
Complexity of Planning in Action Formalisms

Based on Description Logics

Maja Miličić ?

Institut für Theoretische Informatik
TU Dresden, Germany

maja@tcs.inf.tu-dresden.de

Abstract. In this paper, we continue the recently started work on inte-
grating action formalisms with description logics (DLs), by investigating
planning in the context of DLs. We prove that the plan existence prob-
lem is decidable for actions described in fragments of ALCQIO. More
precisely, we show that its computational complexity coincides with the
one of projection for DLs between ALC and ALCQIO if operators con-
tain only unconditional post-conditions. If we allow for conditional post-
conditions, the plan existence problem is shown to be in 2-ExpSpace.

1 Introduction

Description Logics (DLs) are a well-known family of knowledge representation
formalisms that may be viewed as decidable fragments of first-order logic (FO).
The main strength of DLs is that they offer a nice compromise between expres-
siveness and complexity of reasoning [1].

The idea to investigate action formalisms based on description logics was
inspired by the expressiveness gap between existing action formalisms: they were
either based on FO logic and undecidable, like the Situation Calculus [14] and
the Fluent Calculus [17], or decidable but only propositional.

First results on integrating DLs with action formalisms from [2] show that
reasoning remains decidable even if an action formalism is based on the expres-
sive DL ALCQIO. In [2], ABoxes give incomplete descriptions of the current
state of the world, and describe the pre- and post-conditions of actions. Domain
constraints are captured by acyclic TBoxes, and post-conditions may contain
only atomic concept and role assertions. This formalism is in fact a decidable
fragment of SitCalc. It is shown in [2] that the projection and executability
problem for actions can be reduced to standard DL reasoning problems. Further
work in this line [11, 10] treat the problem of computing ABox updates and the
ramification problem induced by GCIs.

However, in the mentioned DL-action-framework, planning, an important
reasoning task, has not yet been considered. Intuitively, given an initial state
A, final state Γ and a finite set of actions Op, the plan existence problem is
the following: “is there a plan (a sequence of actions from Op) which transforms

? The author is supported by the EU project TONES

2

A into a state where Γ is satisfied?”. It is known that, already in the proposi-
tional case, planning is a hard problem. For example, the plan existence prob-
lem for propositional STRIPS-style actions with complete state descriptions is
PSpace-complete [4, 7], while it is ExpSpace-complete for conformant planning
(incomplete state descriptions) where actions have conditional post-conditions
[8, 15].

The planning problem in DL action formalisms is not only interesting from
the theoretical point of view. It is well known that the semantic web ontology
language OWL [9] is based on description logics; thus actions described in DLs
can be viewed as simple semantic web services. In this context, planning is a
very important reasoning task as it supports, e.g., web service discovery which
is needed for an automatic service execution.

This paper is, to our best knowledge, the first attempt to formally define
the planning problem in a DL fragment of SitCalc. We investigate the com-
putational complexity of the plan existence problem for the description logics
“between” ALC and ALCQIO. By using a compact representation of possible
states obtained by action application, we show that, if we allow only for actions
with unconditional post-conditions, in these logics the plan existence problem
is decidable, and of the same computational complexity as projection. If condi-
tional post-conditions are allowed, we show that the plan existence problem is in
2-ExpSpace. In the last section we discuss possible ways of developing practical
planning algorithms for DLs.

2 The Description Logic ALCQIO

The action formalism used in this paper is not restricted to a particular DL.
However, for our complexity results we consider the DL ALCQIO and a number
of its sublanguages. The reason for choosing this family of DLs is that they are
very expressive, but nevertheless admit practical reasoning. Moreover, ALCQIO
forms the core of OWL-DL, the description logic variant of OWL. As discussed
in [2], the additional OWL-DL constructors can be easily added, except for
transitive roles which lead to semantic and computational problems. Indeed,
DLs from this family underlie highly optimized DL systems such as FaCT++,
RacerPro, and Pellet.

In DL, concepts are inductively defined with the help of a set of constructors,
starting with a set NC of concept names, a set NR of role names, and a set NI

of individual names. The constructors determine the expressive power of the
DL. Table 1 shows a minimal set of constructors from which all constructors of
ALCQIO can be defined. The first row contains the only role constructor: in
ALCQIO, a role s is either a role name r ∈ NR or the inverse r− of a role name
r. Concepts of ALCQIO are formed using the remaining constructors shown in
Table 1, where r is a role, n a positive integer, and a an individual name. Using
these constructors, several other constructors can be defined as abbreviations:

– C tD := ¬(¬C u ¬D) (disjunction),
– > := A t ¬A for a concept name A (top-concept),

3

Name Syntax Semantics

inverse role r− {(y, x) | (x, y) ∈ rI}

negation ¬C ∆I \ CI

conjunction C u D CI ∩ DI

at-least restriction (> n s C) {x ∈ ∆I | card{y ∈ CI | (x, y) ∈ sI} ≥ n}

nominal {a} {aI}
Table 1. Syntax and semantics of ALCQIO.

– ∃s.C := (> 1 s C) (existential restriction),
– ∀s.C := ¬(∃s.¬C) (value restriction),
– (6 n s C) := ¬(> (n+ 1) s C) (at-most restriction).

The DL that allows for negation, conjunction, and value restrictions is called
ALC. The availability of additional constructors is indicated by concatenating
the corresponding letter: Q stands for number restrictions; I stands for inverse
roles, and O for nominals. This explains the name ALCQIO for our DL, and
also allows us to refer to sublanguages in a simple way.

The semantics of ALCQIO-concepts and roles is defined in terms of an in-
terpretation I = (∆I , ·I). The domain ∆I of I is a non-empty set of individuals
and the interpretation function ·I maps each concept name A ∈ NC to a sub-
set AI of ∆I , each role name r ∈ NR to a binary relation rI on ∆I , and each
individual name a ∈ NI to an element aI ∈ ∆I . The extension of ·I to arbi-
trary concepts and roles is inductively defined, as shown in the third column
of Table 1. Here, the function card yields the cardinality of the given set. Note
that the third column of Table 1 suggests a straightforward translation of DL
concepts into first-order formulas with one free variable, as explicated e.g. in [1].

A concept definition is an identity of the form A
.
= C, where A is a concept

name and C an ALCQIO-concept. A TBox T is a finite set of concept defini-
tions with unique left-hand sides. Concept names occurring on the left-hand side
of a definition of T are called defined in T whereas the others are called prim-
itive in T . The TBox T is acyclic iff there are no cyclic dependencies between
the definitions [1]. The semantics of TBoxes is defined in the obvious way: the
interpretation I is a model of the TBox T (I |= T) iff it satisfies all its defini-
tions, i.e., AI = CI holds for all A

.
= C in T . In the case of acyclic TBoxes, any

interpretation of the primitive concepts and of the role names can uniquely be
extended to a model of the TBox [12].

An ABox assertion is of the form C(a), r(a, b) or ¬r(a, b), where a, b ∈ NI,
C is a concept, and r a role name.1 An ABox is a finite set of ABox assertions.
The interpretation I is a model of the ABox A (I |= A) iff it satisfies all its
assertions, i.e., aI ∈ CI ((aI , bI) ∈ rI , (aI , bI) /∈ rI) for all assertions C(a)
(r(a, b), ¬r(a, b)) in A. If ϕ is an assertion, then we write I |= ϕ to indicate that
I satisfies ϕ.

1 Disallowing inverse roles in ABox assertions is not a restriction since r−(a, b) can be
expressed by r(b, a).

4

Various reasoning problems are considered for DLs. For the purpose of this
paper, it suffices to introduce ABox consistency and ABox consequence: the
ABox A is consistent w.r.t. the TBox T iff there exists an interpretation I that
is a model of both T and A; the ABox assertion ϕ is a consequence of A w.r.t.
T (written T ,A |= ϕ) iff every model I of T and A is also a model of ϕ.

3 Action Formalism

In this section, we present (a slightly extended version of) the action formalism
from [2]. Since we focus on planning in this paper, the central notion become
parameterized actions (operators), rather than ground actions like in [2].

The main ingredients of our framework are operators and actions (as defined
below), ABoxes describing the current knowledge about the state of affairs in the
application domain, and acyclic TBoxes for describing general knowledge about
the application domain similar to state constraints in the SitCalc and Fluent
Calculus.

Definition 1 (Action, operator). Let NX be a countably infinite sets of vari-
ables, disjoint with NC, NR and NI. Moreover, let T be an acyclic TBox. A
primitive literal for T is an ABox assertion

A(a),¬A(a), r(a, b), or ¬r(a, b)

with A a primitive concept name in T , r a role name, and a, b ∈ NI. An atomic
atomic α = (pre, occ, post) for T consists of

– a finite set pre of ABox assertions, the pre-conditions;
– a finite set occ of occlusions of the form A(a) or r(a, b), with A primitive

concept in T , r role name, and a, b ∈ NI;
– a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is

an ABox assertion and ψ is a primitive literal for T .

A composite action for T is a finite sequence α1, . . . , αk of atomic actions
for T . An operator for T is a parameterized atomic action for T , i.e., an action
in which definition variables from NX may occur in place of individual names.

We call post-conditions of the form >(t)/ψ unconditional and write just ψ
instead.

Applying an action changes the state of affairs, and thus transforms an in-
terpretation I into an interpretation I ′. Intuitively, the pre-conditions specify
under which conditions the action is applicable. The post-condition ϕ/ψ says
that, if ϕ is true in the original interpretation I, then ψ is true in the interpre-
tation I ′ obtained by applying the action. The rôle of occlusions is to indicate
those primitive literals that can change arbitrarily.

When defining the semantics of actions, we assume that states of the world
correspond to interpretations. Thus, the semantics of actions can be defined by
means of a transition relation on interpretations. We do not give semantics of

5

operators explicitly and assume that they are grounded before their applica-
tion. Let T be an acyclic TBox, α = (pre, occ, post) an action for T , and I an
interpretation. For each primitive concept name A and role name r, set:

A+ := {bI | ϕ/A(b) ∈ post ∧ I |= ϕ}

A− := {bI | ϕ/¬A(b) ∈ post ∧ I |= ϕ}

IA := (∆I \ {bI | A(b) ∈ occ}) ∪ (A+ ∪A−)

r+ := {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ}

r− := {(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}

Ir := ((∆I ×∆I) \ {(aI , bI) | r(a, b) ∈ occ}) ∪ (r+ ∪ r−)

The transition relation on interpretations should ensure that A+ ⊆ AJ and
A− ∩ AJ = ∅ if J is the result of applying α in I. It should also ensure that
nothing else changes, with the possible exception of the occluded literals. Intu-
itively, IA and Ir describe those parts of the model that are not exempted from
this restriction by the presence of an occlusion. Since we restrict our attention
to acyclic TBoxes, for which the interpretation of defined concepts is uniquely
determined by the interpretation of primitive concepts and role names, it is not
necessary to consider defined concepts when defining the transition relation.

Definition 2. Let T be an acyclic TBox, α = (pre, occ, post) an atomic action
for T , and I, I ′ models of T respecting the unique name assumption (UNA) on
individual names and sharing the same domain and interpretation of all indi-
vidual names. We say that α may transform I to I ′ (I ⇒T

α I ′) iff, for each
primitive concept A and role name r, we have

A+ ∩A− = ∅ and r+ ∩ r− = ∅

AI′

∩ IA = ((AI ∪A+) \A−) ∩ IA
rI

′

∩ Ir = ((rI ∪ r+) \ r−) ∩ Ir.

The composite action α1, . . . , αk may transform I to I ′ (I ⇒T
α1,...,αk

I ′) iff

there are models I0, . . . , Ik of T with I = I0, I ′ = Ik, and Ii−1 ⇒T
αi

Ii for
1 ≤ i ≤ k.

Note that the semantics is such that the changes are minimized w.r.t. the initial
interpretations. Also note that this definition does not check whether the action
is indeed executable, i.e., whether the pre-conditions are satisfied. It just says
what the result of applying the action is, irrespective of whether it is executable
or not. Since we use acyclic TBoxes to describe background knowledge, if occ is
the empty set, there cannot exist more than one I ′ such that I ⇒T

α I ′. Thus,
actions with empty occlusions are deterministic.

Like in [2], we assume that actions α = (pre, occ, post) are consistent with T
in the following sense: for every model I of T , there exists I ′, such that I ⇒T

α I ′.
It is not difficult to see that this is the case iff {ϕ1/ψ, ϕ2/¬ψ} ⊆ post implies
that the ABox {ϕ1, ϕ2} is inconsistent w.r.t. T .

6

Two standard reasoning problems about actions, projection and executability,
are thoroughly investigated in [2] in the context of DLs. Executability is the
problem of whether an action can be applied in a given situation, i.e. if pre-
conditions are satisfied in the states of the world considered possible.

Formally, let T be an acyclic TBox, A an ABox, and let α1, . . . , αn be a com-
posite action with αi = (prei, occi, posti) atomic actions for T for i = 1, . . . , n.

We say that α1, . . . , αn is executable in A w.r.t. T iff the following conditions
are true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒T
α1,...,αi

I ′, we
have I ′ |= prei+1.

Projection is the problem of whether applying an action achieves the de-
sired effect, i.e., whether an assertion that we want to make true really holds
after executing the action. Formally,the assertion ϕ is a consequence of applying
α1, . . . , αn in A w.r.t. T iff for all models I of A and T and for all I ′ with
I ⇒T

α1,...,αn
I ′, we have I ′ |= ϕ.

In [2] it was shown that projection and executability are decidable for the
logics between ALC and ALCQIO. More precisely, projection in L can be re-
duced to (in)consistency of an ABox relative to an acyclic TBox in LO. The
following theorem from [2] states that upper complexity bounds obtained in this
way are optimal:

Theorem 1. ([2]) Projection and executability of composite actions are:

(a) PSpace-complete in ALC,ALCO,ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

Looking carefully at the reduction of projection in L to ABox inconsistency
in LO from [2, 3], we conclude that the upper complexity bounds from Theorem
1 hold even for the “stronger” projection problem, namely the one where instead
of a single ABox assertion ϕ, we have an ABox Γ . We will need this strengthened
complexity result in the coming sections.

4 Planning Problem

We continue by defining the plan existence problem in the introduced framework.
First we introduce a bit of notation. If o is an operator (for a TBox T), we use
var(o) to denote the set of variables in o. A substitution v for o is a mapping
v : var(o) → NI. An action α that is obtained by applying a substitution v to o is
denoted as α := o[v]. Intuitively, the plan existence problem is: given an acyclic
TBox T which describes the background knowledge, ABoxes A and Γ giving
incomplete descriptions of the initial and the goal state, and a set of operators
Op, is there a plan (sequence of actions obtained by instantiating operators

7

from Op) which ”transforms” the stated described by A into a state where Γ is
satisfied?

In this paper, we assume that operators can be instantiated with individuals
from a finite set Ind ⊂ NI. Moreover, we assume that T , A and Γ contain only
individuals from Ind (we say that they are based on Ind). For an operator o,
we set o[Ind] := {o[v] | v : var(o) → Ind} and for Op a set of operators, we
set Op[Ind] := {o[Ind] | o ∈ Op}, i.e. Op[Ind] is the set of all actions obtained
by instantiating operators from Op with individuals from Ind. In the following
definition, we formally introduce the notion of a planing task:

Definition 3 (Planning task). A planning task is a tuple Π = (Ind, T ,Op,A, Γ),
where

– Ind is a finite set of individual names;
– T is an acyclic TBox based on Ind;
– Op is a finite set of atomic operators for T ;
– A (initial state) is an ABox based on Ind;
– Γ (goal) is an ABox based on Ind.

A plan in Π is a composite action α = α1, . . . , αk, such that αi ∈ Op[Ind],
i = 1..k. A plan α = α1, . . . , αk in Π is a solution to the planning task Π iff:

1. α is executable in A w.r.t. T ; and
2. for all interpretations I and I ′ such that I |= A, T and I ⇒T

α I ′, it holds
that I ′ |= Γ .

Example 1. We illustrate the previous definition by the following example de-
scribing a (simplified) process of opening a bank account in the UK.

Let the set of individuals be defined as

Ind = {dirk, uni liv, yoga center,UK, el, el′, l, ba}.

The initial state - ABox A states that Dirk is a resident of the UK who has
gotten two jobs – at the University of Liverpool and in the Yoga Center, but
still does not hold a bank account in the UK.

A := {resident(dirk,UK), employs(uni liv, dirk), employs(yoga center, dirk),

University(uni liv),¬∃holds.(B acc u ∃in.{UK})(dirk)}

Moreover, the set Op contains the operators for obtaining a lease, a letter from
employer, and a bank account. The set of occlusions occ is empty for all three
operators, so we will state only the sets of pre- and post-conditions pre and post.

– Suppose the pre-condition of obtaining a lease is that the customer x holds
a letter from his employer. This is formalized by the operator get Lease:

pre : {∃holds.EmployerLetter(x)}

post : {holds(x, y), Lease(y)}

8

– The operator get Letter describes the process of an employee x getting a
letter y from his employer z:

pre : {employs(z, x)}

post : {holds(x, y),EmployerLetter(y), signed(z, y)}

– Suppose the pre-condition of opening a bank account is that the customer
x is a resident in the UK and holds a proof of address. Moreover, suppose
that, if x is rated as “reliable”, then the bank account comes with a credit
card, otherwise not. This service can be formalized by the following operator
get B acc:

pre : {∃resident.{UK}(x),∃holds.Proof address(x)}

post : {holds(x, y), in(y,UK),
Reliable(x)/B acc credit(y),
¬Reliable(x)/B acc no credit(y)}

The meaning of the concepts used in A and Op is defined in the following acyclic
TBox T :

Reliable
.
= ∃holds.(B acc u Good credit rating u ∃in.{UK})

t∃holds.(EmployerLetter u ∃signed−.University}

Proof address
.
= Electricity contract t Lease

B acc
.
= B acc credit t B acc no credit

The first concept definition tells us that a person is rated as reliable if and only if
he already holds a bank account in the UK with a good credit rating, or holds a
letter stating that he is employed at the university. The second definition defines
a proof of the address to be either en electricity contract or a lease, while the
last one states that a bank account can come either with or without a credit
card.

Finally, we have two goals, Γ1 = {∃holds.(B accu∃in.{UK})(dirk)}, requiring
that Dirk holds a bank account in the UK, and a more ambitious one, Γ2 =
{∃holds.(B acc creditu∃in.{UK})(dirk)}, namely that Dirk holds a bank account
in the UK with a credit card. We define corresponding planing tasks Π1 and Π2

as Π1 = (Ind, T ,Op,A, Γ1) and Π2 = (Ind, T ,Op,A, Γ2). It is not difficult to see
that the plan:

get Letter[x/dirk, y/el, z/yoga center], get Lease[x/dirk, y/l], get B acc[x/dirk, y/ba]

is a solution to Π1, but not Π2, while the plan:

get Letter[x/dirk, y/el′, z/uni liv], get Lease[x/dirk, y/l], get B acc[x/dirk, y/ba]

is a solution both to Π1 and Π2.

The plan existence problem (PLANEX), c.f. [7], is the problem of whether
a given planning task Π has a solution. If operators in Π contain conditional
post-conditions, we will call it conditional PLANEX, and otherwise unconditional
PLANEX.

9

5 Complexity of Planning: Unconditional Post-Conditions

In this section, we will focus on the plan existence problem in the case oper-
ators have only unconditional post-conditions. It turns out that unconditional
PLANEX is not harder, at least in theory, than projection in the fragments of
ALCQIO from Theorem 1.

Obviously, the plan existence problem is closely related to projection and
executability. First we introduce some notation. Let A be an ABox, T an acyclic
TBox, α a (possibly composite) action, and ϕ an ABox assertion. We will write
T ,Aα |= ϕ iff ϕ is a consequence of applying α in A w.r.t. T . For an ABox B,
we write T ,Aα |= B iff T ,Aα |= ϕ for all ϕ ∈ B.

Let Π = (Ind, T ,Op,A, Γ) be a planning task for which we want to decide
if it has a solution. This means that we want to check if there is a sequence of
actions from Op[Ind] which transform the initial state (described by A) into a
state where goal Γ holds.

In the propositional case, planning is based on step-wise computation of the
next state – which corresponds to computing updated ABoxes. However, in [11],
it is shown that an updated ABox may be exponentially large in the size of the
initial ABox and the update, which makes this approach unsuitable. We base
our approach in this paper on the following observation: instead of computing
a sequence of (exponentially large) updated ABoxes, it suffices to compute a
sequence of updates which are applied to the initial ABox A. Intuitively, these
updates are lists of accumulated triggered post-conditions. Similarly, we keep
track of accumulated occlusions. Thus, states of the search space can be com-
pactly described as pairs: (occlusion, update).

We define the set of possible (negated) atomic changes as:

Lpost := {ψ,¬ψ | ψ ∈ post, α = (pre, occ, post), α ∈ Op[Ind]}

and the set of possible occlusions:

Locc := {ψ | ψ ∈ occ, α = (pre, occ, post), α ∈ Op[Ind]}

An update for Π is a consistent subset of Lpost. Let U be a set of all updates
for Π. Moreover, let O := 2Locc . Then O × U is our search space, the size of
which |O| · |U| is exponential in the size of Π, since the sizes of Lpost and Locc

are polynomial in Π. For a U ∈ U, we set ¬U := {¬l | l ∈ U} and U := {l | l ∈
U ∪ ¬U and l positive}.

Intuitively, (∅, ∅) represents the initial state, and all tuples (O,U) ∈ O × U

such that T ,A(∅,O,U) |= Γ represent goal states. In the next step, we define the

transition relation “
α
→T ,A” on O × U. Let (O,U),(O′,U ′) ∈ O × U. We say that

(O,U)
α
→ (O′,U ′) iff:

(i) O′ = (O ∪ occ) \ post
(ii) U ′ = (U \ (occ ∪ ¬occ ∪ ¬post)) ∪ post

Obviously, the relation “
α
→” is functional for every α. In the following lemma,

we show that “
α
→” simulates “⇒T

α ” on the set O×U. We omit the proof, which
can be done by an easy induction.

10

Lemma 1. Let Π = (Ind, T ,Op,A, Γ) be a planning task and let α = α1, . . . , αk

be a plan in Π. Let U0 = O0 := ∅ and let (O1,U1), . . . , (Ok,Uk) be such such
that

(O0,U0)
α1→ (O1,U1) · · ·

αk→ (Ok,Uk)

Then the following holds:

(a) For all interpretations I, I ′ such that I |= A and for all 1 ≤ i ≤ k, we have
that I ⇒T

α1,...,αi
I ′ iff I ⇒T

(∅,Oi,Ui)
I ′.

(b) T ,A(∅,Oi,Ui) |= prei+1 for all i < k iff α1, . . . , αk is executable in A w.r.t. T ;

We now present a non-deterministic procedure which decides whether the
planning task Π has a solution. The procedure searches for an executable se-
quence of actions from Op[Ind] which transforms the initial state S0 = (∅, ∅) into
a state SΓ = (OΓ ,UΓ) ∈ O × U such that T ,ASΓ |= Γ 2 (goal state). We use
ε do denote the empty action (∅, ∅, ∅). Since the search space O × U is of size

2|Locc| · 3
|Lpost|

2 (< 2|Locc|+|Lpost|), there is no need to search for longer sequences
than 2|Locc|+|Lpost|.

PLANEX(Π)
i := 0; S0 := (∅, ∅);
while i < 2|Locc|+|Lpost|

guess α = (pre, occ, post) ∈ Op[Ind] ∪ {ε}
if T ,ASi 6|= pre

then return FALSE
compute Si+1 such that Si

α
→ Si+1

i := i+ 1
if T ,ASi 6|= Γ

then return FALSE
return TRUE

It is not difficult to show that Lemma 1 implies that PLANEX(Π) returns
TRUE iff Π has a solution. Clearly, PLANEX(Π) works in NPSpace with
the “projection oracle”. If projection is in PSpace, then PLANEX is obviously
in NPSpace. By using Savitch’s result [16] that PSpace = NPSpace, we ob-
tain that PLANEX is then in PSpace. Similarly, if projection is in ExpTime,
since NPSpace ⊆ ExpTime, we have that PLANEX can be decided in Ex-

pTime. Finally, we will show the less straightforward result that PLANEX is
in co-NExpTime if projection is in co-NExpTime. To this end, we develop
an alternative NExpTime algorithm which returns TRUE iff the planning task
Π has no solution. Let S = O × U and Q = {pre(α) | α ∈ Op[Ind]} ∪ {Γ}.
The alternative algorithm has three steps: (i) guess an (exponentially big) set
T of tuples (S,Q) from S × Q; (ii) check whether for all tuples (S,Q) it holds
that T ,AS 6|= Q; (iii) check if the following holds: in every run of the origi-
nal PLANEX(Π) procedure, there is at least one projection test T ,AS |= Q?

2 from now on, if S = (O,U), we write S as an abbreviation for the action (∅,O,U)

11

such that (S,Q) ∈ T . If (ii) and (iii) give positive answers, return TRUE. Since
(ii) and (iii) can be checked in ExpTime, the steps (i)-(iii) can be executed in
NExpTime. Thus, we obtained the following lemma:

Lemma 2. Let L ∈ {ALC,ALCO,ALCI,ALCQ,ALCIO,ALCQO,ALCQI,
ALCQIO}. The unconditional PLANEX in L has the same upper complexity
bound as projection in L.

We show that the upper complexity bounds established in Lemma 1 are
tight by the following easy reduction of projection to PLANEX. Let A be an
ABox, α an action with empty pre-conditions and empty occlusions and only
with unconditional post-conditions, and ϕ an assertion.We define the planning
task ΓA,α,ϕ as ΓA,α,ϕ := (∅, ∅, {α},A, {ϕ}). It is not difficult to see that Aα |= ϕ
iff ΓA,α,ϕ has a solution.

Since the lower bounds for projection from Theorem 1 hold already in the
case of the empty TBox and an atomic action with empty pre-conditions and
occlusions and only with unconditional post-conditions [2], we conclude that the
complexity bounds from Lemma 2 are optimal, i.e. plan existence problem is of
exactly the same computational complexity as projection.

Theorem 2. The unconditional plan existence problem is:

(a) PSpace-complete in ALC, ALCO, ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

6 Complexity of Planning: Conditional Post-Conditions

If we allow for conditional post-conditions in operators, the complexity results
from the previous section do not hold anymore. With conditional post-conditions,
already in the propositional case, conformant PLANEX is ExpSpace-hard [8,
15]. In this section we will show that conditional PLANEX is decidable for DLs
between ALC and ALCQIO. Decidability will be shown by an 2-ExpSpace

algorithm.
Let Π = (Ind, T ,Op,A, Γ) be a planning task for which we want to decide

if it has a solution. For the sake of simplicity, we assume that occlusions in
operators from Op are empty, i.e. operators are of the form (pre, post). Non-
empty occlusions can be treated similarly as in the previous section. We will
also use abbreviations introduced in the previous section. Moreover, we set

Lpost := {ψ,¬ψ | ϕ/ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}

and
Cpost := {ϕ | ϕ/ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}.

An update in Π is a consistent subset of Lpost. Let U be the set of all updates in
Π. A context C in Π is a consistent subset of Cpost ∪ ¬Cpost such that for every

12

ϕ ∈ Cpost, it is the case that either ϕ ∈ C or ¬ϕ ∈ C. Moreover let C be the set of
all contexts in Π. Let M be the set of admissible mappings m : U → C, where a
mapping m is admissible iff there exists an interpretation I, such that I |= A, T
and for all U ∈ U it holds that IU

T |= m(U). 3. Intuitively, if m(U) = C, it means
that after updating a model I of A and T with U , all assertions from C will hold.
Thus every admissible m describes a relevant class of possible initial models of A

and T . The number of different mappings m : U → C is at most 2|Cpost|·2
Lpost

, and
for every m it can be checked in ExpSpace if it is admissible, if projection is in
ExpSpace. The search space S is the set of all mappings S : M → U, the size

of which |S| ≤ 2|Lpost|·2
|Cpost|·2

Lpost

. Similarly as in the previous section, we define

the transition relation
α
→ on S × S. For S,S ′ ∈ S, m ∈ M, and α = (pre, post)

we set postα,S,m := {ψ | ϕ/ψ ∈ post, ϕ ∈ m(S(m))}. We say that S
α
→ S ′ iff

S ′(m) = (S(m) \ ¬postα,S,m) ∪ postα,S,m for all m ∈ M

Moreover, for B be an ABox, we say that T ,AS |=∗ B iff for all m ∈ M the
following holds: for all interpretations I such that I |= A, T , if for all U ∈ U it

holds that IU
T |= m(U), then I

S(m)
T |= B.

condPLANEX(Π)
i := 0; S0(m) = ∅ for all m ∈ M;

while i < 2|Lpost|·2
|Cpost|·2

Lpost

if T ,ASi |=∗ Γ
then return TRUE

guess α = (pre, post) ∈ Op[Ind]
if T ,ASi 6|=∗ pre

then return FALSE
compute Si+1 such that Si

α
→ Si+1

i := i+ 1
return FALSE

It is not difficult to show that condPLANEX(Π) indeed decides ifΠ has a solu-
tion. The search space S is 3-exponential in the size of Π, thus condPLANEX
requires 2-NExpSpace with a “|=∗ oracle”. It is not difficult to see that |=∗ can
be decided in 2-ExpSpace if projection is in ExpSpace. Thus we have that con-
ditional PLANEX in 2-NExpSpace. Since 2-NExpSpace =2-ExpSpace [16],
we obtain the following theorem:

Theorem 3. The conditional plan existence problem is in 2-ExpSpace in the
DLs between ALC and ALCQIO.

7 Individuals not Part of Input

The previous decidability and complexity results are obtained under assumption
that the set of individuals Ind used to instantiate operators is finite and a part

3 IU

T denotes the unique interpretation I ′ such that I ⇒T

U I′

13

of the input. This assumption is rather natural and in the line with the standard
definitions of planning tasks for STRIPS operators from [4, 7]. Intuitively, Ind is
the set of individuals the planning agent has control over.

Alternatively, one can omit individuals from the input and define a planning
task Π as Π = (T ,Op,A, Γ). The extended plan existence problem is the one
of whether there is a solution for Π, defining a plan for Π to be a sequence of
actions α1, . . . , αk, where each αi is obtained by instantiating an operator from
Op with individuals from an infinitely countable set NI.

In the case of the datalog STRIPS, it is shown that the extended plan exis-
tence problem is undecidable [7, 6]. However, this undecidability result does not
automatically carry over to the action formalism instantiated by DLs used in
this paper. Indeed, the undecidability result from [7, 6] relies on the closed world
assumption and negative pre-conditions. By using these two, one can define oper-
ators which are applicable only if instantiated with “unused” individuals. Such
operators would have ¬Used(x) among its pre-conditions, and Used(x) in the
list of post-conditions. Like this, one can enforce the usage of infinitely many
individuals.

In the case of DLs considered in the previous sections, due to the open
world assumption (OWA), it is not possible to state that all individuals not
appearing in the initial ABox are instances of the concept ¬Used. However, in
the presence of the universal role U , we can make assertions over the whole
domain. For example, the assertion ∀U.¬Used(a) can ensure that all element
domains are unused in the initial state. We will show that extended planning in
ALCU (extension of ALC with the universal role) is undecidable. Undecidability
is shown by reducing the halting problem of a deterministic Turing machine to
the extended plan existence problem, similar to [6].

Let M = (Q,Σ, δ, q0, qf) be a deterministic Turing machine, where

– Q = {q0, . . . , qn} a finite set of states;
– Σ = {blank, a1, . . . , am} a finite alphabet;
– δ : Q×Σ → Q×Σ × {L,R} is a transition function;
– q0 is the initial state;
– qf ∈ Q is the final state.

Let a = ai0 , . . . aik
∈ Σ∗ be an input word. We will define a planning task

ΠM,a = (∅,OpM,a,AM,a, ΓM,a) such that a planner for Π simulates moves of
the Turing Machine M . In the reduction, we use concept names Q0, . . . , Qn,
Blank, A1, . . . , Am, Used, Last, M , Done, and the role name right. We define the
initial state AM,a, the goal ΓM,a, and the set of operators OpM,a as:

AM,a := {(M u ∀U.¬Used)(t0)} ∪ {Ai0(t0), . . . , Aik
(tk)}

∪{right(t0, t1), . . . right(tk−1, tk)}

ΓM,a := {Done(t0)}

OpM,a := {start, create succ(x.y), done(x), done to left(x, y)} ∪
⋃

δ(q,a)=(q′,b,R)

{rightq,a,q′,b(x, y)} ∪
⋃

δ(q,a)=(q′,b,L)

{leftq,a,q′,b(x, y)}

14

where the single operators (of the form (pre, post), occ = ∅ for all operators) are
defined as follows :

start := ({M(t0)}, {Used(t0), ...,Used(tk), Last(tk),¬M(t0), Q0(t0)})

create succ(x.y) := ({Last(x),¬Used(y)},

{right(x, y),¬Last(x), Last(y),Used(y),Blank(y)}

rightq,a,q′,b(x, y) := ({Q(x), A(x), right(x, y)}, {¬Q(x),¬A(x), B(x), Q′(y)}

leftq,a,q′,b(x, y) := ({Q(x), A(x), right(y, x)}, {¬Q(x),¬A(x), B(x), Q′(y)}

done(x) := ({Qf (x)}, {Done(x)})

done to left(x, y) := ({Done(x), right(y, x)}, {Done(y)})

It is not difficult to show that the following lemma holds:

Lemma 3. The Turing machine M halts on the input a iff there is a solution
to the planning task ΠM,a = (∅,OpM,a,AM,a, ΓM,a).

Thus, we obtained the following theorem:

Theorem 4. The extended plan existence problem is undecidable in ALCU .

We conjecture that in the fragments of ALCQIO (i.e. without the universal
role) the extended plan existence problem is decidable. However, a proof is yet
to be done.

8 Conclusion and Future Work

In this paper, we have shown that the plan existence problem (PLANEX) is de-
cidable in the action formalism based on fragments of ALCQIO. More precisely,
PLANEX is shown to be of the same computational complexity as projection in
the logics between ALC and ALCQIO if operators have only unconditional post-
conditions. It is also shown that occlusions do not make planning harder. If oper-
ators have conditional post-conditions, planning is shown to be in 2-ExpSpace.
At the moment, it remains an open problem if this complexity bound is optimal.
Finally, we have shown that the extended plan existence problem is undecidable
in DLs providing for the universal role but we conjecture that it is decidable in
the fragments of ALCQIO (without the universal role).

A future work will include a development and implementation of efficient
planners for description logics. Unfortunately, the complexity results we obtained
are quite discouraging. Unlike the propositional case, for DLs between ALC and
ALCQIO, looking for polynomial-length plans is not easier than PLANEX,
since the hardness results from Theorem 2 hold already for the plans of constant
length. Thus it looks reasonable to start with “small” DLs, like EL or EL(¬), for
which projection is in co-NP, and try to adapt some of the known techniques
for SAT-based conformant planning [5, 13].
Acknowledgements: Thanks to Carsten Lutz for inspiring discussions. Many
thanks to Ricard Gavaldà for his help concerning complexity classes.

15

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms: First results. In Proceedings of AAAI-05, Pittsburgh,
PA, USA, 2005.

3. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating
description logics and action formalisms for reasoning about web services.
Technical Report LTCS 05-02, TU Dresden, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

4. T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

5. C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artif. Intell., 147(1-2):85–
117, 2003.

6. K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and unde-
cidability results for domain-independent planning: A detailed analysis. Technical
Report CS-TR-2797, University of Maryland College Park, 1991.

7. K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and un-
decidability results for domain-independent planning. Artificial Intelligence, 76(1-
2):75–88, 1995.

8. P. Haslum and P. Jonsson. Some results on the complexity of planning with
incomplete information. In Proceedings of ECP’99, pages 308–318, 1999.

9. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

10. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Reasoning about actions using descrip-
tion logics with general TBoxes. In Proceedings of JELIA 2006, volume 4160 of
LNAI, pages 266–279, 2006.

11. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes. In
Proceedings of KR’06, pages 46–56, 2006.

12. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43:235–249, 1990.

13. H. Palacios and H. Geffner. Compiling uncertainty away: Solving conformant plan-
ning problems using a classical planner (sometimes). In Proc. of AAAI’06, 2006.

14. R. Reiter. Knowledge in Action. MIT Press, 2001.
15. J. Rintanen. Complexity of planning with partial observability. In Proceedings of

(ICAPS 2004), pages 345–354, 2004.
16. W. J. Savitch. Relationship between nondeterministic and deterministic tape com-

plexities. Journal of Computer and System Sciences, 4:177–192, 1970.
17. M. Thielscher. Introduction to the Fluent Calculus. Electronic Transactions on

Artificial Intelligence, 2(3–4):179–192, 1998.

