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Abstract

We survey temporal description logics that are based on
standard temporal logics such as LTL and CTL. In partic-
ular, we concentrate on the computational complexity of the
satisfiability problem and algorithms for deciding it.

1. Introduction

Description Logics (DLs) are a well-known family of
logic-based knowledge representation formalisms with a
number of relevant applications. For example, DLs enjoy
significant popularity as ontology languages, which has re-
sulted in the standardization of a description logic as part
of W3C’s ontology language OWL. Other relevant appli-
cations of DLs include the representation of and reason-
ing about conceptual database models. Notably, extended
entity-relation (EER) models and UML class diagrams can
be embedded into DLs, and DL reasoners can be used to
verify their consistency and to derive implicit consequences
of the model [16].

In many applications of DLs, temporal aspects play an
important role. For example, the description of a concept in
an ontology often involves reference to temporal patterns—
consider, e.g., the definition of Malaria in a bio-medical
ontology. Likewise, time plays a crucial role when using
DLs to represent conceptual models of temporal databases.
These observations have resulted in a rather diverse lit-
erature on temporal description logic (TDLs). Proposals
for TDLs include combinations of DLs with Halpern and
Shoham’s logic of time intervals [28, 40], formalisms in-
spired by action logics [2], and the treatment of time points
and intervals as a datatype [35]. For more information, see
the previous surveys [3, 4].

In contrast to the existing surveys, we focus on combi-
nations of standard DLs such as ALC with standard tem-
poral logics (TLs) such as LTL (linear time temporal logic)
and CTL (computational tree logic). Such combinations
are based on a two-dimensional semantics, where one di-
mension is for time and the other for the DL domain. They
were first proposed by Schild [38] in 1993, and since then
have experienced constant development. Notably, TDLs of
this kind are well-suited for capturing the temporal aspects
of concepts in ontologies, and for encoding temporal EER
models [5].

We mainly discuss complexity results and algorithms for
satisfiability checking, which is the most important reason-
ing problem for DLs and TDLs. In particular, satisfiability
can be used to decide concistency of (encoded) temporal
EER models. For all TDLs considered in this paper, satis-
fiability is inter-reducible with subsumption in polynomial
time. Thus, the covered results also apply to the latter prob-
lem, which is highly relevant for reasoning about ontolo-
gies.

When constructing a two-dimensional TDL, a number of
design decisions have to be made. For example, one has to
choose a concrete DL and a TL to be combined. In this pa-
per, we mainly use ALC for the DL part and LTL for the
TL part. Another important decision is whether to apply the
TL operators to DL concepts, roles, TBoxes, or ABoxes.
The structure of this survey roughly reflects the available
choices regarding this second issue. After some preliminar-
ies in Section 2, in Section 3 we analyze the application of
TL operators to concepts and roles. In Sections 4 and 5,
we consider the application of these operators to TBoxes
and ABoxes, respectively. Section 6 is devoted to TDLs
whose DL component is the lightweight description logic
DL-Lite, and Section 7 is concerned with TDLs whose TL
component is CTL. Throughout the paper, we also discuss



whether or not the choice of a different DL has an impact
on the presented results.

2. Preliminaries

We introduce the basics of DLs and define a temporal
semantics for the TDLs considered in this survey.

2.1 Description Logic

Traditionally, DLs focus on representing the terminolog-
ical knowledge of an application domain. The central in-
gredient to such a representation are concepts, which are
built from a countably infinite set NC of concept names and
a countably infinite set NR of role names, by applying the
available concept constructors. In the basic propositionally
closed description logic ALC, these constructors are

A, >, ¬C, C uD, ∃r.C,

whereA ranges over NC, C andD range over concepts, and
r ranges over NR. As usual, we use ⊥ as an abbreviation for
¬>, C tD for ¬(¬C u ¬D), and ∀r.C for ¬∃r.¬C.

The main use of concepts is in TBoxes, which define
and interrelate terminological notions. Formally, TBoxes
are finite sets of concept inclusions (CIs) C v D. Com-
plementing TBoxes, which represent knowledge at the con-
ceptual level, ABoxes represent knowledge at the instance
level. Formally, an ABox is a finite set of assertions C(a)
and r(a, b), where a and b are individuals from a countably
infinite set NI of individual names. The semantics of DLs
is based on the notion of an interpretation I = (∆I , ·I),
where ∆I is a nonempty domain and ·I is a function that
maps every concept name A ∈ NC to a subset AI ⊆ ∆I ,
every role name r ∈ NR to a relation rI ⊆ ∆I × ∆I , and
every individual name a ∈ NR to an element aI ∈ ∆I .
The interpretation ·I can be lifted to composite concepts as
follows:

>I = ∆I ,
(¬C)I = ∆I \ CI ,

(C uD)I = CI ∩DI ,
(∃r.C)I = {d ∈ ∆I | ∃d′ ∈ CI (d, d′) ∈ rI}.

An interpretation I is a model of a concept C if CI 6= ∅; it
is a model of a TBox T if CI ⊆ DI for all C v D in T ,
and a model of an ABox A if aI ∈ CI for allC(a) ∈ A and
(aI , bI) ∈ rI for all r(a, b) ∈ A. A conceptC is satisfiable
w.r.t. a TBox T if there is a common model of C and T .

2.2 Temporal Interpretations

There are many ways of using standard temporal logic
operators such as © (at the next moment), ♦ (eventually),

¤ (always in the future), and U (until) in order to add a
temporal dimension to DLs. For example, we can intro-
duce these operators as extra concept constructors that allow
us to describe the temporal behaviour of concept member-
ship. Alternatively or additionally, the temporal operators
can be applied to roles, TBoxes, and ABoxes. The resulting
TDLs differ in many aspects, in particular modelling capa-
bilities and computational properties. What unifies all of
them, however, is a common semantics.

A temporal interpretation I = (∆I, ·I) consists of a
nonempty domain ∆I and a function ·I that maps every
concept name A ∈ NC to a subset AI ⊆

�
× ∆I, every

role name r ∈ NR to a subset rI ⊆
�

× ∆I × ∆I, and
every individual name a ∈ NR to an element aI ∈ ∆I. In-
tuitively, the elements of

�
represent time points, ordered

by <. Thus, (n, d) ∈ AI means that, in the interpretation
I, d is an instance of A at time point n, and similarly for
role names. Individual names do not have the temporal in-
dex because they are assumed to be rigid, i.e., interpreted
in the same way at every point of time. Temporal inter-
pretations as introduced above are obviously a special case
of temporal first-order structures (without function symbols
and equality, and with at most binary predicates); see [24].

Equivalently, a temporal interpretation I can be defined
as an infinite sequence I(0), I(1), . . . of (non-temporal) in-
terpretations that share the same domain ∆I and interpret
individual names in the same way. We will use this alter-
native definition whenever more suitable. The restriction
that all I(i) share the same domain is known as the con-
stant domain assumption, i.e., objects are never destroyed
or created over time. Using the alternative definition, it is
also easy to define temporal interpretations with expand-
ing domains (∆I(0) ⊆ ∆I(1) ⊆ · · · ), decreasing domains
(∆I(0) ⊇ ∆I(1) ⊇ · · · ), and varying domains (no restric-
tions imposed).

The temporal interpretations defined above assume dis-
crete linear time that is bounded to the past and unbounded
to the future. Of course, there are many other models of
time: to obtain Dedekind-complete time, one can replace�

with the real numbers; to give up infinite future, one can
use finite (but unbounded) initial parts of

�
, etc. To keep

things simple, however, we mainly use (N, <) as our model
of time and only deviate from it when necessary.

3. Temporal Concepts

In this section, we discuss TDLs that are suited for rea-
soning about the temporal evolution of concepts.

3.1 Introducing LTLALC

We define the temporal description logic LTLALC whose
concepts are formed using the concept constructors of



ALC enriched with the temporal constructors ©C and
CUD, as known from propositional linear time temporal
logic (LTL); see, e.g., [23]. As usual, we use ♦C as an
abbreviation for >UC and ¤C for ¬♦¬C. TBoxes are de-
fined in the same way as in the case of ALC, but now using
LTLALC concepts instead of ALC concepts. For simplicity,
we work without ABoxes for now. For example, the follow-
ing CI states that any non-EU country has to be first an EU
member candidate before it can be become an EU member:

¬EU member u ♦EU member v

♦(EU candidate U EU member).

Like in propositional LTL, we can further enrich LTLALC

by adding additional temporal operators, e.g., past operators
for ‘at the previous moment’ and ‘since’ [46, 5] or fixed-
point operators [22]. For the purposes of this paper, we
will concentrate on © and U , and only mention additional
temporal operators when necessary.

The semantics of LTLALC is based on temporal inter-
pretations. To extend ·I to composite concepts, we use the
same clauses as in Section 2.1 for the Booleans, plus the
following ones:

(∃r.C)I = {(n, d) | ∃(n, d′) ∈ CI (n, d, d′) ∈ rI},
(©C)I = {(n, d) | (n+ 1, d) ∈ CI},

(CUD)I = {(n, d) | ∃m ≥ n
(
(m, d) ∈ DI ∧

(k, d) ∈ CI for n ≤ k < m
)
}.

A temporal interpretation I is a model of a conceptC ifC is
satisfied at time point 0, i.e., (d, 0) ∈ CI for some d ∈ ∆I.
It is a model of a TBox T iff CI ⊆ DI for all C v D
in T . Thus, the CIs of a TBox are regarded as temporally
global constraints in the sense that they should hold at every
moment of time. An LTLALC concept C is satisfiable w.r.t.
a TBox T if there is a common model of C and T . It is
not hard to see that this is equivalent to saying that there
is a model I of T with CI 6= ∅. The problem of concept
satisfiability w.r.t. TBoxes in LTLALC is to decide, given a
concept C and a TBox T , whether C is satisfiable w.r.t. T .

Intuitively, LTLALC can be viewed as a two-dimensional
combination of ALC with LTL [24]. If we treat concept
names as propositional variables of LTL, then every tem-
poral interpretation I and every element d ∈ ∆I give rise
to the LTL structure Md defined by

Md(n) = {A ∈ NC | (n, d) ∈ AI}, for all n ≥ 0.

In this sense, the roles in LTLALC are a second dimen-
sion: they allows us to switch between different LTL struc-
tures Md and Md′ without changing the current time point.
The different expressive and computational properties of
LTLALC and other TDLs mainly depend on the degree of
interaction between the temporal component and the DL

component. One effect of this interaction in LTLALC is the
loss of the finite model property (FMP). In pure ALC, satis-
fiability of a conceptC w.r.t. a TBox T implies satisfiability
in a model with a finite domain. In contrast, the following
LTLALC TBox T is such that the concept A is satisfiable
w.r.t. T , but in every model I of A and T , the domain ∆I

must be infinite:

A v ©¤(¬A u ∃r.A).

In spite of this effect, the interaction between LTL and ALC
in LTLALC is actually rather weak, as illustrated in the next
section.

3.2 LTLALC with Expanding Domains

In this section and the subsequent one, we analyze the
complexity of concept satisfiability in LTLALC . We start by
considering models with expanding domains because this
case is particularly simple. Note first that constant domains
and expanding domains give rise to different versions of
concept satisfiability. For example, the following TBox has
a (temporal) model with expanding domains, but no model
with constant domains:

> v ©(A u ∃r.¬A). (∗)

A key observation regarding LTLALC with expanding do-
mains is that this logic is closely connected to the fusion of
LTL and ALC, a general combination method for modal
logics studied, e.g., in [11, 23]. To make this connec-
tion explicit, we introduce an alternative interpretation for
LTLALC .

Let succ /∈ NR be a special role name that is not allowed
in LTLALC concepts. A (non-temporal) interpretation I is
called a fusion interpretation iff succI is a total function.
For d, e ∈ ∆I , we write d Ã e to indicate that e is reach-
able from d by applying succI to d zero or more times. To
interpret an LTLALC concept in I, we use the clauses from
Section 2.1 together with the following ones:

(©C)I = {d | succI(d) ∈ CI},

(C U D)I = {d | ∃e ∈ DI
(
dÃ e ∧ ∀e′ 6= e

(dÃ e′ Ã e ⇒ e′ ∈ CI)
)
}.

The following lemma due to Schild [38] shows that tempo-
ral interpretations with expanding domains and fusion inter-
pretations are equivalent for LTLALC concepts and TBoxes.

Lemma 1. Let C be an LTLALC concept and T a TBox.
Then there is a temporal model of C and T with expanding
domains iff there is a fusion model of C and T .



We give a proof sketch. For the ‘if’ direction, let I be a
fusion model of C and T . W.l.o.g. we may assume that I
is tree-shaped, i.e., the directed graph GI = (V,E) with
V = ∆I and E = succI ∪

⋃

r∈NR
rI is a tree. Let dr ∈ ∆I

be the root of the tree. We can rename the elements of ∆I

so that

∆I ⊆
�

× ∆, for some set ∆,
dr is renamed to an element of {0} × ∆,
rI ⊆ {((n, d), (n, e)) | n ≥ 0 ∧ d, e ∈ ∆},

succI ⊆ {((n, d), (n+ 1, d) | n ≥ 0 ∧ d ∈ ∆},

for all r ∈ NR. It is now straightforward to convert I into
a temporal interpretation I = I(0), I(1), . . . with expand-
ing domains that is a model of C and T . For the ‘only if’
direction, it is straightforward to convert a temporal model
I = I(0), I(1), . . . for C and T into a fusion interpretation
I with ∆I ⊆ {(n, d) | d ∈ ∆I(n)}.

Lemma 1 shows that concept satisfiability in LTLALC

w.r.t. TBoxes and with expanding domains can be reduced
to concept satisfiability w.r.t. TBoxes in any extension of
ALC that provides for functional roles and allows us to ex-
press CUD under the fusion semantics given above (note
that ©C can be expressed as ∀succ.C under this semantics).
An example of such an extension is ALC with functional
roles and the role operators known from propositional dy-
namic logic (PDL): composition, union, reflexive-transitive
closure, and test [20, 8]. As shown in [38, 21], satisfia-
bility w.r.t. TBoxes is EXPTIME-complete in this DL, and
PSPACE-complete if transitive closure can only be applied
to functional roles and no TBoxes are admitted. These up-
per bounds thus transfer to LTLALC with expanding do-
mains, and corresponding lower bounds carry over from
ALC.

Theorem 2 ([38]). Concept satisfiability in LTLALC with
expanding domains is PSPACE-complete without TBoxes
and EXPTIME-complete with TBoxes.

Recall that satisfiability in LTL is PSPACE-complete [41]
and satisfiability in ALC is PSPACE-complete without
TBoxes [39] and EXPTIME-complete with TBoxes [37].
Thus, LTLALC is computationally rather well-behaved:
concept satisfiability is not harder than in the component
logics. Additionally, the characterization in terms of fusion
models opens a way to practical reasoning systems that are
not too different from standard ALC reasoners.

3.3 LTLALC with Constant Domains

In [38], Lemma 1 is stated for the constant domain case
(modulo some neglectable differences in the model of time).
Alas, this was not correct. For example, the TBox (∗) above
has a fusion model, but no temporal model with constant
domains. If � is used instead of

�
as the set of time points

in temporal interpretations, then an analogue of Lemma 1
for constant domains can be obtained by requiring that fu-
sion models interpret succ as a total and surjective function.
Satisfiability in LTLALC can then be decided by reduction
to the extension of ALC described in the previous section
and additionally enriched with inverse roles. In our case,
where

�
is used as the set of time points, such a simple fix

does not seem to work. In the following, we give a dedi-
cated algorithm for deciding satisfiability in LTLALC with
constant domains.

Our algorithm performs type elimination, as first used
by Pratt in the context of PDL [30]. Let C be an LTLALC

concept and T a TBox. W.l.o.g. we can assume that T is
of the form {> v CT }. Let sub(C, T ) be the set of all
subconcepts of C and CT , and cl(C, T ) the closure under
single negations of the set

sub(C, T ) ∪ {©(CUD) | CUD ∈ sub(C, T )}.

A type for C and T is a subset t ⊆ cl(C, T ) such that the
following conditions are satisfied:

• A ∈ t iff ¬A /∈ t, for all A ∈ cl(C, T ),

• C uD ∈ t iff {C,D} ⊆ t, for all C uD ∈ cl(C, T ),

• CUD ∈ t iff D ∈ t or {C,©(CUD)} ⊆ t, for all
CUD ∈ cl(C, T ),

• CT ∈ t.

Let Π(C, T ) denote the set of all types for C and T . For
t, t′ ∈ Π(C, T ), we say that t and t′ are compatible if ©C ∈
t implies C ∈ t′, for all ©C ∈ cl(C, T ). A temporal type
for C and T has the form (t, i), with t ∈ Π(C, T ) and
i ∈

�
. We say that (t, i) is realizable w.r.t. T if there is

a temporal model I of T and a d ∈ ∆I such that for all
D ∈ cl(C, T ), we have (i, d) ∈ DI iff D ∈ t. Clearly, C is
satisfiable w.r.t. T if there is a type t ∈ Π(C, T ) such that
C ∈ t and (t, 0) is realizable w.r.t. T .

The following algorithm generates all temporal types
that are realizable w.r.t. T . For every n ≥ 0, let δ(n) =
min{n, |Π(C, T )|}. The algorithm starts with the set of
temporal types

M0 := Π(C, T ) × {0, . . . , |Π(C, T )|}

and then generates a sequence of sets M0 ⊇M1 ⊇M2 · · · ,
where Mj+1 is obtained from Mj by eliminating all tempo-
ral types (t, i) that violate one of the following conditions:

1. for all ∃r.D ∈ t, there is a temporal type (t′, i) ∈ Mj

such that {D} ∪ {¬E | ¬∃r.E ∈ t} ⊆ t′;

2. there is a temporal type (t′, δ(i+ 1)) ∈Mj such that t
and t′ are compatible;

3. if i > 0, there is a temporal type (t′, i− 1) ∈Mj such
that t′ and t are compatible;



4. for all CUD ∈ t, there is a sequence of temporal types

(t1, i1), (t2, i2), . . . , (tk, ik) ∈Mj

such that (i) (t1, i1) = (t, i), (ii) i`+1 = δ(i` + 1) for
1 ≤ ` ≤ k, (iii)D ∈ tk, (iv) t` and t`+1 are compatible
and C ∈ t` for 1 ≤ ` < k.

The algorithm stops when Mj = Mj+1. In this case, we
call Mj the final set computed by the algorithm. Intuitively,
the algorithm repeatedly eliminates temporal types that are
not realizable. Thus, we return ‘satisfiable’ iff the final set
contains a temporal type (t, 0) with C ∈ t, and ‘unsatisfi-
able’ otherwise. The correctness of the algorithm is proved
in the appendix. It follows from the proof that a temporal
type (t, i) with i ≥ |Π(C, T )| is realizable iff the temporal
type (t, |Π(C, T )|) is realizable. This explains the use of
the function δ. It is not hard to see that the algorithm runs
in exponential time. Thus, we obtain the following result.

Theorem 3. Concept satisfiability in LTLALC w.r.t. TBoxes
and with constant domains is EXPTIME-complete.

Satisfiability with expanding, decreasing, and varying
domains can be polynomially reduced to satisfiability with
constant domains. Thus, the result from Theorem 2 applies
to those cases as well. Here, we exemplarily consider the
case of decreasing domains. Let C be a concept and T
a TBox. W.l.o.g. we may assume that T is of the form
{> v CT }. To reduce satisfiability with decreasing do-
mains to satisfiability with constant domains, we introduce
a fresh concept name E that denotes the existence of a do-
main element in an interpretation. Let C∗ be obtained from
C (and C∗

T from CT ) by replacing every subconcept ∃r.D
with ∃r.(EuD), every subconcept ©D with ©(DuE), and
every subconcept DUD′ with (DuE)U(D′uE). Then, C
and T have a model with decreasing domains iffC∗uE and
{E v C∗

T ,©E v E} have a model with constant domains.
Such reductions work in all TDLs considered in this paper.
So from now on we concentrate on constant domains.

3.4 Rigid Roles

In DL, additional constraints for roles have become an
important means to increase the expressive power. A typ-
ical example is the introduction of transitive roles or role
inclusions. In TDL, the most important constraint of this
type is rigid roles. A role r has a rigid interpretation in I if

(n, d) ∈ rI iff (m, d) ∈ rI, for n,m ∈
�
, d ∈ ∆I.

The role geographical part of is a typical rigid role,
whereas member of will mostly be non-rigid. We remark
that, in contrast to roles, no additional constraints are re-
quired to express that a concept is rigid: the CIs C v ¤C
and ¬C v ¤¬C imply that (n, d) ∈ CI iff (m, d) ∈ CI,
for all n,m ∈

�
.

Theorem 4. Concept satisfiability in LTLALC w.r.t. TBoxes
and with a single rigid role is Σ1

1-hard, thus undecidable
and not even recursively enumerable.

This result can be proved by reduction of a well-known
Σ1

1-complete problem, namely the recurrent tiling prob-
lem [29]: given a set S = {t0, . . . , tn} of tile types, de-
cide whether it is possible to cover the

�
×

�
-grid with

tiles of these types such that t0 appears infinitely often in
the first row. Recall that each ti is a 4-tuple of colours
〈left(ti), right(ti), up(ti), down(ti)〉, and a tile of type tj
can be a right (up) neighbour of a ti-tile only if right(ti) =
left(tj) (up(ti) = down(tj)). We encode this problem in
LTLALC with a single rigid role r. Let A0, . . . , An be
concept names representing the given tile types, and let the
TBox T contain the following CIs:

1. > v ∃r.>, > v t
i≤n

Ai, Ai uAj v ⊥, for i 6= j,

2. Ai v ∀r. t
up(ti)=down(tj)

Aj , i ≤ n,

3. Ai v © t
right(ti)=left(tj)

Aj , i ≤ n.

Then the concept ¤♦A0 is satisfiable w.r.t. T iff S can tile
the

�
×

�
-grid with tiles of type t0 appearing infinitely

often in the first row. We sketch the proof of the ‘only if’
direction. Let (0, d0) be an instance of ¤♦A0 in a model
I of T . By the first CI in T , there is an infinite sequence
(0, d0)r

I(0, d1)r
I(0, d2)r

I . . . at time point 0. We can use
it as the first column of the grid. Since r is a rigid role, this
sequence is found also at any other time point, which gives
us the rest of the grid. By the second and third CIs, every
point of the grid is covered by a unique tile, and the last two
CIs guarantee that the colours of the tiles match.

In the reduction above, one dimension of the grid is im-
plicit in the flow of time. The second dimension is gen-
erated by the infinite chain enforced by the first CI in T .
Without TBoxes or with only acyclic ones (see [10] for a
definition), such a chain cannot be enforced. In these cases,
concept satisfiability becomes decidable, though it is still
very expensive.

Theorem 5 ([24]). In LTLALC with rigid roles, concept
satisfiability w.r.t. acyclic TBoxes is decidable. The prob-
lem is hard for non-elementary time already for concepts
containing only one rigid role and no non-rigid roles.

The intuition behind the proof of this result is as fol-
lows. Define the role depth rd(C) of an LTLALC con-
cepts C as the number of nestings of existential restric-
tions ∃r in C. For example, rd(A u ∃r.B) = 1 and
rd(∃r1.(B u ∃r2.A)) = 2. In the same way as for ALC,
one can show that any satisfiable LTLALC concept C
is satisfiable in a temporal interpretation I in which no



path (n, d0)r
I(n, d1)r

I · · · rI(n, dk) has length larger than
rd(C). Thus, it is not possible to generate the infinite sec-
ond dimension of an

�
×

�
-grid. However, the complexity

of deciding satisfiability of a concept C still grows super-
exponentially with rd(C), and in [24] it is shown that the
satisfiability problem for concepts C with rd(C) ≤ n is
nEXPSPACE-complete, for all n ≥ 1. The lower bound
is proved using the yardstick technique of Stockmeyer [42]
and the upper bound uses, in addition to the bound on the
length of paths, the fact that each I(n) can be assumed to
be tree-shaped.

We will return to the issue of rigid roles in Section 5.

3.5 Temporal Roles

Although already rigid roles are computationally diffi-
cult, there are cases where more expressive power is needed
for talking about the temporal evolution of roles. In par-
ticular, it is natural to apply temporal operators not only to
concepts, but also to roles. For example, to define roles
‘will always be a member of’ and ‘will be a member of
over and over again,’ one can use the roles ¤member of

and ¤♦member of, respectively. Formally, a temporal role
is a role name prefixed by a finite sequence of ¤ and ♦ op-
erators, and the corresponding semantic clauses are

(♦r)I = {(n, d, d′) | ∃m ≥ n (m, d, d′) ∈ rI},
(¤r)I = {(n, d, d′) | ∀m ≥ n (m, d, d′) ∈ rI}.

Unfortunately, it is easy to modify the proof of Theorem 4 to
show undecidability of concept satisfiability w.r.t. TBoxes
in LTLALC when TBoxes are allowed to contain a single
temporal role of the form¤r: simply replace r by¤r in the
reduction of the recurrent tiling problem. Without TBoxes,
satisfiability of LTLALC concepts with temporal roles has
not yet been investigated. In fact, results have only been
obtained for the case where LTL is replaced by standard
modal logics such as K or S5 [45, 24, 7]. We briefly discuss
the S5 case. It has been argued in [7] that, for the encoding
of temporal conceptual database models, it is often suffi-
cient to use the operators ♦u (‘at some time point’) and ¤u

(‘at all time points’) applied to concepts and roles, instead
of LTL operators. The semantics of ♦u is defined as

(♦uC)I = {(n, d) | ∃m (m, d) ∈ CI},
(♦ur)

I = {(n, d, d′) | ∃m (m, d, d′) ∈ rI},

and ¤u is dual to ♦u. Observe that ♦u and ¤u do not dis-
tinguish between future and past. For this reason, these op-
erators behave exactly like the modal S5 operators, and we
denote the resulting language by S5ALC . The following re-
sult is proved in [7]. The technique used for proving the
upper bound is an extension of a proof in [45].

Theorem 6 ([7]). In S5ALC with temporal roles, concept
satisfiability w.r.t. TBoxes is 2EXPTIME-complete.

3.6 Varying the DL Component

Theorem 2 is rather robust under extensions of the DL
component ALC. For example, if L is a DL between ALC
and SHIQ (for a definition see, e.g., [33]) then LTLL con-
cept satisfiability w.r.t. TBoxes and with expanding domains
has the same complexity as satisfiability in L w.r.t. TBoxes,
and the same holds for the case without TBoxes. Theo-
rem 3 and the constant domain case is equally robust. In
particular, concept satisfiability in LTLSHIQ w.r.t. TBoxes
is EXPTIME-complete, both with expanding and constant
domains.

As a lower bound, Theorem 4 applies to any extension of
ALC, and it is more interesting to look at DL components
that are weaker than ALC. One such DL is EL, which is
obtained from ALC by dropping negation (and thus also t
and ∀). In LTLEL, every concept is satisfiable w.r.t. every
TBox. For this reason, it is more interesting to consider
concept subsumption w.r.t. TBoxes: given a TBox T and a
concept inclusion C v D, decide whether C v D follows
from T . In pure EL, concept subsumption w.r.t. TBoxes
is tractable [13]. However, it is shown in [6] that concept
satisfiability in LTLALC with TBoxes and rigid roles can
be reduced to concept subsumption in LTLEL with TBoxes
and rigid roles. Thus, Theorem 4 already applies to the case
of LTLEL.

Theorem 5 is less robust than Theorems 2 and 3. It can
be shown by a straightforward extension of the proof in
[24] that the result still holds for ALCI, the extension of
ALC with inverse roles. We conjecture that it also holds
for ALCQ, the extension of ALC with qualified number re-
strictions. However, concept satisfiability with rigid roles
and without TBoxes becomes undecidable if only a single
transitive rigid role r is added. Intuitively, the reason is
that we can then enforce an infinite r-path also without a
TBox. Undecidability is proved in [24] using a reduction
of Post’s Correspondence Problem. In particular, it follows
that concept satisfiability in LTLSHIQ without TBoxes and
with rigid roles is undecidable. The proof in [24] even ap-
plies to finite (but unbounded) flows of time. However, it
then relies on constant domains: a straightforward combi-
nation of the arguments from [26, 34] and [24] shows that
concept satisfiability in LTLALC with rigid transitive roles
in expanding domain models with finite flows of time is de-
cidable, though not in time bounded by a primitive recursive
function.

In [7], it has been proved that Theorem 6 holds for
ALCQI in place of ALC.

4. Temporal TBoxes

The TDLs considered in Section 3 allow one to describe
the temporal evolution of concepts and roles, but not of con-



cept inclusions. For example, the simple assertion ‘eventu-
ally, all European countries will be EU members forever’
cannot be expressed using only temporal concepts and roles,
but requires the application of temporal operators to CIs.

4.1 Temporal ALC TBoxes

To allow the application of temporal operators to con-
cept inclusions, we replace TBoxes with TBox formulas.
Formally, a temporal TBox is built inductively from

C v D, ¬ϕ, ϕ ∧ ψ, ©ϕ, ϕUψ,

where, C v D ranges over concept inclusions and ϕ, ψ
range over temporal TBoxes. We usually make explicit the
description logic L in which concept inclusions are formu-
lated. For example, by mentioning a temporal ALC TBox
we mean that temporal operators may be only applied to its
CIs (but not to their concepts), while in a temporal LTLALC

TBox we allow applications of these operators to both CIs
and concepts (but not to roles).

The truth of a temporal TBox ϕ in a model I depends
on the time point under consideration. We define the truth
relation I, n |= ϕ as follows:

I, n |= C v D iff {d | (n, d) ∈ CI} ⊆

{d | (n, d) ∈ DI},

I, n |= ¬ϕ iff I, n 6|= ϕ,

I, n |= ϕ ∧ ψ iff I, n |= ϕ and I, n |= ψ,

I, n |= ©ϕ iff I, n+ 1 |= ϕ,

I, n |= ϕUψ iff ∃m ≥ n
(
I,m |= ψ and

∀n ≤ k < m I, k |= ϕ
)
.

We say that I is a model of a temporal TBox ϕ if I, 0 |= ϕ.
There is thus a fundamental difference between a tem-
poral interpretation I being a model of a (non-temporal)
ALC TBox T and of the related temporal ALC TBox
∧

CvD∈T C v D: in the former case, the CIs in T are
interpreted globally and thus have to be satisfied at all time
points; in the latter case, they are interpreted locally and
only have to be satisfied at time point 0. Indeed, it is easy
to see that a temporal interpretation I is a model of T iff it
is a model of

∧

CvD∈T ¤
(
C v D

)
.

The expressive power obtained by applying temporal op-
erators to concepts and concept inclusions is incomparable.
In a (non-temporal) LTLALC TBox, we can say that the ex-
tension of the concept Independent country does not de-
crease using the CI

Independent country v ¤Independent country,

but this cannot be expressed by a temporal ALC TBox. On
the other hand, the assertion that eventually all European

countries will be EU members forever can be expressed by
the temporal ALC TBox

♦¤(European country v EU member),

but no (non-temporal) LTLALC TBox can capture this.
When working with temporal TBoxes, we are interested

in temporal TBox satisfiability: given a temporal TBox ϕ,
decide whether there is a model I of ϕ. It is not necessary
to consider concept satisfiability w.r.t. a temporal TBox be-
cause a concept C is satisfiable w.r.t. a temporal TBox ϕ
if, and only if, the temporal TBox ¬(> v ¬C) ∧ ϕ is sat-
isfiable. We start by allowing the application of temporal
operators only to CIs.

Theorem 7. Satisfiability of temporal ALC TBoxes is
EXPTIME-complete.

Similarly to the case of LTLALC without rigid roles, the
proof uses the fact that the interaction between ALC and
LTL is rather limited. Indeed, the only interaction between
the ALC interpretations at distinct time points is via the
truth of TBox axioms. This setup is similar to the tempo-
ralization of logics as studied in [19]. To prove the upper
bound, let ϕ be a temporal ALC TBox. Denote by Cϕ the
set of concept inclusions occurring in ϕ, and denote by ϕ∗

the LTL-formula that is the result of replacing every CI α
in ϕ with a propositional variable pα. Then ϕ is satisfied in
some temporal interpretation if, and only if, ϕ∗ is satisfiable
in an LTL-model in which, for each n, the set

Xn = {α | α ∈ Cϕ, n |= pα} ∪ {¬α | α ∈ Cϕ, n |= ¬pα}

is satisfiable in an ALC-model. The direction from left to
right is clear. Conversely, consider such an LTL-model sat-
isfying ϕ∗. Take, for each n ∈

�
, an ALC interpreta-

tion In satisfying Xn. We may assume that the domains
∆In are countably infinite and coincide. Define I by set-
ting I(n) = In, for n ≥ 0. It is not hard to see that ϕ
is satisfied in I. Using this characterization, it is straight-
forward to prove an EXPTIME upper bound by combining
decision procedures for LTL and ALC. A corresponding
lower bound carries over from ALC.

The proof above also shows that a temporal ALC TBox
is satisfiable in a model with constant domains if, and only
if, it is satisfiable in a model with varying domains.

4.2 Temporal LTLALC TBoxes

We now consider temporal LTLALC TBoxes, which al-
low the application of temporal operators to both concepts
and concept inclusions. We have seen that, when temporal
operators are applied only to concepts or only to concept
inclusions, the interaction between the TL component and
the DL component of a TDL is rather limited. In contrast,



temporal LTLALC TBoxes can enforce subtle interactions.
For example, the temporal LTLALC TBox

©¬(> v ¬A) ↔ ¬(> v ©¬A)

expresses the Barcan-formula ∃x©A(x) ↔ ©∃xA(x) from
modal predicate logic [24]. It is satisfied in all interpreta-
tions with constant domains. Due to such interactions, rea-
soning about temporal LTLALC TBoxes cannot be reduced
to reasoning in the two components logics in a straightfor-
ward way.

Theorem 8 ([46, 24]). Satisfiability of temporal LTLALC

TBoxes is EXPSPACE-complete.

We confine ourselves to a sketch of the upper bound. The
crucial observation in most proofs of the PSPACE upper
bound for satisfiability in LTL is that every satisfiable LTL-
formula is satisfied in a model of the form

M(0), . . . ,M(n), (M(n+ 1), . . . ,M(m))ω,

where the M(i) are propositional valuations and m is at
most exponential in the length of ϕ. When considering tem-
poral interpretations I satisfying a temporal LTLALC TBox
ϕ, such regular models need not exist. For example, the
TBox

ϕ = ¤
(
¬(> v ¬A) ∧ (A v ©¤¬A)

)

is not satisfied in any regular model simply because all in-
terpretations I(n) have to be distinct. The fundamental idea
for proving an EXPSPACE upper bound is that, by abstract-
ing from the domains of interpretations I(n) using so-called
quasimodels, one can regain a semantics in which regular
models always exist.

Quasimodels are abstractions of temporal interpretations
I = I(0), I(1), . . . in which the non-temporal interpre-
tations I(i) are replaced by sets Ξi of types, called qua-
sistates. Types are defined in the same way as in Sec-
tion 3.3, but based on the subconcepts of all concepts that
occur in the temporal TBox ϕ for which satisfiability is to
be checked. Using the observation that there exist ‘only’
double-exponentially many quasistates, we can apply reg-
ularity arguments as used in the LTL case to quasimodels.
To satisfy a TBox ϕ, it suffices to considers regular quasi-
models of the form

Ξ0, . . . ,Ξn, (Ξn+1, . . . ,Ξm)ω,

where m is bounded double-exponentially in the length of
ϕ. This explains the increase in complexity from PSPACE
to EXPSPACE. Of course, a number of conditions have to
be imposed on sequences Ξ0,Ξ1, . . . of quasistates so that
they can serve as a quasimodel. We will not describe the
conditions in detail here, but refer the reader to [24]. The

conditions guarantee that one can re-construct a temporal
interpretation from a quasimodel. For example, for each
Ξi, there has to exist an interpretation Ii satisfying exactly
the types in Ξi (where concepts starting with a temporal
operator are regarded as concept names). This condition
ensures that the description logic part of a quasistate is sat-
isfiable. For the temporal part, it is required that for each
type t ∈ Ξn, there exists a run r :

�
→

⋃

i≥0 Ξi such that

• r(i) ∈ Ξi, for i ≥ 0,
• r(n) = t,
• ©C ∈ r(n) iff C ∈ r(n+ 1),
• CUD ∈ r(n) iff there exists m ≥ n with D ∈ r(m)

and C ∈ r(k) for all n ≤ k < m.

When constructing a temporal interpretation I from a quasi-
model, the domain ∆I of I consists of all such runs. The
condition that

�
is the domain of a run reflects the fact that

we are interested in satisfiability in models with constant
domain.

The proof can easily be adapted to expanding domains.
In particular, the domains of runs are then upward-closed
subsets of

�
. This yields an EXPSPACE upper bound

also for the case of expanding domains. Alternatively, this
bound can be shown using the reduction to constant do-
mains mentioned at the end of Section 3.3.

Tableau-based algorithms for checking satisfiability of
temporal LTLALC TBoxes that combine a Wolper-style
tableau algorithm for LTL [44] with a tableau algorithm for
ALC have been developed in [43] (for expanding domains)
and [36] (for constant domains). Both algorithms are based
on quasimodels. An implementation for expanding domains
is presented in [27].

4.3 Varying the DL Component

The only noteworthy properties of ALC used in the proof
of Theorem 7 are that (i) any satisfiable Boolean combina-
tion of concept inclusions is satisfiable in a countably infi-
nite model, and (ii) satisfiability of Boolean combinations
of concept inclusions in ALC is in EXPSPACE (and indeed
even in EXPTIME). Thus, Theorem 7 generalizes to any DL
with these properties, such as SHIQ. In general, if ALC is
replaced by a decidable fragment F of first-order logic with-
out equality, and temporal operators are applied to closed
formulas only (which is the case for the standard translation
of temporal ALC TBoxes into first-order temporal logic),
then the complexity of the resulting fragment of first-order
temporal logic will have exactly the same complexity as F,
if it is at least PSPACE-hard.

Theorem 8 can also be generalized to standard DLs such
as SHIQ. Notably, a temporal extension of the descrip-
tion logic DLR, which provides for n-ary relations, was



considered in [5]. The generalization to fragments of first-
order temporal logics has been studied systematically, and
the resulting fragments are known as monodic fragments
[31]. In monodic fragments, temporal operators are applied
to formulas with at most one free variable. Note that this is
the case for the standard translation of temporal LTLALC

TBoxes into first-order temporal logic. The quasimodel
technique has been refined to deal with a variety of monodic
fragments [24].

5. Temporal ABoxes

So far, we have neglected ABoxes in TDLs. Similar to
TBoxes, there are two approaches to including them: either
use a non-temporal ABox that is interpreted in a temporal
interpretation, or define temporal ABoxes in which tempo-
ral operators can be applied to ABox assertions. We start
with the former.

A temporal interpretation I is a model of a (non-
temporal) ABox A if A is satisfied in I at time point 0, i.e.,
(0, aI) ∈ CI for all C(a) ∈ A and (0, aI, bI) ∈ rI for all
r(a, b) ∈ A. The relevant reasoning problem is ABox con-
sistency w.r.t. TBoxes: given a (non-temporal) ABox A and
a (non-temporal) TBox T , decide whether there is a com-
mon temporal model of A and T . In all standard TDLs,
ABox consistency w.r.t. TBoxes has the same complexity
as concept satisfiability w.r.t. TBoxes. In particular, Theo-
rems 2 and 3 easily generalize to ABox consistency.

The case of temporal ABoxes is more interesting. For-
mally, a temporal ABox is a formula built inductively from

C(a), r(a, b), ¬ϕ, ϕ ∧ ψ, ©ϕ, ϕUψ,

where C(a) and r(a, b) range over ABox assertions and
ϕ, ψ range over temporal ABoxes. The truth relation for
temporal ABoxes is defined in the same way as for tempo-
ral TBoxes, with the obvious additional clauses for atoms
C(a) and r(a, b). The relevant reasoning problem is tempo-
ral ABox consistency w.r.t. TBoxes: given a temporal ABox
A and a (non-temporal) TBox T , decide whether A and T
have a common model. A common generalization of tem-
poral ABoxes and temporal TBoxes is provided by tempo-
ral knowledge bases (KBs), which allow atoms of the form
C v D, C(a), and r(a, b), and whose syntax and seman-
tics are otherwise defined in the same way as for temporal
TBoxes and ABoxes. The relevant reasoning problem is
temporal KB consistency: given a temporal KB K, decide
whether K has a model.

Theorems 7 and 8 can both be extended from temporal
TBox satisfiability to temporal KB consistency. To extend
Theorem 8, one needs to develop a notion of quasimodels
that takes into account ABoxes, as done in [24]. Theorem 7
relies on the fact that temporal ALC TBoxes can enforce

only a weak interaction between the TL component and the
DL component. The interaction is no stronger in the case
of temporal KBs, and indeed it is not difficult to extend the
sketched proof of Theorem 7 to show that temporal ALC
KB consistency is EXPTIME-complete. Notably, the proof
shows that a temporal ALC KB cannot even be used to de-
fine rigid concepts. It is thus natural to increase the expres-
sive power of temporal KBs by adding rigid concepts and/or
rigid roles.

Already the addition of rigid concepts increases the in-
teraction between the TL component and the DL component
in a non-trivial way and leads to an increase in complexity.

Theorem 9 ([9]). In ALC, temporal KB consistency with
rigid concepts is NEXPTIME-complete. The lower bound
holds even if concepts ∃r.C and ∀r.C are disallowed.

The lower bound is proved by a reduction of the tiling
problem that requires the tiling of a torus of exponential
size. The ALC component is used to ensure that, already
at time point 0, each position of the torus is represented
by a domain element. Positions are described by a binary
encoding in terms of rigid concept names, and the tiling is
also represented using rigid concept names. Rigidity of the
concept names ensures that the tiling is preserved in all later
time points, and it remains for the TL component to check
that positions are represented uniquely, and that colours of
adjacent tiles are identical.

The upper bound is proved by a reduction to reasoning
in the component logics ALC and LTL. The proof is some-
what similar to the one of Theorem 7, but needs to take
into account the increased interaction between the ALC and
LTL components. In particular, it starts by guessing the
combinations of rigid concept names that are satisfied in
the temporal model. In contrast to temporal KB consis-
tency, temporal ABox consistency with TBoxes and rigid
concepts is still EXPTIME-complete [9].

When rigid concepts and roles are added to temporal
KBs, the complexity increases further. At first sight, one
might even think that temporal KB consistency becomes un-
decidable because we can easily enforce the existence of an�

×
�

-grid; cf. Theorem 4. However, without temporal
operators on concepts, we are not able to express that ad-
jacent tiles have the same colour (axiom 3 in the proof of
Theorem 4).

Theorem 10 ([9]). In ALC, temporal KB consistency with
rigid concepts and rigid roles is 2EXPTIME-complete. The
lower bound already applies to temporal ABox consistency
w.r.t. TBoxes.

The upper bound is again proved by a reduction to rea-
soning in the components ALC and LTL. The increased
interaction between the two components due to rigid roles
is addressed by replacing the individual ALC consistency



checks (one for each time point) with a single such check
that, intuitively, integrates all time points. If only the tem-
poral operators ♦ and ¤ are allowed in a temporal ALC
KB, then consistency with rigid concepts and rigid roles is
EXPTIME-complete [9].

6. Temporal DL-Lite

In this section, we survey recent results on temporal DL-
Lite. The DL-Lite family of lightweight DLs has been in-
troduced and investigated in [14, 15, 1] with the aim of es-
tablishing maximal DLs for which the data complexity of
query answering stays within LOGSPACE. In our brief sur-
vey, we consider three members of this family: the most
expressive DL-Litebool and its Horn and Krom fragments
DL-Litehorn and DL-Litekrom . DL-Litebool has the follow-
ing concept constructors, for q ≥ 1:

A, ⊥, >, ≥ q r, ≥ q r−
︸ ︷︷ ︸

B

, ¬C, C uD,

Concepts built only from the constructors marked with B
are called basic. In contrast to ALC, DL-Litebool has in-
verse roles (r−) and number restrictions (≥ q r) which,
however, are not qualified: a ∈ (≥ q r)I means that there
are at least q distinct r-arrows starting from a, but the con-
cept membership of their destination cannot be specified
(thus ∃r.C is not expressible in DL-Litebool ). DL-Litehorn

is the sublanguage of DL-Litebool with CIs of the form
ukBk v B, for basic B, Bk. Finally, DL-Litekrom allows
only CIs of the form B1 v B2, B1 v ¬B2, ¬B1 v B2

with basic Bi. Note that all of these logics can say that a
role r is functional: ≥ 2 r v ⊥. Concept satisfiability w.r.t.
TBoxes is NP-complete for DL-Litebool , P-complete for
DL-Litehorn , and NLOGSPACE-complete for DL-Litekrom ;
see [1] and references therein.

Consider now temporal extensions of these DLs. We sur-
vey what is currently known about the problem of deciding
consistency of temporal LTLDL-Lite KBs with rigid roles,
i.e., temporal operators can be applied to concepts, con-
cept inclusions, and ABox assertions, and some roles may
have a rigid interpretation. Note that only the application
of Boolean operators to concepts (but not to CIs and ABox
assertions) is restricted in temporal LTLDL-Litekrom

KBs, and
likewise for LTLDL-Litehorn

.
Recall that satisfiability of temporal LTLALC TBoxes

with rigid roles is highly undecidable by Theorem 4. As
in the case of Theorem 10, it may thus look as if consis-
tency of temporal LTLDL-Litebool

KBs with rigid roles is un-
decidable because we can easily enforce the existence of an�

×
�

-grid. However, despite offering temporal operators
on concepts, DL-Litebool is not capable of expressing that
adjacent tiles have the same colour. In fact, it turns out that

temporal LTLDL-Litebool
TBoxes can be embedded into the

one-variable fragment of first-order temporal logic, which
is known to be EXPSPACE-complete; see, e.g., [24]. The
converse embedding is also possible, and thus we obtain
the following result.

Theorem 11 ([6]). Consistency of temporal LTLDL-Litebool

KBs with rigid roles is EXPSPACE-complete.

The complexity of deciding consistency of temporal
LTLDL-Litekrom

KBs is an open problem. However, for tem-
poral LTLDL-Litekrom

KBs in which only the next-time opera-
tor © is applied to basic concepts within CIs, consistency is
PSPACE-complete. The proof of this result uses the fact that
there are polynomially many CIs that are consequences of a
set of Krom CIs (they are Krom CIs as well), and the ‘local’
character of the © operator applied to concepts. In con-
trast, for temporal LTLDL-Litehorn

KBs, the following rather
surprising result can be shown by encoding the EXPSPACE-
complete

�
× 2n corridor tiling problem.

Theorem 12 ([6]). Consistency of temporal LTLDL-Litehorn

KBs with rigid roles is EXPSPACE-complete.

One of the main reasons for these ‘positive’ results is as fol-
lows: as there is no constructor ∃r.C in DL-Lite, we can
actually encode rigid roles using temporal constraints on
unary predicates. Although we obtain unintended models
where roles are not rigid, the language is too weak to notice
this.

7. Branching Temporal Logic

The linear time temporal logic LTL considered so far is
not able to distinguish between possible, actual, and nec-
essary future developments. Suppose, for example, that we
want to describe countries that can join the EU in the future.
The concept inclusion

EU candidate v ♦EU member,

expresses that, sooner or later, every EU candidate will join
the EU. However, this statement seems too strong. What
we actually mean is that, under certain circumstances, an
EU candidate may join the EU in the future—-there is still a
possibility that it will stay outside the union forever. A nat-
ural way of formalising statements of this sort is to switch
to branching time and add the CTL path quantifiers A and
E that allow quantification over ‘possible (future) histories.’
If E is understood as ‘it is possible that’ and A as ‘it is nec-
essary that,’ then

EU candidate v E♦EU member

means that each EU candidate has the possibility (a possi-
ble history) to join the EU. At each moment of time, this



statement is consistent with, say,

E(EU candidate v A¬♦EU member).

A natural branching model of time consists of infinite trees
where the root represents the current moment of time (or
genesis) and the branches starting from the root represent
possible histories.

There are several temporal logics for branching time;
see, e.g., [25]. Here we only consider computational tree
logic CTL∗ [18] and its fragment CTL [17]. The language
of CTL∗ is the straightforward extension of the language of
LTL with the path (or history) quantifiers E and A. In CTL,
the path quantifiers and temporal operators may occur only
in the form E(CUD), A©(C v D), etc. (so A(C v ©D)
is not a well-formed CTL formula).

A branching time interpretation I = (TI,∆I, ·I) con-
sists of an ω-tree tree TI = (W,<), a nonempty domain
∆I, and a function ·I that maps every A ∈ NC to some
AI ⊆ W × ∆I and every r ∈ NR to rI ⊆ W × ∆I × ∆I.
The elements on each full branch h of TI are ordered by <,
and each such branch j is required to be order-isomorphic to
(

�
, <). Intuitively, branches h represent possible histories,

and their elements represent time points in these histories.
Thus, the usual temporal operators can be applied to a given
history, while E and A quantify over the set of all histories
that include the current time point. This means that the in-
terpretation of a complex concept depends not only on the
time point w, but also on the history h that this time point
belongs to, e.g.,

• (w, h, d) ∈ AI iff (w, d) ∈ AI, for a concept name A,

• (w, h, d) ∈ (♦C)I iff there exists w′ ∈ h such that
w < w′ and (w′, h, d) ∈ CI,

• (w, h, d) ∈ (EC)I iff there exists a full branch h′ in T

such that w ∈ h′ and (w, h′, d) ∈ CI.

We consider temporal CTL∗ALC and CTLALC TBoxes and
KBs. Thus, we allow the application of temporal operators
and (in the case of CTL∗) path quantifiers to concepts, con-
cept inclusions, and ABox assertions (in the case of KBs),
but not to roles. Both problems are defined by extending the
definitions for LTLALC in a straightforward way. In partic-
ular, the truth-relation (I, w, h) |= ϕ for temporal CTL∗ALC

KBs ϕ is defined by combining the inductive definitions
above with those for ALC.

The addition of branching to temporal interpretations
changes the computational properties of TDLs in a dras-
tic way. We remind the reader that CTL∗ and CTL are
2EXPTIME- and EXPTIME-complete, respectively. The
problem with TDLs based on CTL∗ and CTL is that, intu-
itively, they are ‘2 1

2 -dimensional’ with branches contribut-
ing 1

2 . This is not a good sign as we know from [24] that
almost all 3D products of modal-like logics are undecidable.

Theorem 13 ([32]). Satisfiability of temporal CTL∗ALC

TBoxes is undecidable.

The original proof in [32] was given for one-variable first-
order CTL∗ with only one temporal operator ♦. It is not
hard to see, however, that quantification over a single vari-
able can be simulated by means of concept inclusions of
the form > v C and the Boolean operators on CIs, which
are available even in CTL∗DL-Litebool

(which is, therefore, also
undecidable).

Positive decidability results can be obtained by restrict-
ing the application of temporal operators and path quanti-
fiers in various ways [12]. An example is the replacement
of CTL∗ with CTL as the temporal component.

Theorem 14 ([32, 12]). Consistency of temporal CTLALC

KBs is decidable.

The proof extends the quasimodel technique for LTLALC

sketched in Section 4 to CTLALC . The existence of
a quasimodel is decided by an embedding into into the
monadic second-order theory of trees, and thus only a non-
elementary upper bound is known.

Many challenging open problems remain to be investi-
gated in branching time TDLs. In contrast to linear time
TDLs, no tight complexity results are known and simpler
reasoning problems than satisfiability of temporal CTLALC

TBoxes have not yet been investigated.
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A. Correctness of the Algorithm in Section 3.3

Let M0, . . . ,Mm be the sets computed by the algorithm.
Set n := |Π(C, T )| and Ti := {t | (t, i) ∈Mm} for i ≤ n.

Lemma 15. For all i < n, we have

1. Ti ⊇ Ti+1;

2. Ti = Ti+1 implies Ti = Ti+` for all ` ≤ n− i.

Proof. (1) Let

M = Mm ∪ {(t, j) | (t, `) ∈Mm for some ` ≥ j}.

We show that M satisfies conditions 1–4 of the elimina-
tion procedure. Based on this, it is trivial to show by in-
duction on i that M ⊆ Mi for all i ≤ m, which im-
plies (1). We only consider condition 4. Let (t, j) ∈ M
and CUD ∈ t. If (t, j) ∈ Mm, we are done. Other-
wise, we have (t, `) ∈ Mm for some ` ≥ j. It follows
that there are temporal types (t1, i1), . . . , (tk, ik) ∈ Mm

satisfying (i)–(iv) for (t, `) ∈ Mm. Define a sequence
(t′1, i

′
1), . . . , (t

′
k, i

′
k) by setting (t′p, i

′
p) := (tp, δ(i+ p− 1))

for 1 ≤ p ≤ k. By definition of M , this sequence exists in
M . It clearly satisfies (i)–(iv) for (t, j) ∈M .
(2) Assume that Ti = Ti+1 and let

M = Mm ∪ {(t, j) | (t, i) ∈Mm and i ≤ j ≤ n}.

As before, it suffices to show that elimination conditions 1–
4 are satisfied for M . Let (t, j) ∈ M \ Mm. We con-
centrate on conditions 3 and 4. The definition of M yields
(t, i) ∈ Mm and so (t, i + 1) ∈ Mm since Ti = Ti+1.
Hence, there is a (t′, i) ∈ Mm such that t′ and t are com-
patible. Again by definition of M , (t′, j − 1) ∈M , and we
are done. Now let CUD ∈ t. As (t, i) ∈ Mm, there is a
sequence of temporal types (t1, i1), . . . , (tk, ik) ∈Mm sat-
isfying (i)–(iv) of elimination condition 4 for (t, i) ∈ Mm.
By definition of M , (t`, p) ∈ M for 1 ≤ ` ≤ k and
i ≤ p ≤ n. Thus, the sequence (t′1, i

′
1), . . . , (t

′
k, i

′
k) de-

fined by setting (t′`, i
′
`) := (t`, δ(i+ `− 1)) exists in M . It

clearly satisfies (i)–(iv) for (t, j) ∈M . o

Define an infinite set M := {(t, i) | (t, δ(i)) ∈ Mm}
and let the conditions 1′–4′ be obtained from the elimina-
tion conditions 1–4 by replacing each occurrence of δ(w)
with w and allowing applications of these conditions also to
temporal types (t, i) with i > n.

Lemma 16. For all types (t, i) ∈ M , conditions 1′–4′ are
satisfied.

Proof. Since |T0| ≤ n, Lemma 15 implies that Tn−1 = Tn

or Tn = ∅. In the latter case, condition 2 implies that Mm,
and so also M , is empty, which means that we are done.
If Tn−1 = Tn, it is easy to use the fact that Mm satisfies
conditions 1–4 to show that M satisfies conditions 1′–4′.

o

A temporal pre-interpretation P = (∆P, ·P) consists
of a nonempty domain ∆P and a partial function ·P from�

× ∆P to Π(C, T ).
We are now ready to prove correctness of the algorithm.

For soundness, assume that the algorithm returns ‘satisfi-
able,’ i.e., there is a (t, 0) ∈ Mm with C ∈ t. Then
(t, 0) ∈ M . We construct a sequence of temporal pre-
interpretations P0,P1, . . . such that for all i ≥ 0, d ∈ ∆Pi ,
and j ≤ i, Pi(j, d) is defined and

(Pi(j, d), j) ∈M. (†)

To start, we set ∆P0 := {d0} and P0(0, d) = t. To define
Pi+1, we start with Pi+1 := Pi and proceed in two steps.
For Step 1, let T ⊆ Π(C, T ) be such that

• for each d ∈ ∆Pi+1 and ∃r.D ∈ Pi+1(i, d), there is a
t ∈ T with {D} ∪ {¬E | ¬∃r.E ∈ Pi+1(i, d)} ⊆ t;

• T ⊆ {t | (t, i) ∈M}.

Such a T exists by (†) and since M satisfies condition 1′.
For each t ∈ T , add a fresh element et to ∆Pi+1 . By (†)
and condition 3′, there is a sequence (t0, 0), . . . , (ti, i) ∈M
such that ti = t. For j ≤ i, set Pi+1(d, j) := tj .

For Step 2, consider each d ∈ ∆Pi+1 . First as-
sume that there is no concept DUE ∈ Pi+1(d, i) with
E /∈ Pi+1(d, i). By (†) and condition 2′, there is a
(t, i + 1) ∈ M such that Pi+1(d, i) and t are compati-
ble. Set Pi+1(d, i + 1) := t. Now assume that there is
a concept DUE ∈ Pi+1(d, i) with E /∈ Pi+1(d, i). As-
sume w.l.o.g. that there is no D′UE′ ∈ Pi+1(d, i) and
j ≤ i with D′UE′,¬E′ ∈ Pi+1(d, `) for j ≤ ` ≤ i, but
DUE,¬E /∈ Pi+1(d, j). Let (t1, i), . . . , (tk, i+k−1) be a
minimal sequence satisfying (i)–(iv) of condition 4′. Since
E /∈ Pi+1(d, i), the length of this sequence is at least two.
Put Pi+1(d, i + 1) := t2. This finishes the construction of
Pi+1.

Let P :=
⋃

i≥0 Pi. We convert P into a temporal inter-
pretation I = (∆P, ·I) as follows:

• AI := {(i, d) | A ∈ P(i, d)};

• rI := {(i, d, d′) | ¬∃r.D ∈ P(i, d) ⇒ ¬D ∈ P(i, d′)}.

It is routine to verify that (0, d0) ∈ CI and I is a model
of T .

Now for completeness. Assume that C is satisfiable
w.r.t. T and let I be a temporal model of C and T . For
d ∈ ∆I and i ≥ 0, set tpI(i, d) := {D ∈ cl(C, T ) |
(i, d) ∈ DI}. Define

M := {(t, δ(i)) | t = tpI(j, d) for some j ≥ i and d ∈ ∆I}.

It is straightforward to verify that M satisfies conditions 1–
4. Thus, it is easily proved by induction on i that M ⊆ Mi

for 1 ≤ i ≤ m. As I is a model of C, there is a (t, 0) ∈ M
with C ∈ t. Thus, the algorithm returns ‘satisfiable.’


