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Abstract. Formal Concept Analysis (FCA) can be used to analyze data
given in the form of a formal context. In particular, FCA provides efficient
algorithms for computing a minimal basis of the implications holding in
the context. In this paper, we extend classical FCA by considering data
that are represented by relational structures rather than formal contexts,
and by replacing atomic attributes by complex formulae defined in some
logic. After generalizing some of the FCA theory to this more general
form of contexts, we instantiate the general framework with attributes
defined in the Description Logic (DL) EL, and with relational structures
over a signature of unary and binary predicates, i.e., models for EL. In
this setting, an implication corresponds to a so-called general concept
inclusion axiom (GCI) in EL. The main technical result of this paper
is that, in EL, for any finite model there is a finite set of implications
(GCIs) holding in this model from which all implications (GCIs) holding
in the model follow.

1 Introduction

Classical Formal Concept Analysis [12] assumes that data from an application
are given by a formal context, i.e., by a set of objects G, a set of attributes M , and
an incidence relation I that states whether or not an object satisfies a certain
attribute. To analyze the data given by such a context, FCA provides tools
for computing a minimal basis for the implications between sets of attributes
holding in the context [11,8]. An implication A → B between sets of attributes
A, B holds in a given context if all objects satisfying every attribute in A also
satisfy every attribute in B. A classical result by Duquenne and Guigues [13]
says that such a unique minimal basis always exists. If the set of attributes is
finite, which is usually assumed, this basis is trivially finite as well.

From a model-theoretic or (first-order predicate) logical point of view, a formal
context is a very simple relational structure where all predicates (the attributes)
are unary. In many applications, however, data are given by more complex rela-
tional structures where objects can be linked by relations of arities greater than
1. In order to take these more complex relationships between objects into account
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when analyzing the data, we consider concepts defined in a certain logic rather
than simply sets of atomic attributes (i.e., conjunctions of unary predicates).
Intuitively, a concept is a formula with one free variable, and thus determines a
subset of the domain (the extension of the concept) for any model of the logic
used to construct these formulae. We show that, under certain conditions on
this logic, many of the basic results from FCA can be extended to this more
general framework. Basically, this requirement is that a finite set of objects (i.e.,
elements of the domain of a given model) always has a most specific concept
describing these objects. The operator that goes from a finite set of objects to
its most specific concept corresponds to the prime operator in classical FCA,
which goes from a set of objects A to the set of attributes A′ that all objects
from the set have in common. The classical prime operator in the other direction,
which goes from a set of attributes B to the set of objects B′ satisfying all these
attributes, has as its corresponding operator the one that goes from a concept
to its extension.

We instantiate this general framework with concepts defined in the Descrip-
tion Logic EL [2,3], i.e., formal contexts are replaced by finite models of this
DL and attributes are EL-concepts. Though being quite inexpressive, EL has
turned out to be very useful for representing biomedical ontologies such as
SNOMED [22] and the Gene Ontology [23]. A major advantage of using an
inexpressive DL like EL is that it allows for efficient reasoning procedures [3,5].
Actually, it turns out that EL itself does not satisfy the requirements on the
logic needed to transfer results from FCA since objects need not have a most
specific concept. However, if we extend EL to ELgfp by allowing for cyclic con-
cept definitions interpreted with greatest fixpoint semantics, then the resulting
logic satisfies all the necessary requirements. Implications in this setting corre-
spond to so-called general concept inclusion axioms (GCIs), which are available
in modern ontology languages such as OWL [14] and are supported by most DL
systems [15].

The main technical result of this paper is that, in EL and in ELgfp, the set of
GCIs holding in a finite model always has a finite basis, i.e., although there are in
general infinitely many such GCIs, we can always find a finite subset from which
the rest follows. We construct such a finite basis first for ELgfp, and then show
how this basis can be modified to yield one for EL. Due to the space limitation,
we cannot give complete proofs of these results. They can be found in [4].

Related work. There have been previous approaches for dealing with more
complex contexts involving relations between objects. So-called power context
families [24] allow for the representation of relational structures by using a sepa-
rate (classical) context for each arity, where the objects of the context for arity n
are n-tuples. As such, power context families are just an FCA-style way of repre-
senting relational structures. In order to make use of the more complex relational
structure given by power context families, Prediger [16,18,17] and Priss [19] al-
low the knowledge engineer to define new attributes, and provide means for
handling the dependencies between the newly defined attributes and existing at-
tributes by means of formal concept analysis. However, rather than considering
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all complex attributes definable by the logical language, as our approach does,
they restrict the attention to finitely many attributes explicitly defined by the
knowledge engineer.

Similar to our general framework, Ferré [6,7] considers complex attributes
definable by some logical language. The equivalent of a formal context, called
logical context in [6,7], associates a formula (i.e., a complex attribute) with
each object. Since the authors assume that formulae form a join-semilattice, the
formula associated with a set of objects is obtained as the join of the formulae
associated with the elements of the set. Our general framework can be seen as an
instance of the one defined in [6,7], where the association of formulae to (sets of)
objects is defined using the semantics of the logic in question. However, Ferré’s
work does not consider implications, which is the main focus of the present paper
(see [4] for a more detailed comparison of our approach with the one in [6,7]).
An approach similar to the one of [6,7] was developed in [10] motivated by an
application in biochemistry.

The work whose objectives are closest to ours is the one by Rudolph [20,21],
who considers attributes defined in the DL FLE , which is more expressive than
EL. However, instead of using one generalized context with infinitely many com-
plex attributes, he considers an infinite family of contexts, each with finitely
many attributes, obtained by restricting the so-called role depth of the concepts.
He then applies attribute exploration [9] to the classical contexts obtained this
way, in each step increasing the role depths until a certain termination condition
applies. Rudolph shows that, for a finite model, this condition will always be
satisfied eventually, and that the implication bases of the contexts considered up
to that step contain enough information to decide, for any GCI between FLE-
concepts, whether this GCI holds in the given model or not. However, these
implication bases do not appear to yield a basis for all the GCIs holding in the
given finite model, though it might be possible to modify Rudolph’s approach
such that it produces a basis in our sense. The main problem with this approach
is, however, that the number of attributes grows very fast when the role depth
grows (this number increases at least by one exponential in each step).

2 The General Framework

In classical FCA, a formal context (G, M, I) consists of a set of objects G, a set of
attributes M , and an incidence relation I ⊆ G×M . Such a formal context induces
two operators (both usually denoted by ·′), one mapping each set of objects A
to the set of attributes A′ these objects have in common, and the other mapping
each set of attributes B to the set of objects satisfying these attributes. A formal
concept is a pair (A, B) such that G ⊇ A = B′ and M ⊇ B = A′. The set A is the
extensional description of the concept whereas B is its intensional description.
The two ·′ operators form a Galois connection, and if applied twice yield closure
operators ·′′ on the set of objects and the set of attributes, respectively.

In our general framework, we assume that intensional descriptions of sets of
objects are given by concept descriptions. A concept description language is a
pair (L, I), where L is a set, whose elements are called concept descriptions, and
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I is a set of tuples i = (Δi, ·i), called models, consisting of a non-empty set Δi

(of objects) and a mapping ·i : L → P(Δi) : f �→ f i that assigns an extension
f i ⊆ Δi to each concept description f ∈ L.

Intuitively, models correspond to formal contexts, and the operator ·i corre-
sponds to the ·′ operator that assigns an extension B′ to each set of attributes
B. In order to define an analogon to the ·′ operator in the other direction, we in-
troduce the subsumption preorder on concept descriptions: f1 ∈ L is subsumed
by f2 ∈ L (written f1 � f2) if f i

1 ⊆ f i
2 for all models i ∈ I. If f1 � f2 and

f2 � f1, then we say that f1 and f2 are equivalent (f1 ≡ f2).
Given a set of objects A in a formal context, its intensional description A′ is

the largest set of attributes B such that A ⊆ B′. Since B′
1 ⊆ B′

2 if B1 ⊇ B2,
such a largest set should correspond to the least one w.r.t. subsumption. This
motivates the following definition.

Definition 1 (Most specific concept). Let (L, I) be a concept description
language, i ∈ I be a model, and X ⊆ Δi. Then f ∈ L is a most specific concept
for X in i if

X ⊆ f i, (1)

and f is a least concept description with this property, i.e., for all g ∈ L with
X ⊆ gi we have f � g.

The most specific concept of a set X ⊆ Δi need not exist, but if it exists then
it is unique up to equivalence. In case X has a most specific concept in i, we
denote it (or, more precisely, an arbitrary element of its equivalence class) by
X i. The concept description X i is called the intensional description of the set of
objects X . An example of a concept description language for which X i always
exists is ELgfp, which will be introduced in Section 3 below.

The following lemma shows that the mappings

·i : P(Δi) → L and ·i : L → P(Δi)

do indeed form a Galois-connection with properties similar to the ·′ operators in
classical FCA. Because of these similarities to FCA we will sometimes use the
term description context for a model i ∈ I.

Lemma 2. Let (L, I) be a concept description language such that X i exists for
every i ∈ I and every X ⊆ Δi. Let i ∈ I be a model, X, X1, X2 ⊆ Δi sets of
objects, and f, f1, f2 ∈ L concept descriptions. Then the following holds:

(a) X1 ⊆ X2 ⇒ X i
1 � X i

2,
(b) f1 � f2 ⇒ f i

1 ⊆ f i
2,

(c) X ⊆ X ii,
(d) f ii � f ,

(e) X i ≡ X iii,

(f) f i = f iii,

(g) X ⊆ f i ⇔ X i � f .

Proofs of these facts can be obtained by adapting the proofs from classical FCA.
They can be found in [4], but also in [6,7] since the framework introduced above
can be seen as an instance of the framework defined in [6,7].
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In the remainder of this section, we assume that (L, I) is an arbitrary, but
fixed, concept description language. All definitions given below are implicitly
parameterized with this language. Our goal is to characterize the subsumption
relations that are valid in a given description context of this language by de-
termining a minimal basis of implications comparable to the Duquenne-Guigues
basis in classical FCA. We start by defining the notion of an implication and
by showing some general results that hold for arbitrary concept description lan-
guages. Later on, we will look at the concept description language ELgfp in more
detail.

Definition 3 (Implication). An implication is a pair (f1, f2) of concept de-
scriptions (f1, f2) ∈ L×L, which we will usually denote as f1 → f2. We say that
the implication f1 → f2 holds in the description context ι = (Δι, ι) if f ι

1 ⊆ f ι
2.

Obviously, we have f1 � f2 iff f1 → f2 holds in every description context ι ∈ I.
However, as said above, we are now interested in the implications that hold in a
fixed description context rather than in all of them.

In order to define the notion of a basis of the implications holding in a de-
scription context, we must first define a consequence operator on implications.
Let B ⊆ L × L be a set of implications and f1 → f2 an implication. If f1 → f2
holds in all description contexts i ∈ I in which all implications from B hold,
then we say that f1 → f2 follows from B. It is not hard to see that the relation
follows is

– reflexive, i. e. every implication f1 → f2 ∈ B follows from B, and
– transitive, i. e. if f1 → f2 follows from B2, and every implication in B2 follows

from B1, then f1 → f2 follows from B1.

Definition 4 (Basis). For a given description context ι we say that B ⊆ L×L
is a basis for the implications holding in ι if B is

– sound for ι, i.e., it contains only implications holding in ι;
– complete for ι, i.e., any implication that holds in ι follows from B; and
– minimal for ι, i.e., no strict subset of B is complete for ι.

Since the above definitions use only the ·ι operator that assigns an extension
to every concept description, but not the one in the other direction, they also
make sense for concept description languages where the most specific concept of
a set of objects need not always exist. An example of such a language is EL, i.e.,
the sublanguage of ELgfp that does not allow for cyclic concept definitions (see
Section 3 below).

The description language (L′, I ′) is a sublanguage of the description language
(L, I) if L′ ⊆ L and I ′ =

{
i|L′

∣
∣ i ∈ I

}
, where i|L′ is the restriction of i to L′,

i.e., Δi = Δi|L′ and ·i|L′ is the restriction of the mapping ·i to L′.

Proposition 5. Assume that (L′, I ′) is a sublanguage of (L, I), that f1 → f2 ∈
L′ ×L′, and that B ⊆ L′ ×L′. Then f1 → f2 follows from B in (L, I) iff f1 → f2
follows from B in (L′, I ′).



A Finite Basis for the Set of EL-Implications Holding in a Finite Model 51

This proposition will be used later on to transfer results from ELgfp to EL.
In the remainder of this section, we will characterize complete subsets of the

set of all implications holding in a given description context ι. Whenever we use
the ·ι operator from sets of objects to concept descriptions, we implicitly assume
that it is defined.

Analogously to the situation in classical FCA, we can restrict the attention
to implications whose right-hand sides are closed under the operator ·ιι.

Lemma 6. If the implication f1 → f2 holds in ι, then it follows from {f1 →
f ιι
1 }, and the set {f1 → f ιι

1 } is sound for ι.

Proof. By Lemma 2(f), all implications of the form f → f ιι hold in ι, which
yields soundness of {f1 → f ιι

1 }.
Let f1 → f2 be any implication that holds in ι, i.e., f ι

1 ⊆ f ι
2. By Lemma 2(g),

this is equivalent to
f ιι
1 � f2. (2)

Let i be some model in which f1 → f ιι
1 holds. By definition this means that

f i
1 ⊆ (f ιι

1 )i. Using Lemma 2(g) again we obtain f ii
1 � f ιι

1 . Together with (2) and
transitivity of �, this yields f ii

1 � f2, and hence f i
1 ⊆ f i

2. Thus, we have shown
that f1 → f2 holds in any model i in which f1 → f ιι

1 holds. ��

Corollary 7. The set of implications {f → f ιι | f ∈ L} is complete for ι.

Having reduced the number of right-hand sides that need to be considered, our
goal is now to restrict the left-hand sides. This is possible if we can find a so-
called dominating set of concept descriptions.

Definition 8 (Dominating set). The set D ⊆ L dominates the description
context ι if, for every f ∈ L, there is some g ∈ D such that f � g and f ι = gι.

It is sufficient to consider implications whose left-hand sides belong to a domi-
nating set.

Lemma 9. If D ⊆ L dominates ι, then B := {f → f ιι | f ∈ D} is sound and
complete for ι.

Proof. Soundness has already been shown. To show completeness, let f1 → f2
be an implication that holds in ι. By Lemma 6, f1 → f2 follows from f1 → f ιι

1 .
Hence it is sufficient to show that f1 → f ιι

1 follows from B. Since D dominates
ι, there exists g ∈ D such that f1 � g and gι = f ι

1.
Let i be a model in which all implications of B hold. From f1 � g and

Lemma 2(b) it follows that f i
1 ⊆ gi. Since g → gιι ∈ B holds in i, we also have

gi ⊆ (gιι)i, and thus f i
1 ⊆ (gιι)i. In addition, gι = f ι

1 yields gιι = f ιι
1 . Thus,

f i
1 ⊆ (f ιι

1 )i, which shows that f1 → f ιι
1 holds in i. ��

The sound and complete set of implications B induced by a dominating set D
need not be a basis since it need not be minimal. However, if D is finite, then B
is finite as well. Thus, a subset of B that is a basis can be obtained by removing
redundant elements.
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Fig. 1. A model (left) and a description graph (right)

3 ELgfp as an Instance of the General Framework

We start by defining EL, and then show how it can be extended to ELgfp.
Concept descriptions of EL are built from a set Nc of concept names and a set Nr

of role names, using the constructors top concept, conjunction, and existential
restriction:

– concept names and the top concept  are EL-concept descriptions;
– if C, D are EL-concept descriptions and r is a role name, then C � D and

∃r.C are EL-concept descriptions.

In the following, we assume that the sets Nc and Nr of concept and role names
are finite. This assumption is reasonable since in practice data are usually rep-
resented over a finite signature.

Models of this language are pairs (ΔI , ·I) where ΔI is a finite,1 non-empty
set, and ·I maps role names r to binary relations rI ⊆ ΔI × ΔI and EL-concept
descriptions to subsets of ΔI such that

I = ΔI , (C � D)I = CI ∩ DI , and

(∃r.C)I = {d ∈ Δi | ∃e ∈ CI such that (d, e) ∈ rI}.

Subsumption and equivalence between EL-concept descriptions is defined as in
our general framework, i.e., C � D iff CI � DI for all models I, and C ≡ D iff
C � D and D � C.

Unfortunately, EL itself cannot be used to instantiate our framework since
in general a set of objects need not have a most specific concept in EL. This is
illustrated by the following simple example. Assume that Nc = {P}, Nr = {r},
and consider the model I with ΔI = {a, b}, rI = {(a, b), (b, a)}, and P I = {b}
(see the left-hand side of Fig. 1 for a graphical representation of this model).
To see that the set {a} does not have a most specific concept, consider the
EL-concept descriptions

Ck := ∃r.∃r . . .∃r.︸ ︷︷ ︸
k times

.

1 Usually, the semantics given for description logics allows for models of arbitrary
cardinality. However, in the case of EL the restriction to finite models is without loss
of generality since it has the finite model property, i.e., a subsumption relationship
holds w.r.t. all models iff it holds w.r.t. all finite models.
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We have {a} ⊆ CI
k = {a, b} for all k, and thus a most specific concept C for

{a} would need to satisfy C � Ck for all k ≥ 0. However, it is easy to see
that C � Ck can only be true if the role depth of C, i.e., the maximal nesting
of existential restrictions, is at least k. Since any EL-concept description has a
finite role depth, this shows that such a most specific concept C cannot exist.

However, most specific concepts always exist in ELgfp, the extension of EL by
cyclic concept definitions interpreted with greatest fixpoint (gfp) semantics.2 In
ELgfp, we assume that the set of concept names is partitioned into the set Nprim
of primitive concepts and the set Ndef of defined concept. A concept definition
is of the form

B0 ≡ P1 � . . . � Pm � ∃r1.B1 � . . . � ∃rn.Bn

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The
empty conjunction (i.e., m = 0 = n) stands for . A TBox is a finite set of
concept definitions such that every defined concept occurs at most once as a
left-hand side of a concept definition.

Definition 10 (ELgfp-concept description). An ELgfp-concept description
is a tuple (A, T ) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

For example, (A, T ) with T := {A ≡ ∃r.B, B ≡ P � ∃r.A} is an ELgfp-concept
description. Any ELgfp-concept description (A, T ) can be represented by a di-
rected, rooted, edge- and node-labeled graph: the nodes of this graph are the
defined concepts in T , with A being the root; the edge label of node B0 is the
set of primitive concepts occurring in the definition of B0; and every conjunct
∃ri.Bi in the definition of B0 gives rise to an edge from B0 to Bi with label ri.
In the following, we call such graphs description graphs. The description graph
associated with the ELgfp-concept description from our example is shown on the
right-hand side of Fig. 1, where A is the root.

Models of ELgfp are of the form I = (ΔI , ·I) where ΔI is a finite, non-empty
set, and ·I maps role names r to binary relations rI ⊆ ΔI × ΔI and primitive
concepts to subsets of ΔI . The mapping ·I is extended to ELgfp-concept de-
scriptions (A, T ) by interpreting the TBox T with gfp-semantics: consider all
extensions of I to the defined concepts that satisfy the concept definitions in T ,
i.e., assign the same extension to the left-hand side and the right-hand side of
each definition. Among these extensions of I, the gfp-model of T based on I is
the one that assigns the largest sets to the defined concepts (see [1] for a more
detailed definition of gfp-semantics). The extension (A, T )I of (A, T ) in I is the
set assigned to A by the gfp-model of T based on I.

Again, subsumption and equivalence of ELgfp-concept descriptions is defined
as in the general framework. The following theorem shows that the description
language ELgfp we have just defined is indeed an instance of the framework
introduced in Section 2.
2 Because of the space restriction, we can only give a very compact introduction of

this DL. See [1,4] for more details.
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Theorem 11. In ELgfp, the most specific concept of a set of objects always
exists.

The proof of this theorem given in [4] is based on the methods and results from
[2]. It proceeds in two steps. First, it is shown how to construct the most specific
concept of a singleton set {a}. The main idea is that the graph representing
the model can also be viewed as the description graph of an ELgfp-concept
description, where the root is the node corresponding to a. In the example (see
Fig. 1), we have simply renamed the lower case individual names into upper
case concept names. The ELgfp-concept description (A, T ) represented by the
description graph on the right-hand side of Fig. 1 is the most specific concept
of {a} in the model represented by the graph on the left-hand side of Fig. 1.
The most specific concept of a set of objects {a1, . . . , an} is the least common
subsumer (lcs) of the most specific concepts of the singleton sets {ai}. In [2] it
is shown that the lcs in ELgfp always exists and how to compute it.

4 A Finite Basis for Implications in ELgfp

We show that the set of implications holding in a given model always has a
finite basis in ELgfp. A first step in this direction is to show that it is enough
to restrict the attention to implications with acyclic ELgfp-concept descriptions
as left-hand sides. The ELgfp-concept description (A, T ) is acyclic if the graph
associated with it is acyclic. It is easy to see that there is a 1–1-relationship
between EL-concept descriptions and acyclic ELgfp-concept descriptions. For
example, (A, {A ≡ B � ∃r.B, B ≡ P}) corresponds to P � ∃r.P , and ∃r.P
corresponds to (A, {A ≡ ∃r.B, B ≡ P}). This shows that EL can indeed be seen
as a sublanguage of ELgfp. In the following, we will not distinguish an acyclic
ELgfp-concept description from its equivalent EL-concept description.

Given an ELgfp-concept description, its node size is the number of nodes in the
description graph corresponding to it. For an acyclic ELgfp-concept description,
we define its depth to be the maximal length of a path starting at the root in
the description graph corresponding to it. Any ELgfp-concept description (A, T )
can be approximated by acyclic ELgfp-concept descriptions (A, T )d of increasing
depth d. To obtain (A, T )d, the description graph associated with (A, T ) is
unraveled into a (possibly infinite) tree, and then all branches are cut at depth
d. It is easy to see that (A, T ) � (A, T )d holds for all d ≥ 0.

Lemma 12. Let U be an ELgfp-concept description of node size m, I a model
of cardinality n, and d = m · n + 1. Then a ∈ (Ud)I implies a ∈ UI .

A detailed proof of this lemma can be found in [4].

Theorem 13. In ELgfp, the set of acyclic concept descriptions dominates every
description context I.

Proof. Let U be an ELgfp-concept description and I a description context. We
must find an acyclic ELgfp-concept description V such that U � V and UI = VI .
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Let m be the node size of U , n the cardinality of I, and d = m · n+1. We know
that U � Ud, and thus also UI ⊆ (Ud)I . Lemma 12 shows that the inclusion in
the other direction holds as well. Thus, V := Ud does the job. ��

By Lemma 9, this theorem immediately implies the following corollary.

Corollary 14. For any description context I of ELgfp, the set

{U → UII | U is an acyclic ELgfp-concept description}

is sound and complete for I.

The complete set of implications given in the corollary is, of course, infinite. Also
note that, though the left-hand sides U of implications in this set are acyclic,
the right-hand sides UII need not be acyclic. We show next that there is also
a finite sound and complete set of implications. As mentioned before, a finite
basis can then be obtained by removing redundant elements.

Theorem 15. In ELgfp, for any description context I, there exists a finite set
B of implications that is sound and complete for I.

Proof. By Corollary 14 it suffices to find a finite and sound set of implica-
tions from which all implications of the form U → UII , where U is an acyclic
ELgfp-concept description, follow. To this purpose, consider the set E := {UI |
U is an ELgfp-concept description}, and let C be a set of ELgfp-concept descrip-
tions that contains, for each set X ∈ E , exactly one element V with VI = X .
Because of Theorem 13, we can assume without loss of generality that C contains
only acyclic descriptions. Since ΔI is finite, the sets E and C are also finite.

Consider the following finite set of implications, which is obviously sound:

B := {P → P II | P ∈ Nprim ∪ {}}
∪ {∃r.C → (∃r.C)II | r ∈ Nr, C ∈ C}
∪ {C1 � C2 → (C1 � C2)II | C1, C2 ∈ C}.

We show that, for any acyclic ELgfp-concept description U , the implication
U → UII follows from B. Since U is acyclic, we can view it as an EL-concept
description. The proof is by induction on the structure of this description.

Base case: U = P ∈ Nprim ∪ {}. Then P → P II is in B by definition. Thus,
it also follows from B.

Step case 1 : U = ∃r.V for some r ∈ Nr and some EL-concept description
V . Let J be a description context in which all implications from B hold. The
semantics of existential restrictions yields

UJ = (∃r.V)J = {x ∈ ΔJ | ∃y ∈ VJ : (x, y) ∈ rJ}.

By the induction hypothesis, V → VII follows from B, and thus holds in J .
Therefore VJ ⊆ (VII)J , which yields

UJ ⊆ {x ∈ ΔJ | ∃y ∈ (VII)J : (x, y) ∈ rJ}.
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Now, choose C ∈ C such that CI = VI . Lemma 2(g) yields VII � C, and thus

UJ ⊆ {x ∈ ΔJ | ∃y ∈ CJ : (x, y) ∈ rJ} = (∃r.C)J .

Since ∃r.C → (∃r.C)II ∈ B holds in J by assumption, we get

UJ ⊆ ((∃r.C)II)J = ({x ∈ ΔI | ∃y ∈ CI : (x, y) ∈ rI}I)J =

= ({x ∈ ΔI | ∃y ∈ VI : (x, y) ∈ rI}I)J = ((∃r.V)II)J = (UII)J .

Thus, we have shown that U → UII holds in every context J in which all
implications from B hold.

Step case 2 : U = U1 � U2 for EL-concept descriptions U1, U2. Let J be a
description context in which all implications from B hold. By the induction
hypothesis, UJ

1 ⊆ (UII
1 )J and UJ

2 ⊆ (UII
2 )J . Therefore

UJ = (U1 � U2)J = UJ
1 ∩ UJ

2 ⊆ (UII
1 )J ∩ (UII

2 )J .

We choose C1, C2 ∈ C such that CI
1 = UI

1 and CI
2 = UI

2 . Then

UJ ⊆ (CII
1 )J ∩ (CII

2 )J ⊆ CJ
1 ∩ CJ

2 = (C1 � C2)J ,

where the second inclusion holds due to Lemma 2(d). Since the implication
C1 � C2 → (C1 � C2)II ∈ B holds in J , we get

UJ ⊆ ((C1 � C2)II)J = ((CI
1 ∩ CI

2 )I)J = ((UI
1 ∩ UI

2 )I)J =

= ((U1 � U2)II)J = (UII)J .

This shows that U → UII follows from B. ��
Corollary 16. In ELgfp, for any description context I there exists a finite basis
for the implications holding in I.

Proof. Starting with B∗ := B, where in the beginning all implications are un-
marked, take an unmarked implication U → V ∈ B∗. If this implication follows
from B∗, then remove it, i.e., B∗ := B∗ \ {U → V}; otherwise, mark U → V .
Continue with this until all implications in B∗ are marked. The final set B∗ is
the desired basis. ��

5 A Finite Basis for Implications in EL
Although the sublanguage EL of ELgfp is not an instance of our general frame-
work, we can nevertheless show the above corollary also for this language. Be-
cause of Proposition 5, it is sufficient to show that in ELgfp any description
context I has a finite basis consisting of implications where both the left-hand
and the right-hand sides are acyclic.

The following proposition will allow us to construct a finite set of implications
with acyclic right-hand sides from which a given implication U → UII (with
potentially cyclic right-hand side) follows. Recall that, for any ELgfp-concept
description U , we obtain the acyclic description Ud by unraveling the description
graph and then cutting all branches at depth d.
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Proposition 17. Let k0 be a non-negative integer, I a description context, and
U be an ELgfp-concept description. Then the implication U → UII follows from

B := {(XI)k0 → (XI)k0+1 | X ⊆ ΔI} ∪ {U → (UII)k0}.

Proof. The proof depends on the following technical result, whose proof can be
found in [4].

(∗) For any set X ⊆ ΔI , there exist sets P ⊆ Nprim and Y ⊆ Nr × P(ΔI) such
that

XI ≡
�

P∈P
P �

�

(r,Y )∈Y
∃r.Y I .

The above equivalence is actually an abbreviation for saying that XI is of the
form (A, T ) where T consists of the following concept definitions:

– A ≡
�

P∈P P �
�

(r,Y )∈Y ∃r.Br,Y ;
– the definitions in the TBoxes Tr,Y for (r, Y ) ∈ Y where Y I = (Br,Y , Tr,Y ).

Note that the sets of defined concepts in the TBoxes Tr,Y can be assumed to be
pairwise disjoint and not to contain A.

To prove the proposition, we first show, by induction on �, that the implica-
tions (XI)� → (XI)�+1 follow from B for all � ≥ k0. For � = k0 this is trivial
because (XI)k0 → (XI)k0+1 ∈ B.

Now, assume that (Y I)k → (Y I)k+1 follows from B for every Y ⊆ ΔI and
every k, k0 ≤ k < �. Let J be a model in which all implications from B hold.
Then, by the induction hypothesis, we get

((Y I)k)J ⊆ ((Y I)k+1)J (3)

for all k0 ≤ k < � and all Y ⊆ ΔI . By (∗), for any set X ⊆ ΔI , there exist sets
P ⊆ Nprim and Y ⊆ Nr × P(ΔI) such that

XI ≡
�

P∈P
P �

�

(r,Y )∈Y
∃r.Y I .

It is easy to see that this implies

(XI)� ≡
�

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�−1 (4)

and
(XI)�+1 ≡

�

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�. (5)

Thus, we have
(
(XI)�

)J (4)
=

( �

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�−1

)J

=
�

P∈P
P J �

�

(r,Y )∈Y
{x ∈ ΔJ | ∃y ∈ ((Y I)�−1)J : (x, y) ∈ rJ}.
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From (3) we obtain ((Y I)�−1)J ⊆ ((Y I)�)J , and thus
(
(XI)�

)J

⊆
�

P∈P
P J �

�

(r,Y )∈Y
{x ∈ ΔJ | ∃y ∈ ((Y I)�)J : (x, y) ∈ rJ}

=
( �

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�

)J

(5)
=

(
(XI)�+1

)J

.

Hence we have shown that (XI)� → (XI)�+1 follows from B, which concludes
the induction proof.

Now, let J again be a model in which all implications from B hold, and let
x ∈ UJ . We must show that this implies x ∈ (UII)J . We have x ∈ ((UII)k0)J

because U → (UII)k0 ∈ B. Hence x ∈ ((UII)k)J for all k ≤ k0 since (UII)k0 �
(U II)k for all k ≤ k0. From what we have shown above, we know that

(U II)k → (UII)k+1

follows from B for all k ≥ k0. Thus ((UII)k)J ⊆ ((UII)k+1)J holds in J for all
k ≥ k0, which yields x ∈ ((UII)k)J also in this case.

Therefore x ∈ ((UII)k)J for k = |GU | · |ΔJ | + 1, independently of whether
this number is smaller or larger than k0. It follows directly from Lemma 12 that
x ∈ (UII)J . Thus, we have shown that

UJ ⊆ (UII)J

if all implications from B hold in J . This means that U → UII follows from
B. ��

Having proved Proposition 17, we are almost finished with constructing a finite,
sound and complete set of acyclic implications for the implications holding in
a description context I. The idea is to replace any implication U → UII in
the finite, sound and complete set of implications constructed in the proof of
Theorem 15 by the corresponding implications from Proposition 17.

The remaining problems is, however, that the set of implications obtained this
way need not be sound for I. Indeed, if k0 is too small, then the implications
in {(XI)k0 → (XI)k0+1 | X ⊆ ΔI} need not hold in I. Therefore, we define for
every X ⊆ ΔI

dX := mX · n + 1,

where mX is the node size of XI and n is the cardinality of the model I. The
number k0 is the maximum of these numbers, i.e.,

k0 := max
X⊆ΔI

dX . (6)

Then, because dX ≤ k0 for every X ⊆ ΔI , we have

XI � (XI)k0+1 � (XI)k0 � (XI)dX .
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By Lemma 2(b), this implies

XII ⊆ ((XI)k0+1)I ⊆ ((XI)k0)
I ⊆ ((XI)dX )I .

From Lemma 12 we obtain XII ⊇ ((XI)dX )I , and thus

XII = ((XI)k0+1)I = ((XI)k0)
I = ((XI)dX )I .

In particular, this shows

((XI)k0 )
I ⊆ ((XI)k0+1)I .

Hence, all implications in {(XI)k0 → (XI)k0+1 | X ⊆ ΔI} hold in I.

Theorem 18. In ELgfp, for any description context I, there exists a finite set
B of implications that is sound and complete for I, and such that all concept
descriptions occurring in B are acyclic.

Proof. Let C be the set of acyclic ELgfp-concept descriptions defined in the proof
of Theorem 15. We have shown in that proof that the set

B� := {P → P II | P ∈ Nprim ∪ {}}
∪ {∃r.C → (∃r.C)II | r ∈ Nr, C ∈ C}
∪ {C1 � C2 → (C1 � C2)II | C1, C2 ∈ C}

is complete for I.
Let k0 be defined as in (6). Then, by Proposition 17, the fact that B� is

complete also implies that the following set of implications is complete for I:

B := {(XI)k0 → (XI)k0+1 | X ⊆ ΔI}
∪ {P → (P II)k0 | P ∈ Nprim ∪ {}}
∪ {∃r.C → ((∃r.C)II)k0 | r ∈ Nr, C ∈ C}
∪ {C1 � C2 → ((C1 � C2)II)k0 | C1, C2 ∈ C}.

Regarding soundness, we have shown above that, due to the fact that k0 was
chosen large enough, all implications of the form (XI)k0 → (XI)k0+1 hold I. The
implications P → (P II)k0 hold because P → P II holds in I, and P II � (P II)k0 .
The same arguments can be used to show that the implications of the forms
∃r.C → ((∃r.C)II)k0 and C1 � C2 → ((C1 � C2)II)k0 hold in I.

The left-hand sides of implications in B are acyclic since the elements of C
are acyclic, primitive concepts and  are acyclic, and any concept description of
the form Uk is acyclic. This last argument also shows that the right-hand sides
of implications in B are acyclic. ��
Since B contains only acyclic ELgfp-concept descriptions, it can also be viewed
as a set of implications in EL. Proposition 5, together with Theorem 18, shows
that B is also complete for the EL-implications holding in I. As argued before,
the existence of a finite, sound and complete set also implies the existence of a
basis.

Corollary 19. In EL, for any description context I, there exists a finite basis
for the implications holding in I.
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6 Conclusion

We have shown that any description context I (i.e., any finite relational struc-
ture over a finite signature of unary and binary predicate symbols) has a finite
basis for the EL- and ELgfp-implications holding in I. Such a basis provides
the knowledge engineer with interesting information on the application domain
described by the context. The knowledge engineer can, for example, use these
implications as starting point for building an ontology describing this domain.

In this paper, we have concentrated on showing the existence of a finite ba-
sis. Of course, if this approach is to be used in practice, we also need to find
efficient algorithms for computing the basis. After that, the next step will be
to generalize attribute exploration [9] to our more general setting. This would
allow us to consider also relational structures that are not explicitly given, but
rather “known” by a domain expert.

Finally, we will also try to show similar results for other DLs. For the DL
FL0, which differs from EL in that existential restrictions are replaced by value
restrictions, we are quite confident that this is possible. For more expressive DLs,
like ALC, this is less clear.
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