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Abstract. We extend the description logic EL++ with reflexive roles
and range restrictions, and show that subsumption remains tractable if
a certain syntactic restriction is adopted. We also show that subsumption
becomes PSpace-hard (resp. undecidable) if this restriction is weakened
(resp. dropped). Additionally, we prove that tractability is lost when
symmetric roles are added: in this case, subsumption becomes ExpTime-
hard.

1 Introduction

The W3C recommendation OWL is currently being revisited by a W3C working
group with the goal of refining and extending the existing version OWL 1.0 [1].
Although the main aim is to produce a new version of the OWL language with
the working title OWL 1.1, the group is also discussing a number of promi-
nent fragments of OWL that may or may not become part of the upcoming 1.1
W3C recommendation. These fragments trade expressive power for favourable
properties that are not shared by the full OWL language. In particular, several
fragments are a subset of OWL DL, the description logic (DL) dialect of OWL,
and aim at high efficiency for reasoning tasks such as subsumption, classfication,
and satisfiability.

A notable fragment of this kind is the description logic EL++, which has been
introduced in [3]. The advantage of EL++ is that it combines tractability of the
afore mentioned reasoning problems with expressive power that is sufficient for
many important applications of ontologies. In particular, EL++ is well-suited
for the design of life science ontologies, and many existing such ontologies are
formulated in this language. Examples include SNOMED CT [22], the Gene
ontology [24], and large parts of GALEN [19]. As witnesses by publications such
as [20, 23], serious ontology projects are currently picking up on it—including
commercial ones such as SNOMED CT. Tractability of reasoning in EL++, which
has been established in [3], is in stark contrast to the NExpTime-completeness
(and thus high intractability) of reasoning in full OWL DL 1.0. Moreover, the
CEL system [6] and the publications [5, 7] have demonstrated that reasoning in
EL++ can be implemented in an extremely efficient way. Other reasoners are
currently under construction or already available. For example, the Terminology
Development Environment (TDE) of Apelon Corporation includes a reasoner for
a fragment of EL++.

The basis of EL++ is the description logic EL, which provides as concept
constructors the top concept (i.e., owl:Thing), conjunction (i.e., objectIntersec-
tionOf), and existential restriction (i.e., objectSomeValuesFrom). In EL++, this
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somewhat frugal list is extended with a number of constructors such as the bot-
tom concept (i.e., owl:Nothing) and nominals (i.e., objectOneOf with a single
argument), to name only two. Additional features of EL++ include GCIs (i.e.,
unrestricted subClassOf) and complex role inclusions, which allow to express
role hierarchies (i.e., subObjectPropertyExpression), transitive roles, and right
identities. A complete description of EL++ is given in Section 2, and, in a more
OWL-ish way, at [2].

One of the most prominent constructors not included in EL++ is universal
value restriction (i.e., objectAllValuesFrom). The reason for omitting it is that,
as shown in [3], universal value restrictions cause ExpTime-completeness of rea-
soning already when added to EL. In the current paper, we extend EL++ with
reflexive roles (i.e., reflexiveObjectProperty) and range restrictions (i.e. object-
PropertyRange), a very important special case of universal value restrictions.
This extension allows to capture additional ontologies in EL++ such as (certain
versions of) the thesaurus of the US national cancer institute (NCI), which is
intended to become the reference terminology for cancer research [21]. In this pa-
per, we prove that reasoning in the extended version of EL++ remains tractable
if a certain and rather natural syntactic condition is adopted. In particular, this
restriction is satisfied by the NCI thesaurus. We also investigate the effects of
weakening and dropping the restriction, showing that this leads to PSpace-
hardness and undecidability of reasoning, respectively. Finally, we investigate
the option of adding symmetric roles to EL++ and show that already in EL with
symmetric roles, reasoning is ExpTime-complete. Based on the approach in this
paper, the CEL reasoner is currently being extended to support both range
restrictions and symmetric roles, see http://lat.inf.tu-dresden.de/systems/cel.

2 Introducing EL
++

In EL++, concepts are inductively defined from a set NC of concept names, a set
NR of role names, and a set NI of individual names, using the constructors shown
in the top five rows of Table 1. As usual, we use C and D to refer to concepts, r
to refer to a role name, and a and b to refer to individual names. The semantics
of EL++-concepts is defined in terms of an interpretation I = (∆I , ·I). The
domain ∆I is a non-empty set of individuals and the interpretation function ·I

maps each concept name A ∈ NC to a subset AI of ∆I , each role name r ∈ NR

to a binary relation rI on ∆I , and each individual name a ∈ NI to an individual
aI ∈ ∆I . The extension of ·I to arbitrary concept descriptions is inductively
defined as shown in the third column of Table 1.

The logic EL++ can be parameterized by one or more concrete domains
D1, . . . ,Dn, which correspond to datatypes in OWL and permit reference to
concrete data objects such as strings and integers. Formally, a concrete domain
D is a pair (∆D,PD) with ∆D a set and PD a set of predicate names. Each p ∈ P
is associated with an arity n > 0 and an extension pD ⊆ (∆D)n. To provide a
link between the DL and the concrete domains D1, . . . ,Dn, we introduce a set of
feature names NF and the concrete domain constructor shown in Table 1. We use
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Name Syntax Semantics

top > ∆I

bottom ⊥ ∅

nominal {a} {aI}

conjunction C u D CI ∩ DI

existential
restriction

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

concrete
domain

p(f1, . . . , fk)

for p ∈ PDj

{x ∈∆I | ∃y1, . . . , yk ∈ ∆Dj :
fI

i (x) = yi for 1 ≤ i ≤ k ∧ (y1, . . . , yk) ∈ pDj}

GCI C v D CI ⊆ DI

RI r1 ◦ · · · ◦ rk v r rI1 ◦ · · · ◦ rIk ⊆ rI

domain
restriction

dom(r) v C rI ⊆ CI × ∆I

range
restriction

ran(r) v C rI ⊆ ∆I × CI

concept
assertion

C(a) aI ∈ CI

role
assertion

r(a, b) (aI , bI) ∈ rI

Table 1. Syntax and semantics of EL++.

p to denotes a predicate of a concrete domain and f1, . . . , fk to denote feature
names. The interpretation function is required to map each feature name f to
a partial function from ∆I to

⋃
1≤i≤n∆

Di . Moreover, we generally assume that

∆Di ∩∆Dj = ∅ for 1 ≤ i < j ≤ n.

An EL++ knowledge base comprises two sets, the TBox and the ABox. While
the TBox contains intensional knowledge defining the main notions relevant to
the domain of discourse, the ABox contains extensional knowledge about indi-
vidual objects in the domain. Formally, a TBox is a finite set of constraints,
which can be general concept inclusions (GCIs), role inclusions (RIs), domain
restrictions (DRs) and range restrictions (RRs). All of them are shown in Ta-
ble 1. In RIs, we allow the case where k = 0, written as ε v r. An ABox is
a finite set of concept assertions and role assertions, which are also shown in
Table 1. An interpretation I is a model of a TBox T (resp. ABox A) if, for each
constraint (resp. assertion) it contains, the conditions given in the third column
of Table 1 are satisfied.

Regarding the expressive power of EL++, we remark the following. First, our
RIs generalize several means of expressivity important in ontology applications:

– role hierarchies r v s can be expressed as r v s;
– role equivalences r ≡ s can be expressed as r v s, s v r;
– transitive roles can be expressed as r ◦ r v r;
– reflexive roles can be expressed as ε v r;
– left-identity rules can be expressed as r ◦ s v s;
– right-identity rules can be expressed as r ◦ s v r.
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Second, the bottom concept in combination with GCIs can be used to express
disjointness of complex concept descriptions: C uD v ⊥ says that C,D are dis-
joint. Finally, the identity of two individuals can be expressed as {a} v {b}, and
their distinctness as {a} u {b} v ⊥. We remark that the version of EL++ pre-
sented here extends the original version in [3] by range restrictions and reflexive
roles, i.e., role inclusions of the form ε v r.

In this paper, we are interested in the reasoning task of subsumption because
it allows to compute the classification of a TBox, i.e., a hierarchy which shows the
subconcept-superconcept relations between the concepts defined in a TBox. We
say that a concept C subsumes a concept D w.r.t. a TBox T , written C vT D,
if CI ⊆ DI in every model I of T . As shown in [3], subsumption in EL++ is
polynomially inter-reducible with many other reasoning tasks such as concept
satisfiability, ABox consistency, and instance checking.

3 A Syntactic Restriction

To avoid intractability (and even undecidability), we have to impose a restriction
on the structure of TBoxes that prevents the otherwise too intricate interplay
of range restrictions and role inclusions. For a TBox T and role names r, s, we
write T |= r v s iff r = s or T contains role inclusions

r1 v r2, . . . , rn−1 v rn with r = r1 and s = rn.

We write T |= ran(r) v C if there is a role name s with T |= r v s and
ran(s) v C ∈ T . Now, the mentioned restriction is as follows:

If r1 ◦ · · · ◦ rn v s ∈ T with n ≥ 1 and T |= ran(s) v C, then T |=
ran(rn) v C.

The restriction ensures that if a role inclusion r1 ◦ · · · ◦ rn v s, n ≥ 1, implies
a role relationship (d, e) ∈ sI , then the RR on s do not impose new concept
memberships of e. Note that the condition is vacuously true if the role inclusion
is a reflexivity statement, a role hierarchy statement, a transitivity statement,
or a generalized left-identity of the form r1 ◦ · · · ◦ rk v rk. In the following, we
assume without further notice that this restriction is satisfied. We will show in
Section 5 that dropping the restriction results in undecidability, and even if only
right identities are allowed as role inclusions it still leads to PSpace-hardness
and thus intractability.

4 Deciding Subsumption in Polytime

We show that, in the version of EL++ presented in this paper, subsumption
can be decided in polytime. In fact, the extension with RIs of the form ε v r
is technically a minor one, and it is easy to see how to extend the polytime
algorithm for subsumption in the original version of EL++ given in [3] to account
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for them. In contrast, the extension with range restrictions is less trivial. We show
that range restrictions can be eliminated in quadratic time in a way such that
all (non)-subsumptions are preserved. It then remains to apply the subsumption
algorithm for the original version of EL++. As a preliminary, we convert TBoxes
into a normal form.

4.1 A Normal Form for TBoxes

Given a TBox T formulated in EL++, we use BCT to denote the set of basic
concept descriptions in T , i.e., the smallest set of concept descriptions that
contains the top concept >, all concept names used in T , and all concepts of the
form {a} and p(f1, . . . , fk) appearing in T , possibly as subconcepts.

Definition 1 (Normal Form for TBoxes). A TBox T is in normal form if

1. all concept inclusions have one of the following forms, where C1, C2 ∈ BCT

and D ∈ BCT ∪ {⊥}: C1 u · · · u Cn v D, C1 v ∃r.C2, and ∃r.C1 v D
2. for all role inclusions r1 ◦ · · · ◦ rk v r ∈ T , we have k ≤ 2;
3. there are no domain restrictions and all range restrictions are of the form

ran(r) v A, where A is a concept name.

By introducing new concept and role names, any TBox T can be turned into
a normalized TBox T ′ such that every model of T ′ is also a model of T , and
every model of T can be extended to a model of T ′ by appropriate choice of the
interpretations of the additional concept and role names. The transformation
can be performed in linear time. More details can be found in [3].

4.2 Eliminating Range Restrictions

Let T be a TBox in normal form. For each role name r, we use ranT (r) to denote
the set of concept names A such that T |= ran(r) v A. To eliminate range
restrictions, we introduce a fresh concept name Xr,D for every GCI C v ∃r.D in
T . Intuitively, Xr,D denotes the range of r intersected with the extension of D.
Now, let T ′ be the TBox obtained from T by dropping all range restrictions
and, additionally, performing the following operations:

1. exchange every CI C v ∃r.D with the CIs C v ∃r.Xr,D, Xr,D v D, and
Xr,D v A for all A ∈ ranT (r);

2. if ε v r ∈ T , then add the CI > v A for all A ∈ ranT (r);

Then we have the following.

Lemma 1. For all concept names A,B occurring in T , A vT B iff A vT ′ B.

Proof. The “⇐” direction is trivial since every model I of T can be extended
to a model of T ′ by interpreting every fresh concept name Xr,D as {d ∈ DI |
∃e : (e, d) ∈ rI}. Thus, we concentrate on the “⇒” direction.

We show the contrapositive. Let A0 6vT ′ B0. Then there is a model I ′ of T ′

such that AI′

0 \ BI′

0 6= ∅. I ′ is not necessarily a model of T since it need not
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satisfy the RRs in T . To fix this problem, we remove r-edges from I ′ that violate
the range restrictions. The resulting interpretation turns out to be a model of
T . More specifically, convert I ′ into a new interpretation I by changing the
interpretation of all role names r as follows:

rI = {(d, e) ∈ rI
′

| e ∈
⋂

A∈ranT (r)

AI′

}.

To show that I is a model of T , we only consider those constraints in T that
could possibly be influenced by the modification:

– Let C v ∃r.D ∈ T . Then T ′ contains the CIs C v ∃r.Xr,D and Xr,D v D.

Let d ∈ CI . Since C ∈ BCT , we get d ∈ CI′

⊆ (∃r.Xr,D)I
′

. Thus there is an

e ∈ ∆I′

with (d, e) ∈ rI
′

and e ∈ XI′

r,D ⊆ DI′

. Since D ∈ BCT , e ∈ DI . Since

there is a CI Xr,D v A in T ′ for all A ∈ ranT (r), we have e ∈ AI′

for all

these A. By definition of I, this together with (d, e) ∈ rI
′

yields (d, e) ∈ rI .
It follows that d ∈ (∃r.D)I as required.

– Let ∃r.C v D ∈ T . Then this CI is also in T ′. Let d ∈ (∃r.C)I . Then
d ∈ (∃r.C)I

′

and thus d ∈ DI′

= DI .
– Let ε v r ∈ T . Then this constraint is also in T ′. Let d ∈ ∆I . Then

(d, d) ∈ rI
′

. In T ′, there is a CI > v A for all A ∈ ranT (r). Thus, we have
d ∈ AI′

for all these A and the definition of I yields (d, d) ∈ rI .
– Let s v r ∈ T . Then this RI is also in T ′ and thus sI

′

⊆ rI
′

. Since s v r ∈ T ,
we have ranT (r) ⊆ ranT (s). By definition of I, this together with sI

′

⊆ rI
′

yields sI ⊆ rI .
– Let r1 ◦ r2 v r ∈ T . Then this RI is also in T ′. Let (d, d′) ∈ rI1 and

(d′, d′′) ∈ rI2 . Then (d, d′) ∈ rI
′

1 and (d′, d′′) ∈ rI
′

2 , and thus (d, d′′) ∈ rI
′

.
Since r1 ◦ r2 v r ∈ T , the syntactic restriction on T ensures that ranT (r) ⊆
ranT (r2). By definition of I, this together with (d′, d′′) ∈ rI2 and (d, d′′) ∈ rI

′

implies (d, d′′) ∈ rI .
– Let ran(r) v A ∈ T and (d, e) ∈ rI . By definition of I, e ∈ AI′

= AI .

Since AI
0 = AI′

0 and BI
0 = BI′

0 , I ′ is thus a countermodel against A0 vT B0.
o

Observe that eliminating range restrictions induces only a quadratic blowup in
the size of the original TBox. We expect that, in practical cases, the blowup will
actually only be linear.

5 More on Range Restrictions and Role Inclusions

We show that dropping the syntactic restriction adopted in EL++ leads to unde-
cidability of subsumption, even if we allow only the concept constructors of EL,
i.e., conjunction and existential restriction. If we restrict further by admitting
only right identities as role inclusions, subsumption is still at least PSpace-hard.
This shows that weakening the restriction by excluding right identities (which
play an important role in medical knowledge bases) does not recover polytime
reasoning. The PSpace lower bound applies even if a well-known acyclicity con-
dition on role inclusions is adopted.
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5.1 Undecidability

We consider EL with RIs and range restrictions as the only constraints in TBoxes
(no GCIs!). The proof is by reduction of the emptiness problem of the intersection
of two context-free grammars, which is known to be undecidable [14]. Recall
that a context free grammar is a tuple (Σ,N,P, S) with Σ a finite alphabet of
terminal symbols, N a finite set of non-terminal symbols, S ∈ N a start symbol,
and P ⊆ N × (Σ ∪ N)∗ a finite set of productions. We denote the lanuage
generated by a grammar G with L(G).

Let G = (Σ,N,P, S) and G′ = (Σ,N ′, P ′, S′) be two context-free grammars.
W.l.o.g., we may assume that N ∩N ′ = ∅. We show how to translate G and G′

into a TBox T and concepts C and D such that L(G) ∩ L(G′) = ∅ iff C 6vT D.
In the TBox T , we use role names rx and r′x for every x ∈ Σ ∪N ∪N ′ and two
concept names A and B. More precisely, we set

C = u
a∈Σ

∃r′a.> and D = ∃rS .(A uB),

and T contains the following constraints:

1. the RR ran(r′a) v u
b∈Σ

∃rb.> and ran(ra) v u
b∈Σ

∃rb.> for all a ∈ Σ;

2. the RIs rx1
◦ · · · ◦ rxn

v rv and r′x1
◦ rx2

◦ · · · ◦ rxn
v r′v for every production

v ` x1 · · ·xn ∈ P ∪ P ′,
3. the range restrictions ran(r′S) v A and ran(r′S′) v B.

To understand the construction, let d be an instance of C in some model I of T .
The definition of C and the RRs in Points 1 ensure that, for every word w =
a1 · · · an ∈ Σ∗, there is an element dw in I reachable along the path r′a1

ra2
· · · ran

from d. The RIs in Point 2 ensure that if w ∈ L(G), then (d, dw) ∈ r′S
I
, and

likewise for G′ and r′S′ . We use the role r′S here instead of rS to distinguish, at
the elements dw, incoming role edges that originate in d from edges originating
elsewhere. The RIs in Point 3 simply mark those dw with w ∈ L(G) with A, and
those with w ∈ L(G′) with B. It is now easy to show that L(G) ∩ L(G′) = ∅ iff
C 6vT D. We remark that similar reductions have been used in [15, 17, 16].

Theorem 1. Subsumption in EL extended with role inclusions and range re-
strictions is undecidable.

In [12], an acyclicity condition on role inclusions is introduced, which is ex-
pected to become part of OWL 1.1. It follows from results in [12] that unre-
stricted EL++ becomes decidable when this condition is adopted. As shown in the
subsequent section, however, acyclicity does not suffice to guarantee tractability.

5.2 PSpace-hardness

We show that even if RIs are restricted to acyclic right identities, subsumption
in EL with range restrictions is at least PSpace-hard. Although it is possible to
establish the result without any GCIs, we include them to improve readability.
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The proof uses acyclic role inclusions. It is by reduction of the validity of QBFs,
i.e., formulas of the form ψ = Q1x1 · · ·Qnxn.ϕ where Qi ∈ {∃,∀} for 1 ≤ i ≤ n
and ϕ is a propositional formula. We refer to [18] for a formal definition of QBFs
and their validity. Let a QBF ψ = Q1x1 · · ·Qnxn.ϕ be given, with ϕ in negation
normal form. In the following, we assemble a TBox T such that, for certain
concept names A and B, we have A vT B iff ψ is valid.

We start with building up a tree of depth n rooted in A. Roles r1, . . . , rn are
used to connect left successor in the tree, and roles r1, . . . , rn for right successors.
We use concept names Li, 1 ≤ i ≤ n, to mark the different levels of the tree:

A v L0

Li v ∃ri+1.Li+1 u ∃ri+1.Li+1 for 1 ≤ i < n

Intuitively, nodes in the tree represent partial truth assignments. An incoming
ri edge means that the variable xi is true, and an incoming ri edge that it is
false. We ensure that, once we have decided on the truth value of a variable, we
keep it in all descendant nodes. For 1 ≤ i < j ≤ n:

ri ◦ rj v ri ri ◦ rj v ri

ri ◦ rj v ri ri ◦ rj v ri

Clearly, the leafs of the tree represent all possible (non-partial) truth assign-
ments. For what is to follow, we represent these assignments not only in terms
of incoming edges, but also by concept names. We use a concept name Ti to
indicate that xi is true, and Fi for false. For 1 ≤ i ≤ n:

ran(ri) = Ti ran(ri) = Fi

In each leaf, we evaluate the formula. To this end, we introduce a concept name
Aθ for every subformula θ of ϕ. Then put:

Ln u Ti v Axi
for 1 ≤ i ≤ n

Ln u Fi v A¬xi
for 1 ≤ i ≤ n

Ln uAχ uAθ v Aχ∧θ for all subformulas χ ∧ θ of φ
Ln uAχ and Ln uAθ v Aχ∨θ for all subformulas χ ∨ θ of φ

To evaluate the QBF ψ, we proceed from the leafs to the root. Each level corre-
sponds to a quantifier in ψ, and we distinguish the case of an existential quantifier
from that of a universal quantifier:

Li u ∃ri+1.B and Li u ∃ri+1.B v B for 0 ≤ i < n with Qi+1 = ∃
Li u ∃ri+1.B u ∃ri+1.B v B for 0 ≤ i < n with Qi+1 = ∀

Ln uAϕ v B

It is not hard to check that, as intended, ψ is valid iff A vT B. It is easily verified
that the right identities in the proof are acyclic in the sense of [12].

Theorem 2. Subsumption in EL extended with range restrictions and acyclic
right identities is PSpace-hard.

The best known upper bound for the considered version of EL is an ExpTime

one, and it only applies to acyclic right identities [13]. For the cyclic case, even
decidability is unknown (when RIs are restricted to right identities).
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6 Symmetric and Inverse Roles

EL++ provides for reflexive and transitive roles, but not for symmetric ones.
The purpose of the current section is to explain why this is the case: adding
symmetric roles leads to ExpTime-hardness already for EL with GCIs. This
result is established in two steps. First, we consider ELI, i.e., EL extended with
inverse roles which come in the form of existential restrictions ∃r−.C interpreted
as {d ∈ ∆I | ∃e ∈ CI : (e, d) ∈ rI}. We show that, in ELI with GCIs, sub-
sumption is ExpTime-hard. This fills a gap in [3], where only PSpace-hardness
is established. In a second step, we reduce subsumption in ELI with GCIs to
subsumption in EL with symmetric roles and GCIs.

The ExpTime-lower bound for ELI with GCIs is proved by a reduction of
the word problem of polynomially space-bounded alternating Turing machines.
Details are given in the appendix. A corresponding upper bound is derived from
the DL ALCI [10].

Theorem 3. In ELI, subsumption w.r.t. GCIs is ExpTime-complete.

Let ELsym be the extension of EL with symmetric roles, i.e., there is a countably
infinite subset N

sym
R ⊆ NR such that rI = {(y, x) | (x, y) ∈ rI} for all r ∈ N

sym
R .

To show ExpTime-hardness of subsumption in ELsym with GCIs, we reduce sub-
sumption in ELI with GCIs using a small trick due to Halpern and Moses [11].
Let T be an ELI TBox containing GCIs as the only kind of constraint and using
role names r1, . . . , rk. We introduce additional role names s1, . . . , sk and assume
that ri, si ∈ N

sym
R , for all i ∈ {1, . . . , k}. Then we modify T into a new TBox T ′

by replacing

– every concept ∃ri.C with ∃ri∃si.C and
– every concept ∃r−i .C with ∃si∃ri.C.

It is not hard to see that for any two concept names A and B, we have A vT B in
ELI iff A vT ′ B in ELsym. We have thus established ExpTime-hardness. A cor-
responding upper bound is obtained from the obvious reduction of subsumption
in ELsym with GCIs to satisfiability in Converse-PDL [9].

Theorem 4. In ELsym,subsumption w.r.t. general TBoxes is ExpTime-complete.

Acknowledgements. We are grateful to Meng Suntisrivaraporn for discussions
and suggestions.
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A ELI with GCIs is ExpTime-hard

We prove ExpTime-hardness of subsumption in ELI with GCIs by reducing the
word problem of polynomially space-bounded alternating Turing machines. An
Alternating Turing Machine (ATM) is of the form M = (Q,Σ, q0,∆). The set
of states Q = Q∃ ] Q∀ ] {qacc} ] {qrej} consists of existential states from Q∃,
universal states from Q∀, an accepting state qacc, and a rejecting state qrej; Σ is
the alphabet containing a blank symbol ¤; q0 ∈ Q∃ ∪ Q∀ is the starting state;
and the transition relation δ is of the form

δ ⊆ Q×Σ ×Q×Σ × {L,R}.

We write δ(q, a) for {(q′, b,M) | (q, a, q′, b,M) ∈ δ}.
ATMs run on right-infinite tapes. A configuration of an ATM is a word wqw′

with w,w′ ∈ Σ∗ and q ∈ Q. The intended meaning is that the tape contains
the word ww′ (with only blanks before and behind it), the machine is in state
q, and the head is on the leftmost symbol of w′. The successor configurations
of a configuration wqw′ are defined in the usual way in terms of the transition
relation δ. A halting configuration is of the form wqw′ with q ∈ {qacc, qrej}.

A computation path of an ATM M on a word w is a (finite or infinite)
sequence of configurations c1, c2, . . . such that c1 = q0w and ci+1 is a successor
configuration of ci for i ≥ 0. The ATMs considered in this paper have only finite
computation paths on any input. Since this case is simpler than the general one,
we define acceptance for ATMs with finite computation paths, only, and refer
to [8] for the full definition. Let M be such an ATM. A halting configuration
is accepting iff it is of the form wqaccw

′. For other configurations c = wqw′, the
acceptance behaviour depends on q: if q ∈ Q∃, then c is accepting iff at least one
successor configuration is accepting; if q ∈ Q∀, then c is accepting iff all successor
configurations are accepting. Finally, the ATM M with starting state q0 accepts
the input w iff the initial configuration q0w is accepting. We use L(M) to denote
the language accepted by M, i.e., L(M) = {w ∈ Σ∗ |M accepts w}.

According to Theorem 3.4 of [8], there is a polynomially space-bounded ATM
M whose word problem is ExpTime-hard. According to Theorem 2.6 of the same
paper, we may w.l.o.g. assume that there exists a polynomial p such that the
length of every computation path of M on w ∈ Σn is bounded by 2p(n), and all
the configurations wqw′ in such computation paths satisfy |ww′| ≤ p(n).

W.l.o.g., we assume that M never attempts to make a left move on the left-
most field of the tape. In fact, if M does not satisfy this condition, then it can
easily be converted into an ATM M′ that does satisfy it such that L(M) =
L(M′) and the space consumption of M′ is identical to the space consumption
of M.

Let w = a0 · · · an−1 ∈ Σ∗ be an input to M. In the following, we construct
an ELI TBox T and concepts C and D such that w ∈ L(M) iff C vT D.
Intuitively, in a model I of T each individual corresponds to a configuration
and if two individuals are role successors in I, then they correspond to successor
configurations.
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We assume that the triples in δ(q, a) are linearly ordered and that for t ∈
δ(q, a), nt denotes the number of this triple in the ordering (starting with 0).
Let

m := max{#δ(q, a) | q ∈ Q, a ∈ Σ}.

In T , we use role names r0, . . . , rm. Intuitively, a role name ri connects two
successor configurations c and c′ such that c′ is reachable from c by choosing
triple number i from the set δ(q, a) that is relevant for c. We use the following
concept names:

– Sq for q ∈ Q to denote that the current state is q;

– Hi for i < p(n) to denote that the head is currently on cell i;

– C
(i)
a for a ∈ Σ and i < p(n) to denote that the current symbol in the i-th

tape cell is a;

– Init to denote the initial configuration and A to denote accepting configura-
tions;

– D to denote configurations that have a “defect” (to be explained below).

– Good is used as a marker for initial configurations that are either accepting
or defect.

We can now start to assemble the TBox T . It consists of the following GCIs:

– Set up the initial configuration:

Init v Sq0
uH0 u u

i<n
C(i)

ai
u u

n≤i<p(n)
C

(i)
¤

– Make a step to the right. For all q ∈ Q, a ∈ Σ, and i < p(n) − 1:

Sq uHi u C
(i)
a v u

t=(q′,a′,R)∈δ(q,a)
∃rnt

.(C
(i)
a′ u Sq′ uHi+1)

– Make a step to the left. For all q ∈ Q, a ∈ Σ, and i ∈ {1, . . . , p(n)}:

Sq uHi u C
(i)
a v u

t=(q′,a′,L)∈δ(q,a)
∃rnt

.(C
(i)
a′ u Sq′ uHi+1)

– Symbols that are not under the head do not change. For all i, j < p(n) such
that i 6= j and ` < m:

∃r−m.(C
(i)
a uHj) v C(i)

a

– Identify accepting configurations. For all q ∈ Q∀, a ∈ Σ, i < p(n), and
q′ ∈ Q∃:

Sqacc
v A

Sq uHi u C
(i)
a u u

i<#δ(q,a)
∃ri.A v A

Sq′ u ∃ri.A v A for all i < m



13

– Identify defects such as a tape cell labeled with more than one symbol:

Hi uHj v D for all i, j < p(n) with i 6= j

Sq u S
′
q v D for all q, q′ ∈ Q with q 6= q′

C
(i)
a u C

(i)
a′ v D for all i < p(n) and a, a′ ∈ Σ with a 6= a′

– Propagate defects up to the initial configuration. For all i < m:

∃ri.D v D

– The initial configuration is good if it is either accepting or defect:

Init uA v Good

Init uD v Good

Lemma 2. M accepts w iff Init vT Good.

Proof. First assume that w /∈ L(M). Then we can construct an interpretation
I by setting ∆I to the set of all configurations of M and interpreting all the
concept names Sq, Hi, C

(i) in the obvious way, Init as {q0w}, A as the set of
accepting configurations, and D and Good as the empty set. The role names
are interpreted as follows: (c, c′) ∈ rIi iff c = wqaw′ and c′ can be obtained
from c by taking the i-th transition in δ(q, a). It is straightforward to check that
this interpretation is a model of T . Moreover, q0w ∈ Init

I \ Good
I and thus

Init 6vT Good.
Conversely, assume that Init 6vT Good. Then there is a model I of T such

that there is a d ∈ Init
I \ Good

I . By construction of T , d represents the initial
configuration q0w and we can follow the roles ri to find successor configurations
of q0w, successor configurations of q0w’s successor configurations, etc. Since x /∈
Good

I , x /∈ DI which implies that none of the configurations that we reach when
travelling roles ri is defect. Also, x /∈ Good

I implies x /∈ AI . This means that
the initial configuration q0w is not accepting, and thus w /∈ L(M). o

Since the size of T is polynomial in n, we have thus established the following.

Theorem 5. In ELI, subsumption w.r.t. GCIs is ExpTime-hard.


