
Planning in Action Formalisms based on DLs:

First Results?

Maja Miličić??

Institut für Theoretische Informatik
TU Dresden, Germany

maja@tcs.inf.tu-dresden.de

Abstract. In this paper, we continue the recently started work on inte-
grating action formalisms with description logics (DLs), by investigating
planning in the context of DLs. We prove that the plan existence problem
is decidable for actions described in fragments of ALCQIO. More pre-
cisely, we show that, if post-conditions of operators are unconditional, its
computational complexity coincides with the one of projection for DLs
between ALC and ALCQIO.

1 Introduction

The idea to investigate action formalisms based on description logics was inspired
by the expressivity gap between existing action formalisms: they were either
based on FO logic and undecidable, like the Situation Calculus [12] and the
Fluent Calculus [15], or decidable but only propositional.

First results on integrating DLs with action formalisms from [2] show that
reasoning remains decidable even if an action formalism is based on the expres-
sive DL ALCQIO. In [2], ABox assertions are used for describing the current
state of the world, and the pre- and post-conditions of actions. Domain con-
straints are captured by acyclic TBoxes, and post-conditions may contain only
atomic concept and role assertions. It is shown in [2] that the projection and
executability problem for actions can be reduced to standard DL reasoning prob-
lems. Further papers in this line [10, 9] treat the problem of computing ABox
updates and the ramification problem induced by GCIs.

However, in the mentioned DL-action-framework, planning, an important
reasoning task, has not yet been considered. Intuitively, given an initial state
A, final state Γ and a final set of actions Op, the plan existence problem is the
following: “is there a plan (a sequence of actions from Op) which transforms A
into a state where Γ is satisfied?”. It is known that, already in the propositional

? This is a corrected version of the paper presented at DL-2007. The complexity
results claimed in the original DL paper hold only in the case of unconditional
post-conditions. Correct complexity results for the conditional case are presented at
LPAR2007

?? The author is supported by the EU project TONES

case, planning is a hard problem. For example, the plan existence problem for
propositional STRIPS-style actions is PSpace-complete [4, 7].

The planning problem in DL action formalisms is not only interesting from
the theoretical point of view. It is well known that web ontology languages for
the Semantic Web are based on description logics; thus actions described in DLs
can be viewed as simple semantic web services. In this context, planning is a
very important reasoning task as it supports, e.g., web service discovery which
is needed for an automatic service execution.

This paper is, to our best knowledge, the first try to formally define the
planning problem in the context of description logics. It is based on the action
formalism from [2]. We investigate the computational complexity of the plan
existence problem for the description logics “between” ALC and ALCQIO. We
show that,if we allow only for actions with unconditional post-conditions, in
these logics the plan existence problem is decidable, and of the same computa-
tional complexity as projection. In the last section we discuss possible ways of
developing practical planning algorithms for DLs.

2 Preliminaries

In this paper we will use a slightly modified version of the action formalism
from [2]. We disallow occlusions, a source of a limited non-determinism in [2],
and conditional post-conditions. Moreover, we introduce parameterised actions
(operators). The formalism is not restricted to a particular DL, but for our
complexity results we will consider the DL ALCQIO and its fragments. We
refrain from introducing the syntax and semantics of ALCQIO in full detail,
referring instead to [1].

We give only the definition of ABoxes, as it slightly differs from the one from
[1]. An ABox assertion is of the form C(a), r(a, b), or ¬r(a, b) where a, b are
individual names, C is a concept, and r a role name. An ABox is a finite set of
ABox assertions.

The main ingredients of our framework are operators and actions (as defined
below), ABoxes for describing the current knowledge about the state of affairs
in the application domain, and acyclic TBoxes for describing general knowledge
about the application domain similar to state constraints in the SitCalc and
Fluent Calculus.

Definition 1 (Action, operator). Let NX and NI be disjoint and countably
infinite sets of variables and individual names. Moreover, let T be an acyclic
TBox. A primitive literal for T is an ABox assertion

A(a),¬A(a), r(a, b), or ¬r(a, b)

with A a primitive concept name in T , r a role name, and a, b ∈ NI. An atomic
atomic α = (pre, post) for T consists of

– a finite set pre of ABox assertions, the pre-conditions;

– a finite set post of post-conditions ψ, where ψ is a primitive literal for T .

A composite action for T is a finite sequence α1, . . . , αk of atomic actions
for T .

An operator for T is a parametrised atomic action for T , i.e., an action in
which definition variables from NX may occur in place of individual names.

Applying an action changes the state of affairs, and thus transforms an in-
terpretation I into an interpretation I ′. Intuitively, the pre-conditions specify
under which conditions the action is applicable, while the post-conditions say
what is true in the interpretation I ′ obtained by applying the action.

Definition 2. Let T be an acyclic TBox, α = (pre, post) an atomic action for
T , and I, I ′ models of T respecting the unique name assumption (UNA) and
sharing the same domain and interpretation of all individual names. We say
that α may transform I to I ′ (I ⇒T

α I ′) iff, for each primitive concept A and
role name r, we have

AI′

:= (AI ∪ {aI | A(a) ∈ post} \ {aI | ¬A(a) ∈ post}

rI
′

:= (rI ∪ {(aI , bI) | r(a, b) ∈ post}) \ {(aI , bI) | r(a, b) ∈ post}.

The composite action α1, . . . , αk may transform I to I ′ (I ⇒T
α1,...,αk

I ′) iff there

are models I0, . . . , Ik of T with I = I0, I
′ = Ik, and Ii−1 ⇒T

αi
Ii for 1 ≤ i ≤ k.

Note that this definition does not check whether the action is indeed executable,
i.e., whether the pre-conditions are satisfied. It just says what the result of
applying the action is, irrespective of whether it is executable or not. Since we
use acyclic TBoxes to describe background knowledge, there cannot exist more
than one I ′ such that I ⇒T

α I ′. Thus, actions are deterministic.
Like in [2], we assume that actions α = (pre, post) are consistent in the

following sense: for every model I of T , there exists I ′, such that I ⇒T
α I ′. It is

not difficult to see that this is the case iff post is consistent.
Two standard reasoning problems about actions, projection and executability,

are thoroughly investigated in [2] in the context of DLs. Executability is the
problem of whether an action can be applied in a given situation, i.e. if pre-
conditions are satisfied in the states of the world considered possible.

Formally, let T be an acyclic TBox, A an ABox, and let α1, . . . , αn be a
composite action with αi = (prei, posti) atomic actions for T for i = 1, . . . , n.

We say that α1, . . . , αn is executable in A w.r.t. T iff the following conditions
are true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒T
α1,...,αi

I ′, we
have I ′ |= prei+1.

Projection is the problem of whether applying an action achieves the de-
sired effect, i.e., whether an assertion that we want to make true really holds
after executing the action. Formally,the assertion ϕ is a consequence of applying

α1, . . . , αn in A w.r.t. T iff for all models I of A and T and for all I ′ with
I ⇒T

α1,...,αn
I ′, we have I ′ |= ϕ.

In [2] it was shown that projection and executability are decidable for the
logics between ALC and ALCQIO. More precisely, projection in L can be re-
duced to (in)consistency of an ABox relative to an acyclic TBox in LO. The
following theorem from [2] states that upper complexity bounds obtained in this
way are optimal:

Theorem 1. ([2]) Projection and executability of composite actions are:

(a) PSpace-complete in ALC,ALCO,ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

Looking carefully at the reduction of projection in L to ABox inconsistency
in LO from [2, 3], we conclude that the upper complexity bounds from Theorem
1 hold even for the “stronger” projection problem, namely the one where instead
of a single ABox assertion ϕ, we have an ABox Γ . We will need this strengthened
complexity result in the coming sections.

3 Planning problem

We continue by defining the plan existence problem in our framework. As in
the previous section, we do not fix the DL, but assume it to be a sublogic of
ALCQIO.

First we introduce a bit of notation. If o is an operator (for a TBox T), we
use var(o) to denote the set of variables in o. A substitution v for o is a mapping
v : var(o) → NI. An action α that is obtained by applying a substitution v to o is
denoted as α := o[v]. Intuitively, the plan existence problem is: given an acyclic
TBox T which describes the background knowledge, ABoxes A and Γ describing
respectively the initial and the goal state, and a set of operators Op, is there a
plan (sequence of actions obtained by instantiating operators from Op) which
”transforms” A into Γ?

In this paper, we assume that operators can be instantiated with individuals
from a finite set Ind ⊂ NI. Moreover, we assume that T , A and Γ contain only
individuals from Ind (we say that they are based on Ind). For an operator o, we
set o[Ind] := {o[v] | v : var(o) → Ind} and for Op a set of operators, we set
Op[Ind] := {o[Ind] | o ∈ Op}. In the following definition, we formally introduce
the notion of a planing task:

Definition 3 (Planning task). A planning task is a tuple Π = (Ind, T ,Op,A, Γ),
where

– Ind is a finite set of individual names;
– T is an acyclic TBox based on Ind;
– Op is a finite set of atomic operators for T ;
– A (initial state) is an ABox based on Ind;

– Γ (goal) is an ABox based on Ind.

A plan in Π is a composite action α = α1, . . . , αk, such that αi ∈ Op[Ind],
i = 1..k. A plan α = α1, . . . , αk in Π is a solution to the planning task Π iff:

1. α is executable in A w.r.t. T ; and
2. for all interpretations I and I ′ such that I |= A, T and I ⇒T

α I ′, it holds
that I ′ |= Γ .

Two common planning problems, PLANEX and PLANLEN, c.f. [7], are de-
fined below:

Definition 4 (Planning problems). Plan existence problem (PLANEX): Does
a given planning task Π have a solution?

Bounded plan existence problem (PLANLEN): For a planning task Π and a
natural number n, is there a plan of length at most 2n which is a solution to Π?

4 Complexity of planning

In this section, we will present a decision procedure for the plan existence prob-
lem. It turns out that PLANEX is not more difficult, at least in theory, than
projection in the DLs from Theorem 1.

In what follows, for the sake of simplicity we assume that T = ∅. It is not
difficult to show that the complexity results form this section hold in the case of
non-empty acyclic TBoxes.

Obviously, the plan existence problem is closely related to projection and
executability. First we introduce some notation. Let A be an ABox, α a (possibly
composite) action, and ϕ an ABox assertion. We will write Aα |= ϕ iff ϕ is a
consequence of applying α in A. For an ABox B, we write Aα |= B iff Aα |= ϕ

for all ϕ ∈ B.
Let Π = (Ind, ∅,Op,A, Γ) be a planning task. for which we want to decide

if it has a solution. This means that we want to check if there is a sequence of
actions from Op[Ind] which transform the initial state (described by A) into a
state where goal Γ holds. In the propositional case, planning is based on step-
wise computation of the next state – which corresponds to computing updated
ABoxes. However, in [10], it is shown that an updated ABox may be exponen-
tially large in the size of the initial ABox and the update, which makes this
approach unsuitable. We base our approach in this paper on the following obser-
vation: possible worlds obtained by applying (composite) actions in the initial
world A can be implicitly described by A together with the list of applied atomic
changes (intuitively, this is a list of accumulated triggered post-conditions).

We define the set of possible (negated) atomic changes as:

L := {ψ,¬ψ | ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}

An update for Π is a consistent subset of L. Let U be a set of all updates for
Π. Then U is our search space, the size of which |U| is exponential in the size

of |L| (and Π). For a U ∈ U, we set ¬U := {¬l | l ∈ U}. Intuitively, U0 := ∅
represents the initial state, and all updates U ∈ U such that AU |= Γ represent
goals states1.

In the next step, we define the transition relation “
α

→A” between updates.
Let U and V be two updates. For α = (pre, post), we say that U

α
→A V iff:

(i) AU |= pre

(ii) V = (U \ ¬post) ∪ post.

Obviously, the relation “
α

→A” is a partial function for every α. In the following
lemma, we show that “

α
→A” simulates “⇒α”2 on the level of updates.

Lemma 1. Let A be an ABox, and α = α1, . . . , αk a composite action, with
αi = (prei, posti) ∈ Op[Ind]. Let U0 := ∅. Then the following holds:

(a) There exist unique U1, . . . ,Uk such that U0
α1→A U1 · · ·

αk→A Uk iff α1, . . . , αk

is executable in A;
(b) Let Uk be defined as in (a). Then for all interpretations I, I ′ such that I |=

A, we have that I ⇒α1,...,αk
I ′ iff I ⇒Uk

I ′.

Proof. Proof by induction on k. For k = 0, trivially true. Assume that the claim
holds for k = m, and let us prove that it implies the same for k = m + 1.

(a) follows directly from the point (i) of the definition of
αm+1

→A . As for (b), let
I |= A and let I ⇒α1,...,αm+1

I ′. The latter holds iff there exists I ′′ such that
I ⇒α1,...,αm

I ′′ and I ′′ ⇒αm+1
I ′. By I.H., we have that for I |= A it holds

that I ⇒α1,...,αm
I ′′ iff I ⇒Um

I ′′. Finally, the point (ii) of the definition of
αm+1

→A implies that there exists I ′′ such that I ⇒Um
I ′′ and I ′′ ⇒αm+1

I ′ iff
I ⇒Um

I ′′ and I ′′ ⇒
post

Um
αm+1

I ′. It is not difficult to see that the latter holds iff

I ⇒Um+1
I ′.

We now present a procedure which decides if a state V ∈ U is reachable
from U ∈ U by executing a sequence of actions from Op[Ind] (an adaption of the

reachability algorithm from [14]). Since the search space U is of size 3
|L|
2 (< 2|L|),

there is no need to check for the existence of longer paths.

reachable(Π,U ,V)
if path(Π,U ,V, |L|)

then return TRUE
return FALSE

path(Π,U ,V, i) checks if V is reachable from U by a path of length at most 2i:

path(Π,U ,V, i)
if (i = 0 and (U = V or one step(Π,U ,V)))

1 Starting from here, we will sometimes write U as short for the action (∅,U). Please
note that AU |= ϕ is only an abbreviation for “ϕ is a consequence of applying (∅,U)
in A”, and does not imply computing the update of the ABox A with U as in [10].

2 ⇒α is short for ⇒∅
α

then return TRUE
for all (W ∈ U)

if (path(Π,U ,W, i− 1) and path(Π,W,V, i− 1))
then return TRUE

return FALSE

The predicate one step(Π,U ,V) checks if V can be reached from U in exactly
one step by applying an action α ∈ Op[Ind].

one step(Π,U ,V)
for all α ∈ Op[Ind]

if (U
α

→A V)
then return TRUE;

return FALSE;

Lemma 2. Let Π = (Ind, T ,Op,A, Γ) be a planning task and let U0 := ∅.
Then Π has a solution iff there exists an UΓ ∈ U such that AUΓ |= Γ and
reachable(Π,U0,UΓ) returns TRUE.

Proof. “⇒” Let the plan α1, . . . , αk be a solution to Π such that k < 2|L|.
This means that (i)α1, . . . , αk is executable w.r.t. A and (ii) Aα1,...,αk |= Γ . By

Lemma 1 (a), there exist unique Ui, 1 ≤ i ≤ k, such that U0
α1→A U1 · · ·

αk→A Uk.
Thus, reachable(Π,U0,Uk) returns TRUE. Let UΓ = Uk. By Lemma 1 (b), we
have that Aα1,...,αk |= Γ implies (AUΓ =)AUk |= Γ .

“⇐” Let UΓ ∈ U be such that AUΓ |= Γ and reachable(Π,U0,UΓ) returns

TRUE. Then there exists a sequence of actions α1, . . . , αk such that U0
α1→A

U1 · · ·
αk→A Uk(= UΓ). By Lemma 1, we have that α1, . . . , αk is executable w.r.t.

A and Aα1,...,αk |= Γ . Thus, α1, . . . , αk is a solution to Π.

The previous lemma tells us that the plan existence problem can be decided by
checking if reachable(U0,UF , Π) returns TRUE for some final state UF ∈ U.
Thus, the following procedure:

PLANEX(Π)
guess UF such thatUF ∈ U

if AUF |= Γ and reachable(Π,U0,UF , |L|)
then return TRUE
return FALSE

decides if Π has a solution.
Clearly, PLANEX(Π) works in NPSpace with a “projection oracle”. If

projection is in PSpace, then PLANEX is obviously in NPSpace. By using
Savitch’s result [14] that PSpace = NPSpace, we obtain that PLANEX is then
in PSpace. Similarly, if projection is in ExpTime, since NPSpace ⊆ ExpTime,
we have that PLANEX can be decided in ExpTime. It is less straightforward
to show that PLANEX is in co-NExpTime if projection is in co-NExpTime.

To this end, we develop an alternative NExpTime algorithm which returns
TRUE iff the planning task Π has no solution. In the first step, we develop an
alternative PLANEX′ algorithm as follows: Guess a sequence of actions from
Op[Ind] ∪ {empty action} of the length 2|L| and check, using the co-NExpTime

projection oracle, if the pre-conditions of actions are satisfied in the intermediate
states, as well as the goal Γ in the final state. Obviously PLANEX′ is an
NPSpace algorithm with an asymmetric use of a co-NExpTime oracle. Let
Q = {pre(α) | α ∈ Op[Ind]} ∪ {Γ}. The alternative no − PLANEX algorithm
has three steps: (i) guess an (exponentially big) set T of tuples (U ,Q) from
U×Q; (ii) check whether for all tuples (U ,Q) it holds that AU 6|= Q; (iii) check
if the following holds: in every run of PLANEX’(Π) procedure, there is at least
one projection test AU |= Q? such that (U ,Q) ∈ T . If (ii) and (iii) give positive
answers, return TRUE. Since (ii) and (iii) can be checked in ExpTime, the steps
(i)-(iii) can be executed in NExpTime.

We obtained the following lemma:

Lemma 3. Let L ∈ {ALC,ALCO,ALCI,ALCQ,ALCIO,ALCQO,ALCQI,
ALCQIO}. The plan existence problem in L has the same upper complexity
bound as projection in L.

We show that the upper complexity bounds established in Lemma 1 are
tight by the following easy reduction of projection to PLANEX. Let A be an
ABox, α an action without pre-conditions and only with unconditional post-
conditions, and ϕ an assertion.We define the planning task ΓA,α,ϕ as ΓA,α,ϕ :=
(∅, ∅, {α},A, {ϕ}). It is not difficult to see that Aα |= ϕ iff ΓA,α,ϕ has a solution.

Since the lower bounds for projection from Theorem 1 hold already in the
case of the empty TBox and an atomic action with no pre-conditions and no
occlusions and only with unconditional post-conditions [2], we conclude that
the complexity bounds from Lemma 1 are optimal, i.e., plan existence problem
is of exactly the same computational complexity as projection. Moreover, the
afore presented reduction implies that the same hardness results hold for the the
bounded plan existence problem.

Theorem 2. The planning problems PLANEX and PLANLEN are:

(a) PSpace-complete in ALC, ALCO, ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

5 Extended Planning

The previous decidability and complexity results are obtained under assumption
that the set of individuals Ind used to instantiate operators is finite and a part
of the input. This assumption is rather natural and in the line with the standard
definitions of planning tasks for STRIPS operators from [4, 7]. Intuitively, Ind is
a set of individuals the planning agent has control over.

Alternatively, one can omit individuals from the input and define a planning
task Π as Π = (T ,Op,A, Γ). The extended plan existence problem is the one
of whether there is a solution for Π, defining a plan for Π to be a sequence of
actions α1, . . . , αk, where each αi is obtained by instantiating an operator from
Op with individuals from an infinitely countable set NI.

The extended planning raises new interesting questions:

Q1 In order to solve Π, do we have to use infinitely many individuals?

Q2 If the number of needed individuals can be shown to be bounded by f(|Π|),
is f a polynomial (exponential, double-exponential,...) function?

In the case of the datalog STRIPS, it is shown that the extended plan exis-
tence problem is undecidable [7, 6]. However, this undecidabilty result does not
automatically carry over to the action formalism used in this paper. Indeed, the
undecidability result from [7, 6] relies on the closed world assumption and nega-
tive pre-conditions. By using these two, one can define operators which are appli-
cable only if instantiated with “unused” individuals. Such operators would have
¬Used(x) among its pre-conditions, and Used(x) in the list of post-conditions.
Like this, one can enforce a usage of infinitely many individuals.

In the case of DLs considered in the previous sections, due to the open world
assumption, it is not possible to state that all individuals not appearing in the
initial ABox are instances of the concept ¬Used.

However, in the presence of the universal role U , we can make assertions
over the whole domain. For example, the assertion ∀U.¬Used(a) can ensure that
all element domains are unused in the initial state. We will show that extended
planning in ALCU (extension of ALC with the universal role) is undecidable.
Undecidability us shown by reducing the halting problem of a deterministic
Turing machine to the extended plan existence problem, similar to [6].

Let M = (Q,Σ, δ, q0, qf) be a deterministic Turing machine, where

– Q = {q0, . . . , qn} a finite set of states;

– Σ = {blank, a1, . . . , am} a finite alphabet;

– δ : Q×Σ → Q×Σ × {L,R} is a transition function;

– q0 is the initial state;

– qf ∈ Q is the final state.

Let a = ai0 , . . . aik
∈ Σ∗ be an input word. We will define a planning task

ΠM,a = (∅,OpM,a,AM,a, ΓM,a) such that a planner for Π simulates moves of
the Turing Machine M .

In the reduction, we use concept names Q0, . . . , Qn, Blank, A1, . . . , Am, Used,
Last, M , Done, and a role name right. We define the initial state AM,a, the goal
ΓM,a, and the set of operators OpM,a as:

AM,a := {(M u ∀U.¬Used)(t0)} ∪ {Ai0(t0), . . . , Aik
(tk)}

∪{right(t0, t1), . . . right(tk−1, tk)}

ΓM,a := {Done(t0)}

OpM,a := {start, create succ(x.y), done(x), done to left(x, y)} ∪
⋃

δ(q,a)=(q′,b,R)

{rightq,a,q′,b(x, y)} ∪
⋃

δ(q,a)=(q′,b,L)

{leftq,a,q′,b(x, y)}

where the single operators are defined as follows:

start := ({M(t0)}, {Used(t0), ...,Used(tk), Last(tk),¬M(t0), Q0(t0)})

create succ(x.y) := ({Last(x),¬Used(y)},

{right(x, y),¬Last(x), Last(y),Used(y),Blank(y)}

rightq,a,q′,b(x, y) := ({Q(a), A(x), right(x, y)}, {¬Q(x),¬A(x), B(x), Q′(y)}

leftq,a,q′,b(x, y) := ({Q(a), A(x), right(y, x)}, {¬Q(x),¬A(x), B(x), Q′(y)}

done(x) := ({Qf (x)}, {Done(x)})

done to left(x, y) := ({Done(x), right(y, x)}, {Done(y)})

It is not difficult to show that the following lemma holds:

Lemma 4. The Turing machine M halts for the input a iff there is a solution
to the planning task ΠM,a = (∅,OpM,a,AM,a, ΓM,a).

Thus, we obtained the following theorem:

Theorem 3. The extended plan existence problem is undecidable in ALCU .

To conclude this section, we are leaving questions Q1 and Q2 open for the
description logics between ALC and ALCQIO. We conjecture that, without the
universal role, it is not possible to enforce introduction of an unbounded number
of individuals. It seems to be difficult even to enforce an exponential number of
new individuals.

6 Conclusion and Future Work

In this paper, we have shown that the planning problems PLANEX and PLANLEN
are decidable in action formalisms based on fragments of ALCQIO. More pre-
cisely, both PLANEX and PLANLEN are of the same computational complexity
as projection in the logics between ALC and ALCQIO, if operators have only
unconditional post-conditions. It is a not difficult to show that the same com-
plexity results apply to the unrestricted version of the action formalism from [2],

the one with occlusions. It will be a part of the future work to determine com-
plexity of PLANEX if actions have conditional post-conditions. From the known
results for conformant prpositional planning [8, 13], we know that PLANEX is
ExpSpace-hard in this case. We conjecture that the extended plan existence
problem for DLs without universal role is also decidable, but a proof is yet to
be done.

A future work will include a development and implementation of efficient
planners for description logics. Unfortunately, the complexity results we obtained
are quite discouraging. Unlike the propositional case, for DLs between ALC and
ALCQIO, looking for polynomial-length plans is not easier than PLANEX,
since the hardness results from Theorem 2 hold already for the plans of constant
length. Thus it looks reasonable to start with “small” DLs, like EL or EL(¬), for
which projection is in co-NP, and try to adapt some of the known techniques
for SAT-based conformant planning [5, 11].

Acknowledgements: The author wants to thank Carsten Lutz for inspiring
discussions and Ricard Gavaldà for his help concerning complexity classes.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms: First results. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA, USA, 2005.

3. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrat-
ing description logics and action formalisms for reasoning about web ser-
vices. LTCS-Report 05-02, TU Dresden, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

4. T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

5. C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artif. Intell., 147(1-2):85–
117, 2003.

6. K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and unde-
cidability results for domain-independent planning: A detailed analysis. Technical
Report CS-TR-2797, University of Maryland College Park, Maryland 20742, USA,
1991.

7. K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and un-
decidability results for domain-independent planning. Artificial Intelligence, 76(1-
2):75–88, 1995.

8. P. Haslum and P. Jonsson. Some results on the complexity of planning with
incomplete information. In Proceedings of 5th European Conference on Planning
ECP’99, pages 308–318, 1999.

9. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Reasoning about actions using descrip-
tion logics with general TBoxes. In Proceedings of the 10th European Conference

on Logics in Artificial Intelligence (JELIA 2006), volume 4160 of Lecture Notes in
Artificial Intelligence, pages 266–279, 2006.

10. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes.
In P. Doherty, J. Mylopoulos, and C. Welty, editors, Proceedings of the Tenth In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’06), pages 46–56. AAAI Press, 2006.

11. H. Palacios and H. Geffner. Compiling uncertainty away: Solving conformant plan-
ning problems using a classical planner (sometimes). In Proceedings of AAAI’06,
2006.

12. R. Reiter. Knowledge in Action. MIT Press, 2001.
13. J. Rintanen. Complexity of planning with partial observability. In Proceedings of

the Fourteenth International Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 345–354, 2004.

14. W. J. Savitch. Relationship between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4:177–192, 1970.

15. M. Thielscher. Introduction to the Fluent Calculus. Electronic Transactions on
Artificial Intelligence, 2(3–4):179–192, 1998.

