
Prime Implicate Normal Form for ALC Concepts

Meghyn Bienvenu
IRIT, Université Paul Sabatier
31062 Toulouse Cedex, France

bienvenu@irit.fr

Abstract
In this paper, we present a normal form for concept expres-
sions in the description logic ALC which is based on a re-
cently introduced notion of prime implicate for the modal
logic K. We show that concepts in prime implicate nor-
mal form enjoy a number of desirable properties which make
prime implicate normal form interesting from the viewpoint
of knowledge compilation. In particular, we prove that sub-
sumption between ALC concepts in prime implicate normal
form can be carried out in polynomial time using a simple
structural subsumption algorithm reminiscent of those used
for less expressive description logics. Of course, in order to
take advantage of these properties, we need a way to trans-
form concepts into equivalent concepts in prime implicate
normal form. We provide a sound and complete algorithm
for putting concepts into prime implicate normal form, and
we investigate the spatial complexity of this transformation,
showing there to be an at most doubly-exponential blowup in
concept length. At the end of the paper, we compare prime
implicate normal form to two other normal forms for ALC,
discussing the relative merits of the different approaches.

Introduction
Researchers have investigated a variety of strategies for cop-
ing with the high computational complexity of reasoning.
Some have looked into restricted languages for which effi-
cient reasoning is possible. Others have focused their efforts
on the development of reasoning algorithms which perform
well in practice, even if the worst-case complexity remains
high. Still others have advocated the use of knowledge com-
pilation (Darwiche and Marquis 2002), in which a knowl-
edge base is put into a normal form which admits polytime
querying, the idea being that the cost of the initial prepro-
cessing will be offset by the computational savings made on
later queries.

In the description logics community, the first two strate-
gies have been privileged, while the third strategy, knowl-
edge compilation, has remained largely unexplored. The
likely explanation for this phenomenon is not a lack of in-
terest on the part of this community but the simple fact that
there have been no normal forms proposed in the literature
which yield tractable reasoning for any reasonably expres-
sive description logic.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our paper aims to remedy this situation by showing how
prime implicate normal form, a well-studied normal form
for propositional logic which has been influential in AI, can
be extended to concept expressions in the description logic
ALC. The starting point for our work is our recent study
(Bienvenu 2007a) of prime implicates for the modal logic
K, a known notational variant ofALC. While this definition
of prime implicates does not immediately yield a suitable
notion of prime implicate normal form, it plays a key role in
the definition we propose. Concepts in our normal form are
shown to be much better behaved computationally than ar-
bitrary ALC concepts: we can test in constant time whether
a concept in prime implicate normal form is satisfiable or
tautologous and in quadratic time whether two concepts in
prime implicate normal form are equivalent or if one sub-
sumes the other. It is also easy to approximate concepts in
prime implicate normal form over a sublanguage or up to
a specified depth. Finally, concepts in prime implicate nor-
mal form do not contain any unnecessary atomic concepts
or roles nor do they contain redundant or irrelevant subcon-
cepts, making them easier for humans to read and under-
stand.

Our paper is organized as follows. In the first two sec-
tions, we recall the basics of the description logic ALC and
the notion of prime implicates inALC. In the following sec-
tion, we propose a definition of prime implicate normal form
for ALC concepts, and we show that concepts in this form
support a variety of polynomial-time queries and transfor-
mations. We then introduce an algorithm for putting con-
cepts into prime implicate normal form and give some re-
sults concerning the spatial complexity of this transforma-
tion. At the end of the paper, we compare prime implicate
normal form to two other normal forms for ALC concepts,
and then we conclude with a discussion of future work.
Proofs have been omitted for lack of space but can be found
in an accompanying technical report (Bienvenu 2008).

Preliminaries
In this section, we recall the syntax and semantics of the
description logic ALC as well as other useful notions and
some necessary notation.

Concepts expressions in ALC are built up from a set C of
atomic concepts and a setR of atomic roles according to the

following recursive definition:

C ::= > |⊥ |A | ¬C |C u C |C t C | ∀R.C | ∃R.C

where A ∈ C and R ∈ R.
In analogy with classical logic, we will say thatC1uC2 is

a conjunction (or intersection) of concepts, and we will call
C1 and C2 conjuncts of C1 uC2. Likewise, we will say that
D1 tD2 is a disjunction (or union) of concepts and that D1

and D2 are its disjuncts. Where convenient we will abuse
notation and treat conjunction and disjunction as n-ary con-
nectives. We will call a concept propositional if it does not
contain any sub-concepts of the type ∀R.C or ∃R.C. A con-
cept is said to be in negation normal form (NNF) if negation
only appears directly before atomic concepts. The length
of a concept C, written |C|, is defined to be the number of
occurrences of atomic concepts and roles in C. For exam-
ple, the length of the concept A u ∃R.∃S.∃S.A is 5. The
(role) depth of a concept C, noted δ(C), is defined to be the
maximum number of nested ∃R or ∀R appearing in C. For
example, the depth of the conceptAu∃R.∃S.∃S.A is 3. We
define a signature to be any set of atomic roles and concepts.
We define the signature of a concept C, written sig(C), to
be the set of atomic concepts and roles which appear in C.
For example, the signature of the concept ∀R.A u ∃S.B is
{R,S,A,B}.

The meaning of ALC concepts is defined via a model-
theoretic semantics. An interpretation (model) I is a pair
〈∆I , ·I〉, where ∆I is a non-empty set and ·I is a function
mapping each atomic concept A to a set AI ⊆ ∆I and each
atomic role R to a relation RI ⊆ ∆I × ∆I . We extend ·I
to complex concepts as follows:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI ⇒ b ∈ CI}
(∃R.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ RI and b ∈ CI}

A concept C is said to be satisfiable if there is some inter-
pretation I for which CI 6= ∅. If there is no such model,
then C is said to be unsatisfiable, and we write |= C v ⊥.
A concept C is said to be tautologous, written |= > v C,
just in the case that ¬C is unsatisfiable. We say that a con-
cept C is subsumed by D (or that D subsumes C), written
|= C v D, if for every model I we have CI ⊆ DI . Con-
cepts C and D are said to be equivalent, written |= C ≡ D
if C subsumes D and D subsumes C.

Prime Implicates in ALC
In this section, we define prime implicates forALC concepts
and point out some of their key properties. All of the defini-
tions and results in this section first appeared in (Bienvenu
2007a) for the modal logic K. We have adapted them to
ALC using the well-known correspondence (Schild 1991)
between formulae in K and concept expressions in ALC.

For more details and for proofs of the results in this section,
refer to (Bienvenu 2007b).
Definition 1 (Literal/Clausal/Cubal Concepts). We define
literal, clausal, and cubal concepts as follows:

L ::= > |⊥ |A | ¬A | ∀R.D | ∃R.D
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb
D ::= > |⊥ |A | ¬A |D uD |D tD | ∀R.D | ∃R.D

where A ∈ C, R ∈ R, and L, Cl, and Cb range respectively
over the sets of literal concepts, clausal concepts, and cubal
concepts.

In order to aid the presentation, we introduce the nota-
tion Prop(Cl) to refer to the set of propositional literals
which are disjuncts of the clausal concept Cl, and we will
use ∃R(Cl) (respectively ∀R(Cl)) to refer to the set of con-
cepts C such that ∃R.C (respectively ∀R.C) is a disjunct of
Cl. For example, if Cl = A t ∃R.A t ∃R.B t ∀S.B, then
Prop(Cl) = {A}, ∃R(Cl) = {A,B}, ∀S(Cl) = {B}, and
∃S(Cl) = ∀R(Cl) = ∅. We will use Cl \ {L} to refer to
the concept obtained from Cl by removing the disjunct L.

With a notion of clause in hand, we can define prime im-
plicates just as in propositional logic:
Definition 2 (Prime implicate). A clausal concept Cl is an
implicate of a concept C if and only if |= C v Cl. Cl is a
prime implicate of C if and only if:

1. Cl is an implicate of C
2. If Cl′ is an implicate of C such that |= Cl′ v Cl, then
|= Cl v Cl′

This definition yields the standard notion of prime impli-
cates when restricted to the propositional fragment of ALC.
It can also be shown to satisfy a number of properties of the
propositional definition:
Proposition 3 (Finiteness). The number of prime implicates
of a concept is finite modulo logical equivalence.
Proposition 4 (Covering). Every implicate of a concept sub-
sumes some prime implicate of the concept.
Proposition 5 (Equivalence). Every concept is equivalent to
the intersection of its prime implicates.

In (Bienvenu 2007a), we proposed an algorithm for prime
implicate generation. The algorithm, which we refer to by
GEN-PI, was proven sound and complete:
Proposition 6. The algorithm GEN-PI always terminates,
and it outputs exactly the set of prime implicates of the input
concept.

This algorithm will prove useful to us later on in the paper
when we design a procedure for transforming a concept into
an equivalent concept in prime implicate normal form.

Prime Implicate Normal Form
In this section, we introduce prime implicate normal form
for ALC concepts, show some of the nice properties it sat-
isfies, and propose an algorithm for putting concepts into
prime implicate normal form. We also give some results
concerning the spatial complexity of this transformation.

Definition of Prime Implicate Normal Form
In propositional logic, a formula is said to be in prime im-
plicate normal form if it is the conjunction of its prime im-
plicates. We could define prime implicate normal form for
ALC concepts in exactly the same manner, but the normal
form we obtain satisfies few of the nice properties of the
propositional case. For example, under this definition, sub-
sumption between two concepts in prime implicate normal
form is no easier than between arbitrary ALC concepts. To
see why, consider any pair of concepts C1 and C2 in nega-
tion normal form. The concepts ∃R.C1 and ∃R.C2 are their
own prime implicates and hence are in prime implicate nor-
mal form according to the naive definition. As C1 sub-
sumes C2 just in the case that ∃R.C1 subsumes ∃R.C2, we
can reduce subsumption between arbitrary concepts in NNF
to subsumption between concepts in prime implicate nor-
mal form. As the former problem is known to be PSPACE-
complete (cf. (Schild 1991)), it follows that the latter is
PSPACE-complete as well.

We remark, however, that the problem appears to stem
from the fact that the only the top layer of the concept is rep-
resented by its prime implicates, whereas the concepts ap-
pearing behind the role restrictions are left undecomposed.
One idea then would be to require not only that the original
concept be represented by its prime implicates but also that
the sub-concepts appearing in the prime implicates be them-
selves represented by their prime implicates. This intuition
is at the heart of our definition of prime implicate normal
form for ALC concepts:

Definition 7 (Prime Implicate Normal Form). A concept C
is in prime implicate normal form if and only if it satisfies
one of the following conditions:

1. C = ⊥
2. C = >
3. 6|= C v ⊥ and 6|= > v C and C = Cl1 u ... u Clp where

(a) 6|= Cli v Clj for i 6= j

(b) each prime implicate of C is equivalent to some con-
junct Cli

(c) every Cli is a prime implicate of C such that
i. if D is a disjunct of Cli, then 6|= Cli ≡ Cli \ {D}

ii. |∃R(Cli)| ≤ 1 for every role R
iii. if E ∈ ∃R(Cli) ∪ ∀R(Cli) for some R, then E is in

prime implicate normal form
iv. if E ∈ ∃R(Cli) and F ∈ ∀R(Cli), then |= E v F
Let us briefly go over the different points of the definition.

The first two items state that all unsatisfiable concepts must
be represented as ⊥ and all tautologous concepts must be
represented as>. All other concepts are to be represented by
a conjunction of their prime implicates, but we place some
strong restrictions on how the prime implicates themselves
are represented. First, we require that they contain no un-
necessary disjuncts (part (i) of 3c). We also stipulate that
they contain at most one existential restriction per role (part
(ii)) and that the concepts appearing behind the existential
and universal restrictions be themselves in prime implicate
normal form (part (iii)). Finally, we demand that if a prime

implicate contains disjuncts ∃R.E and ∀R.F then E and
F are such that |= E v F (part (iv)). This requirement
may seem a little less intuitive than the others, but it en-
sures that if a universal restriction is subsumed by a clausal
concept, then it is subsumed by some universal restriction
appearing in the clausal concept1. This property is crucial
since it allows our subsumption algorithm to treat universal
restrictions separately from the existential restrictions.

Properties of Our Normal Form
We will show later in the paper that our definition is well-
founded by proving that every concept can be rewritten as
an equivalent concept in prime implicate normal form, but
first we motivate the interest of doing so by exhibiting some
of the nice properties of concepts in prime implicate normal
form.

Tractable Querying The most important criterion when
choosing a normal form for compilation is the set of poly-
nomial time queries that the normal form supports. In
(Darwiche and Marquis 2002), the authors enumerate a set
of queries which they then use to compare different nor-
mal forms for propositional logic. Of the eight queries
they consider, four are well-defined for ALC: satisfiability-
testing, tautology-testing, subsumption, and equivalence-
testing. We show that for concepts in prime implicate nor-
mal form, all four queries are computable in polynomial
time.

For satisfiability and tautology-testing, there is nothing
to prove since by definition a concept C in prime im-
plicate normal form is unsatisfiable just in the case that
C = ⊥ and tautologous if and only if C = >. It follows
that these tasks can be carried out in constant-time. For
subsumption and equivalence, we provide a structural
subsumption algorithm Π-SUBSUME which decides sub-
sumption between concepts in prime implicate normal form.

Function Π-SUBSUME(C1, C2): decides if |= C1 v C2

1. If C1 = ⊥ or C2 = >, return yes.
2. Return no if C1 = > and C2 6= > or C2 = ⊥ and C1 6= ⊥.
3. For each conjunct G of C2

Set MatchFound = no
For each conjunct H of C1

Set MatchFound = yes if the following three
conditions hold:

(a) Prop(H) ⊆ Prop(G)
(b) if E ∈ ∃R(H), then there is E′ ∈ ∃R(G)

such that Π-SUBSUME(E, E′)=yes
(c) for each F ∈ ∀R(H) there is F ′ ∈ ∀R(G)

such that Π-SUBSUME(F , F ′)=yes
If MatchFound = no, return no.

Return yes.

We briefly explain the functioning of Π-SUBSUME. The
first two steps treat limit cases where one or both of the
concepts is unsatisfiable or tautologous. For all other pairs
of concepts, we proceed to Step 3, in which we perform a
structural comparison of the two concepts. We know from
Proposition 5 that a concept C1 is subsumed by a concept

1This does not hold in general: |= ∀R.A v ∃R.A t ∀R.B but
6|= ∀R.A v ∀R.B.

C2 just in the case that C1 is subsumed by each of the prime
implicates of C2. Moreover, it follows from Proposition 4
that C1 is subsumed by a prime implicate D of C2 if and
only if some prime implicate of C1 is subsumed by D. As
concepts in prime implicate normal form are conjunctions
of their prime implicates, testing whether C2 subsumes C1

comes down to testing whether each conjunct of C2 sub-
sumes some conjunct of C1. If we hadn’t placed any re-
quirements on the form of the conjuncts, then this problem
would be as hard as subsumption in general. But since C1

and C2 are in prime implicate normal form, their conjuncts
have a particular structure which makes subsumption easy to
test. We first check that the propositional literals in the first
conjunct all appear in the second conjunct. We then call Π-
SUBSUME on sub-concepts appearing in the two conjuncts
in order to ensure that each of the existential and universal
restrictions appearing in the first conjunct is subsumed by an
existential or universal restriction in the second. The algo-
rithm performs these checks on each possible pair of con-
juncts and returns no if it finds some conjunct of C2 which
does not subsume any conjunct of C1. If no such conjunct is
found, the algorithm returns yes since every conjunct of C2

has been shown to subsume a conjunct of C1, which means
that C2 subsumes C1.

We can show that our algorithm is correct, complete, and
runs in polynomial time in the size of the input.
Proposition 8. If C1 and C2 are both in prime implicate
normal form, then the algorithm Π-SUBSUME outputs yes
on input (C1, C2) if and only if |= C1 v C2.
Proposition 9. The algorithm Π-SUBSUME terminates in
linear time in |C1| |C2| (hence quadratic time in |C1|+|C2|)
when given concepts C1 and C2 as input.

Our algorithm requires that both input concepts be in
prime implicate normal form. However, it is not always
necessary for the second concept to be in prime implicate
normal form to obtain polynomial time subsumption, as the
following proposition demonstrates:
Proposition 10. Let C be a concept in prime implicate nor-
mal form, and let D be a disjunction of propositional liter-
als and concepts of the form ∃R.Cl or ∀R.Cl where Cl is a
propositional clause. Then it can be decided in linear time
in |C| (and quadratic time in |D|) whether |= C v D.

The previous proposition can be extended to the entire
class of concepts in NNF which do not contain conjunc-
tion while maintaining linear complexity in the first argu-
ment. Unfortunately, the complexity in the second argument
is no longer polynomial since we need to test whether the
query concept is a tautology and testing whether an arbi-
trary concept in NNF without conjunction is a tautology is
NP-complete (Donini et al. 1992).

We should also point out that the above category of con-
cepts is just one example of a tractable class of query con-
cepts. There are a variety of different syntactic conditions
which can be placed on query concepts in order to guarantee
polynomial subsumption.

Tractable Transformations Another criterion for choos-
ing a normal form is the type of polynomial time transforma-

tions it permits. One of the most important transformations
in propositional logic is forgetting (cf. (Lang, Liberatore,
and Marquis 2003)), in which we remove from a formula all
reference to a given set of symbols while retaining as much
of the formula’s information as possible. Forgetting turns
out to be closely related to the notion of uniform interpola-
tion which has been studied for ALC (cf. (ten Cate et al.
2006)):
Definition 11 (L-interpolant). A concept C is said to be the
uniform interpolant of a concept D with respect to the sig-
nature L, or simply the L-interpolant of D, if and only if
Sig(C) ⊆ L, |= D v C, and |= C v E for every concept
E such that Sig(E) ⊆ L and |= D v E.
Forgetting and uniform interpolation are two ways of look-
ing at the same operation: the result of forgetting the sig-
nature S from a concept C is precisely the Sig(C) \ S-
interpolant of C.

We can show that L-interpolants are easily computable
when a concept is in prime implicate normal form. The al-
gorithm is omitted for lack of space but is extremely simple:
we traverse the concept removing those clausal subconcepts
which contain a disjunct A or ¬A with A 6∈ L or a disjunct
of the form ∃R.D or ∀R.D with R 6∈ L.
Proposition 12. The L-interpolant of a concept C in prime
implicate normal form can be generated in linear time in the
length of C.

We also consider a new type of interpolation, in which in-
stead of restricting our attention to concepts on a given sig-
nature we focus on concepts having less than a given depth:
Definition 13 (n-interpolant). A concept C is the n-
interpolant of a concept D if and only if δ(C) ≤ n, |= D v
C, and |= C v E for every concept E such that δ(E) ≤ n
and |= D v E.

The n-interpolant of a concept is easy to compute when
the concept is in prime implicate normal form. We simply
make a pass through the concept and when we reach a sub-
concept ∃R.D or ∀R.D appearing at level n−1, we remove
from D all conjuncts which are not propositional concepts.
Proposition 14. The n-interpolant of a concept C in prime
implicate normal form can be generated in linear time in the
length of C.

Readability As Darwiche and Marquis (2002) point out,
a normal form which is suitable for knowledge compilation
may not be easily interpretable by humans, and a normal
form which is easy for humans to read may not be well-
suited for knowledge compilation. What is nice about prime
implicate normal form is that it has features which make it
appropriate both for knowledge compilation and for human
interpretation.

There are a several factors which contribute to prime im-
plicate normal form’s readability. First, it is by definition a
conjunctive form, which is often easier to understand than
normal forms based on disjunction since each conjunct al-
lows us to infer something about the conjunction’s conse-
quences but we require all disjuncts in order to infer con-
sequences of a disjunction. Moreover, unlike standard con-
junctive normal form, in which important information may

arise from the interaction between conjuncts, with prime im-
plicate normal form all information has already been made
explicit, so each conjunct can be understood independently
of the others. Finally, concepts in prime implicate normal
form do not contain any redundant conjuncts or disjuncts,
nor do they contain any unnecessary concept or roles names:
Proposition 15. IfC is a concept in prime implicate normal
form, then for every concept D such that |= C ≡ D we have
Sig(C) ⊆ Sig(D).

Computing Prime Implicate Normal Form
We now present the algorithm PINF which transforms a
given concept into an equivalent concept in prime implicate
normal form.

Function PINF(C) : returns a concept in prime implicate normal
form which is equivalent to C
1. If |= C v ⊥, return ⊥. If |= > v C, return >.
2. Set Σ = GEN-PI(C).
3. For each P in Σ

(i) For each role R: if ∃R(P) = {D1, ..., Dm} where
m > 1, replace the disjuncts ∃R.D1, ..., ∃R.Dm

in P with the single disjunct ∃R.(D1 t ... tDm)
(ii) For each role R: if ∃R(P) = {D} and ∀R(P) =
{E1, ..., En}, replace each disjunct ∀R.Ei in P by
∀R.(Ei tD)

(iii) For each disjunct D in P : if |= P ≡ P \ {D},
replace P by P \ {D}.

(iv) For each disjunct QR.D in P with Q ∈ {∃,∀},
replace QR.D by QR.PINF(D).

4. Return
d

P∈Σ P .

The first step of our algorithm is to check whether the in-
putted concept is unsatisfiable or tautologous, in which case
we return respectively ⊥ or >. For all other concepts, we
continue on to Step 2, where we use GEN-PI to generate
the set of prime implicates of the inputted concept. We then
modify the prime implicates so that they satisfy the condi-
tions of Definition 7. We first check to see whether there are
multiple existential restrictions for a single role, in which
case we group them into a single existential restriction. We
then make sure that the concepts behind the universal re-
strictions are in the proper form by unioning them with the
concept behind the existential restriction. We next check if
each of the disjuncts in the clausal concept is necessary, and
we remove all disjuncts which are found to be redundant.
After that, we consider the concepts appearing behind a uni-
versal or existential restriction, and we put each of them into
prime implicate normal form. Finally, in Step 4, we return
the intersection of these modified prime implicates.
Proposition 16. The algorithm PINF always terminates,
and the concept it returns is a concept in prime implicate
normal form which is equivalent to the inputted concept.

It is well-known that in propositional logic the transfor-
mation to prime implicate normal form can result in a singly-
exponential blowup in the size of the formula (cf. (Chandra
and Markowsky 1978)). For ALC concepts, the blowup can
be doubly-exponential:
Proposition 17. There exists a concept C such that the
smallest equivalent concept in prime implicate normal form
has length which is doubly-exponential in |C|.

We can also show that the transformation involves an at
most doubly-exponential blowup in concept size:

Proposition 18. Every concept C is equivalent to a con-
cept in prime implicate normal form whose length is at most
doubly-exponential in |C|.

Related Work
Most of the subsumption algorithms that have been proposed
for subpropositional description logics involve a normaliza-
tion step in which concepts are put into some type of normal
form. There has been relatively little work however on nor-
mal forms for more expressive description logics like ALC
which support disjunction. Two notable exceptions are the
disjunctive form introduced for the mu-calculus in (Janin
and Walukiewicz 1995) and adapted to ALC in (ten Cate
et al. 2006) and the linkless normal form for ALC recently
proposed in (Furbach and Obermaier 2007).

Disjunctive Form
When restricted to propositional logic, the disjunctive form
for ALC concepts defined in (ten Cate et al. 2006) corre-
sponds to standard disjunctive normal form (DNF). It fol-
lows that tautology-testing, subsumption, and equivalence-
testing for concepts in disjunctive form must all be co-NP-
hard since the problem of testing whether a formula in DNF
is a tautology is known to be co-NP-complete. Satisfiability-
testing remains polynomial (Janin and Walukiewicz 1995).
Disjunctive form is better behaved when it comes to trans-
formations: it is shown in (ten Cate et al. 2006) that the
L-interpolants of concepts in disjunctive form can be gen-
erated in linear time, and a similar result can be shown to
hold for n-interpolants. As the transformation to disjunc-
tive form involves an at most singly-exponential blowup (ten
Cate et al. 2006), disjunctive form can be used to produce
singly-exponential L- and n-interpolants. Indeed, ten Cate
et al. used disjunctive form to prove the existence of singly-
exponential-size L-interpolants.

Linkless Normal Form
In (Furbach and Obermaier 2007), the authors show how lin-
kless normal form can be extended from propositional for-
mulae (cf. (Murray and Rosenthal 1993)) to concepts in
ALC. We can show that tautology-testing, subsumption, and
equivalence-testing for linkless concepts are all co-NP-hard
using a reduction to the DNF tautology problem. Furbach
and Obermaier have shown that satisfiability can be checked
in linear time. They have also shown that the transformation
to linkless normal form involves only a singly-exponential
blowup in concept size and that subsumption can be carried
out in linear time when the query concept is a disjunction
of atomic literal concepts and of role restrictions followed
by atomic literal concepts (this class is properly contained
in the class of query concepts we introduced in Proposition
10). Furbach and Obermaier conjecture that L-interpolants
of concepts in linkless normal form can be easily generated,
but the complexity of L- and n-interpolant generation is cur-
rently unknown.

Comparison

The results in this section suggest that prime implicate nor-
mal form is better suited than both disjunctive form and lin-
kless normal form for the purposes of knowledge compila-
tion, as prime implicate normal form supports the same class
of polynomial transformations and a wider range of polyno-
mial time queries. In particular, the fact that subsumption
is polynomial between concepts in prime implicate normal
form means that we can test whether an arbitrary query con-
cept subsumes a concept in prime implicate normal form by
first putting the (presumably small) query concept into prime
implicate normal form and then using structural subsump-
tion. For the other two normal forms, there is currently no
procedure for posing arbitrary queries to compiled concepts.

On the other hand, disjunctive form and linkless normal
form have the advantage of a lower spatial complexity. This
means that if one is using a normal form for the sole purpose
of generating L- and n-interpolants, then disjunctive form is
more appropriate since it produces singly-exponential-sized
interpolants, whereas those obtained using prime implicate
normal form may have doubly-exponential size.

Conclusion and Future Work

The main contribution of this paper is the introduction of
prime implicate normal form as a new normal form for con-
cept expressions in the description logic ALC. We have
shown that prime implicate normal form has a number of
interesting properties which make it suitable for knowledge
compilation, some of which are not satisfied by other normal
forms proposed in the literature. We also provided an algo-
rithm for transforming concepts into equivalent concepts in
prime implicate normal form and proved that the transfor-
mation involves an at most doubly-exponential blowup in
concept length.

In future work we would like to implement our prime im-
plicate normal form transformation and our structural sub-
sumption algorithm to see what kind of performance they
give in practice. This should help us to identify the type of
situations in which the benefits gained by a concept being in
prime implicate normal form outweigh the cost of putting it
in this form.

Another interesting question for future research is how
our normal form can be extended to handle even more ex-
pressive description logics. We expect that the extension to
languages with nominals should be straightforward, but that
number restrictions and inverse roles will prove more chal-
lenging.

We also want to address what is probably the most impor-
tant limitation of our work, namely the fact that our normal
form treats concept expressions rather than sets of axioms
(commonly known as TBoxes). We expect that the exten-
sion of prime implicates and prime implicate normal form
to TBoxes will be highly non-trivial, but we feel nonetheless
that this is a question worth pursuing since it could poten-
tially provide description logic practitioners with a new tool
for dealing with the high complexity of TBox reasoning.

Acknowledgements
The author would like to thank Carsten Lutz for the pointer
to Furbach and Obermaier’s work.

References
Bienvenu, M. 2007a. Prime implicates and prime impli-
cants in modal logic. In Proceedings of the Twenty-Second
Conference on Artificial Intelligence (AAAI-07), 397–384.
AAAI Press.
Bienvenu, M. 2007b. Prime implicates and
prime implicants in modal logic: Extended and
revised version. Technical Report RR–2007-17–
FR, IRIT, Université Paul Sabatier. Available at
http://www.irit.fr/∼Meghyn.Bienvenu/papers/BienvenuRR-
2007-17.pdf.
Bienvenu, M. 2008. Prime implicate normal form for
ALC concepts: Long version. Technical Report RR–
2008-6–FR, IRIT, Université Paul Sabatier. Available at
http://www.irit.fr/∼Meghyn.Bienvenu/papers/BienvenuRR-
2008-6.pdf.
Chandra, A., and Markowsky, G. 1978. On the number of
prime implicants. Discrete Mathematics 24:7–11.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Donini, F. M.; Hollunder, B.; Lenzerini, M.; Marchetti
Spaccamela, A.; Nardi, D.; and Nutt, W. 1992. The com-
plexity of existential qualification in concept languages.
Artificial Intelligence 53:309–327.
Furbach, U., and Obermaier, C. 2007. Knowledge com-
pilation for description logics. In Proceedings of the 3rd
Workshop on Knowledge Engineering and Software Engi-
neering (KESE).
Janin, D., and Walukiewicz, I. 1995. Automata for the
modal mu-calculus and related results. In Proceedings of
the Twentieth International Symposium on the Mathemat-
ical Foundations of Computer Science (MFCS’95), vol-
ume 969 of Lecture Notes in Computer Science, 552–562.
Springer.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Proposi-
tional independence: Formula-variable independence and
forgetting. Journal of Artificial Intelligence Research
18:391–443.
Murray, N., and Rosenthal, E. 1993. Dissolution: Making
paths vanish. Journal of the ACM 40(3):504–535.
Schild, K. 1991. A correspondence theory for termino-
logical logics: preliminary report. In Proceedings of the
Twelth International Joint Conference on Artificial Intelli-
gence (IJCAI’91), 466–471. Morgan Kaufmann.
ten Cate, B.; Conradie, W.; Marx, M.; and Venema, Y.
2006. Definitorially complete description logics. In Pro-
ceedings of the Tenth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR06),
79–89. AAAI Press.

