
Using OWL DL Reasoning to decide about
authorization in RBAC?

Martin Knechtel, Jan Hladik, and Frithjof Dau

SAP AG, SAP Research CEC Dresden, Germany
{martin.knechtel, jan.hladik, frithjof.dau}@sap.com

1 Introduction and Motivation

Role Based Access Control (RBAC) [1] is a standardized model to indirectly assign
permissions to users by user roles. We follow the proposal of Chae and Shiri [2] to
introduce a hierarchy of object classes in addition to the hierarchy of user roles along
which permissions are inherited. This makes sense since e.g. in file systems the inher-
itance of permissions along the directory tree is common. Different formalizations are
suitable for RBAC, especially Description Logics. Description Logic (DL) [3] systems
provide their users with inference services that deduce implicit knowledge from the
explicitly represented knowledge. The proposal by Chae and Shiri [2] is based on DL
but has several flaws which we want to fix with this paper. The authors apply essential
properties of DL in an incorrect way and do not respect DL semantics, do not use ABox
assertions correctly, miss a discussion of the open world assumption and obtain wrong
results with their running example. For a more detailed discussion of these issues, please
refer to [4].

2 A DL Ontology for RBAC-CH

We decided to formally model RBAC-CH by means of a DL, and a crucial modeling
issue is which DL constructors are requireed in order to decide which DL is used in
our approach. On the side of the concept constructors, we essentially require only the
constructors of ALC, i.e. top and bottom, conjunction, disjunction, negation, and exis-
tential and value restrictions (we do not require number restrictions). Moreover, we use
the “fills” constructor P : a (= ∃P.{a}) [3]. However, we do require some more power-
ful constructors for properties. Besides inverse properties and subproperty relationships,
we require property chain inclusion axioms, i.e. axioms P1 ◦ P2 v P . This particular
feature has been added to OWL in the step from OWL DL, which is based on the DL
SHOIN (D), to OWL 2, which is based on SROIQ(D) [5]. For this reason, and as
OWL 2 is likely to become the new standard, we decided to base our formalization on
SROIQ(D).

? This research was funded by the German Federal Ministry of Economics and Technology
under the promotional reference 01MQ07012 and the German Federal Ministry of Education
and Research under grant number 01IA08001A. The responsibility for this publication lies
with the authors.



The ontology consists of ABox and TBox. The user role hierarchy, the object class
hierarchy and permissions of user roles to object classes are defined in the TBox. The
assertions of user individuals to user roles as well as object individuals to object classes
are defined in the ABox. From these explicit facts a reasoner can infer the permissions
of individual users to individual objects in the ABox by full calculation of property
extensions, and they can be queried at runtime. Also permissions from the perspective
of an object, called the Access Control List (ACL) can be queried.

Permissions are modeled by object properties. The definition of permissions for
user roles on object classes has an important requirement: permissions are exhaustive
for every individual of a user role and every individual of an object class, e.g. “all system
administrators can read all types of files”. Obviously it is essential to model such state-
ments in any formal approach to RBAC, but statements like these are not generally sup-
ported by OWL. However Rudolph et al. propose in [6] the concept product to express
such statements, which can be captured in the very expressive DL SROIQ. The con-
cept product putting all individuals of concept C in relation to all individuals of concept
D by object property P is written as C×D v P . The following steps are performed to
simulate the concept product in SROIQ: (1) delete the axiom C ×D v P , (2) add a
new generalized property chain inclusion axiom P1 ◦P2 v P , where P1, P2 are fresh
property names, (3) introduce fresh nominal {a} and add TBox axioms C v ∃P1.{a}
and D v ∃P2−.{a}. For further details refer to [6].

3 Working Example and Comparison

The TBox contains the concept hierarchy with the user roles as well as the object class
hierarchy as depicted in Fig. 1 analogously to the scenario in [2]. In the concept defi-
nitions, we use abbreviations for the user roles Remote Client (RemCli), Local Client
(LocCli), Manager (Mag), Operating System Developer (OSDev) and System Adminis-
trator (SysAdmin). We also use abbreviations for the file types System File (SysFile),
Electronic Journal (ElcJ), Executable File (ExeFile), Local File (LocFile), Configura-
tion File (ConFile), Program File (ProFile) and Executable System File (ExeSysFile).
The concept hierarchies are defined explicitly in the form of General Concept Inclusions
(GCIs).

Furthermore the TBox contains the assignment of permissions for user roles on ob-
jects. In the following example, we define that every remote client can execute every
executable file with the concept product RemCli × ExeFile v canExecute. The
concept product is simulated in SROIQ with canBeExecutedBy ≡ canExecute−,
canExecute1 ◦ canExecute−2 v canExecute, RemCli v ∃canExecute1.{a},
ExeFile v ∃canExecute2.{a}. The ABox contains assertions of users to user roles
and files to object classes in the form OSDev(edward), ProF ile(programFile1)
etc. After full calculation of property extensions by a reasoner, we can directly read the
authorizations from the inferred object properties between the ABox individuals. In our
example, for the individual edward we find the Capability entry canExecute(edward,
programFile1) and for the individual programFile1 we find the ACL entry
canBeExecutedBy(programFile1, edward). The resulting knowledge base is de-
picted in Fig. 2.



Fig. 1. User role and object class hierarchy (white arrow heads: SubClassOf relation)

Fig. 2. Infer authorization of individuals from explicit permission assignments between concepts
(oval: concept, diamond: individual, white arrow head: subsumption relation, black arrow head:
object property, dashed line: concept assertion)

In the example we only defined “remote client can execute executable files”. The
example scenario from [2] we stick to contains further explicit permissions, which we
have given in Tab. 1. We took them in our complete ontology. The definition is analo-
gous to our given example, whereas x represents the action canExecute, and r and w
represent canRead and canWrite respectively. The reading direction to construct the
concept products is Role×ObjectClass v action.

Due to the user role hierarchy and the object class hierarchy, explicit permissions
in Tab. 1 induce implicit permissions made explicit by the DL reasoner in Tab. 2. In [2]
some inferences are not correct which we have additionally given in braces.

4 Conclusion and Outlook

We presented an approach for an access control model with object hierarchy by means
of DL. We have fixed the flaws in the existing approach [2] and applied the concept
product in our OWL 2 ontology. The permissions are not defined explicitly for users to
objects but for user roles to object classes. Individual users are assigned to user roles



ElcJ LocFile ConFile SysFile ExeSysFile ProFile ExeFile File
SysAdmin r,w,x
Mag r,w
OSDev
LocCli r
RemCli r,w x

Table 1. Access Matrix with explicit permissions

ElcJ LocFile ConFile SysFile ExeSysFile ProFile ExeFile File
SysAdmin r,w,x (r) r,w,x (r,w) r,w,x (r,w) r,w,x (r,w) r,w,x r,w,x r,w,x r,w,x
Mag r r,w r,w x x x
OSDev r r,w (r,w) (r,w) x (r,w,x) x (r,w,x) x (r,w,x)
LocCli r r,w x x x
RemCli r,w x x x

Table 2. Access Matrix with explicit and implied permissions caused by user role hier-
archy and object class hierarchy (conflicting solution from [2] given in parentheses)

and objects are assigned to object classes. The full computation of property extensions
makes permissions between individuals explicit.

Our current work focuses on increasing usability: We want to adhere to the distinc-
tion of explicit and implicit permissions like we have compared them in the tables 1 and
2. We claim that this reduces effort to assign permissions and helps to avoid mistakes by
granting unwanted permissions. We want to investigate two directions. In one direction,
the user shall be able to define the intended permissions in the access matrix, and the
user role hierarchy and object hierarchy is then automatically derived. This would help
to get insights in the user role and object hierarchy which have not been obvious before.
Methods from formal concept analysis (FCA) may be appropriate in this context. In
the opposite direction, given a user role hierarchy and object class hierarchy, an access
matrix can be completed and updated at changes with inferred permissions. This allows
the user to keep track of inferred permission in addition to his explicit permissions.

References

1. R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model for role-based access control: to-
wards a unified standard,” in RBAC ’00: Proceedings of the fifth ACM workshop on Role-based
access control, (New York, NY, USA), pp. 47–63, ACM, 2000.

2. J.-H. Chae and N. Shiri, “Formalization of RBAC policy with object class hierarchy,” in
Information Security Practice and Experience (ISPEC) (E. Dawson and D. S. Wong, eds.),
vol. 4464 of Lecture Notes in Computer Science, pp. 162–176, Springer, 2007.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2. ed., 2007.

4. M. Knechtel and J. Hladik, “RBAC authorization decision with DL reasoning,” in ICWI ’08:
Proceedings of the IADIS International Conference WWW/Internet, 2008.

5. I. Horrocks, O. Kutz, and U. Sattler, “The even more irresistible SROIQ,” in Proceedings of
the 10th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006), 2006.

6. S. Rudolph, M. Krötzsch, and P. Hitzler, “All elephants are bigger than all mice,” in Proceed-
ings of the 21st International Workshop on Description Logics (DL2008), 2008.


