
Explaining User Errors in Description Logic

Knowledge Base Completion

Barış Sertkaya?

TU Dresden, Germany
sertkaya@tcs.inf.tu-dresden.de

Abstract. In our previous work we have developed a method for com-
pleting a Description Logic knowledge base w.r.t. a fixed interpretation
by asking questions to a domain expert. Our experiments showed that
during this process the domain expert sometimes gives wrong answers
to the questions, which cause the resultant knowledge base to have un-
wanted consequences. In the present work we consider the problem of ex-
plaining the reasons of such unwanted consequences in knowledge base
completion. We show that in this setting the problem of deciding the
existence of an explanation within a specified cardinality bound is NP-
complete, and the problem of counting explanations that are minimal
w.r.t. set inclusion is #P-complete. We also provide an algorithm that
computes one minimal explanation by performing at most polynomially
many subsumption tests.

1 Introduction

Description Logics (DLs) [BCM+03] are a successful family of logic-based knowl-
edge representation formalisms that are used to represent the conceptual knowl-
edge of an application domain in a structured and formally well-understood way.
They are employed in various application domains such as natural language pro-
cessing, configuration, databases, and bio-medical ontologies, but their most no-
table success so far is due to the fact that DLs provide the logical underpinning
of OWL, the standard ontology language for the semantic web [HPSvH03].

As a consequence of this standardization, several ontology editors support
OWL [HTR06,OVSM04,KPS+06], and ontologies written in OWL are employed
in more and more applications. As the size of these ontologies grows, tools that
support improving their quality become more important. The tools available
until now use DL reasoning to detect inconsistencies and to infer consequences,
i.e., implicit knowledge that can be deduced from the explicitly represented
knowledge. These approaches address the quality dimension of soundness of
an ontology, both within itself (consistency) and w.r.t. the intended application
domain (no unwanted consequences). In our previous work [BGSS07], we have
considered a different quality dimension: completeness. We have developed a
method that, given a DL knowledge base (KB) describing an application domain,

? Supported by German Research Foundation (DFG, BA 1122/12-1)

supports the knowledge engineer in checking whether the KB contains all the
relevant information about the domain, namely: are all the relevant

– subclass/superclass relationships that hold in the domain captured by the
KB?

– individuals existing in the domain represented in the KB?

Clearly, such questions cannot be answered by an automated tool alone. In order
to check whether a given relationship between classes—which does not already
follow from the KB—holds in the domain, one needs to ask a domain expert,
and the same is true for questions regarding the existence of individuals not
represented in the KB. The method developed in the aforementioned work sup-
ports the knowledge engineer in checking whether the KB captures all relevant
information about the application domain, and extending it appropriately if this
is not the case. The method achieves this by asking the knowledge engineer
questions of the form “is it true that instances of the classes C1, . . . , Cn are
also instances of the classes D1, . . . , Dm?”. The knowledge engineer is expected
to either confirm it, in which case a new axiom of the application domain has
been discovered and it is added to the KB, or to reject it, in which case she is
asked to provide a counterexample. The method is based on attribute exploration
[Gan84], which is a novel knowledge acquisition algorithm developed in Formal
Concept Analysis (FCA) [GW99]. The use of attribute exploration ensures that,
on the one hand, during KB completion the interaction with the expert is kept
to a minimum, and on the other hand, the resultant KB is complete in a certain
well-defined sense.

Our experiments with a prototype implementation of the KB completion
method showed that during completion the knowledge engineer sometimes in-
troduces errors to the KB by confirming questions that actually are not true
in the application domain. As a result, the completed KB has unwanted conse-
quences. In the present work we investigate the problem of finding explanations
of such unwanted consequences, i.e., subsets of the axioms added to the KB dur-
ing completion, from which these unwanted consequences follow. While looking
for explanations, we do not consider the whole completed KB, but only a subset
of it containing the axioms added during the completion. In [BPS07], Baader
et. al. have investigated axiom pinpointing in the DL EL+ in a similar setting
where the explanations are searched only within a subset of the KB. They have
shown that even for the propositional Horn fragment, in this setting the prob-
lem of deciding the existence of an explanation within a specified cardinality
bound is NP-complete, and there can be exponentially many explanations that
are minimal w.r.t. set inclusion. In our setting, the axioms added to the KB dur-
ing completion are propositional Horn as well. However, the difference is that
they are not arbitrary propositional Horn axioms. They are of a restricted syn-
tactical form such that the resulting set of axioms form a canonical base called
the Duquenne-Guigues Base [GD86]. We show here that the intractability result
in [BPS07] still holds under this restriction, and the problem of counting min-
imal explanations is #P-complete. Moreover, despite these negative results we

Name of constructor Syntax Semantics

negation ¬C ∆I \ CI

conjunction C u D CI ∩ DI

concept definition C ≡ D CI = DI

general concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 1. Conjunction, negation, GCIs, and ABox assertions.

provide an algorithm that computes one minimal explanation by performing at
most polynomially many subsumption tests.

2 Description Logics

In DLs, one formalizes the relevant notions of an application domain by concept
descriptions. A concept description is an expression built from atomic concepts
which are unary predicates, and atomic roles, which are binary predicates, by
using the concept constructors provided by the particular DL language in use.
The set of atomic concepts is usually represented with NC , and the set of atomic
roles is usually represented with NR. In the present paper, we do not fix a specific
set of constructors since our results apply to arbitrary DLs as long as they allow
for the constructors conjunction and negation (see the upper part of Table 1).

Typically, a DL knowledge base consists of a terminological box (TBox) which
defines the terminology of an application domain, and an assertional box (ABox)
which contains facts about a specific world. In its simplest form, a TBox is a
set of concept definitions of the form A ≡ C that assigns the concept name
A to the concept description C. The concept names occurring on the left-hand
side of a concept definition are called defined concepts, and the others are called
primitive concepts. We call a finite set of general concept inclusion (GCI) axioms
a general TBox. A GCI is an expression of the form C v D, where C and D are
two possibly complex concept descriptions. It states a subconcept/superconcept
relationship between the two concept descriptions. An ABox is a set of concept
assertions and role assertions (see the lower part of Table 1). A concept assertion
C(a) means that the individual a is an instance of the concept C, and a role
assertion r(a, b) means that the individuals a and b are related via the r relation.

The semantics of concept descriptions, TBoxes, and ABoxes is given in terms
of an interpretation I = (∆I , ·I), where ∆I (the domain) is a non-empty set,
and ·I (the interpretation function) maps each concept name A ∈ NC to a set
AI ⊆ ∆I , each role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I , and each
individual name a ∈ NI to an element aI ∈ ∆I . Concept descriptions C are
also interpreted as sets CI ⊆ ∆I which are defined inductively, as seen in the
semantics column of Table 1 for the constructors conjunction and negation. An
interpretation I is a model of the TBox T (the ABox A) if it satisfies all its

concept definitions and GCIs (assertions) in the sense shown in the semantics
column of the table. In case I is a model of both T and A, it is also called a
model of the KB (T ,A). If there is such a model we say that the KB is consistent.

Given a KB (T ,A), concept descriptions C,D, and an individual name a, the
traditional inference problems subsumption and instance are defined as follows:
C is subsumed by D w.r.t. T (C vT D) if CI ⊆ DI holds for all models I
of T ; and a is an instance of C w.r.t. T and A (T ,A |= C(a)) if aI ∈ CI

holds for all models of (T ,A). Given a TBox T and a GCI C vT D, we call a
T ′ ⊆ T an explanation of C v D if C vT ′ D. For most DLs, subsumption and
instance problems are decidable, and there exist highly optimized DL reasoners
such as FaCT++ [TH06], RacerPro [HM01], and and Pellet [SP04] that can
solve these problems for very expressive DLs on large practical KBs.

3 DL Knowledge Base Completion

Intuitively, a KB is supposed to describe an intended model. For a fixed set M of
“interesting” concepts, we say that a KB is complete if it contains all the relevant
knowledge about subconcept/superconcept relationships that hold between these
concepts in the intended interpretation. To be more precise, if a subsumption
relationship holds in the intended interpretation then it should follow from the
TBox, and if it does not hold in the intended interpretation, then the ABox
should contain a counterexample. More formally, let us say that the element
d ∈ ∆I of an interpretation I satisfies the subsumption relation C v D if d 6∈ CI

or d ∈ DI , and that I satisfies this relation if every element of ∆I satisfies it.
In addition, let us call the individual name a a counterexample in (T ,A) to the
subsumption relation C v D if T ,A |= C(a) and T ,A |= ¬D(a), and say that
A refutes C v D if A contains a counterexample to this subsumption relation.
Based on these, completeness of a DL KB is defined as follows:

Definition 1. Let (T ,A) be a consistent DL KB, M a finite set of concept
descriptions, and I a model of (T ,A). Then (T ,A) is M -complete (or complete
if M is clear from the context) w.r.t. I if the following statements are equivalent
for all subsets L,R of M , where uL stands for

d
C∈L

C:

1. uL v uR is satisfied by I;
2. uL vT uR holds;
3. (T ,A) does not contain a counterexample to uL v uR.

In [BGSS07], we have developed a KB completion method that is based on
Formal Concept Analysis (FCA) [GW99]. FCA is a field of mathematics based on
the lattice-theoretic formalization of the notions of a concept and a conceptual
hierarchy. Our method uses the well known knowledge acquisition algorithm of
FCA, namely attribute exploration [Gan84]. Given a KB (T ,A) and a set of
concept descriptions M , at each iteration our method produces a subsumption
statement uL v uR (where L,R ⊆M) that is not refuted by A. It first asks the
DL reasoner whether this subsumption relation already follows from T . If not

then this knowledge is missing in the KB and a domain expert is asked whether
this subsumption relation holds in the application domain. The question asked to
the expert is of the form: ”in your application domain, is it true that instances of
uL are also instances of uR?”. We assume that the domain expert has enough
information about the application domain to be able to answer such questions.
If she answers “yes” then a new axiom of the application domain, i.e., an axiom
that does not yet follow from the knowledge base, has been discovered and a new
GCI uL v uR is added to T . If she answers “no” then she is asked to extend A
(either by adding a new individual, or by modifying an existing individual) such
that A contains a counterexample to uL v uR. The iteration continues until all
such questions are answered. Once all such questions are answered, the resulting
KB will be complete in the sense that is introduced in Definition 1 (for details
of the completion algorithm see [BGSS07]).

One important point here is that the KB completion algorithm does not
naively enumerate all possible subsumption relations uL v uR that are not re-
futed by A. This would mean too many unnecessary questions to the expert.
The algorithm produces the questions in a certain lexicographic order such that
the interaction with the expert is kept to a minimum. More precisely, the al-
gorithm asks the expert the minimum number of questions that have a “yes”
answer, i.e., questions that result in a new GCI in the TBox. In FCA terminol-
ogy, such a set of axioms is called a Duquenne-Guigues Base [GD86]. It is well
known that among all sets of axioms that have exactly the same consequences,
the Duquenne-Guigues Base contains the smallest number of axioms. That is,
no set of axioms with smaller cardinality can have the same set of consequences
as the Duquenne-Guigues Base. The axioms of a Duquenne-Guigues Base, thus
the questions that had a “yes” answer during a completion process, have the
following property which is going to be used in Section 4 (for more information
on the Duquenne-Guigues Base and its properties see [GW99]):

Lemma 1. Let T be a set of GCIs that is a Duquenne-Guigues Base on the
finite set of concepts M . Then every GCI uL v uR in T where L,R ⊆ M

satisfies the following:

1. L is closed w.r.t. T ′ := T \ {uL v uR}, which means that for every uL′ v
uR′ ∈ T ′, L′ ⊆ L implies R′ ⊆ L.

2. L ∪R is closed w.r.t. T \ {uL v uR}.

Based on the algorithm presented in [BGSS07] we have implemented a first
experimental version of the method as an extension called InstExp1 to the
Swoop ontology editor [KPS+06]. Our first experiments with InstExp showed
that during completion, unsurprisingly the expert sometimes makes errors when
answering the questions. In the simplest case, the error makes the KB incon-
sistent, which can easily be detected by DL reasoning and the expert can be
notified about it. However, in this case an explanation for the reason of inconsis-
tency is often needed to understand and fix the error. The situation gets more

1 available under http://lat.inf.tu-dresden.de/~sertkaya/InstExp

complicated if the error does not immediately lead to inconsistency but the ex-
pert realizes in the later steps, or only after completion that she has accepted a
wrong GCI in one of the previous steps. In this case, the completed KB will have
unwanted consequences. In the next section we are going to investigate axiom
pinpointing in the KB completion setting. We are going to look for methods for
explaining user errors introduced to the TBox during KB completion.

4 Axiom pinpointing in KB Completion

In [BPS07] Baader et. al. have considered axiom pinpointing in the DL EL+ in a
setting where the TBox consists of two kinds of axioms, namely the trusted ones
whose correctness is no longer doubted, and the refutable ones whose correctness
is not yet for sure. Trusted axioms form the so-called static part of the TBox, and
the others form the refutable part. The static part of the TBox is assumed to be
always present, and axioms explaining a certain consequence are searched only in
the refutable part of the TBox. In our KB completion scenario we have a similar
setting. We assume that the axioms in the initial TBox, which we have at the
beginning of completion, are trusted i.e., they have no unwanted consequences.
However, as mentioned before, during completion sometimes by mistake the
domain expert confirms questions that actually are not true in the application
domain, which introduce errors to the TBox. In this case the completed KB
will have unwanted consequences. Therefore we consider the GCIs added to the
TBox during completion as refutable ones, and for finding explanations we do
not consider the whole TBox but only a subset of it that contains the GCIs that
have been added by the domain expert. Namely, the GCIs that have been either
confirmed by the DL reasoner or by the domain expert during completion.

One important point here that differs from [BPS07] is that, the GCIs that
have been confirmed (either by the DL reasoner, or by the domain expert) during
completion form a Duquenne-Guigues Base. Thus the GCIs in this set have the
restricted syntactical form satisfying the property in Lemma 1. This is the main
distinguishing feature of our work. In [BPS07] Baader et. al. have considered the
complexity of axiom pinpointing in the DL EL+ for the setting described above.
They have shown that even for the propositional Horn fragment, the problem
of deciding the existence of an explanation within a specified cardinality bound
is NP-complete, and there can be exponentially many explanations that are
minimal w.r.t. set inclusion. Here we show that in our KB completion scenario,
despite the restricted form of the GCIs in the TBox, the above problem remains
intractable. First we give an example showing that a GCI can have exponentially
many explanations that are minimal w.r.t. set inclusion.

Example 1. Consider the TBox

T := {X uBi−1 v Pi uQi, Y u Pi v Bi, Y uQi v Bi | 1 ≤ i ≤ n}.

It is not difficult to see that none of the left-hand sides is contained in another
left-hand side or in the union of left- and right-hand sides of another axiom, i.e.,

it obeys the property mentioned in Lemma 1. Moreover its size is linear in n,
and it has 2n minimal subsets that explain the axiom B0 u X u Y v Bn since
for each i, 1 ≤ i ≤ n, Bi can be generated by the axiom Y u Pi v Bi or by
Y uQi v Bi.

Now we show that the problem of checking the existence of an explanation
within a specified cardinality bound still remains NP-complete despite the re-
stricted form of the GCIs in the TBox. In the following, for a set of concept
names L, uL denotes the conjunction

d
C∈L

C.

Problem: minimum cardinality explanation

Input: A set T of GCIs satisfying the properties in Lemma 1, sets L and R of
concept names occurring in T such that uL vT uR, a natural number n.
Question: Is there an explanation of uL vT uR in T with cardinality less than
or equal to n, i.e., is there a set of GCIs T ′ ⊆ T such that uL vT ′ uR and
|T ′| ≤ n?

Theorem 1. minimum cardinality explanation is NP-complete.

Proof. The problem is in NP. We can nondeterministically guess a subset T ′ of
T with cardinality n, and in polynomial time check whether uL vT ′ uR. This
test can indeed be done in polynomial time by using the linear time result for
propositional Horn clauses in [DG84] since our GCIs, whose left- and right-hand
sides both consist of only conjunctions of concept names, can be written as Horn
clauses.

In order to show NP-hardness, we are going to give a reduction from the
NP-complete problem vertex cover [GJ90]. Recall that a vertex cover of the
graph G = (V,E) is a set W ⊆ V such that for every edge {u, v} ∈ E, u ∈ W

holds, or v ∈W holds. The problem vertex cover is defined as follows:

Problem: vertex cover

Input: Graph G = (V,E), a natural number n.
Question: Is there a vertex cover of G of size less than or equal to n?

Consider an instance of the vertex cover problem given by G = (V,E), where
V = {v1, . . . , vl}, E = {e1, . . . , ek}, and edge ei = {vi1, vi2}. For every vertex
v ∈ V we introduce a concept name Xv, for every edge ei, 1 ≤ i ≤ k, we
introduce a concept name Qi, and finally two more additional concept names A

and B. Using these concept names we construct the following set of GCIs:

T := {Xv v
l

{i |v ∈ ei}

Qi | v ∈ V } ∪ {A u
l

1≤i≤k

Qi v B}.

Note that none of the GCIs in T contains the left-hand side of another GCI in
its left-hand side or in the union of its left- and right-hand sides. That is, T
satisfies the property mentioned in Lemma 1. In addition to T , we construct the
following GCI that follows from T :

ψ : A u
l

v∈V

Xv v B.

Obviously, this construction can be done in polynomial time. Assume W ⊆ V is
a vertex cover of G. Then the following subset of T constructed by using W is
an explanation of ψ:

T ′ := {Xw v
l

{i |w ∈ ei}

Qi | w ∈W} ∪ {A u
l

1≤i≤k

Qi v B}.

It is not difficult to see that
d

w∈W
Xw vT ′

d
w∈W

d
{i |w ∈ ei}

Qi. Since W is a
vertex cover, it contains at least one vertex from every edge ei, 1 ≤ i ≤ k. Thus,d

w∈W

d
{i |w ∈ ei}

Qi ≡
d

1≤i≤k
Qi, which implies

d
w∈W

Xw vT ′

d
1≤i≤k

Qi,

which in turn implies that A u
d

v∈V
Xv vT ′ A u

d
1≤i≤k

Qi vT ′ B. Thus, we
have shown that T ′ is an explanation of ψ. Note that if the size of W is n, then
T ′ contains exactly n+ 1 axioms. Thus if G has a vertex cover of size less than
or equal to n, then ψ has an explanation in T of size less than or equal to n+1.
The other direction of the claim is shown easily in the similar way. 2

In applications where one is interested in all explanations that are minimal
w.r.t. set inclusion, it might be useful to know in advance how many of them
exist. Next we consider this counting problem. It turns out that it is hard for
the counting complexity class #P [Val79a], i.e., it is intractable.

Problem: #minimal explanation

Input: A set T of GCIs satisfying the properties in Lemma 1, and sets L and R
of concept names occurring in T such that uL vT uR.
Output: Number of all minimal explanations of uL vT uR in T , i.e.,
|{T ′ ⊆ T | u L vT ′ uR and ∀T ′′ (T ′. u L 6vT ′′ uR}| .

Theorem 2. #minimal explanation is #P-complete.

Proof. The problem is in #P. Given a set of GCIs T that has the property in
Lemma 1, another GCI uL vT uR and a set T ′ ⊆ T , we can in polynomial
time verify whether uL vT ′ uR using the method mentioned in the proof of
Theorem 1.

In order to show #P-hardness, we are going to give a parsimonious reduction
from the #P-complete problem #minimal vertex cover, which is the problem
of counting the minimal vertex covers of a given graph. It has been shown to
be #P-complete in [Val79b]. In our reduction we are going to use the same
construction used in the proof of Theorem 1, i.e., from a given graph G we
construct the same set of GCIs T , and the same GCI ψ as in Theorem 1. What
we need to show here is that this construction establishes a bijection between
minimal vertex covers of G and minimal explanations of ψ in T .

First we show that it is injective: assume W ⊆ V is a minimal vertex cover
of G, then the following set of GCIs is a minimal explanation of ψ in T :

T ′ := {Xw v
l

{i |w ∈ ei}

Qi | w ∈W} ∪ {A u
l

1≤i≤k

Qi v B}.

In the proof of Theorem 1 we have already shown that T ′ is an explanation. Here
we need to show that it is minimal as well. If W is minimal, then removal of any

Algorithm 1 Computing one minimal explanation

1: Input: The set of axioms T obtained from completion, and sets of concept names
L and R s.t. uL vT uR.

2: T ′ := T
3: for all t ∈ T ′ do

4: if uL vT ′\{t} uR then {if T ′ \ {t} is still an explanation}
5: T ′ := T ′ \ {t}
6: end if

7: end for

8: return T ′

vertex w from W will result in a Y (W such that vi1 6∈ Y and vi2 6∈ Y for some
edge ei. This implies that removal of the corresponding GCI Xw v

d
{i |w ∈ ei}

Qi

from T ′ will result in a T ′′ such that Qi does not appear on the right-hand side
of any of the GCIs, which means that T ′′ cannot explain ψ, i.e., T ′ is minimal.

Now we show that it is surjective: assume T ′ is a minimal explanation. Then
every Qi, 1 ≤ i ≤ k, occurs at least once on the right-hand side of some GCI
of the form Xw v

d
{i |w ∈ ei}

Qi where w ∈ W , because otherwise T ′ cannot

explain ψ. Moreover, removal of any GCI of this form from T ′ results in a set of
GCIs that is not an explanation. That is, removal of any w from W results in a
Y (W such that vi1 6∈ Y and vi2 6∈ Y for some i, i.e., W is minimal. 2

Despite these negative results, it is not difficult to find one minimal explana-
tion with at most polynomially many subsumption tests. We can just start with
the whole set of axioms obtained from the completion process, iterate over these
axioms and eliminate an axiom if the remaining ones still have the consequence
in question. It is formally described in Algorithm 1. Obviously, the algorithm
terminates since there are only finitely many GCIs in T ′, and it is correct since
the resulting T ′ still explains uL v uR, but none of the axioms in T ′ can be
removed without destroying this property.

5 Concluding remarks

In [BPS07] it was shown that given a set of minimal explanations, the problem
of checking whether there exists a minimal explanation that is not contained in
the given set is NP-complete. This means that, unless P = NP the set of all
minimal explanations cannot be computed in output polynomial time [JPY88],
i.e., polynomial in the size of the input and the output. We do not know whether
this is also the case in our setting for GCIs with restricted form. As future work,
on the theoretical side we are going to consider this problem of computing all
minimal explanations in the knowledge base completion setting. On the practi-
cal side, we are going to implement Algorithm 1 into our KB completion tool
InstExp.

In relational databases [Mai83], the notion of Duquenne-Guigues Base occurs
as the minimum cover of a given set of functional dependencies, i.e., the minimum

(w.r.t. cardinality) set of functional dependencies from which the given set of
functional dependencies follow. It is well known that obtaining a minimum cover
from a given set of functional dependencies F can be done in time polynomial
in the size of F [Mai80]. A corresponding algorithm in the FCA setting has
been given in [Rud07]. At this point one might think that our results here can
be obtained simply by using the polynomial time algorithm in [Rud07] and the
NP-hardness result in [BPS07]. However, this is not the case. If the original
set of GCIs T contains an explanation for a certain consequence, the minimum
cardinality set of GCIs obtained from T by using the algorithm in [Rud07] also
contains an explanation, but it is not possible to know the cardinality of this
explanation.

References

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, eds. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

[BGSS07] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing Descrip-
tion Logic Knowledge Bases using Formal Concept Analysis. In M. M.
Veloso, ed., Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI’07), pp. 230–235. AAAI Press, 2007.

[BPS07] F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the De-
scription Logic EL+. In J. Hertzberg, M. Beetz, and R. Englert, eds., Pro-
ceedings of the 30th German Conference on Artificial Intelligence (KI2007),
volume 4667 of Lecture Notes in Artificial Intelligence, pp. 52–67. Springer-
Verlag, 2007.

[DG84] W. F. Dowling and J. H. Gallier. Linear-Time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae. Journal of Logic Program-
ming , 3:267–284, 1984.

[Gan84] B. Ganter. Two Basic Algorithms in Concept Analysis. Technical Report
Preprint-Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany,
1984.

[GD86] J.-L. Guigues and V. Duquenne. Familles minimales d’implications infor-
matives resultant d’un tableau de données binaries. Mathématiques, Infor-
matique et Sciences Humaines, 95:5–18, 1986.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Company, New York,
NY, USA, 1990. ISBN 0716710455.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer-Verlag, Berlin, Germany, 1999.

[HM01] V. Haarslev and R. Möller. RACER system description. In Proceedings
International Joint Conference on Automated Reasoning (IJCAR 2001).
2001.

[HPSvH03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: the making of a Web Ontology Language. Journal of Web
Semantics, 1(1):7–26, 2003.

[HTR06] M. Horridge, D. Tsarkov, and T. Redmond. Supporting Early Adoption
of OWL 1.1 with Protege-OWL and FaCT++. In Proceedings of the Sec-

ond International Workshop OWL: Experiences and Directions (OWLED
2006). CEUR-WS, 2006.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On Generating All
Maximal Independent Sets. Information Processing Letters, 27(3):119–123,
1988.

[KPS+06] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. A. Hendler. Swoop: A
Web Ontology Editing Browser. Journal of Web Semantics, 4(2):144–153,
2006.

[Mai80] D. Maier. Minimum Covers in Relational Database Model. Journal of the
ACM , 27(4):664–674, 1980.

[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press,
Maryland, 1983.

[OVSM04] D. Oberle, R. Volz, S. Staab, and B. Motik. An Extensible Ontology Soft-
ware Environment. In S. Staab and R. Studer, eds., Handbook on On-
tologies, International Handbooks on Information Systems, pp. 299–320.
Springer-Verlag, 2004.

[Rud07] S. Rudolph. Some Notes on Pseudo-closed Sets. In S. O. Kuznetsov and
S. Schmidt, eds., Proceedings of the 5th International Conference on For-
mal Concept Analysis, (ICFCA 2007), volume 4390 of Lecture Notes in
Computer Science, pp. 151–165. Springer-Verlag, 2007.

[SP04] E. Sirin and B. Parsia. Pellet: An OWL DL Reasoner. In Proceedings of
the 2004 International Workshop on Description Logics (DL2004), volume
104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System
Description. In U. Furbach and N. Shankar, eds., Proceedings of the In-
ternational Joint Conference on Automated Reasoning (IJCAR 2006), vol-
ume 4130 of Lecture Notes in Artificial Intelligence, pp. 292–297. Springer-
Verlag, 2006.

[Val79a] L. G. Valiant. The Complexity of Computing the Permanent. Theoretical
Computer Science, 8(2):189–201, 1979.

[Val79b] L. G. Valiant. The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing , 8(3):410–421, 1979.

