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Abstract—Description Logics (DLs) belong to a successful
family of knowledge representation formalisms with two key
assets: formally well-defined semantics which allows to represent
knowledge in an unambiguous way and automated reasoning
which allows to infer implicit knowledge from the one given
explicitly. One of the most prominent applications of DLs is
their use as ontology languages, especially for the life science
domain. This paper investigates several life science ontologies
and summarizes their common characteristics. It suggests that
the use of lightweight DLs in the EL family, in which reasoning
is tractable, is beneficial both in terms of expressivity and
of scalability. The claim is supported by extensive empirical
evaluation of various DL reasoning services on large-scale life
science ontologies, including an overview comparison of state-of-
the-art DL reasoners.

Index Terms—Description Logics; Tractable reasoning; Life
science ontologies;

I. INTRODUCTION

Description Logics (DLs) have evolved from the early
knowledge representation formalisms of semantic networks
and frames. Both predecessors of DLs share the notions of
classes of individuals and relations between such classes.

These notions are realized in semantic networks as vertices
and edges in a labeled directed graph. Vertices represent either
individuals or classes of individuals (also called concepts),
and labeled edges represent relations between them. A special
type of relation, called is-a, is used in semantic networks to
specify the generality or specificity of classes. Other kinds
of relationships are realized as edges with other labels, e.g.,
has-color in Figure 1. In frame systems, concepts are realized
as frames similar to the notion of classes in object-oriented
programming languages. Each frame has a name, a collection
of more general frames and a collection of slots. Slots are used
to specify properties of concepts by linking the current frame
to others in a similar sense as edges in semantic networks.

The main problem with both semantic networks and frame
systems is that they lacked a formally well-defined semantics.
For instance, it is unclear what the edge has-color in Figure 1
is intended to mean. One possible reading is that “frogs may
only have color green,” while another is that “frogs have at
least a color green.” Yet, the edge may be understood as a
default property of frogs that can be overridden later when
more knowledge is specified. Moreover, allowing vertices
to represent both individuals and classes of individuals is
ambiguous (e.g., Harry is intended to be an individual frog
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Fig. 1. An example of a semantic network.

as opposed to Frog and Amphibian). Having to rely on their
own operational semantics, different reasoning algorithms for
the same formalism could behave differently upon the same
knowledge base. To overcome this problem, declarative se-
mantics had to be defined formally and independently of any
specific reasoning algorithms. Attempts to employ fragments
of first-order logics in these early KR systems have eventually
resulted in ‘logic-based concept languages’ which have later
become known as Description Logics.

A. The quest for tractable Description Logics

The quest for tractable (i.e., polynomial-time decidable) De-
scription Logics started in the 1980s after the first intractability
results for DLs were shown [10]. Until relatively recently, it
was restricted to DLs that extend the basic language FL0,
which comprises the concept constructors conjunction and
universal quantification. The main reason for this focussing
was that, when clarifying the logical status of property edges in
semantic networks and slots in frames, the decision was taken
that edges and slots should be read as universal quantifications
rather than existential quantifications. In our example, the edge
has-color would read that “frogs may only have color green.”

In most applications of DLs, it is crucial to reason with
terminologies or TBoxes, rather than with isolated concept
descriptions. Unfortunately, as soon as terminologies are taken
into consideration, tractability turns out to be unattainable in
FL0. Classifying even the simplest form of terminologies
(known as acyclic or unfoldable TBoxes) that admit only
acyclic concept definitions was shown to be coNP-hard [24]. If
the most general form of terminologies is admitted (known as
general TBoxes), which consists of general concept inclusion
(GCI) axioms as supported by all modern DL systems, then
classification in FL0 even becomes ExpTime-complete [2].
For these reasons, and also because of the need for expressive
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DLs in applications, from the mid 1990s on, the DL commu-
nity has mainly given up on the quest of finding tractable DLs.
Instead, it investigated more and more expressive DLs, for
which reasoning is worst-case intractable. The goal was then
to find practical reasoning procedures, i.e., algorithms that are
easy to implement and optimize, and which—though worst-
case exponential or even worse—behave well in practice (see,
e.g., [16]). This line of research has resulted in the availability
of highly optimized DL systems for expressive Description
Logics based on tableau algorithms [16], [14], and in success-
ful applications—most notably is the recommendation by the
W3C of the DL-based Web Ontology Language (better known
as OWL) [17] as the ontology language for the Semantic Web.

At the beginning of the present decade, the choice of value
restrictions as a sine qua non of DLs has been reconsidered. On
the one hand, it was shown that the DL EL, which allows for
conjunction and existential restrictions, has better algorithmic
properties than FL0. Precisely, classification of both acyclic
and cyclic EL TBoxes is tractable [5], and this remains so even
if general TBoxes with GCIs are admitted [11]. On the other
hand, there are applications where value restrictions are not
needed, and where the expressive power of EL or its small
extensions appear to be sufficient. In fact, the Systematized
Nomenclature of Medicine, Clinical Terms, [29] employs EL
with an acyclic TBox extended with role inclusion axioms.
Also, the Gene Ontology [1], the thesaurus of the US National
Cancer Institute and the Foundational Model of Anatomy can
be seen as acyclic EL TBoxes. Finally, large parts of the
GALEN Medical Knowledge Base [27] can also be expressed
in EL with GCIs, role hierarchy, and transitive roles.

B. DL systems

Tableau-based algorithms for expressive DLs have been
optimized and implemented in the DL reasoning systems
FaCT [16] and Racer [14]. These implementations used several
optimization techniques including the ones developed in [6],
[16]. With the highly effective optimization techniques, these
reasoning systems turned out to perform surprisingly well
on TBoxes from practical applications. It has been observed
that hard cases leading to the worst-case behaviors of the
algorithms rarely occurred in practice (see, e.g, [16]). This
observation encouraged research on pushing expressivity of
DLs further and developing practical algorithms.

Current tableau-based DL systems, such as FaCT++,
RacerPro and Pellet, not only offer more expressive DLs (i.e.,
up to SROIQ [19] which is the logical underpinning of
the new Web Ontology Language OWL 2) but also employ
additional optimizations that have been tailored toward spe-
cific applications like biomedical ontologies (see, e.g., [18],
[15]). Alternative DL systems include KAON2 [22], which
implemented an algorithm based on resolution reasoning and
disjunctive datalog; and HermiT [23], which implemented a
novel calculus known as ‘hypertableau.’

Distinguishingly, the CEL reasoner [4] supports the
lightweight DL EL+, a useful, tractable extension of EL.
At first sight, one might think that a polynomial-time algo-

rithm is always better suited for implementation than worst-
case exponential-time algorithms such as the ones underlying
those modern DL reasoners. However, due to the plethora
of sophisticated optimization techniques that have been de-
veloped for tableau algorithms over the last decade, it is
far from obvious whether a straightforward implementation
of the polynomial-time algorithm can compete with highly-
optimized implementations of tableau algorithms. A case in
point is our experience with implementing the polynomial-
time classification algorithms for cyclic EL TBoxes introduced
in [5]: direct implementations of both the algorithm for sub-
sumption w.r.t. descriptive semantics (based on a reduction to
satisfiability of propositional Horn formulae) and the algorithm
for subsumption w.r.t. greatest fixpoint semantics (based on
computing the greatest simulation on a graph) did not lead to
satisfactory results on the Gene Ontology [30].

CEL implemented a refined polynomial-time classification
algorithm [7], where an obvious obstacle for efficient im-
plementation of the algorithm given in [2] is removed—
namely, the uninformed, brute-force search for applicable
completion rules. With almost no further optimizations, the
first implementation has demonstrated high performance on
specific applications of biomedical ontologies [7]. Not only
have these empirical results of CEL encouraged the use of
the tractable DL family of EL, but they have also sparked
interest in further research into new optimization techniques for
expressive DLs. By taking into account the underlying logic of
the input TBox, a tableau-based reasoner can wisely select the
most optimal algorithm and/or enable specific optimizations to
perform reasoning (see, e.g., [18], [15]).

Besides the standard reasoning of classification, CEL sup-
ports incremental classification, module extraction and axiom
pinpointing. The reasoning techniques implemented in the CEL

system are described in detail in the author’s PhD thesis [32].

C. Formal ontologies

In the context of knowledge representation and reasoning,
(formal) ontologies are specifications of conceptualization.
Hence, a terminology in the DL sense, e.g., a general TBox,
can be seen as a formal ontology. Ontologies based on Descrip-
tion Logics can be used, for example, to formalize technical
vocabularies and to perform semantic indexing and query
answering in variety of applications, including the Semantic
Web and life science.

In this paper, ontologies from life science are considered
due to their shared characteristics that match the DL under
consideration. The next section investigates a few biomedical
ontologies and discusses their common characteristics and the
challenge of reasoning with them.

II. LIFE SCIENCE ONTOLOGIES

Given the vast knowledge of biology and medicine acquired
even before the advent of computing systems, not to mention
the complexity of this knowledge, it is not astonishing that
researchers in these scientific branches have encountered the
problem of representing their knowledge in a systematic way.

MIWAI 2008



Several efforts to systematize biomedical knowledge and stan-
dardize terms have eventually resulted in either classifications
of diseases, controlled vocabularies, thesauri, terminologies or
ontologies. By formalizing knowledge in an unequivocal way,
the biomedical community can create a common understanding
of the subject in the sense that it helps reduce redundancy in
and heterogeneity of the domain knowledge.
The Systematized Nomenclature of Medicine, Clinical Terms
(SNOMED CT) is a comprehensive clinical and medical on-
tology that covers a wide range of concepts in the domain,
including anatomy, diseases, pharmaceutical products, clinical
findings and medical procedures [29]. The presence of this
terminology dated back to 1965 when the College of American
Pathologist (CAP) released the Systematized Nomenclature of
Pathology (SNOP) which was extended in 1997 to the first
version of Systematized Nomenclature of Medicine, known as
SNOMED Reference Terminology (RT) [28]. It was claimed
to be the first version of this terminology to use the formal
semantics (through the KRSS syntax [26]) of DLs. The termi-
nology has since been continually revised and finally merged
with Clinical Terms version 3 [25] to form the much more
comprehensive terminology SNOMED CT, which comprises
almost four hundred thousand concept definitions like

AmputationOfFinger ≡
HandExcision u

∃roleGroup.( ∃direct-procedure-site.Finger
S
u

∃method.Amputation )

A small extension of the DL EL has so far been used as a pri-
mary language for development where automated reasoning of
classification has proved useful in the generation of SNOMED
CT in ‘normal form’ [28] for distribution purposes.
In 1992, the European project GALEN1 was launched in order
to facilitate the integration of medical information systems by
means of a common reference model for medical terminology.
Unlike the approach to SNOMED RT by the CAP, who trans-
lated an existing classification system for its previous version
of the terminology into DL, the strategy of the GALEN project
was to invent a suitable KR formalism before developing the
actual terminology. Through compilation of specific require-
ments for the medical domain, the ‘GALEN Representation
and Integration Language (GRAIL)’ was devised and used to
develop the GALEN medical ontology [27].

In order to benchmark his DL reasoner FaCT, Horrocks
[16] has translated the GALEN ontology into the DL format
by proposing a mapping from GRAIL statements to equivalent
logical axioms formulated in the DL ALCHf R+ or SHf . An
investigation of GRAIL under scrutiny has revealed that it also
supports so-called inverse roles, but this was not included in the
ontology fragments used as benchmarks in [16]. The mapping
can easily be extended to take into account inverse roles. Since
concept disjunction, negation and universal quantification have
not been included in the GRAIL language, the more fine-tuned
DL for GALEN is ELHIf R+ [35].

1Generalised Architecture for Languages, Encyclopaedias and Nomencla-
tures in Medicine; see http://www.OpenGALEN.org.

An interesting feature of GALEN that distinguishes it from
most biomedical ontologies is that it makes use of GCIs which
can be used to add levels of granularity and to supplement
constraints. A classical example [20] for the former case is
the use of a GCI like

Ulcer u ∃has-loc.Stomach v

Ulcer u ∃has-loc.(Lining u ∃part-of.Stomach)

to bridge the term ‘ulcer of stomach’ to the more fine-grained
term ‘ulcer of lining of stomach’ since it is known that ulcer
of the stomach is specific to the lining of the stomach.

Apart from SNOMED CT and GALEN, the repository of Open
Biomedical Ontologies (OBO) is a large library of ontologies
from the biological and medical domains. Most of the ontolo-
gies available in the repository have been written in ‘OBO
flat file format,’ which was originally designed for the Gene
Ontology (GO) [1]. The OBO format is relatively informal, but
there have been attempts to map this format to Description
Logic semantics. An example is given in [30] where two
translations of the Gene Ontology were proposed, one of which
turned out to correspond to the OBO’s intended semantics.

More recently, Golbreich et al. has defined a semantic
mapping from the OBO flat file format to OWL [12]. As
a consequence of this mapping, several other biomedical
ontologies readily available in the OBO format have been being
translated into OWL. Similar to SNOMED CT and GALEN,
biomedical ontologies developed using the OBO language
turned out to be expressible in the DL EL or its tractable
extensions. Unlike GALEN, however, they do not use GCIs and
purely rely on concept definitions. Notable examples of OBO
ontologies are the Gene Ontology, the thesaurus of the US
National Cancer Institute (NCI) and the Foundational Model
of Anatomy (FMA).

Common characteristics shared among biomedical ontologies
can be summarized as follows:

• Disjunction, negation, universal quantification and cardi-
nality restrictions are not explicitly required to formulate
sensible ontologies in the biomedical domain. Only con-
cept constructors in EL, i.e., conjunction and existential
quantification, appear to be adequate.

• Transitivity and role hierarchy axioms play an indis-
pensable role in biomedical ontologies; while other role
axioms, such as right-identity, functionality, domain and
range restrictions, are sometimes required.

• As an inevitable consequence of the complexity of the
domain, biomedical ontologies are typically of very large
scale, comprising hundreds of thousands of concept def-
initions in some cases.

For most existing biomedical ontologies, the scalability of
reasoning seems to outweigh the expressivity of the ontology
language. In order to address these specific requirements, the
DL EL+ and its reasoning techniques have been tailored
toward ontologies of the kind [7], [32]—the language is suf-
ficiently expressive for the applications at hand and reasoning
can be accomplished in polynomial time.
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III. TASKS FOR ONTOLOGY DESIGN AND MAINTENANCE

To identify the tasks for design and maintenance of formal
ontologies, it is essential to cast some light on what makes
good ontologies. The five basic principles for the design of
formal ontologies proposed in [13] are summarized as follow:

• Clarity: an ontology should effectively convey the in-
tended meaning of its defined terms. Full definitions pro-
viding necessary and sufficient conditions are preferred
over primitive ones providing only necessary conditions.

• Coherence: an ontology should be logically consistent.
Also, implicit consequences that contradict the domain
knowledge should not be inferred from the ontology.

• Extensibility: an ontological structure should be so that it
is possible to extend the ontology or refine some of its
definitions monotonically.

• Minimal encoding bias: an ontology should be specified
at the knowledge level, independent of specific encoding.

• Minimal ontological commitment: an ontology should
make as few claims about the domain of discourse as
possible, i.e., only terms essential for the intended use of
the ontology are defined.

Note that DL-based knowledge representation systems promote
good ontologies according to some of the above criteria.
Clarity and minimal encoding criteria are attained as direct
results from the well-defined formal semantics of Description
Logics. Primitive and full concept definitions in DLs provide
unambiguous utility to specify terms, while general concept
inclusions allow to supplement additional constraints without
having to interfere with existing definitions. Additionally,
minimal encoding bias can be alleviated with the help of
advanced ontology editors and visualization tools (e.g., Protégé
and Swoop) that avoid hassles of a specific syntax (e.g., OWL)
and thus help to promote coding at the knowledge level.

This paper investigates the roles of reasoning support in
shaping good ontologies in terms of coherence and extendibil-
ity. In [21], the authors described tasks relevant for ontology
design and maintenance, and argued how logical reasoning
support can be used to accomplish them. Here, three tasks
for ontology design and maintenance are considered:

1) Authoring concept definitions: One of the most central
activities during ontology design and maintenance is the for-
mulation of new concept definitions (design) and the refine-
ment of existing concept definitions (maintenance). Due to the
declarative style of DL semantics, the ontology developer can-
not use some execution model to guide his intuition about the
effects of design decisions. Unwanted implicit consequences
may be incurred without awareness of the developer and can
be far from easy to detect by hand.

Such implicit consequences could be that the ontology is
logically inconsistent (i.e., there is no model); that a concept
in the ontology is unsatisfiable (i.e., it cannot be instantiated);
or that one concept is a subconcept of another. The first
two types of consequences immediately indicate flaws in the
ontology since an ontology is intended to represent at least a
possible model, and a concept to represent a class of objects.

Subsumptions may or may not be intended depending on its
intuition in the domain of discourse. At any rate, they need to
be detected and reported to the domain expert for inspection.

The mentioned tasks directly correspond to the reasoning
problems of consistency, satisfiability and subsumption in
DL. Most DL systems usually support classification which
is the computation of the subsumption hierarchy. Not only
is classification useful in detecting unwanted subsumptions, it
also provides with a visualization of the ontology’s structure
and is the premier way to navigate and access the ontology.
Classification is normally implemented by means of multiple
subsumption checks, therefore it is of utmost importance for
ontology maintenance that such a computation can be done
incrementally when a small change is applied, i.e., previous
classification information is reused.

2) Error management: Similar to writing large software
programs, building large-scale ontologies is an error-prone
endeavor. The aforementioned reasoning support can help alert
the developer to the existence of errors. For example, ‘ampu-
tation of finger’ is inferred to be a subconcept of ‘amputation
of hand’ in SNOMED CT, which is clearly unintended [33]
and reveals a modeling error. However, given an unintended
subsumption relationship in a large ontology like SNOMED CT
with almost four hundred thousand axioms, it is not always
easy to find the erroneous axioms responsible for it by hand.

Automated reasoning support for error management comes
in three flavors: pinpointing, explanation and revision. Pin-
pointing identifies those concept definitions responsible for an
error, while explanation aims to provide a convincing argument
that also involves explaining the interplay between the relevant
concept definitions. Automatic revision goes one step further
by making concrete suggestions for how to resolve the error.

3) Ontology import: One of the first decisions to be made
when building an ontology is whether to start from scratch
or to reuse available knowledge in existing ontologies. For
example, when building an ontology describing medicinal
products of a pharmaceutical company, concepts of specific
medical substances and human body parts may be used. In
order to guarantee certain relationships among those concepts,
the designer may want to include more details about them.
Since these details have already been formulated properly in
a standardized ontology like SNOMED CT, it should be less
time consuming and more accurate to import the ontology.
The problem, however, is that such standardized ontologies
are typically designed to be comprehensive, thus very large,
therefore importing the whole ontology unnecessarily intro-
duces overhead in computation.

It is thus helpful to be able to extract a small portion of the
ontology that contains only concept definitions relevant to the
needs, i.e., knowledge about the concepts to be imported. To
this end, the automated reasoning support of module extraction
computes a subset of the ontology that is ensured to be small
and adequately capture the meaning of the imported concepts.
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Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅

conjunction C u D CI ∩ DI

existential
quantification ∃r.C

{d ∈ ∆I |
∃e : (d, e) ∈ rI ∧ e ∈ CI}

concept inclusion C v D CI ⊆ DI

role inclusion r1◦· · ·◦rk v s rI
1
◦ · · · ◦ rI

k
⊆ sI

range restriction range(r) v C {e ∈ ∆I | ∃d : (d, e) ∈ rI} ⊆ CI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

TABLE I
SYNTAX AND SEMANTICS OF EL+ .

IV. THE DESCRIPTION LOGIC EL+

In DLs, concept descriptions are inductively defined with
the help of a set of constructors, starting with a set CN of
concept names and a set RN of role names. EL+ concept
descriptions are formed using the constructors shown in the
upper part of Table I.2 An unrestricted EL+ TBox is a
finite set of general concept inclusions (GCIs), role inclusions
(RIs) and range restrictions. Let Ind be a set of individuals
disjoint from CN and RN. Then, an EL+ ABox is a finite
set of concept assertions and role assertions. Possibly with
sub- or superscripts, a, b, . . . are conventionally used to range
over individuals from Ind; r, s, . . . over role names from RN;
A,B over concept names from CN; and C,D over concept
descriptions. The syntax elements of TBox axioms and ABox
assertions are shown in the middle and lower part of Table I,
respectively. An EL+ ontology O consists of a TBox T
and an ABox A such that the following syntactic restriction3

is satisfied: if r1 ◦ · · · ◦ rk v s ∈ O with k ≥ 1 and
O |= range(s) v C, then O |= range(rk) v C, where
O |= range(u) v C if there is a role name v such that u vO v
and range(v) v C ∈ O. If the assertional component is irrele-
vant, we sometimes use the terms terminology (TBox) and on-
tology interchangeably. The notations CN(O),RN(O), Ind(O)
denote, respectively, the sets of concept names, role names
and individuals occurring in O, while Sig(O) denotes the
signature of O, i.e., CN(O) ∪ RN(O) ∪ Ind(O). Similarly,
the notations are sometimes used with a concept description
C and an axiom/assertion α. Figure 2 depicts an example
EL+ ontology motivated by SNOMED CT and GALEN. Some
remarks concerning the expressivity of EL+ are in order:

• A primitive concept definition A v C, which specifies
the necessary condition, is a special form of GCI, while
a concept definition A ≡ C, which specifies the necessary
and sufficient conditions, can be expressed by two GCIs:
A v C and C v A.

2Refer, e.g., to [3], [19] for other concept constructors.
3To ensure decidability and tractability of reasoning.

α1 Appendix v BodyPart u ∃part-of.Intestine

α2 Endocardium v
Tissue u ∃part-of.HeartValve u
∃part-of.HeartWall

α3 HeartValve v BodyValve u ∃part-of.Heart
α4 HeartWall v BodyWall u ∃part-of.Heart
α5 Appendicitis ≡ Inflammation u ∃has-loc.Appendix
α6 Endocarditis ≡ Inflammation u ∃has-loc.Endocardium
α7 Pancarditis ≡ Inflammation u ∃has-exact-loc.Heart
α8 Inflammation v Disease u ∃acts-on.Tissue
α9 HeartDisease ≡ Disease u ∃has-loc.Heart
α10 Tissue u Disease v ⊥

α11
HeartDisease u

∃agent.Virus v
ViralDisease u
∃has-state.NeedsTreatment

α12 has-exact-loc v has-loc
α13 ε v part-of
α14 part-of ◦ part-of v part-of
α15 has-loc ◦ part-of v has-loc

Fig. 2. An example EL+ ontology Omed.

• GCIs together with the bottom concept can be used to
express concept disjointness as C u D v ⊥;

• A domain restriction is expressible as ∃r.> v C;
• Role inclusions generalize at least four important kinds of

role axioms: (i) role hierarchy axiom r v s, (ii) reflexivity
axioms ε v r with ε the nullary role composition, (iii)
transitivity axiom r ◦ r v r and (iv) right identity axiom
r ◦ s v r. Examples of these role axioms are α12–α15,
respectively.

The semantics of EL+ is defined in terms of interpretations
I = (∆I , ·I), where the domain ∆I is a non-empty set of
individuals, and the interpretation function ·I maps each ABox
individual a ∈ Ind to aI ∈ ∆I , each concept name A ∈ CN

to a subset AI of ∆I , and each role name r ∈ RN to a
binary relation rI on ∆I . The extension of ·I to arbitrary
concept descriptions is inductively defined as shown in the
semantics column of Table I. An interpretation I is a model
of an ontology O if, for each axiom and assertion in O,
the conditions given in the semantics column of Table I are
satisfied.

The remainder of this section formally introduces reasoning
services (a.k.a. inference problems) that correspond to or help
to alleviate the tasks for ontology design and maintenance iden-
tified in the previous section. The reasoning support considered
in this paper can be categorized into standard and supplemental
reasoning services.

A. Standard reasoning services

Let O be an ontology. Then, O is consistent if it has a
model. A concept C is satisfiable w.r.t. O if there is a model
I of O such that CI is not empty. Two concepts C and D are
disjoint w.r.t. O if their conjunction CuD is unsatisfiable w.r.t.
O, i.e., CI ∩DI = ∅ in every model I of O. In the example,
all concept names are satisfiable w.r.t. Omed, but Endocarditisu
Endocardium is not.
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The concept C is subsumed by D w.r.t. O (written, O |=
C v D or C vO D) if CI ⊆ DI in all models I of O. In
this case, C is said to be a subsumee or subconcept, while D
is said to be a subsumer or superconcept. The concepts C and
D are equivalent w.r.t. O (written, O |= C ≡ D or C ≡O D)
if they subsume each other. Subsumption between concept
descriptions can always be reduced to that between concept
names using either concept definitions or GCIs. Precisely,
C vO D if, and only if, A vO∪{A≡C,B≡D} B if, and only if,
A vO∪{AvC,DvB} B, where A,B are fresh concept names
not occurring in O. In the example, it is not difficult to see
that HeartDisease subsumes Endocarditis and Pancarditis w.r.t.
Omed.

Since subsumption and (un)satisfiability are inter-reducible
in EL+ 4 and unsatisfiable concepts seldom occur in biomedi-
cal ontologies, it is sensible to focus attention on subsumption.

Classification of O is the computation of subsumption
relationships between all pairs of concept names in O. The
classification results are often represented in the so-called
subsumption hierarchy which is essentially a directed acyclic
graph (DAG) where vertices are concept names (strictly speak-
ing, equivalence classes of concept names) and edges represent
immediate subsumption relationships.

For other standard reasoning services involving individuals,
such as instance checking and realization, refer to [3], [32].
These reasoning services are supported by most state-of-the-art
DL systems. Some DL systems, including CEL, also support
supplemental reasoning services useful in ontology design and
maintenance.

B. Supplemental reasoning services

As mentioned earlier, axiom pinpointing aims to compute
the relevant axioms responsible for an erroneous consequence.
Here, consequences of interest are unintended subsumptions
(Note that unsatisfiability can be treated in an analogous way
since it can be reduced to subsumption). Suppose that O is an
ontology and σ is a subsumption such that O |= σ. Then, a
subset S ⊆ O is a minimal axiom set (MinA) for σ w.r.t. O if
(i) S |= σ and (ii) for every S ′ ⊂ S, S ′ 6|= σ. Note that MinAs
need not be unique nor minimum relative to set cardinality.
An example showing that there may be exponentially many
MinAs for a subsumption is given in [8]. Considering the
subsumption σ = (Endocarditis v HeartDisease), it is not
hard to verify that the sets S1 = {α2, α3, α6, α8, α9, α14} and
S2 = {α2, α4, α6, α8, α9, α14} are all the MinAs for σ w.r.t.
Omed. Dually, a maximal non-axiom set (MaNA) for σ w.r.t.
O is a subset S ⊆ O such that (i) S 6|= σ, and (ii) for
every S ′ ⊃ S, S ′ |= σ. Intuitively, a MaNA is a candidate
for the new, revised ontology with the unwanted subsumption
removed. The set complement of a MaNA corresponds to a
so-called diagnosis, i.e., a minimal set of axioms needed to
be removed in order to suppress the problematic subsumption.
Since only a small number of axioms typically need to be

4(⇐) C is unsatisfiable w.r.t. O if, and only if, C vO ⊥; (⇒) C vO D
if, and only if, A is unsatisfiable w.r.t. O extended with GCIs A v C and
A u D v ⊥ with A a fresh concept name.

removed, it is more convenient to compute diagnoses than
MaNAs.

In what follows, let S be a signature (i.e., set of concept
and role names), and σ a potential consequence that may or
may not hold in O. Then, a subset O′ ⊆ O is a module for σ
in O (for short, a σ-module in O) whenever: O |= σ if, and
only if, O′ |= σ. A subset O′ ⊆ O is a module for a signature
S in O (for short, an S-module in O) if, for every potential
consequence σ with Sig(σ) ⊆ S, O′ is a σ-module in O.
Intuitively, a module in an ontology O is a subset O′ ⊆ O that
preserves a potential consequence of interest or the potential
consequences over a signature of interest. Several techniques
have been proposed in the literature in order to syntactically
extract modules from an ontology. The next section reports
on the empirical evaluation of the so-called reachability-based
modules [31].

V. EMPIRICAL EVALUATION

Techniques for both standard and supplemental reasoning
services defined previously are not the main focus of the
present paper, and interested readers are encouraged to re-
fer to [7], [8], [31], [9] and to [32]. For the purpose of
this paper, it suffices to mention that these techniques have
been implemented in the CEL reasoner which was used in
the empirical evaluation of reasoning in EL+ on large-scale
biomedical ontologies. The first subsection describes some
characteristics of the tested biomedical ontologies. Then, the
testing methodologies, as well as empirical results, are pre-
sented and discussed in the last subsection.

A. Ontology test suite

The biomedical ontologies introduced in Section II were
used as benchmarks in the empirical evaluation of classification
and various other reasoning services supported by the CEL

reasoner.
1) The Systematized Nomenclature of Medicine, Clinical

Terms (SNOMED CT): is a comprehensive medical and clinical
ontology. It is an EL TBox augmented with 11 role hierarchy
axioms and two (complex) role inclusions. This ontology as of
release January/2005, denoted by OSNOMED, consists of 379 691
concept and 62 role names.

2) The Galen Medical Knowledge Base (GALEN): has been
developed within an EU project that sought to produce a
reference ontology in a specialized DL. The full version of
this ontology contains 23 136 concept and 950 role names.5

It is precisely based on ELHIfR+ . The DL EL+ however
can express most of its axioms, namely 95.75%, and this frag-
ment was obtained (henceforth, OFULLGALEN) for experimental
purposes by dropping role inverse and functionality axioms.
The resulting ontology can still be considered realistic and
identical to the original one apart from a number of missing
subsumption relationships involving the removed role axioms.

Since the full version is both large and complex to be
handled by DL reasoners, a simplified version of GALEN
has often been considered as a decent benchmark ontology

5http://www.co-ode.org/galen
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for testing DL reasoners. This version6 has originally been
produced by Horrocks to evaluate FaCT and KRIS in his
PhD thesis [16]. It consists of 2 748 concept and 413 role
names. Again, its EL+ fragment was considered, denoted by
ONOTGALEN, by dropping role inverse and functionality axioms.

3) The Gene Ontology (GO): project is a collaborative
effort to address the need for consistent descriptions of gene
products in different databases. It has developed and is main-
taining three controlled vocabularies (i.e., ontologies) that
describe gene products in terms of their associated biological
processes, cellular components and molecular functions in a
species-independent manner. The ontology, denoted by OGO, is
formulated as an EL TBox with a single transitive role part-of.
The release of OGO used in the experiments consists of 20 465
concept names.

4) The Thesaurus of the US National Cancer Institute
(NCI): is a large and carefully designed ontology that has
become a reference terminology covering areas of basic and
clinical science. The knowledge represented in NCI includes
the domains of diseases, drugs, anatomy, genes, gene products,
techniques and biological processes, all with a cancer-centric
focus in its content. It was originally designed to support
coding activities across the National Cancer Institute and to
facilitate translational research in cancer. In the experiments,
we considered the ‘OWLized’ version7 that is formulated
precisely as an EL TBox augmented with domain and range
restrictions. It primitively defines 27 652 concept names and
refers to 70 role names, each of which is constrained by a pair
of domain and range restrictions.

5) The Foundational Model of Anatomy (FMA): is an
evolving ontology concerned with the formal representation
of human anatomy. Its ontological framework can be applied
and extended to other species.8 FMA has four interrelated
components: the anatomy taxonomy, the anatomical structural
abstraction, the anatomical transformation abstraction and the
metaknowledge ontology. The ontology, denoted by OFMA, is
indeed a large EL TBox extended with two transitivity axioms,
one for part-of and the other for has-part. The number of
concept names is 75 139.
Table II summarizes the size and other pertinent characteristics
of all the test-suite ontologies. Numbers of axioms are broken
down into the following kinds: primitive concept definitions
(PCDef), full concept definitions (CDef), general concept
inclusions (GCI), role inclusion axioms (RI). The latter also
includes domain and range restrictions if present.

B. Testing methodology and empirical results

The current version of CEL9 is written in Common Lisp
and compiled and built using Allegro Common Lisp 8.1. Like
most evaluation methods for DL and other reasoning systems,
all the experiments described in this section use ‘CPU time’ as
the main performance indicator. Memory consumption is also

6http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/galen.owl
7http://www.mindswap.iorg/2003/CancerOntology
8http://sig.biostr.washington.edu/projects/fm/AboutFM.html
9http://lat.inf.tu-dresden.de/systems/cel/

Ontologies ]Concepts ]Roles ]Axioms
PCDef CDef GCI RI

OGO 20 465 1 19 465 0 0 1
ONCI 27 652 70 27 635 0 0 140
OFMA 75 139 2 75 139 0 0 2
ONOTGALEN 2 748 413 2 030 695 408 442
OFULLGALEN 23 136 950 13 149 9 968 1 951 1 016
OSNOMED 379 691 62 340 972 38 719 0 13

TABLE II
THE TEST SUITE OF REALISTIC BIOMEDICAL ONTOLOGIES.

discussed whenever appropriate. In order to confine the execu-
tion environment and hence to induce sensible comparison, the
experiments were performed on the same Linux testing server
which was equipped with a couple of 2.19GHz AMD Opteron
processors and 2 GB of physical memory.

In the following, the testing methodology and the empir-
ical results of each of the following reasoning services are
described and discussed:

• classification,
• incremental classification,
• subsumption query answering,
• modularization, and
• axiom pinpointing.
1) Classification: Since classification is one of the most

classical inference services, it is supported by all modern DL
systems. For this reason, classification time is often used as a
performance indicator for DL systems. A number of state-of-
the-art DL reasoners—i.e., FaCT++10, HermiT11, KAON212,
Pellet13 and RacerPro14—were considered for performance
comparison. These DL reasoners vary in the sense that they
implement different reasoning calculi and are written in dif-
ferent languages. For HermiT, KAON2 and Pellet, Sun’s Java
Runtime Environment (JRE) version 1.6.0 was used with
alloted 1.5GB heap space. Some reasoners are not equipped
with a profiling facility to internally measure CPU time. To
achieve comparable measurement, an external timing utility
was used with all the classifying systems.

All ontologies in the test suite described in the previous
section were used as benchmarks for comparing the perfor-
mance of the DL reasoners. Since KAON2’s parser, and hence
HermiT’s parser, does not support (an extension of) the KRSS
syntax [26], ontologies in the OWL format were used in their
experiments. In the case of OSNOMED, the two complex role
inclusions were only passed to CEL and FaCT++ but not to
the other reasoners, as the latter do not support such axioms.
Additionally, we needed to rename all the roles, because
SNOMED uses the same codes for both roles and ‘attributive’
concepts but KAON2 and HermiT do not support such name
punning. It has to be noted however that such renaming could

10http://code.google.com/p/factplusplus/
11http://web.comlab.ox.ac.uk/people/Boris.Motik/HermiT/
12http://kaon2.semanticweb.org/
13http://pellet.owldl.com/
14http://www.racer-systems.com/
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Ontologies OGO ONCI OFMA ONOTGALEN OFULLGALEN OSNOMED

CEL 0.98 3.75 9.04 2.83 201 1 258
FaCT++ 20.12 1.72 t/o 3.28 m/o 606
HermiT 16.75 34.92 123 12.35 m/o m/o
KAON2 m/o m/o t/o m/o m/o t/o
Pellet 52.58 36.11 7 753 31.56 m/o m/o
RacerPro 17.11 13.36 629 17.06 t/o 1 155

TABLE III
COMPUTATION TIME (SECOND).

Fig. 3. Performance comparison through classification time (second).

by no means affect the meaning nor the classification results
of the ontology. Table III shows the (two-run average) time
taken by the respective reasoners to classify the biomedical
ontologies, where m/o means that the reasoner failed due to
memory exhaustion, and t/o means that the reasoner did not
terminate within the allocated time of 24 hours. Figure 3
depicts a comparison chart of reasoners’ performance based on
their classification time, where both m/o and t/o are displayed
as full vertical bars.

It can be seen from the chart and the table that CEL is
the only DL reasoner that can classify all six biomedical
ontologies in the test suite and outperforms HermiT, KAON2

and Pellet in all cases. Compared with the other reasoners,
CEL is faster than RacerPro w.r.t. all but OSNOMED, and faster
than FaCT++ w.r.t. all but ONCI and OSNOMED. It should be
noted that, when it first came into existence in 2005 [7],
CEL was the only academic DL system that was capable of
classifying entire SNOMED CT. This has subsequently sparked
interest in the DL community to research on optimization
techniques specific to the biomedical ontologies (in particular,
to SNOMED CT), and later enabled tableau-based reasoners like
FaCT++ and RacerPro to take advantage of simple structures
of ontologies of this kind. These reasoners employed some
of the optimization techniques described in [18], [15] that are
highly effective on simpler TBoxes (i.e., without GCIs) like
OSNOMED. When a large number of GCIs are present as in the
case of OFULLGALEN, however, these reasoners fail due to either
memory exhaustion or time out. Interestingly, CEL is the only
reasoner that can classify OFULLGALEN.

HermiT and Pellet can classify the first four ontologies
but fail on the last two, both due to a memory problem.
The HermiT reasoner, which implements the much less non-
deterministic hypertableau calculus [23], shows a relatively
good performance. In fact, it noticeably outperforms Pellet

in all cases and is even faster than FaCT++ and RacerPro

Fig. 4. Relative (incremental) classification time w.r.t. full classification time
(percentage).

on some ontologies. KAON2 cannot classify any ontologies of
this scale, but it is fair to remark that this DL system has been
designed to deal with and optimized for conjunctive queries
w.r.t. a large number of individuals.

In what follows, the testing methodology and empirical results
for incremental classification, subsumption query answering,
modularization and axiom pinpointing are described. In these
experiments, only the CEL system was considered.

2) Incremental classification: To simulate usage scenarios
of incremental classification, each ontology O in the test suite
was partitioned into a permanent ontology and a temporary
one. Ten repetitions of the following operations for each tested
ontology O and each number n = 2, 4, 8, 16, 32, 64 were
performed: (i) partition O into Op and Ot such that the latter
consist of n random concept axioms from O; (ii) classify Op

normally; and finally, (iii) incrementally classify Ot against
Op. The time required to compute steps (ii) and (iii) was mea-
sured. The 20% trimmed average classification and incremental
classification times of the 10 repetitions are considered, and
their percentage relative to the full classification time of the
whole ontology O is visualized in Figure 4. For each bar on the
chart, the dark blue slice represents the relative classification
time of Op, while the light blue slice represents the relative
incremental classification time of Ot against Op. Hence, the
entire bar depicts the overall computation time.

Classification of Op took less time than the entire ontology
O, since the former is a subset of the latter. The time required
to incrementally classify Ot varied, depending on the ontology
and according to the number of new axioms. As a rule, the
larger Ot is, the more time it took to incrementally classify
it and also the more time it took overall to classify Op and
incrementally classify Ot. The overall computation time (i.e.,
the height of each bar) was less than 150% for all ontologies
and all numbers n. In the case of OGO, OFMA, OFULLGALEN

and OSNOMED, at most only 10% additional time was needed
in order to incrementally classify up to 64 additional axioms.
The proportion of incremental classification time is larger for
ONOTGALEN than other ontologies since the ontology itself is
much smaller. In fact, 64 axioms already constitute more
than 2% of the entire ontology. Though the size of ONCI

is in the same range as that of OGO and OFULLGALEN, its
relative incremental classification time was much greater. This
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Fig. 5. Incremental classification time (second) for OSNOMED’s evolution.

phenomenon can probably be explained by the fact that concept
definitions in ONCI are somewhat large and can be broken down
to a large number of smaller axioms during normalization.
At any rate, the incremental classification service noticeably
improved on standard classification from scratch.

The other meaningful experiment of incremental classification
is to simulate the evolution of SNOMED CT. The simulation
first took a subset of OSNOMED with about two hundred thousand
axioms and then classified it. After the initial classification was
finished, it repeatedly supplied 100 additional axioms from the
rest of OSNOMED and incrementally classified them against the
previously classified axioms. This process was carried out until
no more axioms were left to be incrementally classified, i.e.,
the entire ontology has eventually been considered.

The time required in each step of incremental classification
is plotted in Figure 5. Each of the early incremental classifica-
tion steps took 6 seconds or less, and it slowly increased over
the course of OSNOMED’s expansion. The median of incremental
classification time over ten seconds was only 11.46 second, the
amount of time that should arguably be tolerable to be adopted
in realistic development environment for SNOMED CT.

3) Subsumption query answering: Having implemented the
goal-directed subsumption algorithm [31], [32], CEL also
supports subsumption testing directly without the need of a
full classification. To evaluate this reasoning service, we have
sampled15 two sets of subsumptions as follows: (i) randomly
select 1 000 concept names from CN(O); (ii) for each A from
step (i), sample 5 distinct positive subsumptions O |= A v B
with B 6∈ {A,>}; (iii) for each A from step (i), sample 5
distinct negative subsumptions O 6|= A v B for some B. Given
O, the sets of sampled subsumptions obtained by steps (ii) and
(iii) are denoted by p subs(O) and n subs(O), respectively.

Subsumptions in p subs(O) and n subs(O) were queried.
The average/maximum CPU times for each subsumption query
answering in each ontology are shown in Table IV. Observe
that, on average, it took CEL only tiny fractions of a second to
answer single subsumption queries in most cases except for the
negative subsumptions in OFULLGALEN. The hardest case for the
ontology took just above eight seconds in order to decide non-
subsumption. Except for OFMA, the time differences between
querying positive subsumptions, i.e., p subs(O), and negative

15Since there are about 144 billion pairs of concept names in the case of
OSNOMED and some subsumption queries against OFULLGALEN took several
seconds, performing subsumption queries between all pairs would not be
feasible; hence, the need for sampling.

Ontology p subs(O) n subs(O)

OGO 0.016/10 0.048/50
ONCI 0.062/10 0.166/10
OFMA 0.44/10 0.48/10
ONOTGALEN 0.29/10 0.97/20
OFULLGALEN 75.43/7 900 3 477.35/8 050
OSNOMED 0.41/20 1.01/1 040

TABLE IV
AVERAGE/MAXIMUM SUBSUMPTION TESTING TIME (MILLISECOND).

Ontologies Extraction time
median average maximum total

OGO ∼0.00 0.0001 0.01 1.41
ONCI ∼0.00 0.0001 0.19 2.19
OFMA 0.10 0.0688 1.17 5 171
ONOTGALEN ∼0.00 0.0005 0.03 1.42
OFULLGALEN 0.01 0.0317 0.92 734
OSNOMED ∼0.00 0.0082 5.46 3 110

TABLE V
TIME TO EXTRACT THE REACHABILITY-BASED MODULES (SECOND).

Ontologies Module size (%)
median average maximum

OGO 19 (0.0928) 28 (0.1389) 190 (0.9284)
ONCI 12 (0.0434) 29 (0.1048) 436 (1.577)
OFMA 22 234 (29.59) 14 881 (19.80) 22 276 (29.65)
ONOTGALEN 33 (1.201) 62 (2.250) 435 (15.83)
OFULLGALEN 167 (0.7218) 3 795 (16.40) 8 553 (36.97)
OSNOMED 19 (0.0050) 31 (0.0082) 262 (0.0690)

TABLE VI
SIZE OF THE REACHABILITY-BASED MODULES (]AXIOMS AND %).

ones, i.e., n subs(O), are more than double.
4) Modularization: Two sets of experiments were carried

out to evaluate the modularization based on reachability [31].
In the first set, a module for each concept name in each
ontology was extracted (henceforth, referred to as c-module for
brevity). The reasons were that modules for single concepts
form a good indicator of the typical size of the modules
compared to the whole ontology. Moreover, modules for single
concepts are especially interesting for optimization both in
standard reasoning of classification and in axiom pinpointing
[9], [34]. The second set of experiments concerned non-atomic
signatures of varying sizes.

For each ontology O in the test suite and each concept name
A occurring in O, the reachability-based module Oreach

A was
extracted. The time required to extract each c-module and its
size were measured and are summarized in Table V and VI,
respectively. Observe that it took only a tiny amount of time to
extract a c-module based on reachability, where more than two
third of all the extractions required less than 10 milliseconds.
However, extracting a large number of c-modules (i.e., as many
as the number of concept names) required considerably more
time and even longer than classification in some cases.

Except for OFMA and OFULLGALEN, all ontologies have rela-
tively very small c-modules, i.e., in the range below 450 ax-
ioms. The exceptional ontologies have idiosyncratic structures,
namely two distinct groups of c-modules, that were revealed by
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Fig. 6. Relative frequency of small c-modules.

reachability-based modularization. In OFULLGALEN, just above
half of all c-modules (i.e., 12 119) are of size less than 460
axioms, while the rest (i.e., 11 017) are of size between 7 875
and 8 553 axioms. Similarly, 24 867 c-modules in OFMA are of
size less than 33 axioms, and the rest of size between 22 235
and 22 276 axioms. Surprisingly, there is no c-module of size
between those of these two groups. This disrupt distribution
can be seen as an indicator of the presence of big cyclic
dependencies in the ontologies.

The distribution of sizes of small c-modules in all ontologies
is depicted in Figure 6.16 The depicted distribution is natural
in the sense that there are a large number of smaller c-modules
and a small number of larger ones. This pattern is most vividly
visible in the case of OGO, ONCI and OSNOMED, where about
50% of c-modules are of size 20 or less and about 95% of
c-modules are of size 100 or less. A similar pattern can also
be seen in the case of the two GALEN ontologies.

To simulate ontology reuse scenario, where a part of a well-
established ontology relevant to the signature of interest is
imported, we have designed and performed another set of
experiments. In these experiments, signatures of varying sizes
from 10 to 1 000 (at 10-symbol intervals) were randomly
generated from the signature of each test ontology. For each
ontology O and each generated signature S ⊆ Sig(O), the
reachability-based module Oreach

S
for S in O was extracted.

The size of the reachability-based module is plotted against the
size of the signature in Figure 7. Observe that the growth trends
of OSNOMED, ONCI, OGO and ONOTGALEN appear proportional to
the average size of c-module in the respective ontology (c.f.
Table VI). The modules in OFULLGALEN and OFMA started at
a relatively large size (i.e., about 30%) because there was a
good chance that one of the concept names in the signature
was involved in the larger cluster of c-modules.

5) Axiom pinpointing: CEL supports the reasoning service
of finding a MinA and all MinAs for a subsumption of

16For readability reasons, frequency bars for c-module size larger than 200
are trimmed off the chart. This does not affect the reading of the chart since
more than 95% of the small c-modules are included and the ignored size
values evenly disperse the trimmed area of the chart.

Fig. 7. Size of the reachability-based modules against size of the signature.

interest.17 This reasoning service was evaluated on OSNOMED.
As mentioned earlier, the faulty subsumption

σ : AmputationOfFinger vOSNOMED AmputationOfHand

holds in OSNOMED. It took CEL less than half a second to
compute a MinA for σ which turned out to be the only MinA
for the subsumption. Consisting of 6 axioms, this MinA indeed
indicates the culprit for the unintended subsumption [9].

This experiment was generalized to other subsumptions. How-
ever, considering all (positive) subsumptions was not feasible,
since there are more than five million subsumption relation-
ships that follow from OSNOMED: assuming an average extrac-
tion time of half a second, this would have required a month.
For this reason, five sets of 1 000 sampled concept names from
CN(OSNOMED) were generated, denoted by c-samples(n) with
n = {1, 2, 3, 4, 5}. For each n, the single pinpointing algorithm
(to find a MinA) was run on all subsumption relationships
A vOSNOMED B such that A ∈ c-samples(n), B 6∈ {A,>}, and
OSNOMED |= A v B. For each subsumption considered, the
time to compute the module, the module’s size, the time to
prune its axioms to obtain a MinA and the MinA’s size were
measured. The average/maximum of these experimental results
are listed in Table VII, segregated by c-samples(n).

Observe that the average time to compute a single MinA
(i.e., the sum of the time results in columns 3 and 5) was
less than a second in all samples. Though the extracted
modules were already quite small (i.e., comprising 52 axioms
on average and 165 axioms at most), the MinAs were much
smaller (i.e., 7 axioms on average and 39 at most). The average
size ratio is 13.41% as shown in the last column.

Among the same sampled subsumptions above, the ones with
more than one MinA were considered in the evaluation of the
full pinpointing algorithm (to find all MinAs and diagnoses).
Based on the experiment, there were hard cases in the samples
where more than 100 MinAs existed, and where it took up to
72 hours to compute all MinAs in each of these cases. For
this reason, the number of computed MinAs was limited in

17It implemented the modularization-based pruning algorithm and hitting
set tree algorithm which uses CEL per se as the subsumption reasoner [32].
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Fig. 8. Relative frequency of the numbers of all MinAs in OSNOMED .

Samples ]MinAs
(avg/max)

MinA size
(avg/max) µ ν µ/ν

easy 3.7 / 9 8.0 / 26 4.8 / 22 12.3 / 39 0.39
hard 10 / 10 16.4 / 45 7.0 / 30 32.5 / 63 0.22

TABLE VIII
STATISTICAL RESULTS ON THE COMPUTED MINAS FOR OSNOMED .

our experiment to 10. Therefore, the statistics shown in the
following will be divided into two groups:

• easy-samples comprising 2–9 MinAs, and
• hard-samples comprising at least 10 MinAs.

Based on all the subsumptions considered, 10 492 (56.19%)
subsumptions belong to easy-samples, and 8 181 (43.81%)
subsumptions to hard-samples.

Table VIII shows the average/maximum numbers of Mi-
nAs (]MinAs) and their size. It also presents the aver-
age/maximum numbers of common axioms in all MinAs, i.e.,
µ = |

⋂
MinAs S for σ S|, and those of all axioms in all MinAs,

i.e., ν = |
⋃

MinAs S for σ S|. The average ratio µ/ν, which
indicates the degree of commonality of the computed MinAs,
is shown in the last column of the table. The statistical results
for easy-samples are complete w.r.t. all the MinAs, whereas
those for hard-samples are partial. The relative distribution of
]MinAs below ten is shown in Figure 8. More than half of all
the considered subsumptions (51.51%) have 7 MinAs or less,
i.e., the median of ]MinAs for easy-samples and hard-samples
collectively is 7. Though little can be said about the distribution
of ]MinAs larger than 9, it is known from the test results that
about 43% have ten or more MinAs and that the largest known
]MinAs is 158. It can be observed from the table that the
MinA size is larger when there are more MinAs, i.e., a MinA
for easy-samples is of size 8 axioms on average, whereas a
MinA for hard-samples is of size 16. Interestingly, the degree
of commonality of the axioms in all MinAs is quite high, i.e.,
µ/ν is 0.39 and 0.22 for the easy and hard cases, respectively.
This means that about one third of axioms are shared among
all the MinAs.

On average, it took 8.88 (37.88, resp.) seconds and required
178 (770, resp.) subsumption calls to compute all MinAs for
easy-samples (10 MinAs for hard-samples, resp.) Again, it
can be argued that this time is tolerable to be adopted in
realistic development environment for SNOMED CT, especially
considering the facts that the method generates MinAs one
after the other and that the first MinA becomes available in
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less than half a second.

VI. CONCLUSION

This paper investigated a number of life science ontologies
and identified their common characteristics that can mostly be
met by the lightweight DL EL+. It also presented promising
empirical results of various DL-based reasoning services using
those ontologies as benchmarks. With these investigation and
empirical results, it is possible to claim that the use of the
lightweight DL is beneficial both in terms of expressivity—
i.e., it is sufficiently expressive to formulate most biomedical
ontologies—and scalability—i.e., tractable reasoning allows to
deal with large-scale ontologies in a robust manner.

ACKNOWLEDGMENT

The author would like to thank Franz Baader and Carsten
Lutz for their valuable advice and countless discussions. This
work was partially supported by the DFG project under grant
BA1122/11-1 and the EU project TONES.

REFERENCES

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler,
J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig,
M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis,
J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and
G. Sherlock. Gene ontology: tool for the unification of biology. The
gene ontology consortium. Nature Genetics, 25(1):25–29, May 2000.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc.
of IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, 2007.

[4] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time
reasoner for life science ontologies. In Proc. IJCAR’06, volume 4130
of LNAI, pages 287–291. Springer, 2006.

[5] F. Baader. Terminological cycles in a description logic with existential
restrictions. In Proc. of the IJCAI-03, pages 325–330. Morgan Kauf-
mann, 2003.

[6] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and Enrico Franconi.
An emperical analysis of optimization techniques for terminological
representation systems or: “making kris get a move on”. Applied
Intelligence, 4(2):109–132, 1994.

[7] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in
extensions of the description logic EL useful in practice? In Proc. of
M4M-05, Berlin, Germany, 2005.
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