
Matching Trace Patterns With Regular Policies

Franz Baader1?, Andreas Bauer2, and Alwen Tiu2

1 TU Dresden, Germany, baader@inf.tu-dresden.de
2 The Australian National University, {baueran, alwen.tiu}@rsise.anu.edu.au

Abstract. We consider policies that are described by regular expres-
sions, finite automata, or formulae of linear temporal logic (LTL). Such
policies are assumed to describe situations that are problematic, and
thus should be avoided. Given a trace pattern u, i.e., a sequence of ac-
tion symbols and variables, were the variables stand for unknown (i.e.,
not observed) sequences of actions, we ask whether u potentially violates
a given policy L, i.e., whether the variables in u can be replaced by se-
quences of actions such that the resulting trace belongs to L. We also
consider the dual case where the regular policy L is supposed to describe
all the admissible situations. Here, we want to know whether u always
adheres to the given policy L, i.e., whether all instances of u belong
to L. We determine the complexity of the violation and the adherence
problem, depending on whether trace patterns are linear or not, and on
whether the policy is assumed to be fixed or not.

1 Introduction

Regular languages (defined by regular expressions, finite automata, or temporal
logics such as LTL) are frequently used in Computer Science to specify the
wanted or unwanted behaviour of a system [1, 8, 3, 4]. Such specifications are not
only employed in the design phase of the system, where one may try to verify that
every execution trace of the system respects the specification [5]. They can also
be used in the deployment phase to monitor the actual system trace and raise an
alarm if the specification is violated by the behaviour of the system [7, 2]. In many
of these applications, one actually employs ω-regular languages to describe the
infinite behaviour of a reactive system, but in our intended application domain,
considering finite sequences of actions (called traces in the following) appears to
be more appropriate.

In online trading systems, like eBay, formal policies can be used to describe
sequences of actions that indicate potentially malicious, dishonest, or fraudulent
behaviour (see, e.g., [14]). Of course, it is not always easy to define potentially
problematic behaviour without creating too many false positives. But even if
such a definition is available, detecting that the actual trace indeed violates the
given policy is non-trivial due to the fact that the administrator of an online
trading platform may not be able to observe all the relevant user actions. For
example, payments made through a third-party institution, shipments of goods,
? Supported by NICTA, Canberra Research Lab.

2 F. Baader, A. Bauer, and A. Tiu

etc., cannot be directly observed. Our approach for modelling this situation
is that we use regular languages to describe policies, but instead of traces we
consider trace patterns, i.e., traces with variables, where the variables stand for
unknown sequences of actions. More formally, assume that L is a policy (formally
defined as a regular language) describing undesirable sequences of actions.1 We
say that a given trace w violates the policy L if w ∈ L. Checking for a violation
is thus just an instance of the word problem for regular languages. If, instead
of a trace, we only have a trace pattern, then detecting violations of the policy
becomes more complicated. For example, consider the trace pattern abXaY ,
where a, b are action symbols and X, Y are variables. This trace pattern says:
all we know about the actual trace is that it starts with ab, is followed by some
trace u, which is followed by a, which is in turn followed by some trace v. Given
such a trace pattern, all traces that can be obtained from it by replacing its
variables with traces (i.e., finite sequences of actions) are possibly the actual
trace. The policy L is potentially violated if one of the traces obtained by such
a substitution of the variables by traces belongs to L. In our example, abXaY
potentially violates L = (ab)∗ since replacing X by ab and Y by b yields the trace
ababab ∈ L. The trace pattern abXaY is linear since every variable occurs at
most once in it. We can also consider non-linear trace patterns such as abXaX,
where different occurrences of the same variable must be replaced by the same
trace. The underlying idea is that, though we do not know which actions took
place in the unobserved part of the trace, we know (from some source) that the
same sequence of actions took place. It is easy to see that the policy L = (ab)∗

is not potentially violated by abXaX.
In this paper, we will show that the complexity of deciding whether a given

trace pattern potentially violates a regular policy depends on whether the trace
pattern is linear or not. For linear trace patterns, the problem is decidable in
polynomial time whereas for non-linear trace patterns the problem is PSpace-
complete. If we assume that the policy is fixed, i.e., its size (more precisely, the
size of a finite automaton or regular expression representing it) is constant, then
the problem can be solved in linear time for linear trace patterns and is NP-
complete for non-linear trace patterns. We also consider the dual case where the
regular policy L is supposed to describe all the admissible situations. Here, we
want to know whether u always adheres to the given policy L, i.e., whether all
instances of u belong to L. For the case of a fixed policy, the adherence problem
is coNP-complete for arbitrary trace patterns and linear for linear trace patterns.
If the policy is not assumed to be fixed, however, then the adherence problem
is PSpace-complete both for linear and non-linear trace patterns. Finally, we
consider the case where the policy is given by an LTL formula. If the policy
is not assumed to be fixed, then the violation and the adherence problem are
PSpace-complete both for linear and non-linear trace patterns. For the case of a
fixed policy, the violation (adherence) problem is NP-complete (coNP-complete)
for non-linear patterns and it can be solved in linear time for linear patterns.

1 Using regular languages of finite words to express policies means that we only mon-
itor safety properties [11]. For more general notions of policies, see [20].

Matching Trace Patterns With Regular Policies 3

2 Preliminaries

In the following, we consider finite alphabets Σ, whose elements are called action
symbols. A trace is a (finite) word over Σ, i.e., an element of Σ∗. A trace pattern is
an element of (Σ∪V)∗, i.e., a finite word over the extended alphabet Σ∪V, where
V is a finite set of trace variables. The trace pattern u is called linear if every
trace variable occurs at most once in u. A substitution is a mapping σ : V → Σ∗.
This mapping is extended to a mapping σ̂ : (Σ ∪ V)∗ → Σ∗ in the obvious way,
by defining σ̂(ε) = ε for the empty word ε, σ̂(a) = a for every action symbol
a ∈ Σ, σ̂(X) = σ(X) for every trace variable X ∈ V, and σ̂(uv) = σ̂(u)σ̂(v) for
every pair of non-empty trace patterns u, v. A policy is a regular language over
Σ. We assume that such a policy is given either by a regular expression or by a
(non-deterministic) finite automaton. For our complexity results, it is irrelevant
which of these representations we actually use.

Definition 1. Given a trace pattern u and a policy L, we say that u potentially
violates L (written u . L) if there is a substitution σ such that σ̂(u) ∈ L. The
violation problem is the following decision problem:
Given: A policy L and a trace pattern u.
Question: Does u . L hold or not?

If the trace pattern u in this decision problem is restricted to being linear, then
we call this the linear violation problem.

We assume that the reader is familiar with regular expressions and finite au-
tomata. Given a (non-deterministic) finite automaton A, states p, q in A, and
a word w, we write p →w

A q to say that there is a path in A from p to q with
label w. The set of labels of all paths from p to q is denoted by Lp,q. The fol-
lowing problem turns out to be closely connected to the violation problem. The
intersection emptiness problem for regular languages is the following decision
problem:
Given: Regular languages L1, . . . , Ln.
Question: Does L1 ∩ . . . ∩ Ln = ∅ hold or not?

This problem is PSpace-complete [13, 10], independent of whether the languages
are given as regular expressions, non-deterministic finite automata, or determin-
istic finite automata.

3 The linear violation problem

Assume that u is a linear trace pattern and L is a regular language. Let the trace
pattern u be of the form u = u0X1u1 . . . Xmum where ui ∈ Σ∗ (i = 0, . . . ,m)
and X1, . . . , Xm are distinct variables. Obviously, we have

u . L iff u0Σ
∗u1 . . . Σ∗um ∩ L 6= ∅.

If n is the length of u0u1 . . . um, then we can build a non-deterministic finite au-
tomaton A accepting the language u0Σ

∗u1 . . . Σ∗um that has n + 1 states. For

4 F. Baader, A. Bauer, and A. Tiu

a, b a, b

ba a

Fig. 1. A non-deterministic finite automaton accepting abΣ∗aΣ∗.

example, given the linear trace pattern abXaY from the introduction, we con-
sider the language abΣ∗aΣ∗, where Σ = {a, b}. Fig. 1 shows a non-deterministic
finite automaton with 4 states accepting this language. In addition, there is a
non-deterministic finite automaton B accepting L such that the number of states
` of B is polynomial in the size of the original representation for L.2 By con-
structing the product automaton of A and B, we obtain a non-deterministic
finite automaton accepting u0Σ

∗u1 . . . Σ∗um ∩ L with (n + 1) · ` states. Thus,
emptiness of this language can be tested in time linear in (n + 1) · `, and thus
in time polynomial in the size of the input u, L of our linear violation problem.
If the policy is assumed to be fixed, then ` is a constant, and thus emptiness of
the automaton accepting u0Σ

∗u1 . . . Σ∗um ∩ L can be tested in time linear in
the length of u.

Theorem 1. The linear violation problem can be solved in polynomial time. If
the policy is assumed to be fixed, it can even be solved in time linear in the length
of the input trace pattern.

4 The general violation problem

Allowing also the use of non-linear patterns increases the complexity.

Theorem 2. The violation problem is PSpace-complete.

Proof. PSpace-hardness can be shown by a reduction of the intersection empti-
ness problem for regular languages. Given regular languages L1, . . . , Ln, we con-
struct the trace pattern un := #X#X . . . #X# of length 2n + 1 and the pol-
icy L(L1, . . . , Ln) := #L1#L2 . . .#Ln#. Here X is a variable and # is a new
action symbol not occurring in any of the words belonging to one of the lan-
guages L1, . . . , Ln. Obviously, both un and (a representation of) L(L1, . . . , Ln)
can be constructed in time polynomial in the size of (the representation of)
L1, . . . , Ln. To be more precise regarding the representation issue, if we want to
show PSpace-hardness for the case where the policy is given by a regular expres-
sion (a non-deterministic finite automaton, a deterministic finite automaton),

2 In fact, it is well-known that, given a regular expression r for L, one can construct a
non-deterministic finite automaton accepting L in time polynomial in the size of r.

Matching Trace Patterns With Regular Policies 5

then we assume that the regular languages L1, . . . , Ln are given by the same
kind of representation. It is easy to see that the following equivalence holds:

L1 ∩ . . . ∩ Ln 6= ∅ iff un . L(L1, . . . , Ln).

Thus, we have shown that the intersection emptiness problem for regular lan-
guages can be reduced in polynomial time to the violation problem. Since the
intersection emptiness problem is PSpace-complete [13] (independent of whether
the regular languages are given as regular expressions, non-deterministic finite
automata, or deterministic finite automata), this shows that the violation prob-
lem is PSpace-hard (again independent of the chosen representation).

To show membership of the violation problem in PSpace, consider the viola-
tion problem for the trace pattern u and the policy L. Let n be the length of u
and A a non-deterministic finite automaton accepting L. For i ∈ {1, . . . , n}, we
denote the symbol in Σ ∪ V occurring at position i in u with ui, and for every
variable X occurring in u, we denote the set of positions in u at which X occurs
with PX , i.e., PX = {i | 1 ≤ i ≤ n ∧ ui = X}.

It is easy to see that u . L iff there is a sequence q0, . . . , qn of states of A
such that the following conditions are satisfied:

1. q0 is an initial state and qn is a final state;
2. for every i ∈ {1, . . . , n}, if ui ∈ Σ, then qi−1 →ui

A qi;
3. for every variable X occurring in u, we have

⋂
i∈PX

Lqi−1,qi 6= ∅.3

Based on this characterisation of “u . L” we can obtain a PSpace deci-
sion procedure for the violation problem as follows. This procedure is non-
deterministic, which is not a problem since NPSpace = PSpace by Savitch’s
theorem [19]. It guesses a sequence q0, . . . , qn of states of A, and then checks
whether this sequence satisfies the Conditions 1–3 from above. Obviously, the
first two conditions can be checked in polynomial time, and the third condition
can be checked within PSpace since the intersection emptiness problem for reg-
ular languages is PSpace-complete [13]. ut

Alternatively, we could have shown membership in PSpace by reducing it to the
known PSpace-complete problem of solvability of word equations with regular
constraints [21, 17]. Due to limited space and the fact that the algorithm for
testing solvability of word equations with regular constraints described in [17] is
rather complicated and “impractical,” we do not describe this reduction here.

Let us now consider the complexity of the violation problem for the case
where the policy is assumed to be fixed. In this case, the NPSpace algorithm
described in the proof of Theorem 2 actually becomes an NP algorithm. In fact,
guessing the sequence of states q0, . . . , qn can be realized using polynomially
many binary choices (i.e., with an NP algorithm), testing Conditions 1 and 2
is clearly polynomial, and testing Condition 3 becomes polynomial since the
size of A, and thus of non-deterministic finite automata accepting the languages
Lqi−1,qi , is constant.
3 Recall that Lp,q denotes the set of words labeling paths in A from p to q.

6 F. Baader, A. Bauer, and A. Tiu

Theorem 3. If the policy is assumed to be fixed, then the violation problem is
in NP.

The matching NP-hardness result of course depends on the fixed policy. For
example, if L = Σ∗, then we have u . L for all trace patterns u, and thus the
violation problem for this fixed policy can be solved in constant time. However,
we can show that there are policies for which the problem is NP-hard. Given a
fixed policy L, the violation problem for L is the following decision problem
Given: A trace pattern u.
Question: Does u . L hold or not?

Theorem 4. There exists a fixed policy such that the violation problem for this
policy is NP-hard.

Proof. To show NP-hardness, we use a reduction from the well-known NP-
complete problem 3SAT [10]. Let C = c1 ∧ . . . ∧ cm be an instance of 3SAT,
and P = {p1, . . . , pn} the set of propositional variables occurring in C. Every
3-clause ci in C is of the form ci = li,1 ∨ li,2 ∨ li,3, where the li,j are literals, i.e.,
propositional variables or negated propositional variables. In the correspond-
ing violation problem, we use the elements of V := {Pi | pi ∈ P} as trace
variables, and as alphabet we take Σ := {#,¬,∨,∧,>,⊥}. The positive lit-
eral pi is encoded as the trace pattern #Pi# and the negative literal ¬pi as
¬#Pi#. For a given literal l, we denote its encoding as a trace pattern by ι(l).
3-Clauses are encoded as “disjunctions” of the encodings of their literals, i.e.,
ci = li,1∨ li,2∨ li,3 is encoded as ι(ci) = ι(li,1)∨ι(li,2)∨ι(li,3), and 3SAT-problems
are encoded as “conjunctions” of their 3-clauses, i.e., if C = c1 ∧ . . . ∧ cm, then
ι(C) = ι(c1)∧ . . .∧ι(cm).

Our fixed policy describes all situations that can make a 3-clause true. To be
more precise, consider ι(c) = ι(l1)∨ι(l2)∨ι(l3) for a 3-clause c = l1 ∨ l2 ∨ l3. If
we replace the trace variables in c by either > or ⊥, then we get a trace of the
form w1∨w2∨w3 where each wi belongs to the set

K := {#>#, #⊥#, ¬#>#, ¬#⊥#}.

Intuitively, replacing the trace variable Pi by > (⊥) corresponds to replacing
the propositional variable pi by true (false). Thus, a substitution σ that replaces
trace variables by > or ⊥ corresponds to a propositional valuation vσ. The
valuation vσ makes the 3-clause c true iff σ̂(ι(c)) = w1∨w2∨w3 is such that
there is an i, 1 ≤ i ≤ 3, with wi ∈ {#>#,¬#⊥#}. For this reason, we define

T := {w1∨w2∨w3 | {w1, w2, w3} ⊆ K and there is an i, 1 ≤ i ≤ 3, with
wi ∈ {#>#,¬#⊥#}}.

To make a conjunction of 3-clauses true, we must make every conjunct true.
Consequently, we define our fixed policy L as L3SAT := (T∧)∗T. Since T is
a finite language, L3SAT is obviously a regular language. NP-hardness of the
violation problem for L3SAT is an immediate consequence of the (easy to prove)
fact that C is satisfiable iff ι(C) . L3SAT . ut

Matching Trace Patterns With Regular Policies 7

5 The adherence problem

Instead of using regular languages to describe traces that are viewed as being
problematic, one could assume that a regular policy L describes all the admissible
situations. In this case, we want to know whether u always adheres L.

Definition 2. Given a trace pattern u and a policy L, we say that u always
adheres to L (written u |= L) if σ̂(u) ∈ L holds for all substitutions σ. The
adherence problem is the following decision problem:
Given: A policy L and a trace pattern u.
Question: Does u |= L hold or not?
If the trace pattern u in this decision problem is restricted to being linear, then
we call this the linear adherence problem.

Obviously, we have u |= L iff not u . Σ∗ \L, which shows that the adherence
problem and the complement of the violation problem can be reduced to each
other. If the policy L is assumed to be fixed, then these reductions are linear in
the length of u. Thus, we obtain the following corollary to our Theorems 1, 3,
and 4.

Corollary 1. Assume that the policy is fixed. Then, the linear adherence prob-
lem can be solved in time linear in the length of the input trace pattern. In
addition, the general adherence problem is in coNP, and there exists a policy
such that the general adherence problem for this policy is coNP-hard.

Another case for which the above reductions are linear is if the policy is
given by a deterministic finite automaton. Thus, our Theorems 1 and 2 yield the
following corollary.

Corollary 2. Assume that the policy is given by a deterministic finite automa-
ton. Then, the linear adherence problem can be solved in polynomial time, and
the general adherence problem is PSpace-complete.

If the policy is neither fixed nor given by a deterministic finite automaton,
then the reductions between the adherence problem and the complement of the
violation problem are not polynomial since they involve the (potentially expo-
nential) construction of the complement automaton for a non-deterministic finite
automaton. In fact, in this case there cannot be a polynomial time reduction be-
tween the two problems since the adherence problem is intractable even for linear
trace patterns, for which the violation problem is tractable.

Lemma 1. The linear adherence problem is PSpace-hard if the policy is given
by a non-deterministic finite automaton or a regular expression.

Proof. Consider the linear trace pattern X and an arbitrary regular language
L over the alphabet Σ. Obviously, we have X |= L iff L = Σ∗. The problem
of deciding whether a regular language (given by a regular expression or a non-
deterministic finite automaton) is the universal language Σ∗ or not is PSpace-
complete [10]. Consequently, the adherence problem is PSpace-hard even for
linear trace patterns. ut

8 F. Baader, A. Bauer, and A. Tiu

Obviously, this PSpace lower bound then also holds for the general adherence
problem. Next, we show that a matching PSpace upper bound holds for the
general adherence problem, and thus for the linear one as well.

Lemma 2. The adherence problem is in PSpace if the policy is given by a non-
deterministic finite automaton or a regular expression.

Proof. Since PSpace is a deterministic complexity class, it is sufficient to show
that the complement of the adherence problem is in PSpace. Thus, given the
trace pattern u of length n and the policy L, we want to decide whether u |= L
does not hold. As noted above, this is the same as deciding whether u . Σ∗ \L.
Basically, we will use the PSpace decision procedure for the violation problem
described in the proof of Theorem 2 to decide this problem. However, we cannot
explicitly construct the automaton for Σ∗ \ L from the one for L since the size
of this automaton might be exponential in the size of the automaton (or regular
expression) for L. Instead, we construct the relevant parts of this automaton
on-the-fly.

Let A be a non-deterministic finite automaton accepting L that has k states,
and B the deterministic automaton for Σ∗ \L constructed in the usual way from
A, i.e., the states of B are all the subsets of the set of states of A, the initial
state of B is the set of initial states of A, the final states of B are the sets not
containing any final state of A, and P →a

B Q iff Q = {q | ∃p ∈ P : p →a
A q}.

Although the size of B is exponential in the size of A, every single state of B
can be represented using linear space. Also, deciding whether a given state of B
is the initial state or a final state requires only polynomial space, and the same
is true for constructing, for a given state P of B and a ∈ Σ, the unique state Q
such that P →a

B Q.
For i ∈ {1, . . . , n}, we again denote the symbol in Σ∪V occurring at position

i in u with ui, and for every variable X occurring in u, we denote the set of
positions in u at which X occurs with PX , i.e., PX = {i | 1 ≤ i ≤ n ∧ ui = X}.
Then u . Σ∗ \ L iff there is a sequence Q0, . . . , Qn of states of B such that the
following conditions are satisfied:

1. Q0 is the initial state and Qn is a final state of B;
2. for every i ∈ {1, . . . , n}, if ui ∈ Σ, then Qi−1 →ui

B Qi;
3. for every variable X occurring in u, we have

⋂
i∈PX

LQi−1,Qi
6= ∅.

Obviously, this characterisation yields the desired PSpace decision procedure
for u . Σ∗ \ L if we can show that, for each variable X, the non-emptiness of⋂

i∈PX
LQi−1,Qi

can be decided by an NPSpace procedure.
Let PX = {i1, . . . , im}, and Ij := Qij−1, Fj := Qij

for j = 1, . . . ,m. Note
that m ≤ n where n is the length of the pattern u. To check

⋂
1≤j≤m LIj ,Fj

6= ∅,
we proceed as follows.

1. Start with the m-tuple (T1, . . . , Tm) where Tj := Ij for j = 1, . . . ,m.
2. Check whether (T1, . . . , Tm) = (F1, . . . , Fm). If this is the case, then termi-

nate successfully, i.e., with the result that the intersection
⋂

1≤j≤m LIj ,Fj
is

non-empty. Otherwise, continue with 3.

Matching Trace Patterns With Regular Policies 9

3. Guess a letter a ∈ Σ, and replace (T1, . . . , Tm) by the corresponding tuple of
successor states in B, i.e., make the assignment Tj := {q | ∃p ∈ Tj : p →a

A q}.
Continue with 2.

Obviously, if this procedure terminates successfully, then
⋂

1≤j≤m LIj ,Fj
is indeed

non-empty. In addition, if the intersection is non-empty, then there is a way
of guessing letters such that the procedure terminates successfully. However,
as described until now, the procedure does not terminate if the intersection is
empty. It is, however, easy to see that it is enough to guess a sequence of letters
of length at most 2k·m, which is the number of different tuples (T1, . . . , Tm) to be
encountered during a run of the procedure.4 In fact, if a tuple is reached more
than once in a run of our procedure, then we can cut out this cycle to get a
shorter run that achieves the same. Consequently, one can stop each run after
2k·m iterations. This can be realized using a binary counter that requires k ·m
bits, i.e., space polynomial in the size of the input. ut

The following theorem is an immediate consequence of the two lemmas that
we have just shown.

Theorem 5. Both the general and the linear adherence problem are PSpace-
complete if the policy is given by a non-deterministic finite automaton or a reg-
ular expression.

6 Policies defined by LTL formulae

In many applications, linear temporal logic (LTL) [18] is used to specify the
(wanted or unwanted) behaviour of a system [15]. LTL is usually interpreted in
temporal structures with infinitely many time points, but variants where tempo-
ral structures are finite sequences of time points have also been considered in the
literature [6, 9]. Here, we consider the setting employed in [6], where an LTL for-
mula ϕ defines a regular language of finite words, which we denote by Lϕ in the
following. It is well-known that not all regular languages can be defined by LTL
formulae: the class of languages definable by LTL formulae is precisely the class
of star-free languages, which is a strict subclass of the class of all regular lan-
guages [6]. Given an LTL formula ϕ, one can construct a finite non-deterministic
automaton Aϕ that accepts Lϕ (by adapting the Vardi-Wolper construction [23]
to the finite case). Although the size of this automaton is exponential in the size
of ϕ, it satisfies properties similar to the ones mentioned for the automaton B in
the proof of Lemma 2: every single state of Aϕ can be represented using linear
space, deciding whether a given state of Aϕ is an initial state or a final state
requires only polynomial space, and the same is true for guessing, for a given
state p of Aϕ and a ∈ Σ, a state q such that p →a

Aϕ
q. We will also use that,

just as in the infinite case, the satisfiability problem for LTL over finite temporal

4 Recall that k is the number of states of A, and m ≤ n where n is the length of the
input pattern u.

10 F. Baader, A. Bauer, and A. Tiu

structures (i.e., for a given LTL formula ϕ, decide whether Lϕ is empty or not)
is PSpace-complete (this can be shown by a proof identical to the one in [22] for
the infinite case).

In this section, we consider the complexity of the violation (adherence) prob-
lem for the case where the policy Lϕ is given by an LTL formula ϕ. First, note
that the adherence and the violation problem can be reduced to each other in
linear time since LTL allows for negation:

u . Lϕ iff u 6|= L¬ϕ and u |= Lϕ iff u 6. L¬ϕ.

Theorem 6. Both the general and the linear violation (adherence) problem are
PSpace-complete if the policy is given by an LTL formula.

Proof. It is sufficient to show PSpace-completeness for the violation problem.
PSpace-hardness of the violation problem can be shown by a reduction of the

satisfiability problem: the LTL formula ϕ is satisfiable iff X . Lϕ.
Membership in PSpace can be shown just as in the proof of Lemma 2. We

apply the PSpace decision procedure described in the proof of Theorem 2 to the
automaton Aϕ, but without constructing this automaton explicitly. Instead, its
relevant parts are constructed on the fly. Again, the main fact to be shown is
that the induced intersection emptiness problems for the variable can be decided
within PSpace. This can be done just as in the proof of Lemma 2. The only
difference is that the automaton Aϕ is non-deterministic whereas the automaton
B considered in the proof of Lemma 2 was deterministic. However, this just means
that, instead of constructing the unique tuple of successors states in Step 3, we
guess such a successor tuple. ut

Let us now consider the case where the policy (i.e., the LTL formula) is
assumed to be fixed. This means that the size of the automaton Aϕ is a constant.
For the case of linear patterns, we can then decide the violation problem (and
thus also the adherence problem) in linear time (see the proof of the second part
of Theorem 1).

Theorem 7. Assume that the policy is fixed and given by an LTL formula.
Then, the linear violation problem and the linear adherence problem can be solved
in time linear in the length of the input trace pattern.

For non-linear trace patterns, the violation problem for fixed LTL policies
has the same complexity as in the case of fixed regular policies. The results
for the adherence problem then follow from the above reductions between the
violation problem and the (complement of the) adherence problem. The proof
of the following theorem is identical to the one of Theorem 3.

Theorem 8. Assume that the policy is fixed and given by an LTL formula. Then
the violation problem is in NP and the adherence problem is in coNP.

In order to show NP-hardness of the violation problem for a fixed policy
ϕ (which then implies coNP-hardness of the adherence problem for the fixed

Matching Trace Patterns With Regular Policies 11

policy ¬ϕ), it is enough to show that the fixed policy (T∧)∗T used in the proof
of Theorem 4 is star-free [6]. Since the star-free languages are closed under
complement, it is enough to show that the complement of this language is star-
free. By definition, finite languages (and thus also T) are star-free. In addition,
star-free languages are closed under all Boolean operations and concatenation.
It is also well-known (and easy to see) that Σ∗ as well as (Σ \ {a})∗ for any
a ∈ Σ are star-free [16]. The language Σ∗ \ (T∧)∗T is the union of the following
star-free languages:

– all words not containing ∧ and not belonging to T : (Σ∗ \ T) ∩ (Σ \ {∧})∗.
– all words not starting with an element of T before the first ∧: ((Σ∗ \ T) ∩

(Σ \ {∧})∗)∧Σ∗.
– all words not having a word of T between two consecutive occurrences of ∧:

Σ∗∧((Σ∗ \ T) ∩ (Σ \ {∧})∗)∧Σ∗.
– all words not ending with an element of T after the last ∧: Σ∗∧((Σ∗ \ T) ∩

(Σ \ {∧})∗).

This shows that (T∧)∗T is star-free and thus can be expressed by an LTL formula
ϕ. Thus, the proof of Theorem 4 yields the following results.

Theorem 9. There exists a fixed policy given by an LTL formula such that the
violation problem (adherence problem) for this policy is NP-hard (coNP-hard).

7 Future work

One of the main tasks to be addressed in our future work is to investigate
which kinds of unwanted behaviour in online trading systems one can formally
describe using regular languages and LTL formulae. We also intend to consider
the problem of debugging policies as another application for our approach of
matching trace patterns with regular policies. The violation and the adherence
problem can be viewed as instances of the policy querying problem, which has
been introduced in [12] as a tool for the analysis of access control policies. The
main idea is that, while it may be quite hard for inexperienced users to correctly
define a policy using a regular expression or an LTL formula, it should be easier
to describe, using trace patterns, types of traces they want to allow or disallow.
Checking for violation/adherence can then be used to find potential errors in the
definition of the policy.

References

1. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The
ForSpec temporal logic: A new temporal property-specification language. In Proc.
TACAS’02, Springer LNCS 2280, 2002.

2. A. Bauer, M. Leucker, and Ch. Schallhart. Monitoring of real-time properties. In
Proc. FSTTCS’06, Springer LNCS 4337, 2006.

12 F. Baader, A. Bauer, and A. Tiu

3. A. Bauer, M. Leucker, and J. Streit. SALT—Structured Assertion Language for
Temporal logic. In Proc. ICFEM’06, Springer LNCS 4260, 2006.

4. S. Ben-David, D. Fisman, and S. Ruah. Embedding finite automata within regular
expressions. Theoretical Computer Science, 404:202–218, 2008.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

6. J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logic. J.
Comput. System Sci, 46:271–294, 1993.

7. S. Colin and L. Mariani. Run-time verification. In Model-Based Testing of Reactive
Systems, Springer LNCS 3472, 2004.

8. C. Eisner and D. Fisman. A Practical Introduction to PSL (Series on Integrated
Circuits and Systems). Springer, 2006.

9. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. van Campenhout.
Reasoning with temporal logic on truncated paths, In Proc. CAV’03, Springer
LNCS 2725, 2003.

10. M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to
NP-completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979.

11. K. Havelund and G. Rosu. Synthesizing monitors for safety properties, In Proc.
TACAS’02. Springer LNCS 2280, 2002.

12. C. Kirchner, H. Kirchner, and A. Santana de Oliveira. Analysis of rewrite-based ac-
cess control policies. In Proc. 3rd International Workshop on Security and Rewrit-
ing Techniques, 2008.

13. D. Kozen. Lower bounds for natural proof systems. In Proc. FOCS’77. IEEE
Computer Society, 1977.

14. K. Krukow, M. Nielsen, and V. Sassone. A framework for concrete reputation-
systems with applications to history-based access control. In Proc. ACM Confer-
ence on Computer and Communications Security. ACM, 2005.

15. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, 1992.

16. D. Perrin. Finite Automata. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B. Elsevier, Amsterdam, 1990.

17. W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In
Proc. FOCS’99. IEEE Computer Society, 1999.

18. A. Pnueli. The temporal logic of programs. In Proc. FOCS’77. IEEE Computer
Society, 1977.

19. W. J. Savitch. Relationship between nondeterministic and deterministic tape com-
plexities. J. of Computer and System Sciences, 4:177–192, 1970.

20. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000.

21. K. U. Schulz. Makanin’s algorithm for word equations - two improvements and a
generalization. In Proc. IWWERT’90, Springer LNCS 572, 1990.

22. A. Prasad Sistla and E. C. Clarke. The complexity of propositional linear temporal
logic. J. of the ACM, 32(3):733–749, 1985.

23. M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. In Proc. STOC’84, 1984.

