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ABSTRACT
Query containment has been studied extensively for fragments of
XPath 1.0. For instance, the problem is known to be EXPTIME-
complete forCoreXPath, the navigational core of XPath 1.0. Much
less is known about query containment in (fragments of) the richer
language XPath 2.0. In this paper, we consider extensions of
CoreXPath with the following operators, which are all part of
XPath 2.0 (except the last): path intersection, path equality, path
complementation, for-loops, and transitive closure. For each com-
bination of these operators, we determine the complexity of query
containment, both with and without DTDs. It turns out to range
from EXPTIME (for extensions with path equality) and 2-EXPTIME

(for extensions with path intersection) to non-elementary (for ex-
tensions with path complementation orfor-loops). In almost all
cases, adding transitive closure on top has no further impact on the
complexity. We also investigate the effect of dropping the upward
and/or sibling axes, and show that this sometimes leads to a reduc-
tion in complexity. Since the languages we study include negation
and conjunction in filters, our complexity results can equivalently
be stated in terms of satisfiability. We also analyze the above lan-
guages in terms of succinctness.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages

General Terms
Languages, Algorithms

Keywords
XML, XPath, Containment, Satisfiability, Complexity

1. INTRODUCTION
The growing popularity of XML as a standard for representing

semi-structured data has led to the definition of a large number of
XML-related formalisms, most notably schema languages such as
DTDs and XML Schema, and query and transformation languages
such as XQuery and XSLT. Located at the heart of most of these
is XPath, the basic formalism for navigating through XML docu-
ments. Because of the central role of XPath, the static analysis of
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XPath expressions is a prominent subject in research about XML
processing. In particular,containmentandsatisfiabilityhave been
investigated for a variety of XPath fragments, and a wealth of com-
plexity results has been obtained over the last few years (e.g., [21,
12, 1]). Many of these results also take into account a schema lan-
guage, most notably DTDs, and analyze their impact on the com-
plexity of query contaiment and satisfiability.

Almost all of the existing complexity results for XPath concern
the 1.0 version instead of the more recent and richer XPath 2.0. The
work of Hidders [12] is a notable exception, but it addresses only
positive fragments of XPath 2.0, i.e., fragments in which negation
of node expressions is not admitted. In this paper, we consider a
family of fragments of XPath 2.0 that form a hierarchy regarding
expressive power, all of them including negation. We provide a de-
tailed analysis of the complexity of containment and related static
analysis problems in these fragments, both with and without DTDs.

More specifically, we extendCoreXPath, the navigational core
of XPath 1.0 [7, 8], with the following ingredients that were intro-
duced in XPath 2.0:path intersection(∩), path complementation
(−), anditeration (for). Besides these three operators, we also con-
sider transitive closure(∗) andpath equalities(≈, also known as
node set equalitiesand not to be confused withdata value equali-
ties). Path equalities are not part of XPath 2.0 as a primitive con-
struct, but can be expressed. They have been studied in [4, 2, 22,
25]. Transitive closure is not part of XPath 2.0 and cannot be ex-
pressed, but it extends the expressive power of XPath in a very nat-
ural way, see e.g. [16, 25, 6]. These five additions toCoreXPath

are not all independent: path equalities can be expressed using path
intersection, which can in turn be expressed using path complemen-
tation, which can again be expressed using iteration. The expres-
sivity hierarchy for these languages is depicted in Figure 1, based
on expressivity results from [17, 18, 25].

For each of the languages shown in Figure 1, we determine the
complexity of the containment problem, which ranges from EXP-
TIME to non-elementary. Our main results are summarized in Ta-
ble 1 and Figure 1. They apply to satisfiability as well, since con-
tainment and (non-)satisfiability are polynomially inter-reducible
in the XPath dialects considered here. Moreover, since DTDs can
be expressed inCoreXPath(∗) with only a linear blowup in size,
all upper bounds from Table 1 generalize to containment and satis-
fiability in the presence of DTDs.

Our results show that≈ and ∗ never increase the complex-
ity of the containment problem, with one exception: adding∗ to
the downward fragment ofCoreXPath(∩) increases the complex-
ity from EXPSPACE to 2-EXPTIME. Adding∩ usually increases
the complexity of containment by one exponential, even though∩
does not give more expressive power than≈. Finally, the effects
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Figure 1: Hierarchy of XPath languages

of adding path complementation orfor are rather devastating, as
it renders containment non-elementary hard. In other words, the
amenities of XPath 2.0 come at the price of a considerable increase
in computational complexity, at least in the presence of negation.
We can also conclude thatCoreXPath(∗,≈) is a rather well be-
haved fragment. Among all languages studied in this paper, it is
the most expressive one for which containment is still decidable in
EXPTIME and thus not more difficult than inCoreXPath, and this
holds even in the presence of DTDs. Note that even for the positive
downward fragment ofCoreXPath containment in the presence of
DTDs is already EXPTIME-hard [21].

We also present some observations concerningsuccinctness. We
show thatCoreXPath(∩) is exactly exponentially more succinct
thanCoreXPath andCoreXPath(≈), explaining the higher com-
putational complexity of the former. Likewise,CoreXPath(∗,∩)
is exactly exponentially more succinct thanCoreXPath(∗,≈). Fi-
nally, CoreXPath(∗,−) is non-elementarily more succinct than
CoreXPath(∗,∩) and CoreXPath(for) is at least exponentially
more succinct thanCoreXPath(−).

Related work.A considerable number of papers is concerned
with the complexity of static analysis for fragments ofXPath 1.0,
see [23, 4, 19, 28, 16, 21, 1]. The work of Hidders [12], which
we already mentioned, studies satisfiability for positive fragments
of XPath 2.0. The present paper can be seen as a continuation of
the work of Hidders. Our setting is more general in several re-
spects: (i) we consider languages that include negation of node
expressions, (ii) our results also cover containment and other static
analysis tasks, and (iii) we also study these tasks in the presence of
a DTD. Our results also relate to [2], where closure under intersec-
tion and complementation is studied for XPath fragments that do
not explicitly contain these operators.

The most important feature of XPath that we donot study is
data value comparison. Note that already for the extension of
CoreXPath with data value comparisons of the formα/@a =
β/@b andα/@a = ‘c’, containment is undecidable [1].

In [26], complete axiomatizations are presented for
CoreXPath(∩,−) andCoreXPath(∩,−, for).

Table 1: Summary of our complexity results

The complexity of containment and satisfiability for XPath expres-
sions:

CoreXPath(. . .) CoreXPath(∗, . . .)

≈ EXPTIME-complete (even for
the downward fragment)

EXPTIME-complete (even for
the downward fragment)

∩ 2-EXPTIME-complete (even
for the vertical and forward
fragments);

2-EXPTIME-complete (even
for the downward fragment);

EXPSPACE-complete for the
downward fragment;

EXPTIME-complete when the
nesting depth of intersection is
bounded

EXPTIME-complete when the
nesting depth of intersection is
bounded

− Non-elementary (even for the
downward fragment)

Non-elementary (even for the
downward fragment)

for Non-elementary (even for the
one-variable downward frag-
ment)

Non-elementary (even for the
one-variable downward frag-
ment)

All results also apply in the presence of DTDs.

2. PRELIMINARIES
We review the syntax and semantics ofCoreXPath and several

of its extensions. We also introduce and compare various static
analysis problems for XPath.

2.1 Syntax and semantics ofCoreXPath

An XML document, for present purposes, is a finite node-
labelled sibling-ordered unranked tree.

DEFINITION 1 (TREE MODELS). Fix a countably infinite
set Σ of labels (or tags). A tree model is a structure
(N,R↓, R→, Lab), where(N,R↓) is a finite tree (withR↓ the
child-relation),R→ linearly orders siblings in this tree, andLab :
N → Σ assigns a label to each node.

We will useR↑ andR← to denote the converse ofR↓ andR→. We
do not associate data values with nodes since data value comparison
is not considered in this paper.

DEFINITION 2 (SYNTAX AND SEMANTICS OF CoreXPath).
The primary expressions ofCoreXPath arepath expressions, which
define binary relations. Inside the path expressions, one can use
node expressions, which define sets of nodes. The two types of
expressions are defined by simultaneous induction.

◮ Path expressions: α ::= τ | τ∗ | . | α/β | α ∪ β | α[ϕ]

◮ Node expressions: ϕ ::= p | 〈α〉 | ⊤ | ¬ϕ | ϕ ∧ ψ

whereτ ∈ {↓, ↑,→,←}, p ∈ Σ,α andβ are path expressions and
ϕ andψ are node expressions.

The semantics ofCoreXPath, relative to a tree modelM =
(N,R↓, R→, Lab), is given by two functions,[[·]]MPExpr and[[·]]MNExpr,
mapping path expressions and node expressions to binary relations
and sets, respectively. These functions are defined as follows (we
omit the superscriptM for readability):

[[τ ]]PExpr = Rτ
[[τ∗]]PExpr = the reflexive transitive closure of[[τ ]]PExpr

[[.]]PExpr = {(n, n) | n ∈ N}
[[α/β]]PExpr = [[α]]PExpr composed with[[β]]PExpr

[[α ∪ β]]PExpr = [[α]]PExpr ∪ [[β]]PExpr

[[α[ϕ] ]]PExpr = {(n,m) ∈ [[α]]PExpr | m ∈ [[ϕ]]NExpr}
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[[p]]NExpr = {n ∈ N | Lab(n) = p}
[[〈α〉]]NExpr = {n ∈ N | ∃m ∈ N. (n,m) ∈ [[α]]PExpr}
[[⊤]]NExpr = N
[[¬ϕ]]NExpr = N \ [[ϕ]]NExpr

[[ϕ ∧ ψ]]NExpr = [[ϕ]]NExpr ∩ [[ψ]]NExpr

For τ ∈ {↓, ↑,→,←}, we will useτ+ as shorthand forτ/τ∗ (the
proper transitive closure ofτ ). Also, we will use↓1 as a shorthand
for ↓[¬〈←〉] (the first-child relation), and↑1 for .[¬〈←〉]/↑ (the
converse of↓1). Finally, we will useϕ⇒ ψ as a shorthand for the
node expression¬(ϕ ∧ ¬ψ).

The original version ofCoreXPath as introduced in [7, 8] does
not include thenon-transitive sibling axes← and→. We have
included them, but all our results hold independently of whether
these axes are present or not.

2.2 ExtendingCoreXPath

We consider extensions ofCoreXPath with the following:

◮ Path equalities (≈). A path equality is a node expression of the
formα ≈ β, for α, β path expressions, interpretedexistentially:

[[α ≈ β]]NExpr = {n ∈ N | ∃m ∈ N.(n,m) ∈ [[α]]PExpr∩[[β]]PExpr}.

Path equalities have been studied in [4, 2, 22, 25].

◮ Path intersection (∩). For any path expressionsα, β,

[[α ∩ β]]PExpr = [[α]]PExpr ∩ [[β]]PExpr.

Path equalities can be seen as a special case of path intersection:
α ≈ β is equivalent to〈α ∩ β〉.

◮ Path complementation (−). For any path expressionsα, β,

[[α− β]]PExpr = [[α]]PExpr \ [[β]]PExpr.

Path intersection can be defined in terms of path complementation:
α ∩ β ≡ U − (U − α) ∪ (U − β), whereU is shorthand for the
path expression↑∗/↓∗ (which defines the universal relation).

◮ Iteration (for). This extension involves a countably infinite
set of node variables$i, $j, . . ., that can be bound using the
for-construct. One can test equality of the current node and a
variable $i using a node test of the form “. is $i”. More in-
formation on the precise syntax and semantics will be given in
Section 7. For now, we only remark that path complementa-
tion can be expressed using iteration:α − β is equivalent to
for $i in α return .[¬〈β[. is $i]〉]/↑∗/↓∗[. is $i].

◮ Transitive closure (∗). CoreXPath only supports the transitive
closure of the atomic path expressions↑, ↓,←,→. If transitive clo-
sure is addedas an operator on arbitrary path expressions, paths
like (↓/↓)∗ (“descendant at even distance”) become expressible.

For anyX ⊂ {≈,∩,−, for, ∗}, we denote byCoreXPath(X) the
extension ofCoreXPath with the operators inX. We denote by
CoreXPath↓(X) thedownwardfragment ofCoreXPath(X), i.e.,
having only the downward axes↓, ↓∗ (and ‘.’). Similarly, we de-
note byCoreXPath↓↑(X) andCoreXPath↓→(X) thevertical and
forward fragment ofCoreXPath(X).

2.3 Static analysis
We consider the following decision problems, which play an im-

portant role in the static analysis of XPath expressions:

◮ Path containment: given two path expressionsα, β, is it true that
for all tree modelsM , [[α]]MPExpr ⊆ [[β]]MPExpr?

◮ Path satisfiability: given a path expressionα, is there a tree
modelM such that[[α]]MPExpr 6= ∅?

◮ Node satisfiability: given a node expressionϕ, is there a tree
modelM such that[[ϕ]]MNExpr 6= ∅?

For the languages we consider, these problems all have the same
complexity. Indeed, the proof of the following is not difficult.

PROPOSITION 3. LetL be any of the languages mentioned in
Table 1. Then any two ofpath containment, path unsatisfiability,
andnode unsatisfiabilityare polynomially inter-reducible.

The same holds for some other problems such as thenon-empty
intersectionproblem for path expressions [11]. Throughout this
paper, we state our results in terms ofpath containment. However,
many of the proofs make use of Proposition 3 and are formulated
in terms of node satisfiability.

Each of the above problems can be relativised to aDocument
Type Definition(DTD). As in [1], we abstract away from DTD fea-
tures such as default values and attributes, and define a DTD to
be a triple(E,P, r), where (1)E ⊆ Σ is a set ofelement types;
(2) r ∈ E is the root type; and (3)P is a function that assigns
to each element ofE a regular expression overE. A tree model
M conforms toa DTDD = (E,P, r) if the root ofM is labeled
with r, each node is labeled with a label fromE, and for each node
n with childrenn1, . . . , nk, the wordLab(n1), . . . , Lab(nk) be-
longs to the language generated byP (Lab(n)).

Thepath containment problem in the presence of DTDsis as fol-
lows: given two path expressionsα, β and a DTDD, is it true that
for all tree modelsM conforming toD, [[α]]MPExpr ⊆ [[β]]MPExpr? Path
satisfiability and node satisfiability in the presence of DTDs are de-
fined analogously. For each of these decision problems, the DTD-
relativised version is at least as complex as the general version. For
extensions ofCoreXPath(∗), it is not more complex either, as is
implied by the following:

THEOREM 4 ([16]). For each DTD D, there is a
CoreXPath(∗) node expressionϕD such that for all tree
modelsM ,M conforms toD iff the root ofM satisfiesϕD.

Thus, all upper bounds in Table 1 immediately generalize to the
DTD-relativised case, except for the EXPSPACE-upper bound for
CoreXPath↓(∩), for which we will prove it by hand. In fact, in
both cases, we could even handleextended DTDs(a formalism rich
enough to capture the schema languages XSchema and RELAX
NG) andancestor based patterns[20, 15].

3. CoreXPath(∗,≈) IS IN EXPTIME
We show that path containment can be decided in EXPTIME for

CoreXPath(∗,≈) using two way alternating tree automata.
To simplify the proof, we will work with a different, but equally

expressive version ofCoreXPath(∗,≈). This version differs in
four aspects from the original one. First, we replace≈ with the
path operatorloop, which tests whether a node is reachable from
itself along a given path:

[[loop(α)]]MNExpr = {n | (n, n) ∈ [[α]]MPExpr}.

Note that loop(α) can be expressed asα ≈ . and, conversely,
α ≈ β can be written asloop(α/β⌣), whereβ⌣ is the con-
verse ofβ (defined inductively) [25]. Second, we drop the oper-
ator 〈α〉. This can be done w.l.o.g. since〈α〉 can be expressed
as loop(α/↑∗/↓∗). Third, we replace the axes↓ and↑ with the
first-child step (↓1) and its converse (↑1). Note that↓ is equiv-
alent to↓1/→

∗ and ↓1 is equivalent to↓[¬〈←〉]. Likewise for
↑ and↑1. Fourth, we replace path expressions with NFAs (non-
deterministic finite automata) whose alphabet is comprised of the
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basic axes↓1, ↑1,←,→ and node tests of the form.[ϕ]. This is jus-
tified by the observation that path expressions ofCoreXPath(∗,≈)
are just regular expressions over this alphabet if we replace sub-
expression of the formα[ϕ] with α/.[ϕ]. It is well known that
NFAs offer a succinct representation of such regular expressions.

To make things precise, we give a formal definition of the result-
ing version of XPath.

DEFINITION 5 (CoreXPathNFA(∗, loop)). The node expres-
sions and path automata ofCoreXPathNFA(∗, loop) are defined by
simultaneous induction.

◮ Node expressions: Every labelp ∈ Σ is a node expression, and
for every path automatonα, loop(α) is a node expression. Ifϕ and
ψ are node expressions, then so are¬ϕ andϕ ∧ ψ.

◮ Path automata: A path automaton is a tupleπ = (Q, δ, q0, qf ),
whereQ is a finite set of states,δ ⊆fin Q × ({↓1, ↑1,→,←} ∪
{.[ψ] | ψ is a node expression}) × Q, andq0 andqf indicate the
initial and final state.

Note that sinceskip transitions can be defined as.[⊤], we can do
with only one final state in the definition of NFAs. For a path au-
tomatonπ = (Q, δ, q0, qf ) and statesq, q′ ∈ Q, we will useπ(q,q′)

as shorthand for(Q, δ, q, q′). Thelengthof a path automaton is the
number of states plus the total length of all node expressionsϕ oc-
curring in transitions of the form(q, .[ϕ], q′).

Our aim is to translateCoreXPathNFA(∗, loop) node expressions
into two-way alternating tree automata (2ATAs). To prepare for this
translation, we give an inductive characterization ofloop.

LEMMA 6 (INDUCTIVE CHARACTERIZATION OF loop). Let
π = (Q, δ, q0, qf ) be aCoreXPathNFA(∗, loop) path automaton,
and let M = (N,R↓, R→, Lab) be any tree model. Define
LOOPSπ ⊆ N ×Q×Q to be the smallest relation satisfying

◮ (n, q, q) ∈ LOOPSπ for all n ∈ N andq ∈ Q

◮ Whenever(n, qi, qj) ∈ LOOPSπ, δ(qj , .[ϕ], qk), and n ∈
[[ϕ]]MNExpr, then(n, qi, qk) ∈ LOOPSπ.

◮ Whenever(n, qj , qk) ∈ LOOPSπ, δ(qi, .[ϕ], qj) and n ∈
[[ϕ]]MNExpr, then(n, qi, qk) ∈ LOOPSπ.

◮ Whenever nRτm, (m, qj , qk) ∈ LOOPSπ, δ(qi, τ, qj),
and δ(qk, τ̄ , qℓ), then (n, qi, qℓ) ∈ LOOPSπ (where τ ∈
{↓1, ↑1,←,→} and τ̄ is the converse ofτ )

◮ Whenever(n, qi, qj) ∈ LOOPSπ and(n, qj , qk) ∈ LOOPSπ then
(n, qi, qk) ∈ LOOPSπ.

Then(n, q, q′) ∈ LOOPSπ iff n |= loop(πq,q′).

PROOF SKETCH. The only difficult direction is the right-to-left
direction. It is proved by induction on the length of the witnessing
run of the NFA, using the crucial observation that, if the automaton
starts at a noden and afterwards passes through another nodem in
the tree, in order to return ton it will have to pass throughm again
(this holds due to the fact that we chose↓1, ↑1,← and→ as our
basic axes).

Since we use a slightly non-standard version of 2ATAs, we give
a brief introduction. Our 2ATAs work directly on tree mod-
els. They traverse such a model using theBASIC-STEPS =
{↓1, ↑1,→,←, ǫ}, where the first four steps correspond to the basic
axes ofCoreXPathNFA(∗, loop) andǫ means staying at the current
node. For any noden of a tree model,POSSIBLE-STEPS(n) de-
notes the set of basic steps that can be performed fromn. For each
a ∈ POSSIBLE-STEPS(n) we will denote byn · a the node reached
from n by performing the basic stepa.

DEFINITION 7 (2ATA). A two way alternating tree automa-
ton (2ATA) is a tupleA = (Q, δ, q0, Acc), where

◮ Q is a finite set of states

◮ δ : (Q× Σ× ℘(BASIC-STEPS))→ B+(BASIC-STEPS×Q) is
the transition function. We require that all basic steps occurring in
δ(q, σ, S) belong toS.

◮ q0 is the initial state

◮ Acc : Q→ N specifies a “parity acceptance condition”.

Here,℘() denotes powerset and byB+X, we refer to the set of all
positive Boolean formulas over variables fromX, including true

andfalse.

Note that the alphabetΣ of 2ATAs is the same as the alpha-
bet underlying tree models (i.e., XML documents). Intuitively,
δ(q, σ,A) = ψ means that if the automaton is in stateq, reads
σ, and the current node allows exactly the basic steps inA, then
the transition is as described byψ, in the usual sense of alternating
automata. It follows from the results in [27] that for our version of
2ATAs, emptiness can be decided in EXPTIME. More details are
given in Appendix A.

THEOREM 8. Satisfiability ofCoreXPathNFA(∗, loop) node ex-
pressions is decidable inEXPTIME.

PROOF. By reduction to the non-emptiness problem for 2ATAs.
Let ϕ be anyCoreXPathNFA(∗, loop) node expression, and let
ϕ′ = ↓∗/ϕ. Note thatϕ is satisfiable iffϕ′ is satisfiable at the
root of a tree model. LetCl(ϕ′) be the smallest set of node expres-
sions containingϕ′ such that

◮ Cl(ϕ′) is closed under taking subformulas and single negations

◮ For all loop(π) ∈ Cl(ϕ′) andqk, qℓ states ofπ, loop(π(qk,qℓ))
also belongs toCl(ϕ′)

Note that the size ofCl(ϕ′) and the length of its elements is
bounded polynomially in the length ofϕ. We now define the 2ATA
Aϕ′ to be(Σ, Q, δ, q0, Acc), whereQ = {qψ | ψ ∈ Cl(ϕ

′)}, δ
is defined as in Table 2,q0 = qϕ′ , Acc assigns1 to all states of
the formqloop(α), and2 to all others (in other words, no state of the
form qloop(α) may occur forever on a path in the run).

Using the inductive characterization ofloop provided by
Lemma 6, it is not hard to show that tree model belongs toLAϕ′

iff it satisfiesϕ′ at the root. Thus,ϕ is satisfiable iffϕ′ is root-
satisfiable iffLAϕ is non-empty.

By Proposition 3, together with the facts that (i) there is a linear
translation fromCoreXPath(∗,≈) to CoreXPathNFA(∗, loop) and
(ii) containment is already EXPTIME-hard forCoreXPath [1], we
thus obtain

COROLLARY 9. Containment forCoreXPath(∗,≈) is EXP-
TIME-complete.

Together with known results about alternating automata [27], the
proof of Theorem 8 also yields the following, which will come in
handy later on.

THEOREM 10. Every satisfiableCoreXPath(∗,≈) node ex-
pressionϕ is satisfied in a tree model of size2O(|ϕ|).
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Table 2: Transition function of the automatonAϕ′ used in the proof of Theorem 8

δ(ℓ, qp, POSSIBLE-STEPS) = ⊤ if ℓ = p,⊥ otherwise
δ(ℓ, q¬p, POSSIBLE-STEPS) = ⊥ if ℓ = p,⊤ otherwise

δ(ℓ, qψ∧χ, POSSIBLE-STEPS) = (ǫ, qψ) ∧ (ǫ, qχ)
δ(ℓ, q¬(ψ∧χ), POSSIBLE-STEPS) = (ǫ, q¬ψ) ∨ (ǫ, q¬χ)

δ(ℓ, qloop(π(qi,qj))
, POSSIBLE-STEPS) = ⊤ if q0 = qf , otherwise

W

δ(qi,τ,qk),δ(qℓ,τ̄ ,qj),τ∈POSSIBLE-STEPS
(τ, qloop(π(qk,qℓ))

)

∨
W

δ(qi,?χ,qk) ((ǫ, χ) ∧ (ǫ, qloop(π(qk,qj))
))

∨
W

δ(qk,?χ,qj) ((ǫ, χ) ∧ (ǫ, qloop(π(qi,qk))
))

∨
W

qk∈Q
((ǫ, qloop(π(qi,qk))

) ∧ (ǫ, qloop(π(qk,qj))
))

δ(ℓ, q¬loop(π(qi,qj))
, POSSIBLE-STEPS) = ⊥ if q0 = qf , otherwise

V

δ(qi,τ,qk),δ(qℓ,τ̄ ,qj),τ∈POSSIBLE-STEPS
(τ, q¬loop(π(qk,qℓ))

)

∧
V

δ(qi,?χ,qk) ((ǫ,¬χ) ∨ (ǫ, q¬loop(π(qk,qj))
))

∧
V

δ(qk,?χ,qj) ((ǫ,¬χ) ∨ (ǫ, q¬loop(π(qi,qk))
))

∧
V

qk∈Q
((ǫ, q¬loop(π(qi,qk))

) ∨ (ǫ, q¬loop(π(qk,qj))
))

4. CoreXPath(∗,∩) IS IN 2-EXPTIME
We present exponential translations fromCoreXPath(∩) to

CoreXPath and from CoreXPath(∗,∩) to CoreXPath(∗,≈).
From these translations, we derive upper bounds on the complexity
and succinctness ofCoreXPath(∩) andCoreXPath(∗,∩).

THEOREM 11. There is a single exponential translation from
CoreXPath(∩) path expressions toCoreXPath path expressions.

PROOF. The proof is along the same lines as in [2], where it is
shown that positiveCoreXPath(∩) path expressions can be trans-
lated to positiveCoreXPath path expressions with an exponential
blowup.

We will show how to do the translation forCoreXPath(∩) path
expressions that do not contain∩ inside qualifiers (here, byqual-
ifier we mean a path modifier of the form[ϕ]). The general case
follows by applying the translation repeatedly, in a bottom-up way.

Let α be aCoreXPath(∩) path expression not containing∩ in-
side qualifiers. Introduce a unary predicatePψ for each node ex-
pressionψ that occurs inα as a test. Following [2]α can be
translated in linear time to a positive existential first-order formula
ϕ(x, y) in the vocabulary consisting ofR↓, R↓∗ , R→ andR→∗

and thePψ ’s, such thatα andϕ(x, y) define the same binary re-
lation. Next, as shown in [1, 9],ϕ(x, y) can be translated into a
(positive)CoreXPath path expressionβ of exponential size, where
thePψ ’s may occur inβ as node tests. As a final step, we replace
eachPψ in β back by the original node expressionψ.

The situation is less clear forCoreXPath(∗,∩). In fact, we do
not know whether it is possible to translateCoreXPath(∗,∩) path
expressions toCoreXPath(∗) at all. However, we do have a trans-
lation toCoreXPath(∗,≈).

As in the previous section, it will be convenient to
work with the equally expressive but more succinct language
CoreXPathNFA(∗, loop).

LEMMA 12. For all CoreXPathNFA(∗, loop) path automataα
and β, there is aCoreXPathNFA(∗, loop) path expressionγ of
lengthO(|α| · |β|) that is equivalent toα ∩ β.

PROOF. Let α = (Q, δ, q0, qf ) andβ = (Q′, δ′, q′0, q
′
f ). Be-

fore we defineγ, let us first provide the basic intuition. Sup-
posem andn are nodes in a tree modelM = (N, . . .) such that

(m,n) ∈ [[α]]MPExpr and(m,n) ∈ [[β]]MPExpr. There is a unique cycle-
free path fromm to n in the graph(N,R↓1 , R→), and if we disre-
gard loops, then every witnessing trace ofα orβ fromm tonmust
travel exactly along this path in order to reachn fromm.

This intuition drives our construction ofγ below: we useloop to
cut all loops made byα andβ, so that the trip fromm tonmade by
α andβ can be performed synchronously. To be precise, we define
γ as(Q×Q′, δ×, 〈q0, q

′
0〉, 〈qf , q

′
f 〉), where the transition function

δ× contains the following transitions:

◮ δ×(〈q, q′〉, τ, 〈r, r′〉) whenever δ(q, τ, r) and δ′(q′, τ, r′)
(for τ ∈ {↓1, ↑1,→,←})

◮ δ×(〈q, q′〉, .[loop(α(q,r))], 〈r, q
′〉)

◮ δ×(〈q, q′〉, .[loop(β(q′,r′))], 〈q, r
′〉)

It should be clear from the above discussion thatγ defines exactly
the intersection of the binary relations defined byα andβ.

THEOREM 13. There is a single exponential translation from
CoreXPath(∗,∩) path expressions toCoreXPath(∗, loop) path ex-
pressions.

PROOF. It follows from Lemma 12 that, for all
CoreXPath(∗, loop) path expressionsα and β, there is a
CoreXPath(∗, loop) expressionγ of length 2O(|α|·|β|) that is
equivalent toα∩ β (simply apply the usual exponential translation
from NFAs to regular expressions). Applying this repeatedly, in a
bottom-up fashion, we can translate anyCoreXPath(∗,∩) path ex-
pression into an exponentially long equivalentCoreXPath(∗, loop)
path expression.

COROLLARY 14. Containment forCoreXPath(∗,∩) is decid-
able in2-EXPTIME. It is decidable inEXPTIME if there is a bound
on the nesting depth of intersection.

PROOF. The first half of the statement follows directly from
Theorem 13. As for the second half, if there is a bound on the nest-
ing depth of intersection, then Lemma 12 gives us a polynomial
translation fromCoreXPath(∗,∩) to CoreXPathNFA(∗, loop). By
Theorem 8, the latter is decidable in EXPTIME.
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A matching lower bound will be proved in Section 6. The
above translations fromCoreXPath(∩) to CoreXPath and from
CoreXPath(∗,∩) to CoreXPath(∗,≈) also allow to derive results
about the relative succinctness of these languages. We will come
back to this in Section 8.

5. CoreXPath↓(∩) IS IN EXPSPACE
We will now show that containment can be decided in

EXPSPACE for CoreXPath↓(∩), the downward fragment of
CoreXPath(∩) (even if there is no bound on the nesting depth of in-
tersection). As before, we will use Proposition 3, and prove the up-
per bound only for node satisfiability. Our proof is inspired by Lad-
ner’s PSPACEalgorithm for testing satisfiability of modal formulas
[13]. The heart of the argument lies in Lemma 16 below, which
shows that we can restrict attention to tree models whose depth is
bounded exponentially in the length of the inputCoreXPath↓(∩)
expression.

As a first step, we show how we can get rid of union and intersec-
tion in path expressions, at the expense of an exponential blowup.
We call aCoreXPath↓(∩) path expressionsimpleif it is of the form
α1/ · · · /αn, where eachαi is of the form↓, ↓∗ or .[ϕ]. We use|α|
to denote the length of a path expressionα (the number of symbols
needed to write it), and likewise for node expressions.

LEMMA 15. For every CoreXPath↓(∩) path expressionα,
there is a set of simpleCoreXPath↓(∩) path expressionsinst(α)
such that

(i) |inst(α)| is 2O(|α|2),

(ii) for eachβ ∈ inst(α), |β| ≤ 4 · |α|,

(iii) α is equivalent to
S

inst(α), and

(iv) eachβ ∈ inst(α) contains only node expressions that occur
in α.

The proof is based on a careful case distinction. Details can be
found in Appendix B.

For any simple path expressionα = α1/ · · · /αn, we will use
suff(α) to denote the set{αi/ · · · /αn | 1 ≤ i ≤ n}. For any
node expressionϕ, sub(ϕ) is the set of all sub-expressions ofϕ,
i.e., node expressions that occur as a subterm ofϕ (possibly nested
inside a path sub-expression occurring inϕ). Finally,aux(ϕ) is the
set of all node expressions of the form〈β〉 with β ∈ suff(inst(α))
for some〈α〉 ∈ sub(ϕ). Intuitively, sub(ϕ) ∪ aux(ϕ) contains all
those node expressions that might be needed in order to compute
inductively the set of nodes that satisfyϕ.

LEMMA 16. Every satisfiableCoreXPath↓(∩) node expres-

sionϕ0 is satisfiable in a tree of height2O(|ϕ0|
3).

The proof of this lemma consists of a slightly intricate manipula-
tion of tree models. The basic idea is to describe each noden in a
tree model by atypewhich includes (a subset of) the node expres-
sions fromsub(ϕ) ∪ aux(ϕ) true atn. Although there are doubly
exponentially many such types, a careful counting argument shows
that only singly exponentially many types can be realized on each
individual branch of a tree. Moreover, if a branch contains two
nodes that have the same type, the model can be contracted into a
smaller one. Details are given in Appendix B.

To present the decision procedure, we need a few further prelim-
inaries. For anyCoreXPath↓(∩) node expressionϕ, let cl(ϕ) =
{ψ,¬ψ | ψ ∈ sub(ϕ) ∪ aux(ϕ)}.

guess a complete ϕ0-type t;
if ϕ0 6∈ t then return ‘No’ else return check(t,0);

procedure check(t, i):

if i > 2p(|ϕ0|) then return ‘No’ else continue;

for each demand ϕ ∈ t do
let the remainder of ϕ be ϕ′;
guess a complete ϕ0-type t′;
if ϕ′ 6∈ t′ or t 6⇒ t′ or check(t′, i + 1)=’No’ then

return ’No’ else continue;

return ’Yes’;

Figure 2: Non-deterministic exponential space algorithm for
testing satisfiability of aCoreXPath↓(∩) node expressionϕ0.

DEFINITION 17 (COMPLETE TYPE). Let ϕ0 be any
CoreXPath↓(∩) node expression. Acompleteϕ0-type is any
t ⊆ cl(ϕ0) satisfying the following conditions:

◮ t contains at most one label fromΣ as an element.

◮ For all ¬ϕ ∈ cl(ϕ), ϕ ∈ t iff ¬ϕ 6∈ t.

◮ For all (ϕ ∧ ψ) ∈ cl(ϕ0), (ϕ ∧ ψ) ∈ t iff ϕ ∈ t andψ ∈ t.

◮ For all 〈α〉 ∈ sub(ϕ0), 〈α〉 ∈ t iff there is aβ ∈ inst(α) such
that 〈β〉 ∈ t.

◮ For all 〈.[ψ]/β〉 ∈ aux(ϕ0), 〈.[ψ]/β〉 ∈ t iff ψ ∈ t and〈β〉 ∈ t.

◮ For all 〈↓∗/β〉 ∈ aux(ϕ0), if 〈β〉 ∈ t then〈↓∗/β〉 ∈ t.

Let t be a completeϕ0-type. A formulaψ ∈ t is called ademandin
t if either (i)ψ is of the form〈↓/α〉, or (ii) ψ is of the form〈↓∗/α〉
andt does not contain〈α〉. In the first case, theremainderof ψ is
〈α〉, and in the second case, the remainder ofψ isψ itself.

Given two completeϕ0-types,t, t′, we write t ⇒ t′ if the fol-
lowing two conditions hold:

◮ for all 〈↓/α〉 ∈ aux(ϕ0), if 〈α〉 ∈ t′ then〈↓/α〉 ∈ t;

◮ for all 〈↓∗/α〉 ∈ aux(ϕ0), if 〈↓∗/α〉 ∈ t′ then〈↓∗/α〉 ∈ t

Intuitively, t ⇒ t′ means that we can consistently think oft′ as
being the type of a child of a node with typet.

The (non-deterministic) algorithm for node satisfiability in
CoreXPath↓(∩) is given in Figure 2. It takes as input a node ex-
pressionϕ0, and it tries to recursively construct a model for the
expression, while keeping in memory at any point only a single
branch of length at most2p(|ϕ0|), wherep is the precise polyno-
mial of Lemma 16. The correctness of the algorithm is proved in
Appendix B. Since NEXPSPACE = EXPSPACE by Savitch’s theo-
rem, we obtain thatCoreXPath↓(∩) is in EXPSPACE.

The above construction can be extended to the case with DTDs,
giving us an EXPSPACE algorithm for testing containment for
CoreXPath↓(∩) in the presence of DTDs. In the case relative to
a DTDD = (E,P, r), thecheck procedure, when called with in-
put typet, has to guess not just a type for each demand int, but also
a word belonging toP (a), wherea is the unique label belonging
to t. Extended DTDs and ancestor based patterns can be handled
as well.

THEOREM 18. Containment forCoreXPath↓(∩) in the pres-
ence of DTDs is decidable inEXPSPACE.

A matching lower bound will be proved in the next section.

6



6. LOWER BOUNDS FOR CoreXPath(∗,∩)
We now provide matching lower bounds for the upper bounds

from the previous sections: containment is EXPSPACE-hard for
CoreXPath↓(∩), and it is 2-EXPTIME-hard forCoreXPath(∩, ∗).
In fact, we show that the 2-EXPTIME lower bound holds
for the fragments CoreXPath↓↑(∩), CoreXPath↓→(∩) and
CoreXPath↓(∗,∩). This shows that the EXPSPACE upper bound
for CoreXPath↓(∩) cannot be generalized in any easy way.

As usual, we concentrate on satisfiability of node expressions.
By Proposition 3, the results carry over to containment for path
expressions. It is convenient to work with a generalization of tree
models in which nodes can satisfy more than one label, i.e., where
the labelling functionLab of models is a function fromN to 2Σ.
We call such modelstree models with multi-labels. The following
lemma shows that, in proving our lower bounds, we can safely use
tree-models with multi-labels.

LEMMA 19. Satisfiability ofCoreXPath↓(∩) node expressions
on tree-models with multi-labels can be reduced in polynomial
time to satisfiability ofCoreXPath↓(∩) node expressions on
standard tree models. The same holds forCoreXPath↓(∗,∩),
CoreXPath↓↑(∩) andCoreXPath↓→(∩).

The lemma is proved via an easy encoding of the multi-labels of
a noden through the (standard) labels of additional children ofn,
similar to what is done in [8]. Details are given in Appendix C. In
the remainder of this section, we only consider tree models with
multi-labels. Our first aim is to prove the following result.

THEOREM 20. Containment for CoreXPath↓,↑(∩) is
2-EXPTIME-hard.

The proof is by reduction of the word problem for exponentially
space bounded alternating Turing machines (ATMs). Recall that an
ATM is of the formM = (Q,Λ,Γ, q0,∆), whereQ = Q∃⊎Q∀⊎
{qa} ⊎ {qr} is the set ofstates, partitioned intoexistential states
from Q∃, universal statesfrom Q∀, an accepting stateqa, and a
rejecting stateqr; Λ is theinput alphabetandΓ thework alphabet
containing ablank symbol� and satisfyingΛ ⊆ Γ; q0 ∈ Q∃ ∪Q∀
is thestarting state; and thetransition relation∆ is of the form
∆ ⊆ Q × Γ × Q × Γ × {L,R}. We will write ∆(q, a) for
{(q′, b,M) | (q, a, q′, b,M) ∈ ∆}.

There exists an exponentially space bounded ATMM =
(Q,Λ,Γ, q0,∆) whose word problem is 2-EXPTIME-hard [3]. We
may assume that the length of every computation ofM onw ∈ Λk

is bounded by22k

, and all the configurationswqw′ in such com-
putations satisfy|ww′| ≤ 2k. We may also assume w.l.o.g. that
M never attempts to move left on the left-most tape cell. Let
w = a0 · · · ak−1 ∈ Λ∗ be an input toM. We construct a node
expressionϕM,w of CoreXPath↓,↑(∩) such thatw ∈ L(M) iff
ϕM,w is satisfiable.

In models ofϕM,w, nodes are used to represent tape cells and
subtrees are used to represent configurations. This is illustrated in
Figure 3, in which the triangles denoteconfiguration trees, i.e., bi-
nary trees of depthk whose leaves encode a configuration. The
figure shows a configuration (left tree) with two successor config-
urations (middle and right tree). Ther and¬r labels are used as
markers, as explained later on. In the reduction, we use the set of
labelsQ ∪ Γ ∪ {r, c0, . . . , ck−1}, whose intuitive meaning is as
follows (recall that we work with multi-label trees):

◮ q ∈ Q is true in a leafn of a configuration tree if in this config-
uration, the head ofM is on the tape cell represented byn and the
machine is in stateq;

r

r

¬r ¬r

r

Figure 3: Successor configurations inCoreXPath↓,↑(∩).

◮ a ∈ Γ is true in a leafn of a configuration tree ifa is the symbol
on the tape cell represented byn;

◮ r is used to identify the roots of configuration trees and is impor-
tant for “travelling” between successor configurations using path
expressions;

◮ c0, . . . , ck−1 describe a counterC in binary coding for counting
the 2k tape cells of configurations, with the leftmost cell having
counter valueC = 0;

In the following, we use{α !ϕ} as an abbreviation for¬〈α[¬ϕ]〉,
i.e., the semantics is

[[{α !ϕ}]]NExpr = {n ∈ N | ∀m ∈ N. (n,m) ∈ [[α]]PExpr

impliesm ∈ [[ϕ]]NExpr}.

This abbreviation corresponds to thebox operatorof modal logic.
We first establish, underneath eachr node, a tree in which we find
every tape cell (i.e., counter value ofC) at least once as a leaf. For
all i < k, define:

ϕtree :=
^

i<k

˘

↓∗[r]/↓i !
`

〈↓[ci]〉 ∧ 〈↓[¬ci]〉 ∧

^

j<i

((cj ⇒ {↓ ! cj}) ∧ (¬cj ⇒ {↓ !¬cj}))
´¯

where↓i denotes thei-fold composition↓/ · · · /↓. Since we are
only allowed to travel up and down, we cannot ensure that every
value ofC occursat mostonce among the leaves. Instead, we
ensure that cells with identicalC values are labelled in the same
way. Define for alla, b ∈ Γ and alli < k:

αab := .[a]/↑k/↓k[b]

α=i := (.[ci]/↑
k/↓k[ci]) ∪ (.[¬ci]/↑

k/↓k[¬ci])

Now, the path expressionα=cur travels between any two leafs of a
configuration tree with the sameC value andϕuni ensures unique
labels.

α=cur :=
\

i<k

α=i

ϕuni :=
^

a,b∈Γ,a6=b

¬〈↓∗[r]/↓k/(αab ∩ α=cur)〉

It is easy to construct a node expressionϕtape which ensures that
(i) every tape cell is marked with at least (and thus exactly) one
symbol fromΓ and never with two different states, (ii) each config-
uration has at most one cell marked with the tape head (which in-
volves a path expressionα6=cur similar toα=cur above), and (iii) the
initial configuration is such that the head is on the left-most tape
cell, the ATM is in stateq0, and the tape is labelled with the input
word followed by blanks. Details are left to the reader. We now
say that cells not underneath the head are labelled with the same
alphabet symbol in the consecutive configuration. A central role is
played by the path expressionα=nxt, which travels from leafs of a
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Figure 4: Successor configurations inCoreXPath↓→(∩).

configuration to leafs of the successor configurations that represent
the same tape cell.

α=nxt :=
\

i<k

`

(↓/↑[ci]/↑
k+1/↓[¬r]/↓[r]/↓k[ci]) ∪

(↓/↑[¬ci]/↑
k+1/↓[¬r]/↓[r]/↓k[¬ci])

´

ϕid :=
^

a∈Γ

`

(¬h ∧ a)⇒ {α=nxt ! a}
´

Observe that we use the additional root labelled¬r of successor
configurations (c.f. Figure 3) to distinguish them from the current
configuration.

Next, we have to ensure that the transitions are according to the
transition table. To this end, we need path expressionsαLcur and
αRcur that are similar toα=cur, but travel to the left and right neigh-
boring cell in the current configuration. We only giveαRcur:

αRcur :=
\

i<k

(αflip−i ∪ αkeep−i)

αflip−i := .[c0 ∧ · · · ∧ ci−1]/α6=i

αkeep−i := .[¬c0 ∨ · · · ∨ ¬ci−1]/α=i

whereα6=i is defined analogously toα=i. Now, the following node
expression takes care of proper transitions:

ϕ∆ :=
˘

↓∗[r]/↓k !
^

q∈Q∃,a∈Γ

( q ∧ a⇒
_

(p,b,M)∈∆(q,a)

〈α=nxt[b ∧ {αMcur ! p}]〉 ) ∧

^

q∈Q∀,a∈Γ

( q ∧ a⇒
^

(p,b,M)∈∆(q,a)

〈α=nxt[b ∧ {αMcur ! p}]〉 ) }

It remains to describe acceptance of the machine. Since all com-
putations ofM are finite, it suffices to require that the rejecting
stateqr never appears:ϕacc := [↓∗]¬qr. Altogether, the machine’s
behaviour is described by the node expression

ϕM,w := ϕtree ∧ ϕuni ∧ ϕtape ∧ ϕid ∧ ϕ∆ ∧ ϕacc

It is not hard to show thatw ∈ L(M) iff ϕM,w is satisfiable, which
establishes Theorem 20.

The following result is proved similarly, again by a reduction of
the word problem of exponentially space-bounded ATMs.

THEOREM 21. Containment for CoreXPath↓→(∩) is
2-EXPTIME-hard.

We only illustrate the most important ideas of the reduction. It
uses the same labels as in the previous reduction, except that we
dropr. In CoreXPath↓→(∩), configurations have to be represented
in a different way than before. This is illustrated in Figure 4, in
which the horizontal sequences are of length2k and represent a
configuration. As before, the figure shows one configuration (left

box) together with two successor configurations (right boxes). We
can access neighboring cells in the same configuration by travelling
to the right, and we can access cells in successor configurations by
means of the path expression→∗[¬〈→〉]/↓∗/→∗.

All relevant properties can in fact be described in
CoreXPath↓→(∩) without using the one-step sibling axes→
(which is not present in the original version ofCoreXPath). To
ensure that each horizontal sequence is of the appropriate length,
we use the counterC, enforcing that (i) every non-leaf has a child
with counter value 0; (ii) each node with counter valuex < 2k

sees via→∗ a node with counter valuex + 1; and (iii) there is
no node that sees via→∗ a node with the same counter value. To
achieve (i)-(iii), we use the following node expression:

ϕinc := {↓∗ !
`

〈↓〉 ⇒ 〈↓[¬c0 ∧ · · · ∧ ¬ck−1]〉
´

∧
`

¬c0 ∨ · · · ∨ ¬ck−1 ⇒ 〈αinc ∩→
∗〉

´

∧

¬〈α= ∩→
∗〉 }

αinc :=
[

i<k

“

.[c0 ∧ · · · ∧ ci−1 ∧ ¬ci] /

\

i<j<k

`

(cj/→
∗/cj) ∪ (¬cj/→

∗/¬cj)
´

/

.[¬c1 ∧ · · · ∧ ¬ci−1 ∧ ci]
”

It is straightforward to adapt the node expressionsϕtape, ϕid, ϕ∆,
andϕacc to the new setup. The expressionsϕtree andϕuni are not
needed.

Adding transitive closure toCoreXPath↓(∩) also makes con-
tainment 2-EXPTIME. This in fact follows from a known result.
CoreXPath↓(∗,∩) can be seen as a notational variant ofpropo-
sitional dynamic logic with intersection(IPDL). It was proved in
[14] that satisfiability of IPDL formulas in finite tree models (with
multi-labels) is 2-EXPTIME-hard. Thus, we obtain

THEOREM 22. Containment for CoreXPath↓(∗,∩) is 2-
EXPTIME-hard.

Finally, we consider thedownwards fragmentCoreXPath↓(∩)
and provide a matching EXPSPACE lower bound for Theorem 18.

THEOREM 23. Containment for CoreXPath↓(∩) is EXP-
SPACE-hard.

The proof is by a reduction of the word problem of exponentially
time-bounded ATMs. According to [3], there is an exponentially
time bounded ATMM whose word problem is EXPSPACE-hard.
We may assume that the length of every computation ofM on
w ∈ Λk is bounded by2k, and that all configurationswqw′ in such
computations satisfy|ww′| ≤ 2k. As in the previous reductions,
we also assume thatM never attempts to move left on the left-most
tape cell. Letw = a0 · · · ak−1 ∈ Λ∗ be an input toM. We sketch
the construction of a node expressionϕM,w of CoreXPath↓(∩)
such thatw ∈ L(M) iff ϕM,w is satisfiable.

Figure 5 shows how we represent a configuration and two suc-
cessor configurations. Each box encloses a configuration, which is
represented by a downward sequence of length2k. The two lower
boxes represent the successor configuration of the upper box. We
use the labels from the previous reductions and introduce additional
labelsd0, . . . , dk−1 for implementing a second counterD. While
the purpose ofC is still to count the tape cells of a configuration,
the purpose ofD is to count successive configurations. Both coun-
ters are initialized with value 0. With each child-step,C is incre-
mented modulo2k. If the value ofC changes from2k− 1 to 0, the
counterD is incremented as well, otherwise it stays the same.
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Figure 5: Successor configurations inCoreXPath↓(∩).

For ϕid andϕ∆, we need a path expression that accesses the
corresponding tape cell in successor configurations, i.e., the node
whoseC value is the same as the currentC value, and whoseD
value is the currentD value plus one. Such a path expression is
easy to find, by analogy toα=cur andαRcur above.

7. PATH COMPLEMENTATION AND FOR-
LOOPS

We now consider two extensions ofCoreXPath for which path
containment is non-elementary. Recall that a decision problem
is callednon-elementaryif the time needed to solve it cannot be
bounded by any exponential tower of constant height.

First, we considerCoreXPath(−), the extension ofCoreXPath

with path complementation. Path containment is non-elementary
even for a small fragmentL of CoreXPath(−), in which path ex-
pressions are formed as follows:

α ::= ↓[p] | ↓+ | α/β | α− β

for p ∈ Σ and with↓+ abbreviating↓/↓∗. Note thatL has only
downward axes, lacks complex node tests, and lacks union as a
primitive operator.

THEOREM 24. Containment forL is non-elementary.

PROOF. We now give a reduction from the non-emptiness prob-
lem for star-free expressionsr := a | (rr′) | (r ∪ r′) | −r, which
is well-known to be non-elementary [24]. First, note that using the
path complementation operator, we can define path intersection and
union:

α ∩ β ≡ (α− (α− β))
α ∪ β ≡ ↓+ − ((↓+ − α) ∩ (↓+ − β))

The exponential blowup involved in this definition of union is of no
importance, as our intention is merely to show non-elementarity.
Also, for the latter equivalence, note that all path expressions ofL
define a subrelation of↓+.

Star-free expressions can now betranslated intoL:

tr(a) = ↓[a]
tr(rr′) = tr(r)/tr(r′)
tr(r ∪ r′) = tr(r) ∪ tr(r′)
tr(−r) = ↓+ − tr(r)

It can be shown by induction onr that, for anytree modelM
with nodesn,m, and for any star-free expressionr, (n,m) ∈
[[tr(r)]]MPExpr iff there aren1R↓n2R↓ · · ·R↓nk such thatn1 = n,
nk = m, and the word(Lab(n2), . . . , Lab(nk)) belongs to the
language defined byr. It follows thatr defines a non-empty lan-
guage ifftr(r) is not contained in↓+ − ↓+.

Similarly, satisfiability is non-elementary forL. This improves
on a result from [12], which shows thatL-satisfiability isNP-hard.

Next, let us considerCoreXPath(for). The for-construct in
XPath 2.0, allows iteration over a node set, using a bound variable.
Formally,CoreXPath(for) is obtained by introducing a countably
infinite set of node variables $i, $j, . . . , and extending the syntax
and semantics ofCoreXPath in the following way:

◮ All node and path expressions are interpretedrelative to an as-
signmentg of nodes to the variables.

◮ We allow node tests of the form “. is $i”, interpreted as follows:

[[. is $i]]M,gNExpr = {n | n = g($i)}

◮ We allow path expressions of the form “for $i inα return β”,
interpreted as follows:

[[for $i in α return β]]M,gPExpr = {(n,m) | there is a nodek

such that(n, k) ∈ [[α]]M,gPExpr and(n,m) ∈ [[β]]
M,g[$i7→k]
PExpr }

with g[$i 7→ k] the assignment that agrees withg on all node vari-
ables except$i, and that sends$i to k.

As usual, the downward fragment ofCoreXPath(for) is denoted by
CoreXPath↓(for).

THEOREM 25. Containment for CoreXPath↓(for) is non-
elementary, even if only one variable is used in the expressions.

PROOF. Using a single variable, we can express complementa-
tion: if α, β are downward path expressions, thenα − β is equiv-
alent to for $i in α return.[¬〈β[. is $i]〉]/↓∗[. is $i]. It follows
that containment forCoreXPath↓(for) is at least as complex as for
CoreXPath↓(−), i.e., non-elementary.

8. SUCCINCTNESS
We have seen in Section 4 that there are exponential translations

from CoreXPath(∩) to CoreXPath and from CoreXPath(∗,∩)
to CoreXPath(∗,≈). This shows thatCoreXPath(∩) and
CoreXPath(∗,∩) are at most exponentially more succinct than
CoreXPath andCoreXPath(∗,≈), respectively. They are indeed
preciselyexponentially more succinct.

Suppose two languages,L andL′, have the same expressive
power. We say thatL is exponentially(or, non-elementarily) more
succinct thanL′, if there is a sequence of expressions(ϕi)i∈N

such that eachϕi is of length polynomial ini and every sequence
of equivalentL′-expressions grows at least exponentially (non-
elementarily) ini.

THEOREM 26.

• CoreXPath(∩) is exponentially more succinct than
CoreXPath(≈).

• CoreXPath(∗,∩) is exponentially more succinct than
CoreXPath(∗,≈).

PROOF. We may w.l.o.g. restrict our attention to any subset of
the set of all finite tree models. LetT 1

p,q be the class of tree models
in which each node has at most one child, and each node is labelled
by eitherp or q. In other words,T 1

p,q is the set of all words over the
alphabet{p, q}. Given such a word, we usen to denote the number
of nodes in the tree andui to denote thei-th node counting from
the root (for1 ≤ i ≤ n). For eachk ∈ N, letϕk be the following
property, where≡ means that two nodes have the same tag name:
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For all i, j ≤ n − 2k, if ui, ui+1, uj , uj+1 all have
tag namep, andui+2ℓ ≡ uj+2ℓ for all ℓ < k, then
ui+2k ≡ uj+2k.

Claim 1. OnT 1
p,q, ϕk can be expressed by a nodd expression of

CoreXPath(∩) of size quadratic ink.

To see this, first note that≡ is defined by the path expression
(.[p]/↑∗/↓∗[p]) ∪ (.[q]/↑∗/↓∗[q]) and 6≡ is defined by the path ex-
pression(.[p]/↑∗/↓∗[q) ∪ (.[q]/↑∗/↓∗[p]) Next, letαℓ andᾱℓ be
the path expressions(↓)2ℓ/ ≡ /(↑)2ℓ and(↓)2ℓ/ 6≡ /(↑)2ℓ, defin-
ing the binary relation that hold betweenui anduj if i, j ≤ n− 2ℓ
andui+2ℓ ≡ uj+2ℓ (respectively,ui+2ℓ 6≡ uj+2ℓ). Finally, the
node expressionϕk is

p ∧ 〈↓[p]〉 → ¬〈(
\

ℓ<k

αℓ ∩ ᾱk)[p ∧ 〈↓[p]〉]〉.

Claim 2. EveryCoreXPath(∗,≈) node expression, and in fact ev-
eryCoreXPathNFA(∗, loop) node expression expressingϕk onT 1

p,q

must be of lengthO(2k).

We already saw that everyCoreXPathNFA(∗, loop) node expression
can be translated in polynomial time to a 2ATA. Since we are work-
ing with words, we can translate into a two-way alternating Büchi
automaton on words rather than on trees. Each such automaton can
be translated into an equivalent NFA at the cost of a single expo-
nential blowup [27]. Now, Etessami, Vardi and Wilke [5] proved

that any automaton of the latter kind definingϕk has at least22k

many states. The claim follows.

THEOREM 27. CoreXPath(∗,−) is non-elementarily more
succinct thanCoreXPath(∗,∩)

PROOF. It follows from Theorem 24 that the size of the small-
est tree model for a satisfiableCoreXPath(−) node expression
ϕ cannot be bounded elementarily in the length ofϕ (indeed, if
there were an elementary bound, then this would easily yield an
elementary decision procedure for testingCoreXPath(−) satisfi-
ability: try all models). This means that there is a sequence of
CoreXPath(−) formulas (ϕi)i∈N of length linear ini and such
that eachϕ is satisfiable but such that the smallest tree model for
ϕi cannot be bounded by an elementary function ofi. On the other
hand, we know from Theorem 10 and Theorem 13 that every sat-
isfiableCoreXPath(∗,∩) expressionϕ is satisfied in a tree model
of size doubly exponential in the length ofϕ. Therefore, any se-
quence(ϕ′i)i∈N of CoreXPath(∗,∩) formulas such that eachϕ′i is
equivalent toϕi must grow non-elementarily in length.

THEOREM 28. CoreXPath(for) is (at least) exponentially
more succinct thanCoreXPath(−).

PROOF. LetFO be the first-order language, interpreted on tree
models, that has atomic binary relationsR↓, R↓∗, R→, R→∗ and a
unary predicatePp for eachp ∈ Σ. There is a linear translation
from CoreXPath(−) into the three variable fragment ofFO, and
there is a linear translation from fullFO into CoreXPath(for). It
was shown in [10] that, on tree models,FO is exponentially more
succinct than its three variable fragment (in fact, the proof does not
even involve unary predicates). It follows thatCoreXPath(for) is
also exponentially more succinct thanCoreXPath(−).
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APPENDIX

A. ALTERNATING TREE AUTOMATA
We give more details regarding the two-way alternating tree

automata used in Section 3. Recall thatBASIC-STEPS =
{↓1, ↑1,→,←, ǫ} are the possible moves of the automaton, and
that for any noden of a tree model,POSSIBLE-STEPS(n) denotes
the set of basic steps that can be performed atn. Also recall that
n · a denotes the node reached fromn by performing the basic step
a. For convenience, we repeat the definition of 2ATAs.

DEFINITION 7 (2ATA). A two way alternating tree automaton
(2ATA) is a tupleA = (Q, δ, q0, Acc), where

◮ Q is a finite set of states

◮ δ : (Q × Σ × ℘(BASIC-STEPS) → B+(BASIC-STEPS× Q) is
the transition function. We require that all basic steps occurring in
δ(q, σ, S) belong toS.

◮ q0 is the initial state

◮ Acc : Q→ N specifies a “parity acceptance condition”.

Here, byB+X, we refer to the set of all positive Boolean formulas
over variables fromX (includingtrue andfalse).

DEFINITION 29 (ACCEPTING RUNS). An accepting runof
a 2ATA A = (Q, δ, q0, Acc) on a tree modelM =
(N,R↓, R→, Lab) is a tree whose nodes are labelled with pairs
(n, q) ∈ N ×Q, such that the following conditions hold:

◮ (Initial configuration )
The root of the run is labelled by(rootT , q0).

◮ (Respecting the transition function)
If a node x in the run is labelled by (n, q), and
δ(q, Lab(n), POSSIBLE-STEPS(n)) = θ, then there is a set
S ⊆ (POSSIBLE-STEPS(n)×Q) makingθ true, such that for each
(a, q) ∈ S, x has a child labelled(n · a, q).

◮ (Acceptance condition)
For each infinite path in the run, the lowest number assigned by
Acc to a state occurring infinitely often on that path iseven.

A acceptsa tree modelM if it has an accepting run onM . LA is
the set of tree models accepted byA.

THEOREM 30 (EMPTINESS IS INEXPTIME). Given a 2ATA
A, it is decidable in exponential time whetherLA is empty.

PROOF. We give a polynomial reduction of the emptiness prob-
lem for our version of 2ATAs to the emptiness problem of standard
2ATAs on infinite binary ranked trees with parity acceptance con-
dition. The latter is well-known to be EXPTIME-complete [27].

For a tree modelM , define thedecorationof M to be the
tree modelMd whose node labels are from the setΣd := Σ ×
2BASIC-STEPS such that for all nodesn, the second component of
Lab′(n) is POSSIBLE-STEPS(n). For a setL of tree models,Ld

is the set of decorations of trees inL.
We can view the elements ofLd as a special case of binary trees

with two partial successor functionsf1, f2, corresponding to the
first child andnext siblingrelations. These binary trees have the
special properties that (i) they are finite, and (ii) the root has no
f2-successor (i.e., it has no siblings).

From this perspective, we can view a 2ATA on tree models as a
2ATA on binary trees over the alphabetΣd. By intersection with
a 2ATA that ensures (i), (ii), and a proper labelling in the second
component, we obtain a 2ATA on binary trees acceptingLd (inter-
section is trivial for alternating automata). Clearly,Ld is empty iff
L is, and thus we obtain the desired reduction.

B. MISSING PROOFS
LEMMA 15. For everyCoreXPath↓(∩) path expressionα, there

is a set of simpleCoreXPath↓(∩) path expressionsinst(α) such
that

(i) |inst(α)| is 2O(|α|2),

(ii) for eachβ ∈ inst(α), |β| ≤ 4 · |α|,

(iii) α is equivalent to
S

inst(α), and

(iv) eachβ ∈ inst(α) contains only node expressions that occur
in α.

PROOF. We proceed in two steps. First, we show that the inter-
section of two simple path expressions can be written as a union
of simple path expressions. To simplify the presentation, we will
useε to denote a simple path expression of length zero (i.e., a con-
catenation of zero steps), and we treatα/ε as identical toα. Forα
andβ simple path expressions,int{α, β} is defined inductively, as
follows.

int{ε, .[ϕ]/β} = {.[ϕ]/γ | γ ∈ int{ε, β}}
int{ε, ↓/β} = ∅
int{ε, ↓∗/β} = int{ε, β}
int{.[ϕ]/α, .[ψ]/β} = {.[ϕ]/.[ψ]/γ | γ ∈ int{α, β}}
int{.[ϕ]/α, ↓/β} = {.[ϕ]/γ | γ ∈ int{α, ↓/β}}
int{.[ϕ]/α, ↓∗/β} = {.[ϕ]/γ | γ ∈ int{α, ↓∗/β} ∪ int{α, β}}
int{↓/α, ↓/β} = {↓/γ | γ ∈ int{α, β}}
int{↓/α, ↓∗/β} = int{↓/α, β} ∪

{↓/γ | γ ∈ int{α, β}} ∪ int{α, ↓∗/β}}
int{↓∗/α, ↓∗/β} = {↓∗/γ | γ ∈ int{↓∗/α, β}} ∪

{↓∗/γ | γ ∈ int{α, ↓∗/β}}

An inductive argument shows that
S

int{α, β} is equivalent to
α ∩ β, |int{α, β}| is 2O(|α|+|β|), and eachγ ∈ int{α, β} satisfies
|γ| ≤ |α|+ |β|.

Next, for anyCoreXPath↓(∩) path expressionα, we define the
set of simple path expressionsinst(α) inductively, as follows:

inst(α) = {α} for α of the form↓, ↓∗, or .[ϕ]
inst(↓[ϕ]) = {↓/.[ϕ]}
inst(↓∗[ϕ]) = {↓∗/.[ϕ]}
inst(.) = {.[⊤]}
inst(α1/α2) = {α′1/α

′
2 | eachα′i ∈ inst(αi)}

inst(α1 ∪ α2) = inst(α1) ∪ inst(α2)
inst(α1 ∩ α2) = {int{α′1, α

′
2} | eachα′i ∈ inst(αi)}

An inductive argument shows that
S

inst(α) is equivalent toα,

|inst(α)| is 2O(|ϕ|2) and eachγ ∈ inst(α) satisfies|γ| ≤ 4 · |α|.
Moreover, all node expressions occurring in expressions from
inst(α) occur inα.

LEMMA 16. Every satisfiableCoreXPath↓(∩) node expression

ϕ0 is satisfiable in a tree of height2O(|ϕ0|
3).

PROOF. The basic idea of the proof is that every sufficiently
long branch in a model satisfyingϕ0 must contain two nodes, say
nR↓∗m, that are of the same “type”. Then, we can shorten the path
by replacing the subtree rooted byn with the subtree rooted bym,
while preserving the truth ofϕ0. The main difficulty is to formulate
the right notion of a “type” of a noden. Roughly speaking, it con-
tains the following information: (i) it specifies which subformulas
of ϕ0 are satisfied atn, as well as at each ancestor ofn within a
certain small distance, (ii) whenevern (or one of the mentioned
ancestors) satisfies a subexpression ofϕ0 of the form〈α〉, the type
function indicates a witnessingα-path.
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We must first define some auxiliary notions. Awitness function
for a tree modelM will be a functionπ assigning to each noden
a set of node expressions that are true atn, such that the following
conditions hold for all nodesn:

• If n satisfies some〈α〉 ∈ sub(ϕ0), thenπ(n) includes a for-
mula〈β〉 with β ∈ inst(α).

• For all 〈.[ϕ]/β〉 ∈ π(n), also〈β〉 ∈ π(n).

• For all 〈β/β′〉 ∈ π(n) with β ∈ {↓, ↓∗}, there is a noden′

such thatnRβn′ and〈β′〉 ∈ π(n′).

A witness function can be constructed for any modelM as follows:
start with the function that assigns to each node the empty set, and
as long as one of the three above conditions is not satisfied, keep
extending the sets as required. For instance, if a noden satisfies
〈α〉 ∈ sub(ϕ0) but there is noβ ∈ inst(α) for which 〈β〉 ∈ π(n),
then pick any such〈β〉 true atn (which exists by the semantics) and
add it toπ(n). Any witness function forM constructed in this way
will be called aminimal witness function, as it contains no more
information than needed.

Fix any modelM , and fix any minimal witness functionπ forM .
For any noden and integerk ≥ 0, let n − k denote the ancestor
of n at distancek (thus,n− 0 is n, n− 1 is the parent ofn, etc.).
Let d = 4 · |ϕ0| (because of Lemma 15(ii)). Letaux↓∗(ϕ) be
the subset ofaux(ϕ) containing those〈α〉 ∈ aux(ϕ) that are of
the form 〈↓∗/α′〉. For any noden, we definetype(n) to be the
following set of node expressions:

type(n) = {(k, ψ) ∈ {0, . . . , d} × (sub(ϕ0) ∪ aux↓∗(ϕ0)) |

n− k exists and satisfiesψ} ∪ π(n)

Note that(0, ψ) ∈ type(n) iff n satisfiesψ, for ψ ∈ sub(ϕ0) ∪
aux↓∗(ϕ0).

Claim 1: On each branch ofM , at most2O(|ϕ0|
3) distinct types

can be realized.

Proof of claim: Since|sub(ϕ0)| ≤ |ϕ0|, there are at most2|ϕ0|

many distinct subsets ofsub(ϕ0) to be realized in the model. Like-

wise, while|aux↓∗(ϕ0)| is 2O(|ϕ0|
2) (cf. Lemma 15), on each sin-

gle branch inM at most|aux↓∗(ϕ0)| many subsets ofaux↓∗(ϕ0)
can be realized. This is due to the volatile natural of these ex-
pressions: if an expression of the form〈↓∗/ · · · 〉 is false at a
noden, it remains false at all descendants ofn. Thus, at most
2O(ϕ0) · 2O(|ϕ0|

2) = 2O(|ϕ0|
2) subsets ofsub(ϕ0)× aux(ϕ0) can

be realized on each branch. However, since the type of a node also
specifies which formulas insub(ϕ0)∪ aux(ϕ0) are satisfied by the
k-th ancestor, for all k ≤ d, this number should further be raised
to the powerO(|ϕ0|), giving us a bound, so far, of2O(|ϕ0|

3).
Finally, consider the node expressions assigned to the nodes by

the witness functionπ. It is not hard to see that, sinceπ is minimal,
eachψ ∈ π(n) can be traced back in a finite number of steps to
some〈α〉 ∈ sub(ϕ0) being true at an ancestorn′ of n. Now, fix
a branch inM and let the length of this path bek. Then each of
thek nodes can contain at most|ϕ0| many expressions of the form
〈α〉 ∈ sub(ϕ0), and each of those expressions will cause at most
O(|ϕ0|) manyaux(ϕ0)-expressions to belong toπ-sets of nodes
on the branch. Thus, all-together, at mostk · O(|ϕ0|

2) many ex-
pressions can occur as elements ofπ-values of nodes on the branch.
This means that, for nodesn on the branch, the average|π(n)| will
be at mostO(|ϕ0|

2). It follows by basic combinatorics that there

can be no more than2O(|ϕ0|
2) many nodes with distinctπ-values

(the basic combinatorial fact being that there is no family ofji+1

distinct subsets of{1, 2, . . . , j} of average cardinality less thani).

Finally, multiplying the numbers, we obtain that at most
2O(|ϕ0|

3) many types can be realized on any branch.End of proof
of claim.

Claim 2: IfM satisfiesϕ0 at the root and contains distinct nodes
xR↓∗y that have the same type, then the following contraction will
preserve truth ofϕ0 at the root:

“remove the subtree rooted atx, and replace it by the subtree
rooted aty”

Proof of claim: We will prove something stronger, namely that in
the contracted model, all remaining nodes still satisfy the same
sub(ϕ0)-expressionsψ as in the original model. The proof goes
by induction. The only difficult case is whereψ is of the form〈α〉.
Let n be any node in the contracted model.

[⇒] Supposen satisfies〈α〉 in the original model. Then there
must be aβ = (β1/ · · · /βk) ∈ inst(α) such that〈β〉 ∈ π(n). One
can show by induction onk thatn still satisfies〈β〉 (and hence〈α〉)
in the contracted model. The base case, wherek = 1, clearly holds.
As for the inductive step, we can distinguish three cases:

• β1 = .[ψ] for someψ ∈ sub(ϕ0). In this case, by the
definition of π, n satisfiesψ in the original model, and
〈β2/ · · · /βk〉 ∈ π(n). It follows by the induction hypoth-
esis, thatn satisfiesψ and〈β2/ · · · /βk〉, and hence also〈β〉,
in the contracted model.

• β1 = ↓. Then, by the definition ofπ, there must be a
child n′ of n such that〈β2/ · · · /βk〉 ∈ π(n′). If n′ 6= x
then it follows from the induction hypothesis thatn′ satisfies
〈β2/ · · · /βk〉 in the contracted model, and hencen satisfies
〈β〉 in the contracted model. If, on the other hand,n′ = x,
then, asx andy have the same type,〈β2/ · · · /βk〉 must be
satisfied byy in the original model. It follows by the induc-
tion hypothesis thaty satisfies〈β2/ · · · /βk〉 in the contracted
model, and thereforen satisfies〈β〉 in that model.

• β1 = ↓∗. Then by the definition ofπ, there must be a descen-
dantn′ of n such that〈β2/ · · · /βk〉 ∈ π(n′). If n′ belongs
to the contracted model, then we can infer from the induction
hypothesis thatn′ satisfies〈β2/ · · · /βk〉 in the contracted
model, and hencen satisfies〈β〉 in the contracted model. If,
on the other hand,n′ is removed during the contraction, then
it must be a descendant ofx, which implies thatx satisfies
〈β〉. Since〈β〉 ∈ aux↓∗(ϕ0), it follows thaty also satisfies
〈β〉, and hence there is a descendant ofn′′ of y satisfying
〈β2/ · · · /βk〉. Since the submodel rooted aty is not affected
by the contraction,y must still satisfy〈β2/ · · · /βk〉 in the
contracted model. We also know thatn′′ is a descendant ofn,
and hencen satisfies〈β〉 in the contracted model.

[⇐] Supposen satisfies〈α〉 in the contracted model. Then there
must be aβ ∈ inst(α) such thatn satisfies〈β〉 in the contracted
model. We will show thatn satisfies〈β〉 in the original model,
again by induction on the number of steps inβ. We distinguish
two cases: ifβ is of the form(↓∗/~γ), then some descendantn′

of n satisfies〈~γ〉 in the contracted model. But thenn′ is also a
descendant ofn in the original model, and by induction hypothesis,
it satisfies〈~γ〉. Therefore,n satisfies〈β〉 in the original model.
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It remains to consider the case whereβ doesnot start with a↓∗

step. Letβ = (β1/ · · · /βk/~γ), with k ≥ 1, such that eachβi is
of the form↓ or .[ψ], and~γ is either empty or starts with↓∗. Let
n0, . . . , nk be nodes in the contracted model such thatn0 = n and
(ni, ni+1) belongs toβi in the contracted model, fori < k. We
distinguish two cases:

• Eitherni 6= y for all i ≤ k, orn0 = y. In this case, the same
pathn0, . . . , nk exists also in the original model. Moreover,
wheneverβi is of the form.[ψ], then, by induction hypothesis,
ni satisfiesψ in the original model as well. Thus,〈β〉 must
be true atn in the original model.

• ni = y for somei ≤ k, andn0 6= y. It follows that the
sequencen0, . . . , nk is actually of the formx − ℓ, . . . , x −
1, y, . . . , y + m, where ℓ ≤ d. Define a new sequence
n′0, . . . , n

′
k by replacing eachx − i by y − i. Thus, the re-

sulting sequencen′0, . . . , n
′
k is of the formy − ℓ, . . . , y −

1, y, . . . , y + m. Sincex andy have the same type in the
original model,ni andn′i agree on all node expressions from
sub(ϕ0) (in the original model). Moreover, wheneverβi is
of the form.[ψ], then, by induction hypothesis, we know that
ni satisfiesψ in the original model as well. Together this
implies that(y− ℓ, y+m) satisfies(β1/ · · · /βk) in the orig-
inal model. Finally, by induction hypothesis,n′k = nk satis-
fies 〈~γ〉 in the original model. We conclude thatn′0 satisfies
〈β〉 and hence〈α〉 in the original model. Finally, using once
more the fact thatx andy have the same type in the origi-
nal model, we conclude thatn0 must also satisfy〈α〉 in the
original model.

End of proof of claim.

Finally, the main argument to establish Lemma 16: letϕ0 be any
satisfiableCoreXPath↓(∩) node expression,M a tree model satis-
fying ϕ at the root. IfM contains a branch of length greater than
2p(|ϕ0|), with p the precise polynomial from Claim 1, then there is
a tree with fewer nodes thanM in whichϕ0 is still satisfied. Since
tree models are finite, this shows thatϕ is satisfiable in a tree model
of depth2O(|ϕ0|

3).

The following theorem states correctness of the algorithm devel-
oped in Section 5.

THEOREM 31. The algorithm has an accepting run on inputϕ0

iff ϕ0 is satisfiable.

PROOF. [⇒] Suppose the algorithm has an accepting run on
input ϕ0. Let T = (N,R↓, R→, τ) be the recursion tree of
one such accepting run, i.e.,(N,R↓, R→) is a finite sibling or-
dered tree (the sibling order is in fact irrelevant), andτ assigns
to each node the completeϕ0-type that is the first argument of
the corresponding recursive call ofcheck. Take the tree model
M = (N,R↓, R→, Lab), whereLab : N → Σ assigns to each
noden ∈ N the unique label fromΣ that belongs toτ(n), if there
is one, or otherwise any label not insub(ϕ0).

It can be proved that for alln ∈ N andψ ∈ cl(ϕ0),n ∈ [[ψ]]MNExpr
iff ψ ∈ τ(n). In particular, sinceϕ0 ∈ τ(r), for r the root ofM ,
we have thatr ∈ [[ϕ0]]

M
NExpr. The proof is by induction on the well-

founded ordering≺ on cl(ϕ0) generated by:

• ϕ ≺ ψ wheneverϕ ∈ sub(ψ);

• 〈β〉 ≺ 〈α〉 whenever〈α〉 ∈ sub(ϕ0), 〈β〉 ∈ aux(ϕ0), and
β ∈ inst(α);

• 〈β′〉 ≺ 〈β/β′〉 for all 〈β/β′〉 ∈ aux(ψ)

We leave the details to the reader.
[⇐] Supposeϕ0 is satisfiable. Then, by Lemma 16,ϕ0 is sat-

isfied at the root of a tree model of depth at most2p(|ϕ|). For
any noden of this tree model, letτ(n) = {ϕ ∈ cl(ϕ0) | n ∈
[[ϕ]]MNExpr}. To show that the algorithm has an accepting run on in-
putϕ0, we associate to each call ofcheck(t, i) a “witnessing”
noden in the tree, at distancei from the root, satisfyingτ(n) = t.
Initially, we let the algorithm pickτ(r), for r the root of the tree
model (thus,r itself is the witnessing node). Next, suppose that at
some pointcheck(t,i) is called, and letn be a witnessing node
(i.e., τ(n) = t andn lies at distancei from the root), and con-
sider any demandϕ ∈ t. There must be at least one childn′ of n
satisfying the remainderϕ′ of ϕ (this follows simply from the se-
mantics ofCoreXPath). We let the algorithm choose precisely the
typet′ = τ(n′). In this way, we have thatϕ′ ∈ t′, t ⇒ t′, andn′

is a witness for check(t′, i+ 1). It is easy to see that the algorithm
returns ‘Yes’ on inputϕ0 when all non-deterministic choices are
made according to this strategy.

C. MULTI-LABELS
LEMMA 19. Satisfiability ofCoreXPath↓(∩) node expres-

sions on tree-models with multi-labels can be reduced in poly-
nomial time to satisfiability ofCoreXPath↓(∩) node expressions
on standard tree models. The same holds forCoreXPath↓(∗,∩),
CoreXPath↓↑(∩) andCoreXPath↓→(∩).

PROOF. The main idea is as follows: we can turn a multi-
labelled tree model into a standard tree model by adding|Lab(n)|
extra children to each noden and labelling each with a different el-
ement ofLab(n). To distinguish these auxiliary nodes from “real”
document nodes, we label the latter with a special node labelx.

Following this idea, we can transform everyCoreXPath↓(∩)
node expressionϕ into anotherCoreXPath↓(∩) node expression
ϕ′, such thatϕ′ is satisfiable in a standard tree model iffϕ is sat-
isfiable in a tree model with multi-labels.ϕ′ is defined as fol-
lows: let ϕ∗ be obtained fromϕ by (i) replacing every occur-
rence of↓ or ↓∗, by ↓[x] or ↓∗[x], respectively; and (ii) replac-
ing every occurrence of a node labelp with 〈↓[p]〉. Then set
ϕ′ := ϕ∗ ∧ x ∧ ¬〈∧¬〈↓∗[¬x]/↓〉 (the last conjunct ofϕ′ ensures
that all auxiliary nodes are leafs).

Similar reductions can be given forCoreXPath↓(∗,∩),
CoreXPath↓↑(∩) and CoreXPath↓→(∩). In the case of
CoreXPath↓→(∩),ϕ′ needs to be extended with an additional con-
junct ¬〈↓∗[¬x]/→∗[x]〉, ensuring that the auxiliary nodes are al-
ways to the right of “real” sibling nodes.

D. ALTERNATING TURING MACHINES
We introduce alternating Turing machines as used in Section 6.

An Alternating Turing Machine (ATM)is of the formM =
(Q,Λ,Γ, q0,∆). The set ofstatesQ = Q∃ ⊎ Q∀ ⊎ {qa} ⊎ {qr}
consists ofexistential statesfromQ∃, universal statesfromQ∀, an
accepting stateqa, and arejecting stateqr; Λ is theinput alphabet
andΓ thework alphabetcontaining ablank symbol� and satisfy-
ing Λ ⊆ Γ; q0 ∈ Q∃ ∪ Q∀ is thestartingstate; and thetransition
relation ∆ is of the form∆ ⊆ Q × Γ × Q × Γ × {L,R}. We
will write ∆(q, a) for {(q′, b,M) | (q, a, q′, b,M) ∈ ∆}.

A configurationof an ATM is a wordwqw′ with w,w′ ∈ Γ∗

andq ∈ Q. The intended meaning is that the (one-side infinite) tape
contains the wordww′ with only blanks behind it, the machine is in
stateq, and the head is on the leftmost symbol ofw′. Thesuccessor
configurationsof a configurationwqw′ are defined in the usual way
in terms of the transition relation∆. A halting configurationis of
the formwqw′ with q ∈ {qa, qr}.
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A computationof an ATMM on a wordw is a (finite or infi-
nite) sequence of configurationsK1,K2, . . . such thatK1 = q0w
andKi+1 is a successor configuration ofKi for all i ≥ 0. The
ATMs considered in the following have onlyfinite computations
on any input. Since this case is simpler than the general one, we
define acceptance for ATMs with finite computations, only, and re-
fer to [3] for the full definition. LetM be such an ATM. A halting
configuration isacceptingiff it is of the form wqaw

′. For other
configurationsK = wqw′, the acceptance behaviour depends on
q: if q ∈ Q∃, thenK is accepting iff at least one successor configu-
ration is accepting; ifq ∈ Q∀, thenK is accepting iff all successor
configurations are accepting. Finally, the ATMM with starting
stateq0 acceptsthe inputw iff the initial configurationq0w is ac-
cepting. We useL(M) to denote the language accepted byM, i.e.,
L(M) = {w ∈ Λ∗ |M acceptsw}.
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