the n-fold composition

∀r.(C → ∀r.(C → · · · (C → ∀r.D)) · · · ).

Note that ∃(r;C)0.D = ∀(r;C)0.D = D. Now for locally implementing the transi-
tions described by markers. For all q ∈ Q, a ∈ Γ , M ∈ {L,R}, and i < m, put:

Mq,a,M v ∀sm.(Lm → Mq,a,M )

Li u ∃s.(S` u ∃(s;Sr)
m−(i+1).(Lm u Mq,a,R u H))

v ∀r.(Sr → ∀(r;S`)
m−(i+1).∀s2.(Gh → q))

Li u ∃s.(Sr u ∃(s;¬A)m−(i+1).(Lm u Mq,a,L u H))
v ∀r.(S` → ∀(r;Sr)

m−(i+1).∀s2.(Gh → q))

We exploit here that M never moves left from the left-most tape cell and never right
from the right-most tape cell. To understand the second and third inclusion, note that
for any two Lm-nodes x and y in a configuration tree such that the value encoded by
A0, . . . , Am−1 at x is i and the value encoded at y is i + 1, there exists an Lj-node z

for some j < m such that

– x is reachable from z by first travelling to the left successor and then (m − j) + 1
times to the right successor;

– y is reachable from z by first travelling to the right successor and then (m− j) + 1
times to the left successor.

We also enforce locally that tape cells which are not underneath the head do not change.
Put:

Lm u ∃s2.(Gp u a uu
q∈Q

¬q) v ∀s2.(Gh → a) for all a ∈ Γ

Since computations of M are terminating and ∆(qr, a) = ∅ for all a ∈ Γ , it is easy to
enforce that the represented computation is accepting: simply ensure that the state qr is
never encountered:

qr v ⊥

This ends the definition of the TBox Tw. To finish the reduction, it remains to ensure
the following property:

(∗) if T ′ is a successor configuration tree of T , x a Gh-node of T , and y a Gp-node of
T ′ such that x and y have the same counter value regarding A0, . . . , Am−1, then
they are labelled identically regarding the concept names from Q and Γ .

Observe that (∗) implies that if two Gh-nodes in the same configuration tree have the
same counter value regarding A0, . . . , Am−1, then they are labelled identically regard-
ing the concept names from Q and Γ , and likewise for the Gp-nodes.

To prepare for enforcing (∗), we introduce some additional labels that we will em-
ploy when formulating the query. First, we introduce additional concept names for a
refined labelling of the roots of configuration trees:



ss

Gp = Y2

Gh = Y0

X0

R0

X1 X2

R1 R0

Gp = Y0

Gh = Y1

Gp = Y1

Gh = Y2

s s

Gp = Y2

Gh = Y0

X0

R0

Fig. 5. The marking scheme.

– all roots of configuration trees are labelled with R0 or R1, alternating with each
level of the computation tree;

– all roots of configuration trees are labelled with one of X0, X1, X2, starting with
X0 at the root of the computation tree and then incrementing modulo 3 with each
level.

This marking scheme is achieved by:

I v R0 u X0

R0 v ∀s.(R → R1)
R1 v ∀s.(R → R0)
X0 v ∀s.(R → X1)
X1 v ∀s.(R → X2)
X2 v ∀s.(R → X0)

Next, we need a refined labelling of the G-nodes. According to the Xi-type of the root
node, the G-nodes receive different additional labels Y0, Y1, Y2:

X0 v ∀sm+2.((Gp → Y2) u (Gh → Y0))
X1 v ∀sm+2.((Gp → Y0) u (Gh → Y1))
X2 v ∀sm+2.((Gp → Y1) u (Gh → Y2))

The resulting scheme is illustrated in Figure 5, where we for simplicity use only exis-
tential configurations. This is justified by the fact that the labelling with Ri, Xi, and Yi

is identical for all configurations on the same level of the computation tree.
Before we can enforce (∗) using the query qw, we need two additional preliminaries.

First, we add a concept name Za,q for each a ∈ Γ and q ∈ Q ∪ {⊥}. These concept
names will be used in the query, and simply reflect the labelling with the elements of Γ

and Q used as concept names:

G v Za,q ↔ (a u q) for all a ∈ Γ and q ∈ Q

G v Za,⊥ ↔ (a uu
q∈Q

¬q) for all a ∈ Γ

And second, we need to ensure that if d is an F -node and e its G-node successor, then
(T1) d and e are labelled dually regarding Ai, ¬Ai for all i < m, i.e., d satisfies Ai iff
e satisfies ¬Ai;
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Fig. 6. The query q
i
w and two of its four relevant collapsings.

(T2) d and e are labelled dually regarding the concept names Za,q , a ∈ Γ and q ∈
Q∪ {⊥}. That is, if d satisfies Za,q , then e satisfies ¬Za,q and all Za′,q′ with a 6= a′ or
q 6= q′;
(T3) d and e are labelled dually regarding Y0, Y1, Y2, i.e., for all i < 3, if d satisfies Yi,
then e satisfies ¬Yi and Yj for all j ∈ {0, 1, 2} \ {i}.
The reason for this is exactly the same as in Section 3. We use the following implica-
tions:

F u Ai v ∀s.(G → ¬Ai) for all i < m

F u ¬Ai v ∀s.(G → Ai) for all i < m

F u Za,q v ¬Za,q u u
(a,q)6=(a′,q′)

Za′,q′ for all a ∈ Γ, q ∈ Q ∪ {⊥}

F u Yi v ¬Yi u u
j∈{0,1,2}\{i}

Yj for all i < 3

We now construct the query qw, which enforces (∗). We start with queries qi
w, i < m,

which are a variation of the queries qi
D,a from Section 3. The queries qi

w are displayed
in Figure 6. As in Section 3, the purpose is to relate G-nodes that agree on the i-th bit of
the counter (represented by Ai). However, there is also a notable difference: here, we
want to relate G-nodes of two configuration trees T and T ′ such that T ′ is a successor
configuration of T (and thus the root of T is connected to the root of T ′ with the role
s). Compared to Figure 2, this leads to two modifications:

1. the length of the vertical chains is increased by one;



2. the answer variable vans from Figure 2 is replaced with two (non-answer) variables
u and u′ that are labelled with the labels of root nodes R0 and R1.

The reason for the first modification is to account for the additional s-edge that connects
the roots of the two involved configuration trees. Since we are working with reflexive-
symmetric roles, performing only this first modification does not suffice: it will not
only allow the desired matches, but also enable matches connecting two G-nodes of the
same configuration tree! To prevent such undesired matches, we use the variables u and
u′ together with the alternating labels R0 and R1 of roots of configuration trees. An
explanation is given below. The formal definition of the query qi

w is as follows:

qi
w := { s(vi,0, vi,1), . . . , s(vi,2m+3, vi,2m+4),

s(v′
i,0, v

′
i,1), . . . , s(v

′
i,2m+3, v

′
i,2m+4),

s(vi,0, v
′
i,0), s(vi,2m+4, v

′
i,2m+4),

s(v, vi,0), s(v, v′
i,0),

s(v′, vi,2m+4), s(v
′, v′

i,2m+4),
s(u, u′), s(u, vm+2), s(u, v′

m+2), s(u
′, vm+2), s(u

′, v′
m+2),

G(v), G(v′), Ai(vi,0),¬Ai(v
′
i,0),¬Ai(vi,2m+4), Ai(v

′
i,2m+4), R0(u), R1(u

′) }

Observe that we dropped the index “i” to variables in Figure 6. Also observe that all the
queries qi

w, i < m, share the variables v, v′, u, and u′.
As in Section 3, we are interested in the cycle-free collapsings of the queries qi

w

because only such collapsings can match in the (tree-shaped!) computation tree. To
eliminate the cycles v, v0, v

′
0 and v′, v2m+4, v

′
2m+4, it is again the case the there are

only two options:

(a) identify v with v0 and v′ with v′
2m+4;

(b) identify v with v′
0 and v′ with v2m+4.

Let us consider the first case. To eliminate the cycle u, u′, vm+2, we have four options:

(i) identify u with vm+1 and u′ with vm+2;
(ii) identify u with vm+2 and u′ with vm+3;

(iii) identify u′ with vm+1 and u with vm+2;
(iv) identify u′ with vm+2 and u with vm+3.

Options (i) and (iii) result in R0 or R1 being a label of vm+2. Since R0 and R1 are
found only at the root of configuration trees, configuration trees are of depth m + 2,
and the path between v = v0 and vm+2 is only of length m + 1, the queries resulting
from (i) and (iii) have no matches in the computation tree. Options (ii) and (iv) lead
to queries that may have matches. The difference between the two resulting queries is
that one is for the case where the predecessor configuration is labelled with R0 and the
successor one with R1, and for the other query it is the other way round. In Case (b),
we can argue similarly to show that only options (i) and (iii) lead to queries which may
have matches.

It remains to eliminate the large cycle, which is straightforward. In summary, we
can thus show that there are four cycle-free collapsings of qi

w that may have a match in
the computation tree: the two collapsings displayed on the right-hand side of Figure 6
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Fig. 7. The query qZ (left) and one of its collapsings (right).

and two collapsings obtained from the displayed ones by swapping the locations of u

and u′ and of R0 and R1.

Similar to what was done in Section 3, we can argue that the query
⋃

i<m qi
w con-

nects precisely those G-nodes d and e such that d belongs to a configuration tree T ,
e belongs to a configuration tree T ′ which is a successor of T , and d and e have the
same counter value regarding A0, . . . , Am−1. We want to achieve (∗), and thus have to
ensure that the query matches iff the Za,q-labelling of two such nodes is different. This
is easily achieved by modifying the query qtile from Section 3, as shown in Figure 3,
according to Points 1 and 2 above. The result of this modification is displayed in Fig-
ure 7, where k denotes the cardinality of Γ × (Q∪{⊥}) and Zi the concept name Za,q

such that (a, q) is the i-th element (starting with element 0) in an assumed well-order
on Γ × (Q ∪ {⊥}). Formally, the query is defined as follows.

qZ :=
⋃

i<k

{s(wi,0, wi,1), . . . , s(wi,2m+3, wi,2m+4),
s(u,wi,m+2), s(u

′, wi,m+2),
s(v, wi,0), s(v

′, wi,m+4),
Zi(wi,0), Zi(wi,2m+4)}

∪
⋃

i<j<k

{s(wi,0, wj,0), s(wi,2m+4, wj,2m+4)}

∪ {s(u, u′), G(v), G(v′)}

Observe that the variables v, v′, u, and u′ are shared with the queries qi
w. The query qZ

has 2k · (k− 1) collapsings that may have a match in the computation tree, one of them
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shown on the right-hand side of Figure 7. The arguments are a blend of those used for
qi
w in the current section and qtile in Section 3. Details are left to the reader.

Now consider the query q = qZ ∪
⋃

i<m qi
w. It is almost the desired query qw:

it connects G-nodes in successor configurations that have the same counter value and
a different labelling regarding the concept names Za,q . However, this query actually
connectes too many G-nodes: since we work with symmetric roles, it also connects the
Gh-nodes of a configuration tree with the Gp-nodes of the predecessor configuration
tree. This is still true even if we replace the G-label of the variable v with Gh and the
G-label of the variable v′ with Gp.

To break this symmetry, we use the marking with concept names Y0, Y1, Y2 as
shown in Figure 5. Given that figure, it is not hard to see that the query q should only
connect G-nodes that are labelled identically regarding Y0, Y1, Y2. Thus, we need a
generalization of the query qi

w to three values (Y0, Y1, Y2) instead of two (Ai and ¬Ai).
To achieve, this, we replace the two nodes v0 and v′

0 of qi
w with three nodes which we

label Y0, Y1, and Y2, and likewise for v2m+4 and v′
2m+4. Then, we establish a vertical

chain of length 2m + 4 between the nodes with different Yi-labels. The resulting query
is sketched in Figure 8, where each dashed line indicates a sequence of length 2m+4, as
in the queries qi

w and qZ . The variables u and u′, which are connected to the midpoint of
each such sequence, are not shown to avoid cluttering the picture. Formally, we define:

qY :=
⋃

i,j∈{0,1,2},i6=j

{s(w′
i,j,1, w

′
i,j,2), . . . , s(w

′
i,j,2m+2, w

′
i,j,2m+3),

s(u,w′
i,j,m+2), s(u

′, w′
i,j,m+2),

s(w′
i,0, w

′
i,j,1), s(w

′
i,j,2m+3, w

′
j,2m+4)}



∪ {s(v, w′
0,0), s(v, w′

1,0), s(v, w′
2,0),

s(w′
0,0, w

′
1,0), s(w

′
0,0, w

′
2,0), s(w

′
1,0, w

′
2,0),

s(w′
0,2m+4, w

′
1,2m+4), s(w

′
0,2m+4, w

′
2,2m+4), s(w

′
1,2m+4, w

′
2,2m+4),

s(v′, w′
0,2m+4), s(v

′, w′
1,2m+4), s(v

′, w′
2,2m+4),

s(u, u′),
Y0(w

′
0,0), Y0(w

′
0,2m+4), Y1(w

′
1,0), Y1(w

′
1,2m+4), Y2(w

′
2,0), Y2(w

′
2,2m+4),

G(v), G(v′)}

Observe that the variables v, v′, u, and u′ are shared with the other queries that we have
defined so far. Argueing similar as we have done before, it is not hard to show that qY

has six collapsings which may have matches in the computation tree. Each collapsing
is a linear sequence of length 2m+5, with Yi at both endpoints, for some i ∈ {1, 2, 3}.
The two midpoints of these sequences are labelled with R0 and R1, in any order.

Now, the wanted query qw is simply qY ∪ qZ ∪
⋃

i<m qi
w.

Lemma 2. M accepts input w iff there is a model I of Tw and Aw such that I 6|= qw.

We have thus proved:

Theorem 2. Query entailment in ALCI is 2-EXPTIME-complete. This holds even for
queries without answer variables and w.r.t. knowledge bases in which the ABox is a
singleton.

The proof of Theorem 2 shows that query entailment becomes 2-EXPTIME-hard if we
drop the first requirement of rooted query entailment (that queries contain at least one
answer variable), but not the second (that queries are connected). It is trivial to modify
the proof such that it works for the case where the second requirement is dropped, but
not the first. Indeed, we simply add an atom >(v) to qw, where v is an answer variable.
Observe that the resulting query is disconnected.

5 Conclusion

We have shown that in the presence of inverse roles, conjunctive query answering is
computationally more costly than instance checking. A Corresponding NEXPTIME up-
per bound for Theorem 1 and containment of conjunctive query entailment in EXPTIME
for ALC will be shown elsewhere. As (almost) remarked by a reviewer, the proof of
Theorem 2 can easily be adapted to rooted query entailment if transitive roles and role
hierarchies are present. Details on this will also be given elsewhere.

Acknowledgement We thanks the anonymous reviewers for valuable remarks on the
submitted version of this paper.

References

1. F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description Logic Hand-
book: Theory, implementation and applications. Cambridge University Press, 2003.



2. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proceedings of the 17th ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS’98), pages 149–158, 1998.

3. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. In P. Doherty, J. Mylopoulos, and C. Welty, editors,
Proceedings of the Tenth International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR’06). AAAI Press, 2006.

4. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

5. B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answering for description logics
with transitive roles. In B. Parsia, U. Sattler, and D. Toman, editors, Proceedings of the 2006
International Workshop on Description Logics (DL’06), volume 189 of CEUR-WS, 2006.

6. B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Answering conjunctive queries in the SHIQ

description logic. In M. Veloso, editor, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), pages 299–404. AAAI Press, 2007.

7. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic
SHIQ. In D. MacAllester, editor, Proceedings of the 17th International Conference on Au-
tomated Deduction (CADE-17), number 1831 in Lecture Notes in Computer Science, Ger-
many, 2000. Springer Verlag.

8. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive de-
scription logics. In L. P. Kaelbling and A. Saffiotti, editors, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI’05), pages 466–471. Profes-
sional Book Center, 2005.

9. C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, LuFG Theoreti-
cal Computer Science, RWTH Aachen, Germany, 2002.

10. C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete domains.
Journal of Artificial Intelligence Research (JAIR), 23:667–726, 2005.

11. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of answering unions of conjunctive
queries in SHIQ. In B. Parsia, U. Sattler, and D. Toman, editors, Proceedings of the 2006
International Workshop on Description Logics (DL’06), volume 189 of CEUR-WS, 2006.

12. A. Schaerf. On the complexity of the instance checking problem in concept languages with
existential quantification. Journal of Intelligent Information Systems, 2:265–278, 1993.



A From ALC
rs to ALCI without TBoxes

We show that rooted query entailment in ALCrs w.r.t. the empty TBox can be polyno-
mially reduced to rooted query entailment in ALCI w.r.t. the empty TBox.

As already explained, the main idea behind the reduction is to replace each sym-
metric role r with the composition of r− and r. Let A be an ALCrs ABox and q a
conjunctive query. We assume w.l.o.g. that all concepts in A are in negation normal
form (NNF), i.e., that negation is applied only to concept names. Let Ind(A) denote
the set of all individual names occurring in A, rol(A) be the set of role names used in
A, and let rol(q) be defined analogously. Fix a fresh concept name R. Intuitively, the
purpose of R is to distinguish “real” domain elements from the auxiliary ones that serve
as intermediate points in the composition of r− and r. Also, define X as an abbrevia-
tion for ur∈rol(A)∪rol(q)∃r−.>. We will enforce that X is satisfied by all relevant real
individuals, thus achieving reflexivity.

We now present the details of the reduction. For each concept C in NNF, let δ(C)
denote the result of replacing

– every subconcept ∃r.C with ∃r−.∃r.(C u R u X), and
– every subconcept ∀r.C with ∀r−.∀r.C;

Now define an ALCI ABox A′ and a query q′ by manipulating A and q as follows:

1. replace every concept assertion C(a) ∈ A with δ(C)(a);
2. for all a ∈ Ind(A), add a concept assertion R u X(a) to A;
3. replace every role assertion r(a, b) ∈ A with r(c, a) and r(c, b), where c is a fresh

individual name;
4. for every variable v in q, add R(v) to q;
5. replace every role atom r(v, v′) ∈ q with r(v∗, v) and r(v∗, v), where v∗ is a fresh

variable.

The following lemma shows that our reduction is correct.

Lemma 3. A 6|= q iff A′ 6|= q′.

Proof. “⇒”. If A 6|= q, then there is a model I of A such that I 6|= q. Define a model
I ′ as follows:

– ∆I′

= ∆I ∪ {xd,r,e | r ∈ rol(A) ∪ rol(q) and (d, e) ∈ rI};
– rI

′

= {(xd,r,e, d), (xd,r,e, e) | (d, e) ∈ rI}

– AI′

= AI for all concept names A except R;
– RI′

= ∆I ;
– aI′

= aI for all a ∈ Ind(A);
– if c was introduced into A′ to split the assertion r(a, b) ∈ A, set cI

′

= xaI ,r,bI .

It is readily checked that I ′ is a model of A′. In particular, XI′

= ∆I′

since roles are
interpreted reflexively in I. Furthermore, since I 6|= q, we have I ′ 6|= q′: suppose to the
contrary that I ′ |=π q′ for some match π. Since q′ contains the atom R(v) for every



variable v ∈ Var(q), we have π(v) ∈ ∆I for all v ∈ Var(q). Let π′ be the restriction of
π to the variables in Var(q). It is readily checked that I |=π′

q, which is a contradiction.

“⇐”. If A′ 6|= q′, then there is a model I ′ of A′ such that I ′ 6|= q′. Define a model I as
follows:

– ∆I = (R u X)I
′

;
– rI = {(d, e) | ∃f.(f, d) ∈ rI ∧ (f, e) ∈ rI};
– AI = AI′

∩ ∆I ;
– aI = aI′

for all a ∈ Ind(A).

Observe that rI is reflexive (due to the choice of ∆I as a subset of XI) and symmetric.
Also observe that the interpretation of the individual names is well-defined: since A′

contains R u X(a) for all a ∈ Ind(A), aI′

∈ ∆I . Since I ′ 6|= q′ and it is easily seen
that I |= q would imply I ′ |= q′, we have I 6|= q. It remains to show that I is a model
of A. This is a consequence of the following claim, which is easily proved by induction
on the structure of C.

Claim. For all d ∈ ∆I and all C ∈ sub(A), d ∈ δ(C)I
′

implies d ∈ CI .

We only do the two interesting cases.

– Let C = ∀r.D. Then δ(C) = ∀r−.∀r.δ(D). Let (d, e) ∈ rI . We have to show that
e ∈ DI . Since (d, e) ∈ rI , by definition of I we have (d, e) ∈ (r−)I

′

◦ rI
′

. Since
d ∈ δ(C)I

′

, we have e ∈ DI′

and it remains to apply the induction hypothesis.
– Let C = ∃r.D. Then δ(C) = ∃r−.∃r.(δ(D) u R u X). Since d ∈ δ(C)I

′

, there is
an e ∈ ∆I′

such that (i) (d, e) ∈ (r−)I
′

◦rI
′

and (ii) e ∈ (δ(D)uRuX)I
′

. By (ii),
d ∈ ∆I . By (i) and definition of I, (d, e) ∈ rI . By (ii) and induction hypothesis,
d ∈ DI and we are done.

o

B From ALC
rs to ALCI with TBoxes

We show that rooted query entailment in ALCrs w.r.t. general TBoxes can be polyno-
mially reduced to rooted query entailment in ALCI w.r.t. general TBoxes. The general
strategy is as in Section A, but the presence of general TBoxes actually makes the re-
duction easier.

Let A be an ALCrs ABox, T a TBox, and q a conjunctive query. For each concept C,
let δ(C) denote the result of replacing

– every subconcept ∃r.C with ∃r−.∃r.C, and
– every subconcept ∀r.C with ∀r−.∀r.C;

Now define an ALCI ABox A′, TBox T ′, and a query q′ by manipulating A, T , and q

as follows, where R is a fresh concept name:

1. replace every concept assertion C(a) ∈ A with δ(C)(a);
2. replace every concept inclusion C v D ∈ T with δ(C) v δ(D);



3. for all a ∈ Ind(A), add a concept assertion R(a) to A;
4. add the following concept inclusions to T :

R v ∀r−.¬R ¬R v ∀r.R R v u
r∈rol(A)∪rol(T )∪rol(q)

∃r−.>

5. replace every role assertion r(a, b) ∈ A with r(c, a) and r(c, b), where c is a fresh
individual name;

6. for every variable v in q, add R(v) to q;
7. replace every role atom r(v, v′) ∈ q with r(v∗, v) and r(v∗, v), where v∗ is a fresh

variable.

The prove of the following lemma is similar to that of Lemma A. Details are left to the
reader.

Lemma 4. (A, T ) 6|= q iff (A′, T ′) 6|= q′.


