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Abstract. Axiom pinpointing has been introduced in description logics
(DL) to help the user understand the reasons why consequences hold by
computing minimal subsets of the knowledge base that have the conse-
quence in question (MinA). Most of the pinpointing algorithms described
in the DL literature are obtained as extensions of tableau-based reason-
ing algorithms for computing consequences from DL knowledge bases. In
this paper, we show that automata-based algorithms for reasoning in DLs
can also be extended to pinpointing algorithms. The idea is that the tree
automaton constructed by the automata-based approach can be trans-
formed into a weighted tree automaton whose so-called behaviour yields
a pinpointing formula, i.e., a monotone Boolean formula whose minimal
valuations correspond to the MinAs. We also develop an approach for
computing the behaviour of a given weighted tree automaton.

1 Introduction

Description logics (DLs) [2] are a family of logic-based knowledge representation
formalisms, which are employed in various application domains, such as nat-
ural language processing, configuration, databases, and bio-medical ontologies,
but their most notable success so far is the adoption of the DL-based language
OWL [15] as standard ontology language for the semantic web. As the size of
DL-based ontologies grows, tools that support improving the quality of such on-
tologies become more important. DL reasoners [14, 13, 22] can be used to detect
inconsistencies and to infer other implicit consequences, such as subsumption re-
lationships between concepts or instance relationships between individuals and
concepts. However, for a developer or user of a DL-based ontology, it is often
quite hard to understand why a certain consequence computed by the reasoner
actually follows from the knowledge base. For example, in the current DL ver-
sion of the medical ontology SNOMED CT1 the concept Amputation-of-Finger
is classified as a subconcept of Amputation-of-Arm. Finding the six axioms that
are responsible for this error (see [9]) among the more than 350,000 terminologi-
cal axioms of SNOMED without support by an automated reasoning tool is not
easy.
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Axiom pinpointing [19] has been introduced to help developers or users of
DL-based ontologies understand the reasons why a certain consequence holds
by computing minimal subsets of the knowledge base that have the consequence
in question (MinA). Most of the pinpointing algorithms described in the DL
literature (e.g., [4, 19, 18, 17, 16]) are obtained as extensions of tableau-based
reasoning algorithms [8] for computing consequences from DL knowledge bases.
The pinpointing algorithms and proofs of their correctness in these papers are
given for a specific DL and a specific type of knowledge base only, and it is not
clear to which of the known tableau-based algorithms for DLs the approaches
really generalize. For example, the pinpointing extension described in [16], which
can deal with general concept inclusions (GCIs) in the DL ALC, follows the
approach introduced in [4], but since GCIs require the introduction of so-called
blocking conditions into the tableau-based algorithm to ensure termination [8],
there are some new non-trivial problems to be solved.

To overcome the problem of having to design a new pinpointing extension for
every tableau-based algorithm, we have introduced in [5] a general approach for
extending tableau-based algorithms to pinpointing algorithms. This approach
has, however, some annoying limitations. First, it only applies to tableau-based
algorithms that terminate without requiring any cycle-checking mechanism such
as blocking. Second, termination of the tableau-based algorithm one starts with
does not necessarily transfer to its pinpointing extension. Though these problems
can, in principle, be solved by restricting the general framework to so-called forest
tableaux [7, 6], this solution makes the definitions and proofs quite complicated
and less intuitive. Also, the approach can still only handle the most simple
version of blocking, usually called subset blocking in the DL literature.

In the present paper, we propose a different general approach for obtaining
pinpointing algorithms, which also applies to DLs for which the termination of
tableau-based algorithms requires the use of appropriate blocking conditions. It is
well-known that automata working on infinite trees can often be used to construct
worst-case optimal decision procedures for such DLs [10]. In this automata-based
approach, the input inference problem Γ is translated into a tree automaton AΓ ,
which is then tested for emptiness. Basically, our approach transforms the tree
automaton AΓ into a weighted tree automaton working on infinite trees,2 whose
so-called behaviour yields a pinpointing formula, i.e., a monotone Boolean for-
mula that encodes all the MinAs of Γ . To obtain an actual pinpointing algorithm,
we must develop an algorithm for computing the behaviour of weighted tree au-
tomata working on infinite trees. We will use the DL SI, which extends the basic
DL ALC [20] with transitive and inverse roles, to illustrate our approach. The use
of SI is, on the one hand, motivated by the fact that the presence of inverses in
SI requires tableau-based algorithms to use a blocking condition that is more so-
phisticated than subset blocking [8]. On the other hand, the extension of their
approach to SI is mentioned as an open problem in [16].

2 Although weighted automata working on finite trees [21] and weighted automata
working on infinite words [11] have been considered before, this appears to be the
first use of weighted automata working on infinite trees.
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2 Preliminaries

In this section, we first introduce the DL SI, and then recall the relevant defi-
nitions regarding pinpointing from [5].

2.1 The Description Logic SI

As mentioned above, SI extends ALC with transitive and inverse roles. An
example of a role that should be interpreted as transitive is has-descendant, while
has-ancestor should be interpreted as the inverse of has-descendant. Instead of
employing the usual approach of “hardcoding” inverse and transitive roles into
the syntax and semantics of concept descriptions, we allow the use of inverse
and transitivity axioms in the knowledge base. This enables us to pinpoint also
these kinds of axioms as reasons for certain consequences. Thus, the concept
descriptions that we consider are simply ALC concept descriptions.

Definition 1 (ALC concept descriptions). Let NC be a set of concept names
and NR a set of role names. The set of ALC concept descriptions is the smallest
set such that

– all concept names are ALC concept descriptions;
– if C and D are ALC concept descriptions, then so are ¬C, C�D, and C�D;
– if C is a ALC concept description and r ∈ NR, then ∃r.C and ∀r.C are ALC

concept descriptions.

An interpretation is a pair I = (ΔI , ·I) where the domain ΔI is a non-empty
set and ·I is a function that assigns to every concept name A a set AI ⊆ ΔI and
to every role name r a binary relation rI ⊆ ΔI × ΔI . This function is extended
to ALC concept descriptions as follows:

– (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI , (¬C)I = ΔI \ CI ;
– (∃r.C)I = {x ∈ ΔI | there is a y ∈ ΔI with (x, y) ∈ rI and y ∈ CI};
– (∀r.C)I = {x ∈ ΔI | for all y ∈ ΔI , (x, y) ∈ rI implies y ∈ CI}.

In this paper we restrict the attention to terminological knowledge, which is
given by a so-called TBox.

Definition 2 (SI TBoxes). An SI TBox is a finite set of axioms of the fol-
lowing form: (i) C 
 D where C and D are ALC concept descriptions (GCI);
(ii) trans(r) where r ∈ NR (transitivity axiom); (iii) inv(r, s), where r �= s ∈ NR

(inverse axiom), such that every r ∈ NR appears in at most one inverse axiom.
An interpretation I is called a model of the SI TBox T if it satisfies all

axioms in T , i.e., if (i) C 
 D ∈ T implies CI ⊆ DI; (ii) trans(r) ∈ T implies
that rI is transitive; (iii) inv(r, s) ∈ T implies that (x, y) ∈ rI iff (y, x) ∈ sI.

The main inference problems for terminological knowledge are satisfiability and
subsumption
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Definition 3 (satisfiability, subsumption). Let C and D be ALC concept
descriptions and T an SI TBox. We say that C is satisfiable w.r.t. T if there
is a model I of T such that CI �= ∅. In this case, I is also called a model of C
w.r.t. T . We call C unsatisfiable w.r.t. T if it does not have a model w.r.t. T .
Finally, we say that C is subsumed by D w.r.t. T if CI ⊆ DI holds in every
model I of T .

We want to pinpoint reasons for unsatisfiability and for subsumption. Since C
is subsumed by D w.r.t. T iff C � ¬D is unsatisfiable w.r.t. T , it is obviously
sufficient to design a pinpointing algorithm for unsatisfiability.

The automata-based approach for deciding (un)satisfiability uses the fact that
an ALC concept description C is satisfiable w.r.t. an SI TBox T iff it has a
certain tree-shaped model, called Hintikka tree for C and T . It constructs a
tree automaton whose runs are exactly the Hintikka trees for C and T (see
Section 4.2), and then tests this automaton for emptiness.

2.2 Basic Definitions for Pinpointing

Following [5], we define pinpointing not for a specific DL and inference problem,
but rather in a more general setting. The type of inference problem that we will
consider is deciding a so-called c-property for a given set of axiomatized inputs.

Definition 4 (axiomatized input, c-property). Let I and T be sets of in-
puts and axioms, respectively, and let Padmis(T) ⊆ Pfin(T) be a set of finite
subsets of T such that T ∈ Padmis(T) implies T ′ ∈ Padmis(T) for all T ′ ⊆ T .
An axiomatized input for I and Padmis(T) is of the form (I, T ) where I ∈ I
and T ∈ Padmis(T).

A consequence property (or c-property for short) is a set P ⊆ I×Padmis(T)
such that (I, T ) ∈ P implies (I, T ′) ∈ P for every T ′ ∈ Padmis(T) with T ′ ⊇ T .

For example, let I consists of all ALC concept descriptions, T of all GCIs, tran-
sitivity axioms, and inverse axioms, and Padmis(T) of all SI TBoxes. The fol-
lowing is a c-property: P = {(C, T ) | C is unsatisfiable w.r.t. T }.

Definition 5. Given an axiomatized input Γ = (I, T ) and a c-property P, a
set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P if
(I, S) ∈ P and (I, S′) /∈ P for every S′ ⊂ S. The set of all MinAs for Γ w.r.t.
P is denoted by MINP(Γ ).

Note that the notion of a MinA is only interesting if Γ ∈ P ; otherwise, the
monotonicity requirement for P entails that MINP(Γ ) = ∅. In our example,
consider the axiomatized input Γ = (A � ∀r.C, T ) where T consists of

ax1: A 
 ∃r.B, ax2: B 
 ∀s.¬A, ax3: C 
 ¬B, ax4: inv(r, s) (1)

It is easy to see that Γ ∈ P , and that the set of all MinAs for Γ is MINP(Γ ) =
{{ax1, ax2, ax4}, {ax1, ax3}}.
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Instead of computing all MinAs, one can also compute a pinpointing formula.
To define this formula, we assume that every axiom t ∈ T is labeled with a
unique propositional variable, lab(t). Let lab(T ) be the set of all propositional
variables labeling an axiom in T . A monotone Boolean formula over lab(T ) is a
Boolean formula using variables in lab(T ) and only the connectives conjunction
and disjunction. In addition, the constants � and ⊥, which always evaluate
to true and false, respectively, are monotone Boolean formulae. We identify a
propositional valuation with the set of propositional variables that it makes true.
For a valuation V ⊆ lab(T ), let TV = {t ∈ T | lab(t) ∈ V}.

Definition 6 (pinpointing formula). Given a c-property P and an axioma-
tized input Γ = (I, T ), the monotone Boolean formula φ over lab(T ) is called
a pinpointing formula for Γ w.r.t. P if the following holds for every valuation
V ⊆ lab(T ): (I, TV ) ∈ P iff V satisfies φ.

In our example, we can take lab(T ) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that ax1 ∧ ((ax2 ∧ ax4)∨ ax3) is a pinpointing formula
for Γ w.r.t. P .

Valuations can be ordered by set inclusion. The following is an immediate
consequence of the definition of a pinpointing formula [4]: if φ a pinpointing
formula for Γ w.r.t. P , then

MINP(Γ ) = {TV | V is a minimal valuation satisfying φ},

This shows that it is enough to design an algorithm for computing a pinpointing
formula to obtain all MinAs. However, the reduction suggested by the above
identity is not polynomial. One possible way to obtain MINP(Γ ) from φ is to
first transform φ into disjunctive normal form, and then remove superfluous
disjuncts. It is well-known that this can cause an exponential blowup. This
should, however, not be viewed as a disadvantage of approaches computing the
pinpointing formula rather than directly MINP(Γ ). If such a blowup happens,
then the pinpointing formula actually yields a compact representation of all
MinAs.

3 Looping Tree Automata

In this section, we introduce both unweighted and weighted looping tree au-
tomata. These automata receive infinite trees of a fixed arity k as inputs. For
a positive integer k, we denote the set {1, . . . , k} by K. The nodes of our trees
can be identified by words in K∗ in the usual way: the root node is identified
by the empty word ε, and the i-th successor of the node u is identified by ui
for 1 ≤ i ≤ k. In the case of labeled trees, we will refer to the labeling of the
node u ∈ K∗ in the tree r by r(u). We will also use

−−→
r(u) to denote the tuple

−−→
r(u) = (r(u), r(u1), . . . , r(uk)). An infinite tree r with labels from a set Q can
be represented as a mapping r : K∗ → Q.
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For our purpose, it is sufficient to use unlabeled infinite trees as inputs for
our tree automata. For a fixed arity k, there is exactly one such tree, which we
can identify with the set of its nodes, i.e., with K∗.

Definition 7 (looping tree automaton). A looping tree automaton for arity
k is a tuple (Q, Δ, I), where Q is a finite set of states, Δ ⊆ Qk+1 is the transition
relation, and I ⊆ Q is the set of initial states. A run of this automaton on the
unlabeled tree K∗ is a labeled k-ary tree r : K∗ → Q such that

−−→
r(u) ∈ Δ for

all u ∈ K∗. This run is successful if r(ε) ∈ I. The emptiness problem for
looping tree automata for arity k is the problem of deciding whether a given such
automaton has a successful run or not.

The emptiness problem for looping tree automata can be decided using time
polynomial in the size of the automaton. The decision procedure computes all the
bad states, i.e., states that do not occur in any run, in a bottom-up fashion [24, 10]:
starting with the empty set as initial set of known bad states, the algorithm
iteratively adds states to this set as follows: if all the transitions starting from
a state q contain a known bad state, then q is also known to be bad. Note
that the condition for adding a bad state q also applies to states that have no
transition. Obviously, the set of known bad states becomes stable after at most
|Q| iterations, and it is easy to show that the set of states obtained this way is
indeed the set of all bad states. The automaton has a successful run iff there is
an initial state that is not bad.

We will later extend automata-based decision procedures into algorithms
that compute pinpointing formulae by transforming looping tree automata into
weighted looping automata. The weights of such automata come from a complete
distributive lattice [12].

Definition 8 (complete distributive lattice). A complete distributive lat-
tice is a partially ordered set (S, ≤S) such that infima and suprema of arbitrary
subsets of S always exist and distribute over each other.

In the following, we will often simple use the carrier set S to denote the complete
distributive lattice (S, ≤S). The infimum (supremum) of a subset T ⊆ S will be
denoted by

⊗
t∈T t (

⊕
t∈T t). For the infimum (supremum) of two elements, we

will also use infix notation, i.e., write t1 ⊗ t2 (t1 ⊕ t2) to denote the infimum
(supremum) of the set {t1, t2}. The least element of S (i.e., the infimum of the
whole set S) will be denoted by 0, and the greatest element (i.e., the supremum
of the whole set S) by 1.

It should be noted that our assumption that the weights come from a complete
distributive lattice is stronger than the one usually encountered in the literature
on weighted automata. In fact, for automata working on finite trees, it is sufficient
to assume that the weights come from a so-called semiring [21]. In order to have a
well-defined behaviour also for weighted automata working on infinite objects, the
existence of infinite products and sums is required [11]. The additional properties
imposed by our requirement to have a complete distributive lattice (in particu-
lar, the idempotency of product and sum) are used to show that we can actually
compute the behaviour of our weighted looping automata (see Section 5).
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Definition 9 (weighted looping automaton). Let S be a complete distrib-
utive lattice. A weighted looping automaton (WLA) on S for arity k is a tuple
A = (Q, in, wt) where Q is a finite set of states, in : Q → S is the initial distrib-
ution, and wt : Qk+1 → S assigns weights to transitions. A run of A is a labeled
tree r : K∗ → Q. The weight of this run is wt(r) = in(r(ε)) ⊗

⊗
u∈K∗ wt(

−−→
r(u)).

The behaviour of the automaton A is ‖A‖ :=
⊕

r:K∗→Q wt(r).

For example, the Boolean semiring B = ({0, 1}, ∧, ∨, 1, 0) is a complete distrib-
utive lattice, where the partial order is defined as 1 ≤B 0. Note that we have
defined 1 to be smaller than 0, and thus conjunction yields the supremum (i.e.,
is the “addition” ⊕) and disjunction yields the infimum (i.e., is the “multiplica-
tion” ⊗). Likewise, 1 is the the least element 0, and 0 is the greatest element
1. We can easily transform a given looping tree automaton A = (Q, Δ, I) into a
WLA Aw on B such that the behaviour of Aw is 0 iff A has a successful run. In
Aw, the initial distribution maps initial states to 0 and all other states to 1; a
tuple in Qk+1 receives weight 0 if it belongs to Δ, and weight 1 otherwise.

The bottom-up emptiness test for looping tree automata sketched above can
be adapted such that it computes the behaviour of Aw as follows. We construct
a function bad : Q → {0, 1} such that bad(q) = 1 iff q is a bad state. In the
beginning, no state is known to be bad, and thus we start the iteration with
bad0(q) = 0 for all q ∈ Q. Now assume that the function badi : Q → {0, 1} for
i ≥ 0 has already been computed. In the next step of our iteration, q becomes
known to be bad, i.e., badi+1(q) is set to 1, if every transition starting from q
leads to at least one state already know to be bad. Thus, we have

badi+1(q) =
∧

(q,q1,...,qk)∈Qk+1

⎛

⎝wt(q, q1, . . . , qk) ∨
k∨

j=1

badi(qj)

⎞

⎠ . (2)

The function bad is the limit of this iteration, which is reached after at most |Q|
iterations. It is easy to see that the behaviour of Aw is then

∧
q∈Q in(q)∨bad(q).

In Section 5, we will see that the behaviour of a WLA can always be computed
by such an iteration.

4 Automata-Based Pinpointing

In this section, we first introduce our general approach for automata-based pin-
pointing, and then show how it can be applied to finding a pinpointing formula
for unsatisfiability in SI.

4.1 The General Approach

Basically, the automata-based approach for deciding a c-property P takes ax-
iomatized inputs Γ = (I, T ) and translates them into looping tree automata
AΓ such that Γ ∈ P iff AΓ does not have a successful run. For example, the
automaton constructed from a concept description C and a TBox T has a suc-
cessful run iff C is satisfiable w.r.t. T , where the c-property is unsatisfiability.
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If the translation from Γ to AΓ is an arbitrary function, then we have no way
of knowing how the axioms in T influence the behaviour of the automaton, and
thus it is not clear how to construct a corresponding pinpointing automaton. For
this reason, we will assume that the automaton AΓ for Γ = (I, T ) in a certain
sense also contains automata for all axiomatized inputs (I, T ′) with T ′ ⊆ T ,
which can be obtained by appropriately restricting the transitions of AΓ . To
be more precise, let A = (Q, Δ, I) be a looping tree automaton for arity k and
Γ = (I, T ) an axiomatized input. A function res : T → P(Qk+1) is called a
restricting function. The restricting function res can be extended to sets of ax-
ioms T ′ ⊆ T as follows: res(T ′) :=

⋂
t∈T ′ res(t). For T ′ ⊆ T , the T ′-restricted

subautomaton of A w.r.t. res is defined as A|T ′ := (Q, Δ ∩ res(T ′), I).

Definition 10 (axiomatic automaton). Let A = (Q, Δ, I) be a looping tree
automaton for arity k, Γ = (I, T ) an axiomatized input, and res : T → P(Qk+1)
a restricting function. Then we call (A, res) an axiomatic automaton for Γ .
Given a c-property P, we say that (A, res) is correct for Γ w.r.t. P if the following
holds for every T ′ ⊆ T : (I, T ′) ∈ P iff A|T ′ does not have a successful run.

Given a correct axiomatic automaton, we show how to transform it into a
weighted looping automaton whose behaviour is a pinpointing formula. This
weighted automaton uses the T -Boolean semiring, which is defined as B

T :=
(B̂(T ), ∧, ∨, �, ⊥), where B̂(T ) is the quotient set of all monotone Boolean for-
mulae over lab(T ) by the propositional equivalence relation, i.e., two proposi-
tionally equivalent formulae correspond to the same element of B̂(T ). It is easy
to see that this semiring is indeed a complete distributive lattice, where the
partial order is defined as φ ≤ ψ iff ψ → φ is valid. Note that, similar to the
case of the Boolean semiring B, conjunction is the semiring addition (i.e., yields
the supremum ⊕) and disjunction is the semiring multiplication (i.e., yields the
infimum ⊗). Likewise, � is the least element 0 and ⊥ is the greatest element 1.

Definition 11 (pinpointing automaton). Let (A, res), with A = (Q, Δ, I), be
an axiomatic automaton for Γ = (I, T ). The violating function vio : Qk+1 → B

T

is given by
vio(q0, q1, . . . , qk) =

∨

{t∈T |(q0,q1,...,qk)/∈res(t)}
lab(t).

The pinpointing automaton induced by (A, res) w.r.t. T is the WLA (A, res)pin =
(Q, in, wt) on B

T , where

in(q) =

{
⊥ if q ∈ I,
� otherwise;

wt(q0, q1, . . . , qk) =

{
vio(q0, q1, . . . , qk) if (q0, q1, . . . , qk) ∈ Δ,
� otherwise.

It is easy to see that, if r : K∗ → Q is a successful run of A, then its weight
is given by wt(r) =

∨
u∈K∗ vio(

−−→
r(u)); otherwise, wt(r) = �. Intuitively, the vio-

lating function expresses which axioms are not “satisfied” by a given transition,
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and thus the weight of a run accumulates all the axioms violated by any of the
transitions appearing as labels in it. Removing all the axioms appearing in that
formula would yield a subset of axioms which actually allows for this run; and
hence, due to correctness, the property does not hold anymore. Conjoining this
information for all possible runs leads us to a pinpointing formula.

Theorem 1. Let P be a c-property, Γ = (I, T ) an axiomatized input, and
(A, res) a correct axiomatic automaton for Γ w.r.t. P. Then ‖(A, res)pin‖ is a
pinpointing formula for Γ w.r.t. P.

Proof. We need to show that, for every valuation V ⊆ lab(T ), it holds that
V satisfies ‖(A, res)pin‖ iff (I, TV) ∈ P . Let V ⊆ lab(T ). Suppose first that
(I, TV) /∈ P . Since (A, res) is correct for Γ w.r.t. P , there must be a successful
run r of A|TV . Consequently,

−−→
r(u) ∈ res(TV) holds for every u ∈ K∗, and thus V

cannot satisfy vio(
−−→
r(u)), for any u ∈ K∗. Since r is a successful run of A|TV , it is

also a successful run of A, which implies wt(r) =
∨

u∈K∗ vio(
−−→
r(u)). Thus, V does

not satisfy wt(r). But then V also cannot satisfy
∧

r:K∗→Q wt(r) = ‖(A, res)pin‖.
Conversely, if V does not satisfy ‖(A, res)pin‖ =

∧
r:K∗→Q wt(r), then there

must exist a run r such that V does not satisfy wt(r). This implies that
−−→
r(u) ∈

res(TV) for all u ∈ K∗. Consequently, r is a successful run of A|TV , which shows
(I, TV) /∈ P . ��

4.2 Constructing Axiomatic Automata for SI

If we want to apply Theorem 1 to obtain an automata-based approach for pin-
pointing unsatisfiability in SI, we must show how, given an ALC concept de-
scription C and an SI TBox T , we can construct an axiomatic automaton
(AC,T , resC,T ) that is correct for (C, T ) w.r.t. unsatisfiability. For this purpose,
we must adapt the known construction of a looping tree automaton for SI [3]
such that it yields an axiomatic automaton.3

As mentioned before, the automata-based approach for deciding (un)satisfia-
bility uses the fact that a concept is satisfiable iff it has a so-called Hintikka
tree. The automaton to be constructed will have exactly these Hintikka trees
as its runs. Intuitively, Hintikka trees are obtained from tree-shaped models by
labeling every node with the “relevant” concept descriptions to which it belongs.

As usual, we assume in the following that all concept descriptions are in
negation normal form (NNF); that is, negation appears only directly in front of
concept names. Any ALC concept description can be transformed into NNF in
linear time using de Morgan, duality of quantifiers, and elimination of double
negations. We denote the NNF of C by nnf(C) and nnf(¬C) by �C. Given an
3 On the one hand, the construction in [3] is more complex than the one given here since

the states of the automata in [3] contain additional information needed for detecting
cycles in a run as early as possible, which is not relevant for the present paper.
On the other hand, the states of the automata constructed here contain additional
information about transitivity needed for defining the restricting function.
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ALC concept description C and an SI TBox T , the set of relevant concept
descriptions is the set of all subdescriptions of C and of the concept descriptions
�D � E for D 
 E ∈ T . We denote this set by sub(C, T ). The set of role
names occurring in C or T is denoted by rol(C, T ). The states of our automaton
are so-called Hintikka sets, which in addition to subdescriptions also contain
information about which roles are supposed to be transitive.

Definition 12 (Hintikka set). A set H ⊆ sub(C, T ) ∪ rol(C, T ) is called a
Hintikka set for (C, T ) if the following three conditions are satisfied: (i) if D�E ∈
H, then {D, E} ⊆ H; (ii) if D � E ∈ H, then {D, E} ∩ H �= ∅; and (iii) there
is no concept name A such that {A, ¬A} ⊆ H.

The Hintikka set H is compatible with the GCI D 
 E ∈ T if it is the empty
set or contains �D�E. It is compatible with the transitivity axiom trans(r) ∈ T
if it is the empty set or contains r. Finally, it is compatible with the inverse
axiom inv(r, s) ∈ T , if r ∈ H implies s ∈ H and vice versa.

The arity k of our automaton is determined by the number of existential restric-
tions, i.e., concept descriptions of the form ∃r.D, contained in sub(C, T ). Since
we need to know which successor in the tree corresponds to which existential
restriction, we fix an arbitrary bijection ϕ : {∃r.D | ∃r.D ∈ sub(C, T )} → K. To
obtain full k-ary trees, we will use nodes labeled with the empty set (which is a
Hintikka set) as dummy nodes. The following Hintikka conditions will be used
to define the transitions of our automaton.

Definition 13 (Hintikka condition). The tuple of Hintikka sets (H0, H1, . . . ,
Hk) for (C, T ) satisfies the Hintikka condition if the following holds for every
existential restriction ∃r.D ∈ sub(C, T ): (i) If ∃r.D ∈ H0, then Hϕ(∃r.D) contains
D as well as every E for which there is a value restriction ∀r.E ∈ H0; if,
in addition, r ∈ H0, then ∀r.E belongs to Hϕ(∃r.D) for every value restriction
∀r.E ∈ H0. (ii) If ∃r.D /∈ H0, then Hϕ(∃r.D) = ∅.

This tuple is compatible with the GCI D 
 E ∈ T ( compatible with the
transitivity axiom trans(r) ∈ T ) if all its components are compatible with D 

E (trans(r)). It is compatible with the inverse axiom inv(r, s) ∈ T if all its
components are compatible with inv(r, s), and the following holds for all t ∈ {r, s}
and t− ∈ {r, s} \ {t}: for every ∀t.F ∈ Hϕ(∃t−.D), the set H0 contains F , and
additionally ∀t−.F if t ∈ H0.

We are now ready to define the axiomatic automaton for unsatisfiability in SI.

Definition 14 (axiomatic automaton for SI). Let C be an ALC concept
description, T an SI TBox, and k the number of existential restrictions in
sub(C, T ). The axiomatic automaton (AC,T , resC,T ) has as its first component
the looping tree automaton AC,T := (Q, Δ, I), where

– Q consists of all Hintikka sets for (C, T );
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– Δ consists of all (H0, H1, . . . , Hk) ∈ Qk+1 that satisfy the Hintikka condition;
– I := {H ∈ Q | C ∈ H}.

The restricting function resC,T maps each axiom t ∈ T to the set of all tuples in
Δ that are compatible with t.

Correctness of this automaton construction can be shown by an adaptation of
the arguments used in [3].

Theorem 2. Let C be an ALC concept description and T an SI TBox. The
axiomatic automaton (AC,T , resC,T ) is correct for (C, T ) w.r.t. unsatisfiability.

Theorem 1 shows that it is enough to compute the behaviour of the pinpointing
automaton (AC,T , resC,T )pin induced by (AC,T , resC,T ) in order to obtain a pin-
pointing formula for (C, T ) w.r.t. unsatisfiability. In the next section, we show
how the behaviour of a weighted looping automaton on a complete distributive
lattice can be computed.

5 Computing the Behaviour of a WLA

Clearly, the naive approach that directly uses the definition of the behaviour by
first computing and then adding up the weights of all runs would not produce
a result in finite time since there are infinitely many runs, which are themselves
infinite. Instead, we will use a bottom-up method for computing the behaviour,
which generalizes the approach sketched in Section 3 for the special case of
weighted automata simulating unweighted ones. In the following, we assume
that A = (Q, in, wt) is an arbitrary, but fixed, WLA on the complete distributive
lattice S.

We will show that the WLA A induces a monotone operator O : SQ → SQ,
where SQ is the set of all mappings from Q to S, and that the behaviour of A can
easily be obtained from the greatest fixpoint of this operator. The partial order
≤S on S can be transferred to SQ in the usual way, by applying it componentwise:
if σ, σ′ ∈ SQ, then σ ≤SQ σ′ iff σ(q) ≤S σ′(q) for all q ∈ Q. It is easy to see that
(SQ, ≤SQ) is again a complete distributive lattice S. We will use ⊗ and ⊕ also
to denote the infimum and supremum in SQ. The least (greatest) element of SQ

is the function 0̃ (1̃) that maps every q ∈ Q to 0 (1).
Following the idea of Equation (2), the operator O is defined as follows for

every σ ∈ SQ:

O(σ)(q) =
⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

σ(qj). (3)

Lemma 1. The operator O is continuous, i.e., for any increasing sequence
σ0 ≤SQ σ1 ≤SQ σ2 ≤SQ . . . we have

⊕
i≥0 O(σi) = O(

⊕
i≥0 σi).
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Proof. For any sequence σ0, σ1, σ2, . . . of elements of SQ we have

⊕

i≥0

O(σi)(q) =
⊕

i≥0

⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

σi(qj)

=
⊕

(q,q1,...,qk)∈Qk+1

⊕

i≥0

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

σi(qj)

=
⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
⊕

i≥0

k⊗

j=1

σi(qj) (4)

=
⊕

(q,q1,...,qk)∈Qk+1

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

⊕

i≥0

σi(qj) (5)

= O(
⊕

i≥0

σi),

where Identities (4) and (5) are a consequence of distributivity. ��

By Tarski’s fixpoint theorem [23], this implies that O has
⊗

n≥0 On(1̃) as its
greatest fixpoint (gfp). If S happens to be finite, and hence also SQ is finite,
this gfp is obviously reached after finitely many iterations, i.e., there exists a
smallest m, 0 ≤ m ≤ |S||Q| such that Om(1̃) = Om+1(1̃), and for this m we have⊗

n≥0 On(1̃) = Om(1̃). Note that the complete distributive lattice B
T that we

have used in our pinpointing automaton is actually finite. Nevertheless, we will
not make a finiteness assumption on the complete distributive lattice S when
showing that the behaviour of any WLA on S can effectively be computed.

Next, we showhow the gfp ofO relates to the behaviour of the givenWLA A. Let
K∗

q := {r : K∗ → Q | r(ε) = q} denote the set of all runs whose root is labeled with

q. Consider the function σ‖ ∈ SQ where σ‖(q) :=
⊕

r∈K∗
q

⊗
u∈K∗ wt(

−−→
r(u)). Given

this function, we can obtain the behaviour of the WLA A as follows:

Lemma 2. ‖A‖ =
⊕

q∈Q in(q) ⊗ σ‖(q).

It turns out that σ‖ is in fact the greatest fixpoint of O. We will prove this
with the help of so-called partial runs. For n ≥ 0 define K≤n :=

⋃n
i=0 Ki, and

K≤−1 := ∅. A partial run of depth m is simply a mapping r : K≤m → Q. The
set of partial runs with root label q ∈ Q is denoted by K≤m

q .

Lemma 3. For all n ≥ 0 and q ∈ Q it holds that

On(1̃)(q) =
⊕

r∈K≤n
q

⊗

u∈K≤n−1

wt(
−−→
r(u)).

Proof. The proof is by induction on n. For n = 0, we have that, on the one
hand, O0(1̃)(q) = 1̃(q) = 1. On the other hand, since K≤−1 = ∅, we have
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⊗
u∈K≤−1 wt(

−−→
r(u)) = 1. Now, assume that the above identity holds for n.

On+1(1̃)(q) =
⊕

(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

On(1̃)(qj) (6)

=
⊕

(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

⊕

rj∈K≤n
qj

⊗

u∈K≤n−1

wt(
−−−→
rj(u)) (7)

=
⊕

(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) ⊗
⊕

r1∈K≤n
q1 ,...,rk∈K≤n

qk

k⊗

j=1

⊗

u∈K≤n−1

wt(
−−−→
rj(u)) (8)

=
⊕

(q1,...,qk)∈Qk

⊕

r1∈K≤n
q1 ,...,rk∈K≤n

qk

wt(q, q1, . . . , qk) ⊗
k⊗

j=1

⊗

u∈K≤n−1

wt(
−−−→
rj(u)) (9)

=
⊕

r∈K
≤n+1
q

wt(
−−→
r(ε)) ⊗

k⊗

j=1

⊗

u∈K≤n−1

wt(
−−−→
r(ju)) (10)

=
⊕

r∈K
≤n+1
q

wt(
−−→
r(ε)) ⊗

⊗

v∈K≤n\{ε}

wt(
−−→
r(v))

=
⊕

r∈K≤n+1
q

⊗

u∈K≤n

wt(
−−→
r(u))

Identity (6) employs the definition of O, and (7) the induction hypothesis. Iden-
tity (8) uses the fact that SQ is a distributive lattice, which allows us to multiply
out, and Identity (9) multiplies wt(q, q1, . . . , qk) in. Identity (10) simplifies the
two sums by constructing a run of larger depth. Instead of considering the tran-
sition (q, q1, . . . , qk) and then runs of depth n starting with q1, . . . , qk, we simply
take the corresponding run of depth n+1 starting at q. This run labels the root
with q and the successor node j of the root with qj . Below j we have the former
run starting with qj . The remaining identities are trivial. This completes the
proof of the lemma. ��

Theorem 3. The mapping σ‖ is the greatest fixpoint of O.

Proof. By Tarski’s fixpoint theorem, we know that the greatest fixpoint of O is⊗
n≥0 On(1̃). From Lemma 3, we then obtain

⊗

n≥0

On(1̃)(q) =
⊗

n≥0

⊕

r∈K≤n
q

⊗

u∈K≤n−1

wt(
−−→
r(u)) =

⊗

n≥0

⊕

r∈K∗
q

⊗

u∈K≤n−1

wt(
−−→
r(u)) =

=
⊕

r∈K∗
q

⊗

n≥0

⊗

u∈K≤n−1

wt(
−−→
r(u)) =

⊕

r∈K∗
q

⊗

u∈K∗

wt(
−−→
r(u)) = σ‖(q) ��

This theorem, along with Lemma 2, allows us to compute the behaviour of
weighted looping automata in a bottom-up fashion. If S is finite, then it is
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obvious how to compute the fixpoint σ‖: we know that there exists a least m ≤
|S||Q| such that Om(1̃) = Om+1(1̃), and for this m we have Om(1̃) = σ‖. If
S is infinite, then it is not a priori clear that the fixpoint can be reached after
finitely many iterations. We will now show that it is actually sufficient to apply
the operator only |Q| + 1 times. Note that this result is also useful for the finite
case since the bound |Q| + 1 greatly improves on the generic bound |S||Q|.

Definition 15 (m-complete). A WLA A is m-complete if, for every partial
run r : K≤m → Q of depth m, there is a run sr : K∗ → Q such that

⊗

u∈K≤m−1

wt(
−−→
r(u)) ≤SQ

⊗

u∈K∗

wt(
−−−→
sr(u)).

Using the fact that ⊗ is idempotent, it is easy to see that every WLA is m-
complete for any m greater than the number of states |Q|. The proof is basically
the same as the one given in [3] for the fact that a looping tree automaton has
a run iff it has a partial run of depth > |Q|.

Theorem 4. If A is an m-complete WLA, then ‖A‖ =
⊕

q∈Q in(q)⊗Om(1̃)(q).

Proof. Since Lemma 2 yields ‖A‖ =
⊕

q∈Q in(q) ⊗ σ‖(q), it suffices to prove
that Om(1̃) = σ‖. Furthermore, Theorem 3 implies that σ‖ is the infimum of
{On(1̃) | n ≥ 0}. Thus, it is enough to show that Om(1̃) ≤SQ σ‖.

By Lemma 3, Om(1̃)(q) =
⊕

r∈K≤m
q

⊗
u∈K≤m−1 wt(

−−→
r(u)). Since A is m-

complete, we can replace every partial run r appearing in the previous iden-
tity by the corresponding run sr, obtaining a greater element in the semiring:

Om(1̃)(q) ≤SQ

⊕

r∈K≤m
q

⊗

u∈K∗

wt(
−−−→
sr(u))

≤SQ

⊕

s∈K∗
q

⊗

u∈K∗

wt(
−−→
s(u)) = σ‖(q).

This completes the proof of the theorem. ��

Let us apply this result to the pinpointing automaton for SI constructed in
the previous section. This automaton has exponentially many states in the size
n of the input (C, T ). Thus, we need exponentially many applications of the
operator O. It is also easy to see that the time required by each application of
O is exponential in n.

Corollary 1. Let C be an ALC concept description and T an SI TBox. The
pinpointing formula for (C, T ) w.r.t. unsatisfiability can be computed in time
exponential in the size of (C, T ).

Since even deciding satisfiability of ALC concept descriptions w.r.t. SI TBoxes
is known to be ExpTime-hard, this bound is optimal.
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6 Conclusions

We have introduced a general framework for extending decision procedures based
on the construction of looping tree automata to pinpointing algorithms. This
framework can also elegantly deal with DLs for which tableau-based decision
procedures require sophisticated blocking conditions, and to which consequently
the general approach for extending tableau-based decision procedures to pin-
pointing algorithms introduced in [5] does not apply.

Our framework is based on the use of weighted automata working on infinite
trees, which have until now not been studied. One of the main contributions of
this paper is an approach for computing the behaviour of such automata. An
interesting topic for future work is to check whether this approach can be adapted
such that it also works in cases where the weighted automaton is not explicitly
given, but rather computed on-the-fly. Finally, it would also be interesting to
know how to compute the behaviour of weighted automata working on infinite
trees that use a non-trivial acceptance condition for runs, such as the Büchi
condition. This would allow us to extend our framework such that it can deal
with DLs that require such acceptance conditions, such as the DL ALCtrans,
which allows for transitive closure of roles [1].
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