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1 Introduction

Classical action formalisms form a dichotomy regarding their expressive power
and computational properties: they are either based on first-order logic (FOL)
and undecidable like the Situation Calculus [13], or decidable but only propo-
sitional like STRIPS [8, 7]. In [3, 11], it was proposed to integrate description
logics (DLs) into action formalisms in order to increase the expressive power
beyond propositional logic while retaining decidability of reasoning. In partic-
ular, ABox assertions are used for describing the initial state of the world and
the pre- and post-conditions of actions, and acyclic TBoxes are used to describe
background knowledge. A similar approach based on the 2-variable fragment of
FOL is described in [9]. The results in [3] show that, even if expressive DLs such
as ALCQIO are used in the action formalism, standard reasoning problems such
as executability and projection remain decidable. The proof is by a reduction of
these problems in a DL L to instance checking in the extension LO of L with
nominals, and it works for all standard extensions of the propositionally closed
DL ALC.

A recent trend in description logic is to consider lightweight DLs that are
not propositionally closed and for which standard reasoning problems such as
subsumption and instance checking are tractable. In particular, the EL-family of
DLs has been developed in [1, 6, 2, 4], and it has proved useful for modelling life
science ontologies such as SNOMED [16] and the National Cancer Institute’s
NCI thesaurus [15]. Many such ontologies are acyclic TBoxes and can thus be
used in a DL-based action formalism. This paves the way to new applications
such as the following: one can use ABoxes to describe patient data in the medical
domain, actions to represent medical treatments, and in both cases use concepts
defined in an underlying medical ontology. Executability and projection can then
determine, e.g., whether a certain treatment is effective or has undesired side-
effects.

In this paper, we investigate the complexity of executability and projection
in EL and EL(¬), the extension of EL with atomic negation. In both cases, we
allow for negated assertions in the post-conditions of actions. Our results show
that, in general, tractability does not transfer from instance checking to exe-
cutability and projection. Even in EL without TBoxes, the latter problems are
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co-NP-hard. This is due to two sources of intractability: (1) existential restric-
tions in the initial ABox together with negated assertions in post-conditions;
and (2) conditional post-conditions. We remark that co-NP-hardness does not
follow from hardness results for propositional action formalisms since EL does
not have disjunction, and negation occurs only in post-conditions. We prove a
matching co-NP upper bound for EL(¬). We also show that, in the presence of
acyclic TBoxes, projection in EL is PSpace-hard and thus not easier than in
ALC. Finally, we identify restrictions under which executability and projection
in EL w.r.t. acyclic TBoxes can be decided in polynomial time. These restric-
tions subsume the case where only positive post-conditions are admitted, but
still allow for a careful use of negated post-conditions.

2 DL Actions

Let T be an acyclic TBox describing general knowledge about the application
domain, similarly to state constraints in the Situation Calculus [13]. An atomic

action α = (pre, post) for T consists of

– a finite set pre of ABox assertions, the pre-conditions;
– a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is

an ABox assertion and ψ is a primitive literal for T , i.e. an ABox assertion

A(a),¬A(a), r(a, b), or ¬r(a, b)

with A a concept name primitive in T and r a role name.

A composite action for T is a finite sequence π = α1, . . . , αk of atomic actions
for T . Note that we allow negation in post-conditions although EL does not
provide negation. Intuitively, actions without negated post-conditions seem too
restrictive to be useful. We will return to this issue in Section 5.

Applying an action changes the state of the world, and thus transforms an
interpretation I into an interpretation J . Intuitively, the pre-conditions specify
under which conditions the action is applicable. The post-condition ϕ/ψ says
that, if ϕ is true in the original interpretation I, then ψ is true in the inter-
pretation I ′ obtained by applying the action to I. This can be formalized as
follows.

Let T be an acyclic TBox, α = (pre, post) an atomic action for T , and I,J
models of T that respect the unique name assumption (UNA), have identical
domain, and agree on the interpretation of individual names. We say that α
transforms I into J (I ⇒T

α J ) iff, for each primitive concept A and role name r,
we have

AJ := (AI ∪ {aI | ϕ/A(a) ∈ post ∧ I |= ϕ}) \ {aI | ϕ/¬A(a) ∈ post ∧ I |= ϕ}

rJ := (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ})\

{(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}.
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The composite action π = α1, . . . , αk transforms I to J (written I ⇒T
π J ) iff

there are models I0, . . . , Ik of T with I = I0, J = Ik, and Ii−1 ⇒T
αi

Ii for
1 ≤ i ≤ k. Note that, since we use acyclic TBoxes, there cannot exist more
than one J such that I ⇒T

α J . Thus, actions are deterministic. We generally
assume that actions α = (pre, post) are consistent in the following sense: for
every interpretation I, there exists J such that I ⇒T

α J . It is not difficult to
see that this is the case iff post does not contain any pair of post-conditions of
the form ϕ1/ψ, ϕ2/¬ψ.

Projection and executability are the most important reasoning problems on
actions. Executability is the problem of deciding whether an action can be ap-
plied in a given situation. Formally, we say that an action π = α1, . . . , αn is
executable in an ABox A w.r.t. an acyclic TBox T if the following conditions are
true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations J with I ⇒T
α1,...,αi

J , we
have J |= prei+1.

Projection is the problem of deciding whether applying an action achieves a
desired effect. Formally, the ABox assertion ϕ is a consequence of applying the
action π = α1, . . . , αn in A w.r.t. T (written T ,Aπ |= ϕ) iff for all models I of
A and T and for all J with I ⇒T

π J , we have J |= ϕ. In this context, we also
call ϕ the goal. If T is empty, we write Aπ |= ϕ instead of T ,Aπ |= ϕ. It has
been shown in [3] that projection and executability are mutually reducible in
polynomial time. Thus, we will focus only on projection in the rest of the paper.

In lower bound proofs, we use actions of a restricted form: only atomic ac-
tions are admitted, the set of pre-conditions is empty, and post-conditions are
unconditional, i.e., of the form >(a)/ψ. We call such actions updates and write
α = {ψ1, . . . , ψn} instead of α = (∅, {>(a)/ψ1, . . . ,>(a)/ψn}).

3 Projection in EL with empty TBoxes

We show that, without TBoxes, projection in EL and EL(¬) is co-NP-complete.
The lower bound, which is proved for EL, is a variation of Schaerf’s proof that
instance checking in EL(¬) w.r.t. empty TBoxes is co-NP-hard regarding data
complexity [14]. It uses a reduction of a variation of the propositional SAT
problem called 2+2-SAT, which is shown to be NP-complete in [14].

A 2+2 clause is of the form (p1∨p2∨¬n1∨¬n2), where each of p1, p2, n1, n2

is a propositional letter or a truth constant >, ⊥. A 2+2 formula is a finite
conjunction of 2+2 clauses. Now, 2+2-SAT is the problem of deciding whether
a given 2+2 formula is satisfiable. Let ϕ = c1 ∧ · · · ∧ cn be a 2+2-formula in
m propositional letters q1, . . . , qm, and let ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all
1 ≤ i ≤ n. We construct an ABox Aϕ, an update α, and a goal ψ such that ϕ
is satisfiable iff Aα 6|= ψ. The individual names in Aϕ are f (which corresponds
to the formula ϕ); the clauses c1, . . . , cn; the propositional letters q1, . . . , qm; q>
and q⊥ (corresponding to the truth constants); and a and b, whose purpose will
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be explained later. Define the ABox Aϕ as follows, where c, p1, p2, n1, n2, and
t are role names:

Aϕ := {c(f, c1), . . . , c(f, cn)}

∪
⋃

1≤i≤n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

∪ {(A uA)(a), A(b), t(q>, b), t(q⊥, a)}

∪ {∃t.A(q1), . . . ,∃t.A(qm)}

Note that the first two lines in the definition of Aϕ are a straightforward rep-
resentation of ϕ. Define α = {¬A(a)}. Together with the last line of Aϕ, the
execution of α induces a choice for each qi, 1 ≤ i ≤ m. To see this, let I |= Aϕ

and I ⇒α J . Then we have qi ∈ (∃t.A)I , and the t-successor of qIi that is in
AI can be aI or not. If it is aI , we have qi ∈ (∃t.A)J . Thus, if (∃t.A)J and
(∃t.A)J are disjoint, then J describes a truth assignment for q1, . . . , qm as fol-
lows: qi is true if qIi ∈ (∃t.A)I and false if qIi ∈ (∃t.A)I . The use of a and b
in Aϕ ensure that > and ⊥ are interpreted in the expected way (relying on the
UNA). Executions of α in Aϕ give us all possible truth assignments, encoded as
interpretations J . We use the goal ψ = C(f) to express falsity of ϕ under these
assignments:

C := ∃c.(∃p1.∃t.A u ∃p2.∃t.A u ∃n1.∃t.A u ∃n2.∃t.A).

In the above explanation, we have assumed that (∃t.A)J and (∃t.A)J are dis-
joint. In general, this need not be the case, and also cannot be enforced. However,
this does not affect the correctness of the reduction. Indeed, it is not hard to
show that ϕ is satisfiable iff ψ is not a consequence of applying α in Aϕ, c.f.
the proof of Lemma 2 in [10]. We remark that only the ABox Aϕ depends on ϕ,
whereas α and ψ do not. Thus, our lower bound even applies to data complex-
ity, where only the ABox is considered as the input, but the action and goal are
fixed.

Lemma 1. There is an update α and an EL-goal ψ such that, given an EL-ABox

A, it is co-NP-hard to decide wheter Aα |= ψ.

We now prove a co-NP upper bound for projection in EL(¬). The proof focusses
on countermodels, which are defined as follows. Given an ABox A, an action
π = α1, . . . , αk, and a goal ϕ, we say that I0, . . . , Ik are countermodels against
A, π |= ϕ if I0 |= A, Ii ⇒αi+1

Ii+1 for i < k, and Ik 6|= ϕ. Clearly, Aπ |= ϕ iff
there are no countermodels I0, . . . , Ik against A, π |= ϕ. The main ingredient to
our upper bound proof is to show that if Aπ 6|= ϕ, then there are countermodels
I0, . . . , Ik whose size is bounded by the size of A and π. This enables an NP-
algorithm for non-projection that guesses interpretations I0, . . . , Ik of up to this
size and then verifies in polynomial time whether I0, . . . , Ik are countermodels.

Lemma 2. If Aπ 6|= ϕ, then there are countermodels I0, . . . , Ik against A, π |=
ϕ such that the cardinality of |∆Ii | is bounded by the size of A and π for i < k.
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Proof. (sketch) If Aπ 6|= ϕ with π = α1, . . . , αk, then there are countermodels
I0, . . . , Ik against A, π |= ϕ. We use selective filtration, as known from modal
logic [5], to extract small countermodels J0, . . . ,Jk from I0, . . . , Ik. Let ∆I

denote the (identical!) domain of I0, . . . , Ik. We select a subset ∆J ⊆ ∆I whose
cardinality is bounded by the size of A and π, and then J0, . . . ,Jk are simply
the restriction of I0, . . . , Ik to ∆J . Let αi = (prei, posti). The elements of ∆J

are as follows:

1. aI0 , for all individual names a in A, π, and ϕ;
2. one witness from ∆I0 for each occurrence of a subconcept ∃r.D in A;
3. one witness from ∆Ii−1 for each occurrence of a subconcept ∃r.D in {ϕ |
ϕ/ψ ∈ posti, Ii−1 |= ϕ}, for 1 ≤ i ≤ n.

Individual names not occurring in A, π, and ϕ are interpreted randomly in
J0, . . . ,Jk. ut

Since model checking in EL(¬) can be done in polynomial time and together with
Lemma 1, we obtain the following result.

Theorem 1. Projection in EL and EL(¬) with empty TBoxes is co-NP-complete.

4 Projection in EL with acyclic TBoxes

We show that projection in EL and EL(¬) becomes PSpace-complete when
acyclic TBoxes are admitted. For the lower bound, we reduce validity of quan-
tified Boolean formulas (QBF) to projection in EL. A QBF is of the form ϕ =
Q1p1. . . . Qnpn.ϑ, where Qi ∈ {∀,∃}, and ϑ is a propositional formula using only
the propositional variables p1, . . . , pn. We define validity of QBFs in terms of the
existence of validation trees. A validation tree for a QBF ϕ = Q1p1. . . . Qnpn.ϑ
is a tree of depth n in which every level (except the leaves) corresponds to one of
the quantifiers in ϕ. In ∀pi-levels, each node has two successors, one for pi = >
and one for pi = ⊥. In ∃pi-levels, each node has one successor, either for pi = >
or for pi = ⊥. Thus, every branch of a validation tree corresponds to a truth
assignment to the variables p1, . . . , pn, and it is required that the propositional
formula ϑ evaluates to true on every branch. The QBF formula ϕ is valid iff there
exists a validation tree for ϕ. It is known that validity of QBFs is PSpace-hard,
even if the matrix formula ϑ is in CNF [17].

For the reduction, let ϕ = Q1p1. . . . Qnpn.ϑ be a QBF with ϑ in CNF.
We define an acyclic TBox Tϕ, ABox Aϕ, goal ψϕ, and update αϕ such that
Tϕ,A

αϕ
ϕ 6|= ψϕ iff ϕ is valid. As in Section 3, we call models I and J of T

countermodels against Tϕ,A
αϕ
ϕ |= ψϕ iff I |= Aϕ, I ⇒T

αϕ
J , and J 6|= ψϕ. The

general idea of the reduction is to achieve that, if I,J are such countermodels,
then J encodes a validation tree for ϕ. The purpose of the reduction TBox Tϕ

is to establish a tree structure in I and J that is the core of this encoding. In
the tree structure, we use a role name r to represent the edges of the validation
tree, and the concept names L0, . . . , Ln to identify the n levels. The truth val-
ues of the variables p1, . . . , pn are (for now) represented via the concept names
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P1, . . . , Pn (indicating truth) and P 1, . . . , Pn (indicating falsity). We also use a
role name t and concept names A1, . . . , An, A1, . . . , An, and N1, . . . , Nn, to be
explained later. Define Tϕ as follows:

Tϕ := { Li
.
= ∃r.(Pi+1 u Li+1) u ∃r.(P i+1 u Li+1) uNi i < n,Qi+1 = ∀

Li
.
= ∃r.Li+1 uNi i < n,Qi+1 = ∃

Ln
.
= Nn

Ni
.
= u

1≤j≤i
∃t.Aj i ≤ n }

The reduction ABox Aϕ will include an assertion L0(a). The TBox Tϕ thus
establishes a binary tree of depth n rooted at aI in I with the right number of
successors at each level and with the concept names Pi, P i set as required by
the definition of validation trees in “universal” levels Li (i.e., where Qi = ∀).
Since none of the Li, Pi, P i, and r will occur in the update, aJ is a root of the
same tree in J . To make this tree a validation tree for ϕ, it remains to ensure
that the tree in J satisfies the following:

(a) On every branch of the tree, every variable is interpreted as true or false (not
yet guaranteed since both Pi and P i may be false in a level Li with Qi = ∃).

(b) On no branch, a variable is interpreted as both true and false.
(c) Every branch describes a truth assignment that satisfies ϑ.

To enforce (a)-(c), we introduce a second representation of truth values, which
is used as the main such representation from now on: ∃t.Aj indicates truth of
pj and ∃t.Aj indicates falsity. In contrast to the representation via Pj and P j ,
in which the truth value of pj is only stored at level j, the representation via
∃t.Aj and ∃t.Aj stores the truth value of pj at any level i ≥ j. In particular, this
means that the leaf of a branch stores the whole truth assignment associated
with the branch, and thus we can ensure (c) locally at the leaves.

We start using the new representation by enforcing a central property:

(∗) If d ∈ LI
j , then d ∈ (∃t.Ai)

J or (∃t.Ai)
J is true, for 1 ≤ i ≤ j ≤ n.

To establish (∗), we exploit the same effect as in the co-NP-hardness proof
in Section 3. More precisely, we use (i) the concepts Ni in Tϕ, (ii) assertions
(A1 uA1)(b1), . . . , (An uAn)(bn) in Aϕ, and (iii) the update, which is defined as

αϕ := {¬A1(b1), . . . ,¬An(bn)}.

Due to the use of the Ni concepts in Tϕ, d ∈ LI
j satisfies ∃t.Aj in I, for 1 ≤

i ≤ j ≤ n. The choice in (∗) then corresponds to whether or not the r-successor
stipulated by this concept is bj .

Obviously, (∗) guarantees (a) for the second representation of truth values.
The definition of αϕ explains why we cannot use this representation already in
Tϕ. Namely, Tϕ is used together with the assertion L0(a) ∈ Aϕ, and thus talks
about I. Since A1, . . . , An occur negated in αϕ, truth of concepts ∃t.Ai and ∃t.Ai

in I may be destroyed when moving with αϕ from I to J .
We proceed by ensuring that every node d ∈ LI

i , i ≤ n satisfies the following
three properties:
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1. if d is in PJ
i , then it is in (∃t.Ai)

J , and likewise for P i and ∃t.Ai;
2. d is in at most one of (∃t.Aj)

J and (∃t.Aj)
J , for 1 ≤ j ≤ i.

3. if d is in (∃t.Aj)
J with 1 ≤ j ≤ i, then so are all its r-successors; and likewise

for ∃t.Aj ;

Point 1 links the two representations of truth values, Point 2 addresses (b), and
Point 3 ensures that truth values stored via the second representation are pushed
down towards the leafs.

We define a set of concepts C such that, to enforce Points 1 to 3, it suffices
to ensure that all concepts in C are false at the root of the validation tree in J :

C := {∃ri.(Pi u ∃t.Ai),∃r
i.(P i u ∃t.Ai) | 1 ≤ i ≤ n} ∪

{∃ri.(∃t.Aj u ∃r.∃t.Aj),∃r
i.(∃t.Aj u ∃r.∃t.Aj) | 1 ≤ j ≤ i < n} ∪

{∃ri.(∃t.Aj u ∃t.Aj) | 1 ≤ j ≤ i ≤ n}

Note that the i-th line in the definition of C corresponds to Point i above. Also
note that the first two lines of C rely on (∗) to have the desired effect.

Before we describe how C can be incorporated into the reduction, let us
describe how to ensure that, at every leaf, the formula ϑ evaluates to true. The
idea is to come up with another set of concepts D that are made false at the
root of the validation tree in J . We use ϑ to denote the dual of ϑ, i.e. the
formula obtained from ϑ by swapping ∨ and ∧ and pi and ¬pi, for 1 ≤ i ≤ n.
Obviously, ϑ is equivalent to ¬ϑ, ϑ is of the same length as ϑ, and ϑ is in DNF.
Let ϑ = ϑ1 ∨ · · · ∨ ϑm, where the ϑi are conjunctions of literals. Now D consists
of the following concepts:

ϑi[pj/∃t.Aj ,¬pj/∃t.Aj ,∧/u] for 1 ≤ i ≤ m.

Clearly, D is as required. If EL would include disjunction, we could now easily
put C and D to work and thus finish the reduction by setting ψϕ := t

C∈C∪D
C(a),

where a denotes the root of the validation tree. Since J is a part of a counter-
model and thus violates ψϕ, this has the desired effect that all concepts in C ∪D
are false at a. Alas, there is no disjunction in EL and we need to invest more
work to employ C and D.

We introduce individual names a0, a1, . . . , ak, where ak denotes the root of
the validation tree. Suppose we ensure that J is a model of the ABox

A = {s(ai, ai+1), s(ai, ak) | 0 ≤ i < k} ∪ {Ci(ai), Di+1(ak) | 1 ≤ i < k}.

Then the structure of J is as shown in Figure 1. Let C ∪D = {C1, . . . , Ck}, and
recursively define concepts D1, . . . , Dk as follows:

Di := ∃s.(Ci uDi+1), for 1 ≤ i ≤ k − 1,

Dk := ∃s.Ck

To enforce that all concepts C1, . . . , Ck are false at ak in the model J in Figure 1,
we can choose

ψϕ := D1(a0).
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· · ·
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b1 bn
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Fig. 1. Structure of the reduction ABox Aψ.

To see that this has the intended effect, note that the above choice of ψϕ enforces
that ¬D1 ≡ ∀s.(¬C1 t ¬D2) is true at a0. Thus, ¬C1 is true at ak and ¬D2 is
true at a1. It remains to repeat this argument k − 1 times.

Unfortunately, including the ABox A as part of Aϕ does not result in J
being a model of A. The reason is that if the part of I that witnesses the truth
of the assertions Ci(ai), Di+1(ak) ∈ Aϕ involves the individuals b1, . . . , bn that
occur in αϕ, then these assertions may be invalidated by αϕ while transforming
I to J . The solution to this problem is as follows. For any concept C and
individual name a, let treeC(a) be an ABox that enforces a tree-shaped structure
of connected individual names such that C is true at a. For example, if C =
∃r.(A u ∃s.B u ∃r.(A uB)), then

treeC(a) = {r(a, c), A(c), s(c, c′), B(c′), r(c, c′′)A(c′′), B(c′′)}.

W.l.o.g., we assume that the individuals b1, . . . , bn do not occur in such ABoxes.
In Aϕ, we now use ABoxes of the form treeC(a) instead of the original assertions
Ci(ai) and Di+1(ak). Since b1, . . . , bn are the only individuals occurring in αϕ

and we adopt the UNA, the generated structures are left untouched when αϕ

transforms I into J . Summing up, the ABox Aϕ is thus as follows:

Aϕ := {L0(ak)} ∪ {(Aj uAj)(bj) | 1 ≤ j ≤ n} ∪

{s(ai, ai+1), s(ai, ak) | i < k} ∪
⋃

1≤i<k

treeCi(ai) ∪
⋃

1≤i<k

treeDi+1(ak)

Since the size of Tϕ, Aϕ, ψϕ and αϕ is polynomial in n, we have established the
intended PSpace lower bound. A formal proof of correctness is given in [12].
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A corresponding upper bound can be obtained from [3], where it is proved that
projection in ALC is PSpace-complete w.r.t. acyclic TBoxes.

Theorem 2. Projection in EL with acyclic TBoxes is PSpace-complete, even

if only updates are allowed as actions.

5 A Tractable Case

The results in the previous sections show that, in contrast to subsumption and
other standard reasoning problems, projection in EL is not tractable. The pur-
pose of this section is to identify a tractable case. From the perspective of mod-
elling, this case is not very appealing. However, it may be used by a reasoner to
avoid complex reasoning mechanisms when they are not really needed. As in the
previous section, we admit acyclic TBoxes.

Let T be an acyclic TBox, A an ABox, π = α1, . . . , αn an action with
αi = (prei, posti) such that all post-conditions in posti are unconditional, and
ψ = C(a) a goal. A symbol (i.e., concept or role name) σ is special if σ occurs
negated in some posti, 1 ≤ i ≤ n. We say that T ,A, π, ψ are nice if the following
condition is satisfied:

if ∃r.D is a subconcept of C that contains a special symbol, then there
is no assertion ∃r.E(b) ∈ A such that E vT D.

The aim of this section is to show that projection in EL w.r.t. acyclic TBoxes
is tractable if the input T ,A, π, ψ is nice. Observe that this includes the case
where negated literals in post-conditions are disallowed altogether.

We give a simple algorithm that runs in polynomial time. Let T ,A, π, ψ be
a nice input, with π = α1, . . . , αn and αi = (prei, posti). We assume w.l.o.g.
that A does not contain any assertions of the form C uD(a). If present, we may
simply replace such an assertion with C(a), D(a). Given an ABox A of this form
and a set L of primitive literals, we write A ⊕ L to denote the ABox obtained
from A by first removing the complement of every literal in L and then adding
all literals in L. The algorithm computes a sequence of ABoxes A0, . . . ,An as
follows:

– A0 = A;
– Ai+1 := Ai ⊕ {ϕ | >(a)/ϕ ∈ posti+1}.

The algorithm answers “yes” if T ,An |= ψ (i.e., ψ is true in every model of T
and Ai), and “no” otherwise. In EL with acyclic TBoxes and primitive negation,
deciding whether T ,An |= ψ is tractable [2].

In the following, we briefly sketch the proof that our algorithm is correct. To
show that Aπ 6|= ψ implies An 6|= ψ, we construct a sequence of interpretations
I0, . . . , In such that, for any countermodel J0, . . . ,Jn against Aπ |= ψ, Ii can
be homomorphically embedded into Ji, for all i ≤ n. We then show that Aπ 6|= ψ
implies that In is a model of An. To show that An 6|= ψ implies Aπ 6|= ψ, we
unravel a model J of An ∪ {¬ψ} into a tree-like model J ′, and the define a
countermodel I0, . . . , In against Aπ |= ψ by setting In := J ′ and applying the
actions αn, . . . , α1 “backwards” to generate In−1, . . . , I0.
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Theorem 3. Projection in EL w.r.t. acyclic TBoxes is tractable for nice inputs.

We now show that there is no easy way to include conditional post-conditions in
our tractable case. Let CL be the fragment of EL that admits only conjunction
and concept names, but no existential restrictions. We prove that projection in
CL is co-NP-hard, thus co-NP-complete by Theorem 2. Clearly, this also yields
an alternative proof that projection in EL without TBoxes is co-NP-complete.
However, unlike the proof in Section 3, the current proof relies on conditional
post-conditions. This shows that there are two sources of intractability in pro-
jection in EL: existential restrictions in the ABox as exploited in Section 3 and
conditional post-conditions as exploited here.

Our proof is by reduction of 3SAT. Let ϕ = c1 ∧ · · · ∧ ck be a 3-formula in
the variables p1, . . . , pn and ci = `i,1 ∨ `i,2 ∨ `i,3, for 1 ≤ i ≤ k. We define an
ABox Aϕ, a composite action αϕ = αϕ,1;αϕ,2;αϕ,3, and a goal ψϕ such that ϕ
is satisfiable iff A

αϕ
ϕ 6|= ψϕ. We use the following concept names:

– the concept names B1, . . . , Bn represent the truth values of p1, . . . , pn in the
initial interpretation, where Bi means that pi is true, and ¬Bi that it is false;

– the concept names A1, . . . , An and A1, . . . , An represent the truth values of
p1, . . . , pn in the interpretation obtained by executing αϕ,1, where Ai means
that pi is true, and Ai that it is false;

– the concept names F1, . . . , Fk indicates falsity of the clauses c1, . . . , ck;
– the concept name F indicates falsity of ϕ.

The ingredients of the reduction are now defined as follows, where αϕ,1 =
(∅, posti) for i ∈ {1, 2, 3} and Li,j denotes Ai if `i,j = ¬pi and Ai if `i,j = pi:

Aϕ = {A1(a), . . . , An(a)}
post1 = {B1(a)/A1(a), B1(a)/¬A1(a), . . . , Bn(a)/An(a), Bn(a)/¬An(a)}
post2 = {Li,1 u Li,2 u Li,3(a)/Fi(a) | 1 ≤ i ≤ k}
post3 = {F1(a)/F (a), . . . , Fk(a)/F (a)}
ψϕ = F (a)

Intuitively, a valuation is “guessed” via B1, . . . , Bn in the initial interpreta-
tion because the ABox Aϕ does not specify the initial value of these concept
names. Then αi,1 translates this representation to one in terms of A1, . . . , An and
A1, . . . , An, which allows us to say “pi is false” in the ϑ part of post-conditions
ϑ/χ of subsequent actions (where we cannot use ¬Bi!). The remaining actions
αi,2 and αi,3 ensure that there is a clause in which all literals are false.

Theorem 4. Projection in CL is co-NP-complete.

This result shows that, when conditional post-conditions are allowed, projection
is inherently intractable.

6 Conclusion

Our results show that, in EL, tractability does not transfer from instance check-
ing to projection. If no TBoxes are present, projection in EL is still simpler than
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in ALC. This advantage is lost once that acyclic TBoxes are added. In the full
version of this paper, we will additionally study planning with EL-actions and
show that most lower bounds for propositionally closed action formalisms also
apply to EL.
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