
A Generic Approach for Large-Scale OntologicalReasoning in the Presence of Access Restrictionsto the Ontology's AxiomsFranz Baader1, Martin Knechtel2, and Rafael Peñaloza1

1 Theoretical Computer Science TU Dresden, Germany{baader,penaloza}@tcs.inf.tu-dresden.de
2 SAP AG, SAP Research CEC Dresden, Germanymartin.knechtel@sap.comAbstract. The framework developed in this paper can deal with sce-narios where selected sub-ontologies of a large ontology are o�ered asviews to users, based on criteria like the user's access right, the trustlevel required by the application, or the level of detail requested by theuser. Instead of materializing a large number of di�erent sub-ontologies,we propose to keep just one ontology, but equip each axiom with a la-bel from an appropriate labeling lattice. The access right, required trustlevel, etc. is then also represented by a label (called user label) from thislattice, and the corresponding sub-ontology is determined by compar-ing this label with the axiom labels. For large-scale ontologies, certainconsequence (like the concept hierarchy) are often precomputed. Insteadof precomputing these consequences for every possible sub-ontology, ourapproach computes just one label for each consequence such that a com-parison of the user label with the consequence label determines whetherthe consequence follows from the corresponding sub-ontology or not.In this paper we determine under which restrictions on the user andaxiom labels such consequence labels (called boundaries) always exist,describe di�erent black-box approaches for computing boundaries, andpresent �rst experimental results that compare the e�ciency of theseapproaches on large real-world ontologies. Black-box means that, ratherthan requiring modi�cations of existing reasoning procedures, these ap-proaches can use such procedures directly as sub-procedures, which al-lows us to employ existing highly-optimized reasoners.1 IntroductionAssume that you have a large ontology T , but you want to o�er di�erent usersdi�erent views on this ontology, i.e., each user can see only a subset of the actualontology, which is selected by an appropriate criterion. This criterion could be theaccess right that this user has, the level of trust (in the axioms of the ontology)that the user requires, the level of details that is deemed to be appropriate forthis user, etc. In principle, you could explicitly create a sub-ontology for each(type of) user, but then you might end up with exponentially many di�erent

ontologies, where each is a subset of T . Instead, we propose to keep just thebig ontology T , but label the axioms in T such that a comparison of the axiomlabel with the user criterion determines whether the axiom belongs to the sub-ontology for this user or not. To be more precise, we use a labeling lattice (L,≤),i.e., a set of labels L together with a partial order ≤ on these labels such that a�nite set of labels always has a join (supremum, least upper bound) and a meet(in�mum, greatest lower bound) w.r.t. ≤.3. All axioms t ∈ T are now assumedto have a label lab(t) ∈ L, and the user also receives a label ` ∈ L (which can beread as access right, required level of trust, etc.). The sub-ontology that a userwith label ` can see is then de�ned to be4
T` := {t ∈ T | lab(t) ≥ `}.Of course, the user of an ontology should not only be able to see its axioms, butalso the consequences of these axioms. Thus, a user with label ` should be ableto see all the consequences of T`. For large ontologies, certain relevant conse-quences are often pre-computed. The goal of the pre-computation is that certainuser queries can be answered by a simple look-up in the pre-computed conse-quences, and thus do not require expensive reasoning during the deploymentphase of the ontology. For example, in the version of the large medical ontologySNOMED CT5 that is distributed to hospitals, all the subsumption relationshipsbetween the concept names occurring in the ontology are pre-computed. For a la-beled ontology as introduced above, it is not enough to pre-compute the relevantconsequences of T . In fact, if the relevant consequence α follows from T , thenwe also need to know for which user labels ` it still follows from T`. Otherwise, ifa user with label ` asks whether α holds, the system could not simply look thisup in the pre-computed consequences, but would need to compute the answeron-the-�y by reasoning over the sub-ontology T`. Our solution to this problemis to compute a so-called boundary for the consequence α, i.e., an element µα of

L such that α follows from T` i� ` ≤ µα.There are basically two approaches for computing a boundary. The glass-box approach takes a speci�c reasoner (or reasoning technique) for an ontologylanguage (e.g., a tableau-based reasoner for OWL DL [20]) and modi�es it suchthat it can compute a boundary. Examples for the application of the glass-box approach to speci�c instances of the problem of computing a boundary aretableau-based approaches for reasoning in possibilistic Description Logics [15,13] (where the lattice is the interval [0, 1] with the usual order) and glass-boxapproaches to axiom pinpointing in Description Logics [19, 14, 12, 3, 4] (wherethe lattice consists of (equivalence classes of) monotone Boolean formulae withimplication as order [4]). The problem with glass-box approaches is that they3 Figure 1 in Section 3 shows a small lattice. A detailed introduction to lattices andorders can, e.g., be found in [9].4 To de�ne this sub-ontology, an arbitrary partial order would be su�cient. However,the existence of suprema and in�ma will be important for the computation of aboundary of a consequence (see below).5 http://www.ihtsdo.org/snomed-ct/

have to be developed for every ontology language and reasoning technique anewand that optimizations of the original reasoning technique do not always applyto the modi�ed reasoners. In contrast, the black-box approach can re-use existingoptimized reasoners without modi�cations, and it can be applied to arbitraryontology languages: one just needs to plug in a reasoner for this language.In this paper, we introduce three di�erent black-box approaches for com-puting a boundary, and compare their performance on real-world ontologies.The �rst approach uses an axiom pinpointing algorithm as black-box reasoner,whereas the second one modi�es the Hitting-Set-Tree-based black-box approachto axiom pinpointing [11, 21]. The third uses binary search and can only be ap-plied if the labeling lattice is a linear order. It can be seen as a generalization ofthe black-box approach to reasoning in possibilistic Description Logics describedin [16]. All the proofs omitted in this paper can be found in [2].2 Basic De�nitions and ResultsTo stay as general as possible, we do not �x a speci�c ontology language. Wejust assume that ontologies are �nite sets of axioms such that every subset ofan ontology is again an ontology. If T ′ is a subset of the ontology T , then T ′is called a sub-ontology of T . The ontology language determines which sets ofaxioms are admissible as ontologies. For a �xed ontology language, a monotoneconsequence relation |= is a binary relation between ontologies T of this languageand consequences α such that, for every ontology T , we have that T ′ ⊆ T and
T ′ |= α imply T |= α. If T |= α, then we say that α follows from T and that
T entails α. For instance, given a Description Logic L (e.g., the DL SHIN (D)underlying OWL DL), an ontology is an L-TBox, i.e., a �nite set of generalconcept inclusion axioms (GCIs) of the form C v D for L-concept descriptions
C, D. As consequences we can, e.g., consider subsumption relationships A v Bfor concept names A, B.We consider a lattice (L,≤) and respectively denote by ⊕

`∈S ` and ⊗
`∈S `the join (least upper bound) and meet (greatest lower bound) of the �nite set

S ⊆ L. A labeled ontology with labeling lattice (L,≤) is an ontology T togetherwith a labeling function lab that assigns a label lab(t) ∈ L to every element t of
T 6 We denote with Llab the set of all labels occurring in the labeled ontology T ,i.e., Llab := {lab(t) | t ∈ T }. Every element of the labeling lattice ` ∈ L de�nesa sub-ontology T` that contains the axioms of T that are labeled with elementsgreater than or equal to `:

T` := {t ∈ T | lab(t) ≥ `}.Conversely, every sub-ontology S ⊆ T de�nes an element λS ∈ L, called the labelof S: λS :=
⊗

t∈S lab(t). The following lemma states some simple relationshipsbetween these two notions.Lemma 1. For all ` ∈ L, S ⊆ T , it holds that ` ≤ λT`
, S ⊆ TλS

and T` = TλT`
.6 An example of a labeled ontology is given in Example 2 in Section 3.

Notice that, if a consequence α follows from T` for some ` ∈ L, it must alsofollow from T`′ for every `′ ≤ `, since then T` ⊆ T`′ . A maximal element of Lthat still entails the consequence will be called a margin for this consequence.De�nition 1 (Margin). Let α be a consequence that follows from the ontology
T . The label µ ∈ L is called a (T , α)-margin if Tµ |= α, and for every ` with
µ < ` we have T` 6|= α.If T and α are clear from the context, we usually ignore the pre�x (T , α)and call µ simply a margin. The following lemma shows three basic propertiesof the set of margins that will be useful throughout this paper.Lemma 2. Let α be a consequence that follows from the ontology T . We have:1. If µ is a margin, then µ = λTµ

;2. if T` |= α, then there is a margin µ such that ` ≤ µ;3. there are at most 2|T | margins for α.If we know that µ is a margin for the consequence α, then we know whether αfollows from T` for all ` ∈ L that are comparable with µ: if ` ≤ µ, then α followsfrom T`, and if ` > µ, then α does not follow from T`. However, the fact that µ isa margin gives us no information regarding elements that are incomparable with
µ. In order to obtain a full picture of when the consequence α follows from T` foran arbitrary element of l, we can try to strengthen the notion of margin to thatof an element ν of L that accurately divides the lattice into those elements whoseassociated sub-ontology entails α and those for which this is not the case, i.e., νshould satisfy the following: for every ` ∈ L, T` |= α i� ` ≤ ν. Unfortunately, suchan element need not always exist, as demonstrated by the following example.Example 1. Consider the distributive lattice (S4,≤4) having the four elements
S4 = {0, a1, a2, 1}, where 0 and 1 are the least and greatest elements, respectively,and a1, a2 are incomparable w.r.t. ≤4. Let T be the set formed by the axioms ax1and ax2, which are labeled by a1 and a2, respectively, and let α be a consequencesuch that, for every S ⊆ T , we have S |= α i� |S| ≥ 1. It is easy to seethat there is no element ν ∈ S4 that satis�es the condition described above.Indeed, if we choose ν = 0 or ν = a1, then a2 violates the condition, as a2 6≤ ν,but Ta2

= {ax2} |= α. Accordingly, if we choose ν = a2, then a1 violates thecondition. Finally, if ν = 1 is chosen, then 1 itself violates the condition: 1 ≤ ν,but T1 = ∅ 6|= α.It is nonetheless possible to �nd an element that satis�es a restricted version ofthe condition, where we do not impose that the property must hold for everyelement of the labeling lattice, but only for those elements that are join primerelative to the labels of the axioms in the ontology.De�nition 2 (Join prime). Let (L,≤) be a lattice. Given a �nite set K ⊆ L,let K⊗ := {
⊗

`∈M ` | M ⊆ K} denote the closure of K under the meet operator.An element ` ∈ L is called join prime relative to K if, for every K ′ ⊆ K⊗,
` ≤

⊕
k∈K′ k implies that there is an k0 ∈ K ′ such that ` ≤ k0.

In Example 1, all lattice elements with the exception of 1 are join primerelative to {a1, a2}.De�nition 3 (Boundary). Let T be an ontology and α a consequence. Anelement ν ∈ L is called a (T , α)-boundary if for every element ` ∈ L that is joinprime relative to Llab it holds that ` ≤ ν i� T` |= α.As with margins, if T and α are clear from the context, we will simply callsuch a ν a boundary. In Example 1, the element 1 is a boundary. Indeed, everyjoin prime element ` relative to {a1, a2} (i.e., every element of L except for 1)is such that ` < 1 and T` |= α. From a practical point of view, our de�nition ofa boundary has the following implication: we must enforce that user labels arealways join prime relative to the set Llab of all labels occurring in the ontology.3 Computing a BoundaryIn this section, we describe three black-box approaches for computing a bound-ary. The �rst two approaches are based on Lemma 3 below, and the third one, amodi�cation of binary search, can be used if the labeling lattice is a linear order.Lemma 3. Let µ1, . . . , µn be all (T , α)-margins. Then ⊕n
i=1

µi is a boundary.By Lemma 2, a consequence always has �nitely many margins, and thusLemma 3 shows that a boundary always exists. Note, however, that a conse-quence may have boundaries di�erent from the one of Lemma 3. To identify theparticular boundary of Lemma 3, we will call it the margin-based boundary.3.1 Using Full Axiom PinpointingFrom Lemma 3 we know that the set of all margins yields su�cient informationfor computing a boundary. The question is now how to compute this set. In thissubsection, we show that all margins (and thus the margin-based boundary) canbe computed through axiom pinpointing. Axiom-pinpointing refers to the task ofcomputing MinAs [6]: minimal (w.r.t. set inclusion) sub-ontologies from whicha consequence α still follows. More formally, S ⊆ T is called a MinA for T and
α if S |= α, and S′ 6|= α for every S′ ⊂ S. The following lemma shows that everymargin can be obtained from some MinA.Lemma 4. For every margin µ for α there is a MinA S such that µ = λS .Notice that this lemma does not imply that the label of any MinA S cor-responds to a margin. However, as the consequence follows from every MinA,point 2 of Lemma 2 shows that λS ≤ µ for some margin µ. The following theoremis an immediate consequence of this fact together with Lemma 3 and Lemma 4.Theorem 1. If S1, . . . ,Sn are all MinAs for T and α, then ⊕n

i=1
λSi

is themargin-based boundary for α.

Thus, to compute a boundary, it is su�cient to compute all MinAs. Severalmethods exist for computing the set of all MinAs, either directly [19, 11, 7] orthrough a so-called pinpointing formula [6, 4, 5], which is a monotone Booleanformula encoding all the MinAs. The main advantage of using the pinpointing-based approach for computing a boundary is that one can simply use existingimplementations for computing all MinAs, such as the ones o�ered by the on-tology editor Protégé 47 and the CEL system.83.2 Label-Optimized Axiom PinpointingFrom Lemma 4 we know that every margin is of the form λS for some MinA
S. In the previous subsection we have used this fact to compute a boundary by�rst obtaining the MinAs and then computing their labels. This process can beoptimized if we directly compute the labels of the MinAs, without necessarilycomputing the actual MinAs. Additionally, not all the labels of MinAs are neces-sary, but only the maximal ones. We present here a black-box algorithm that usesthe labels of the axioms to �nd the boundary in an optimized way. Our algorithmis a variant of the Hitting-Set-Tree-based [17] method (HST approach) for axiompinpointing [11, 21]. First, we brie�y describe the HST approach for computingall MinAs, which will serve as a starting point for our modi�ed version.The HST algorithm computes one MinA at a time while building a tree thatexpresses the distinct possibilities to be explored in the search of further MinAs.It �rst computes an arbitrary MinA S0 for T , which is used to label the root ofthe tree. Then, for every axiom t in S0, a successor node is created. If T \ {t}does not entail the consequence, then this node is a dead end. Otherwise, T \{t}still entails the consequence. In this case, a MinA S1 for T \ {t} is computedand used to label the node. The MinA S1 for T \ {t} obtained this way is alsoa MinA of T , and it is guaranteed to be distinct from S0 since t /∈ S1. Then,for each axiom s in S1, a new successor is created, and treated in the same wayas the successors of the root node, i.e., it is checked whether T \ {t, s} still hasthe consequence, etc. This process obviously terminates, and the end result is atree, where each node that is not a dead end is labeled with a MinA, and everyMinA appears as the label of at least one node of the tree (see [11, 21]).An important ingredient of the HST algorithm is a procedure that computesa single MinA from an ontology. Such a procedure can, for example, be obtainedby going through the axioms of the ontology in an arbitrary order, and removingredundant axioms, i.e., ones such that the ontology obtained by removing thisaxiom from the current sub-ontology still entails the consequence (see [6] for adescription of this and of a more sophisticated logarithmic procedure). As saidbefore, in our modi�ed HST algorithm, we are now not interested in actuallycomputing a MinA, but only its label. This allows us to remove all axioms havinga �redundant� label rather than a single axiom. Algorithm 1 describes a black-box method for computing λS for some MinA S that is based on this idea. In7 http://protege.stanford.edu/8 http://code.google.com/p/cel/

Algorithm 1 Compute a minimal label set of one MinA.Procedure min-lab(T , α)Input: T : ontology; α: consequenceOutput: ML ⊆ L: minimal label set for a MinA1: if T 6|= α then2: return no MinA3: S := T4: ML := ∅5: for every k ∈ Llab do6: if ⊗
l∈ML

l 6≤ k then7: if S − k |= α then8: S := S − k9: else10: ML := (ML \ {l | k < l}) ∪ {k}11: return MLfact, the algorithm computes a minimal label set of a MinA S, a notion that willalso be useful when describing our variant of the HST algorithm.De�nition 4 (Minimal label set). Let S be a MinA for α. A set K ⊆ {lab(t) |
t ∈ S} is called a minimal label set of S if distinct elements of K are incompa-rable and λS =

⊗
`∈K `.Algorithm 1 removes all the labels that do not contribute to a minimal label set.If T is an ontology and ` ∈ L, then the expression T − ` appearing at Line 7denotes the sub-ontology T − ` := {t ∈ T | lab(t) 6= `}. If, after removing all theaxioms labeled with k, the consequence still follows, then there is a MinA noneof whose axioms is labeled with k. In particular, this MinA has a minimal labelset not containing k; thus all the axioms labeled with k can be removed in oursearch for a minimal label set. If the axioms labeled with k cannot be removed,then all MinAs of the current sub-ontology need an axiom labeled with k, andhence k is stored in the set ML. This set is used to avoid useless consequencetests: if a label is greater than or equal to ⊗

`∈ML
`, then the presence or absenceof axioms with this label will not in�uence the �nal result, which will be givenby the in�mum of ML; hence, there is no need to apply the (possibly complex)decision procedure for the consequence relation.Theorem 2. Let T and α be such that T |= α. There is a MinA S0 for α suchthat Algorithm 1 outputs a minimal label set of S0.Once the label of a MinA has been found, we can compute new MinA labelsby a successive deletion of axioms from the ontology using the HST approach.Suppose that we have computed a minimal label set M0, and that ` ∈ M0. If weremove all the axioms in the ontology labeled with `, and compute a new minimallabel set M1 of a MinA of this sub-ontology, then M1 does not contain `, andthus M0 6= M1. By iterating this procedure, we could compute all minimal labelsets, and hence the labels of all MinAs. However, since our goal is to compute

Algorithm 2 Hitting set tree (HST) algorithm for computing the boundaryProcedure hst-boundary(T , α)Input: T : ontology; α: consequenceOutput: boundary ν for α1: Global : C,H := ∅; ν2: M := min-lab(T , α)3: C := {M}4: ν :=
⊗

`∈M `5: for each label ` ∈ M do6: expand-hst(T6≤`, α, {`})7: return νProcedure expand-hst(T , α, H)Input: T : ontology; α: consequence; H : list of lattice elementsSide e�ects: modi�cations to C, H and ν1: if there exists some H ′ ∈ H such that {h ∈ H ′ | h 6≤ ν} ⊆ H or
H ′ contains a pre�x-path P with {h ∈ P | h 6≤ ν} = H then2: return (early path termination 3)3: if there exists some M ∈ C such that for all ` ∈ M, h ∈ H , ` 6≤ h and ` 6≤ ν then4: M′ := M (MinLab reuse)5: else6: M′ := min-lab(T6≤ν , α)7: if T6≤ν |= α then8: C := C ∪ {M′}9: ν :=

⊕
{ν,

⊗
`∈M′ `}10: for each label ` ∈ M′ do11: expand-hst(T6≤`, α, H ∪ {`})12: else13: H := H ∪ {H} (normal termination �)the supremum of these labels, the algorithm can be optimized by avoiding thecomputation of MinAs whose labels will have no impact on the �nal result. Basedon this we can actually do better than just removing the axioms with label `:instead, all axioms with labels ≤ ` can be removed. For an element ` ∈ L andan ontology T , T6≤` denotes the sub-ontology obtained from T by removing allaxioms whose labels are ≤ `. Now, assume that we have computed the minimallabel set M0, and that M1 6= M0 is the minimal label set of the MinA S1. Forall ` ∈ M0, if S1 is not contained in T6≤`, then S1 contains an axiom with label

≤ `. Consequently, ⊗
m∈M1

m = λS1
≤

⊗
m∈M0

m, and thus M1 need not becomputed. Algorithm 2 describes our method for computing the boundary usinga variant of the HST algorithm that is based on this idea.In the procedure hst-boundary, three global variables are declared: C and
H, initialized with ∅, and ν. The variable C stores all the minimal label setscomputed so far, while each element of H is a set of labels such that, when allthe axioms with a label less than or equal to any label from the set are removedfrom the ontology, the consequence does not follow anymore; the variable ν storesthe supremum of the labels of all the elements in C and ultimately corresponds

to the boundary that the method computes. The algorithm starts by computinga �rst minimal label set M, which is used to label the root of a tree. For eachelement of M, a branch is created by calling the procedure expand-hst.The procedure expand-hst implements the ideas of HST construction for pin-pointing [11, 21] with additional optimizations that help reduce the search spaceas well as the number of calls to min-lab. First notice that each M ∈ C is a min-imal label set, and hence the in�mum of its elements corresponds to the label ofsome MinA for α. Thus, ν is the supremum of the labels of a set of MinAs for
α. If this is not yet the boundary, then there must exist another MinA S whoselabel is not less than or equal to ν. This in particular means that no element of
S may have a label less than or equal to ν, as the label of S is the in�mum ofthe labels of the axioms in it. When searching for this new MinA we can thenexclude all axioms having a label ≤ ν, as done in Line 6 of expand-hst. Everytime we expand a node, we extend the set H , which stores the labels that havebeen removed on the path in the tree to reach the current node. If we reach nor-mal termination, it means that the consequence does not follow anymore fromthe reduced ontology. Thus, any H stored in H is such that, if all the axiomshaving a label less than or equal to an element in H are removed from T , then
α does not follow anymore. Lines 1 to 4 of expand-hst are used to reduce thenumber of calls to the subroutine min-lab and the total search space. We describethem now in more detail. The �rst optimization, early path termination, prunesthe tree once we know that no new information can be obtained from furtherexpansion. There are two conditions that trigger this optimization. The �rst onetries to decide whether T6≤ν |= α without executing the decision procedure. Assaid before, we know that for each H ′ ∈ H, if all labels less than or equal to anyin H ′ are removed, then the consequence does not follow. Hence, if the currentlist of removal labels H contains a set H ′ ∈ H we know that enough labels havebeen removed to make sure that the consequence does not follow. It is actuallyenough to test whether {h ∈ H ′ | h 6≤ ν} ⊆ H since the consequence test weneed to perform is whether T6≤ν |= α. The second condition for early path ter-mination asks for a pre�x-path P of H ′ such that P = H . If we consider H ′as a list of elements, then a pre�x-path is obtained by removing a �nal portionof this list. The idea is that, if at some point we have noticed that we haveremoved the same axioms as in a previous portion of the search, we know thatall possibilities that arise from that search have already been tested before, andhence it is unnecessary to repeat the work. Hence we can prune the tree here.The second optimization avoids a call to min-lab by reusing a previouslycomputed minimal label set. Notice that our only requirement on min-lab thatit produces a minimal label set. Hence, any minimal label set for the ontologyobtained after removing all labels less than or equal to any h ∈ H or to νwould work. The MinLab reuse optimization checks whether there is such apreviously computed minimal label set. If this is the case, it uses this set insteadof computing a new one by calling min-lab.Theorem 3. Let T and α be such that T |= α. Then Algorithm 2 computes themargin-based boundary of α.

`0

`5 `4

`3 `2

`1

Fig. 1. A lattice
n0 : {`4, `5}

n1 : {`2, `3} n4 : {`2, `3}

n2 : � n3 : � n6 : 3n5 : 3

`4 `5

`2 `3 `2 `3Fig. 2. An expansion of the HST methodA proof of this theorem can be found in [2]. Here, we just illustrate how itworks by a small example.Example 2. Consider the lattice in Figure 1, and let T be the (Description Logic)ontology consisting of the following �ve axioms:
t1 : A v P1 u Q1, t2 : P1 v P2 u Q2, t3 : P2 v B,

t4 : Q1 v P2 u Q2, t5 : Q2 v B,where each axiom ti is labeled with lab(ti) = `i. There are four MinAs for thesubsumption relation A v B w.r.t. T , namely {t1, t2, t3}, {t1, t2, t5}, {t1, t3, t4},and {t1, t4, t5}. All the elements of the labeling lattice except `1 and `3 arejoin prime relative to Llab. Figure 2 shows a possible run of the hst-boundaryalgorithm. The algorithm �rst calls the routine min-lab(T , A v B). Considerthat the for loop of min-lab is executed using the labels `1, . . . , `5 in that order.Thus, we try �rst to remove t1 labeled with `1. We see that T − `1 6|= A v B;hence t1 is not removed from T , and ML is updated to ML = {`1}. We then seethat T − `2 |= A v B, and thus t2 is removed from T . Again, T − `3 |= A v B,so t3 is removed from T . At this point, T = {t1, t4, t5}. We test then whether
T − `4 |= A v B and receive a negative answer; thus, `4 is added to ML;additionally, since `4 < `1, the latter is removed from ML. Finally, T − `5 6|=
A v B, and so we obtain ML = {`4, `5} as an output of min-lab.The minimal label set {`4, `5}, is used as the root node n0, setting the valueof ν = `4 ⊗ `5 = `0. We then create the �rst branch on the left by removing allthe axioms with a label ≤ `4, which is only t4, and computing a new minimallabel set. Assume, for the sake of the example, that min-lab returns the minimallabel set {`2, `3}, and ν is accordingly changed to `4. When we expand the treefrom this node, by removing all the axioms below `2 (left branch) or `3 (rightbranch), the subsumption relation A v B does not follow any more, and hencewe have a normal termination, adding the sets {`4, `2} and {`4, `3} to H. Wethen create the second branch from the root, by removing the elements below `5.We see that the previously computed minimal axiom set of node n1 works alsoas a minimal axiom set in this case, and hence it can be reused (MinLab reuse),

Algorithm 3 Compute a boundary by binary search.Input: T : ontology; α: consequenceOutput: ν: (T , α)-boundary1: if T 6|= α then2: return no boundary3: ` := 0lab; h := 1lab4: while l < h do5: set m, ` < m ≤ h such that δ(`,m) − δ(m,h) ≤ 1.6: if Tm |= α then7: ` := m8: else9: h := pred(m)10: return ν := `represented as an underlined set. The algorithm continues now by calling expand-hst(T6≤`2 , A v B, {`5, `2}). At this point, we detect that there is H ′ = {`4, `2}satisfying the �rst condition of early path termination (recall that ν = `4), andhence the expansion of that branch at that point. Analogously, we obtain anearly path termination on the second expansion branch of the node n4. Thealgorithm then outputs ν = `4, which can be easily veri�ed to be a boundary.3.3 Binary Search for Linear OrderingIn this subsection, we assume that the labeling lattice (L,≤) is a linear order,i.e., for any two elements `1, `2 of L we have `1 ≤ `2 or `2 ≤ `1.Lemma 5. Let T and α be such that T |= α. Then the unique boundary of α isthe maximal element µ of Llab with Tµ |= α.A direct way for computing the boundary in this restricted setting thus con-sists of testing, for every element in ` ∈ Llab, in order (either increasing ordecreasing) whether T` |= α until the desired maximal element is found. Thisprocess requires in the worst case n := |Llab| iterations. This can be improvedusing binary search, which requires a logarithmic number of steps measured in
n. Algorithm 3 describes the binary search algorithm. In the description of thealgorithm, the following abbreviations have been used: 0lab and 1lab representthe minimal and the maximal elements of Llab, respectively; for `1 ≤ `2 ∈ Llab,
δ(`1, `2) := |{`′ ∈ Llab | `1 < `′ ≤ `2}| is the distance function in Llab and for agiven ` ∈ Llab, pred(`) is the maximal element `′ ∈ Llab such that `′ < `.The variables ` and h are used to keep track of the relevant search space.At every iteration of the while loop, the boundary is between ` and h. At thebeginning these values are set to the minimum and maximum of Llab and arelater modi�ed as follows: we �rst �nd the middle element m of the search space;i.e., an element whose distance to ` di�ers by at most one from the distance to
h. We then test whether Tm |= α. If that is the case, we know that the boundarymust be larger or equal to m, and hence the lower bound ` is updated to the

value of m. Otherwise, we know that the boundary is strictly smaller than m as
m itself cannot be one; hence, the higher bound h is updated to the maximalelement of Llab that is smaller than m : pred(m). This process terminates whenthe search space has been reduced to a single point, which must be the boundary.4 Empirical Evaluation4.1 Test data and test environmentWe test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We im-plemented all approaches in Java and used Java 1.6, CEL 1.0, Pellet 2.0.0-rc5and OWL API trunk revision 1150. The boundary computation with full ax-iom pinpointing (FP in the following) uses log-extract-mina() (Alg. 2 from [7],which is identical to Alg. 8 from [21]) and the HST based hst-extract-all-minas()(Alg. 9 from [21]). The set of extracted MinAs is then used to calculate thelabel of the consequence. We break after 10 found MinAs in order to limit theruntime, so there might be non-�nal label results. The boundary computationwith label-optimized axiom pinpointing (LP in the following) with min-lab() andhst-boundary() are implementations of Alg. 1 and Alg. 2 of the present paper.The boundary computation with binary search for linear ordering (BS in thefollowing) implements Alg. 3 of the present paper.Although we focus on comparing the e�ciency of the presented algorithms,and not on practical applications of these algorithms, we have tried to use inputsthat are closely related to ones encountered in applications. The two labelinglattices (Ld,≤d) and (Ll,≤l) are similar to ones encountered in real-world appli-cations. The labeling lattice (Ld,≤d) was already introduced in Fig. 1. Latticesof this structure (where the elements correspond to hierarchically organized userroles) can be obtained from a real-world access matrix with the methodologypresented in [8]. The set of elements of Ld that are allowed to represent userroles if all elements of the lattice can be used as axiom labels are the elementsthat are join prime relative to the whole lattice, i.e., `0, `2, `4, `5. The labelinglattice (Ll,≤l) is a linear order with 6 elements Ll = Ld = {`0, . . . , `5} with
≤l := {(`n, `n+1) | `n, `n+1 ∈ Ll ∧ 0 ≤ n ≤ 5}, which could represent an order oftrust values as in [18] or dates from a revision history.We used the two ontologies OSnomed and OFunct with di�erent expressivityand types of consequences for our experiments. The Systematized Nomenclatureof Medicine, Clinical Terms (Snomed ct) is a comprehensive medical and clin-ical ontology which is built using the Description Logic (DL) EL+. Our version
OSnomed is the January/2005 release of the DL version, which contains 379,691concept names, 62 object property names, and 379,704 axioms. Since more than�ve million subsumptions are consequences of OSnomed, testing all of them wasnot feasible and we used the same sample subset as described in [7], i.e., wesampled 0.5% of all concepts in each top-level category of OSnomed. For eachsampled concept A, all positive subsumptions A vOSnomed B with A as subsumeewere considered. Overall, this yielded 27,477 positive subsumptions. Followingthe ideas of [7], we precomputed the reachability-based module for each sampled

]earlytermination]reuse]calls toextractMinA(MinLab)]MinA(]MinLab)]axioms(]labels) perMinA(MinLab) latticeoperationstime totallabelingtime
O

Snomed FP avg 81.05 9.06 26.43 2.07 5.40 0.25 143.55max 57,188.00 4,850.00 4,567.00 9.00 28.67 45.00 101,616.00stddev 874.34 82.00 90.48 1.86 3.80 0.86 1,754.03LP avg 0.01 0.00 2.76 1.03 1.73 0.35 4.29max 2.00 1.00 6.00 3.00 3.00 57.00 70.00stddev 0.13 0.02 0.59 0.16 0.56 0.98 3.62
O

Funct FP avg 43.59 29.52 26.56 4.26 3.05 0.49 3,403.56max 567.00 433.00 126.00 9.00 6.50 41.00 13,431.00stddev 92.16 64.04 30.90 2.84 1.01 2.38 3,254.25LP avg 0.09 0.02 2.80 1.33 1.40 0.76 207.32max 2.00 1.00 7.00 4.00 3.00 22.00 1,295.00stddev 0.34 0.13 0.90 0.54 0.48 1.56 87.29Table 1. Emprical results of FP and LP with lattice (Ld,≤d) on a sampled set of21,001 subsumptions from OSnomed and on a set of 307 consequences from OFunct withless than 10 MinAs (time in ms)concept A with CEL and stored these modules. This module for A was then usedas the start ontology when considering subsumptions with subsumee A.
OFunct is an OWL ontology for functional description of mechanical engi-neering solutions presented in [10]. It has 115 concept names, 47 object propertynames, 16 data property names, 545 individual names, 3,176 axioms, and theDL expressivity used in the ontology is SHOIN (D). Its 716 consequences are12 subsumption and 704 instance relationships (class assertions).To obtain labeled ontologies, axioms in both labeled ontologies received arandom label assignment of elements from Ll = Ld. As black-box subsump-tion and instance reasoner we used the reasoner Pellet since it can deal withthe expressivity of both ontologies. For the expressive DL SHOIN (D) it usesa tableau-based algorithm and for EL+ it uses an optimized classi�er for theOWL2EL pro�le, which is based on the algorithm described in [1].4.2 ResultsThe results for OSnomed and (Ld,≤d) are given in the upper part of Table 1.LP computed all labels, but since we limit FP to <10 MinAs, only 21,001 sub-sumptions have a �nal label, which is guaranteed to be equal to the boundary.The 6,476 remaining subsumptions (31%) have a non-�nal label which mightbe too low in the lattice since there might be further MinAs providing a higherlabel. The overall labeling time for all 21,001 subsumptions with FP was 50.25minutes, for LP 1.50 minutes which means that LP is about 34 times faster thanFP, but again this is only for the subset of subsumptions which were �nished byFP. An estimation for the time needed to label all of the more than 5 millionsubsumptions in OSnomed with LP would be approximately 6 hours.The �nal labels of FP and LP (i.e., the computed boundaries) were identi-cal, the non-�nal labels of FP were identical to the �nal labels of LP (i.e., theboundaries) in 6,376 of the 6,476 cases (98%), i.e., in most cases the missingMinAs would not have changed the already computed label. Table 2 providesresults for the subsumptions with more than 10 MinAs: FP took 2.5 hours on

]earlytermination]reuse]calls toextractMinA(MinLab)]MinA(]MinLab)]axioms(]labels) perMinA(MinLab) latticeoperationstime total(non-�nal)labelingtime
O

Snomed FP avg 432.11 42.25 126.54 10.20 16.38 0.30 1,378.66max 42,963.00 5,003.00 4,623.00 16.00 37.80 14.00 148,119.00stddev 1,125.06 121.15 186.33 0.49 5.00 0.54 3,493.02LP avg 0.04 0.00 3.12 1.06 2.05 0.32 8.88max 3.00 2.00 6.00 3.00 3.00 46.00 86.00stddev 0.21 0.04 0.50 0.25 0.44 1.04 4.26
O

Funct FP avg 30.01 16.00 26.44 10.04 4.41 0.56 8,214.91max 760.00 511.00 411.00 11.00 6.50 3.00 25,148.00stddev 85.33 47.79 40.61 0.20 1.08 0.55 3,428.97LP avg 0.09 0.01 2.76 1.38 1.32 0.77 200.55max 3.00 2.00 7.00 4.00 2.00 16.00 596.00stddev 0.33 0.12 0.91 0.64 0.43 1.40 61.11Table 2. Emprical results of FP and LP with lattice (Ld,≤d) on a sampled set of 6,476subsumptions from OSnomed and on a set of 409 class assertions from OFunct with atleast 10 MinAs (time in ms) LP BS
]earlytermina-tion]reuse]calls toextractMinLab]MinLab]labelsperMinLab latticeopera-tionstime totallabelingtime iterations totallabelingtime

OSnomed avg 0.03 0.00 2.24 1.03 1.23 0.37 4.75 2.41 2.81max 1.00 0.00 5.00 3.00 2.00 329.00 330.00 3.00 75.00stddev 0.18 0.00 0.45 0.19 0.42 4.85 6.37 0.49 2.94
OFunct avg 0.09 0.00 2.50 1.27 1.24 0.82 186.98 2.55 95.80max 1.00 0.00 5.00 3.00 2.00 62.00 1147.00 3.00 877.00stddev 0.28 0.00 0.72 0.49 0.40 2.74 69.55 0.50 45.44Table 3. Emprical results of LP and BS on a sampled set of 27,477 subsumptions in
OSnomed/ all 716 consequences of OFunct with lattice (Ll,≤l) (time in ms)this set without �nal results (since it stopped after 10 MinAs), whereas LP took0.6% of that time and returned �nal results after 58 seconds. We started a testseries limiting runs of FP to <30MinAs, which did not terminate after 90 hours,with 1,572 labels successfully computed and 30 subsumptions skipped since theyhad ≥30MinAs. Interestingly, in both consequence sets, LP can rarely take ad-vantage of the optimizations early termination and MinA reuse, which might bedue to the simple structure of the lattice.For OFunct the comparison between FP and LP is given in the lower partof Tables 1 and 2. Again, the computation of FP was restricted to <10 MinAs.This time, only 363 out of 409 (88%) non-�nal labels of FP were equal to the�nal labels of LP (i.e., the boundary). Although the ontology is quite small, LPagain behaves much better than FP. The reason could be that in this ontologyconsequences frequently have a large set of MinAs. From Tables 1 and 2, onecan see that LP requires at most three MinLabs for OSnomed, at most four for
OFunct, and usually just one MinLab whereas FP usually requires more MinAs.Table 3 provides results for LP vs. BS with the total order (Ll,≤l) as labelinglattice. For OSnomed, LP takes 130.4 and BS takes 77.1 seconds to label all 27,477subsumptions. For OFunct, LP takes 133.9 and BS takes 68.6 seconds to labelall 716 consequences. So BS is about twice as fast as LP. Interestingly, labelingall consequences of OFunct and OSnomed takes roughly the same time, perhapsdue to a tradeo� between ontology size and expressivity.

5 ConclusionWe have considered a scenario where ontology axioms are labeled and user la-bels determine views on the ontology, i.e., sub-ontologies that are obtained bycomparing the user label with the axiom labels. Our approach can be used forlarge-scale ontologies since, on the one hand, it allows to precompute conse-quences without having to do do this separately for all possible views: once wehave computed a boundary for the consequence, checking whether this conse-quence entailed by a sub-ontology is reduced to a simple label comparison. Onthe other hand, the fact that we employ a black-box approach for computingthe boundary allows us to use existing highly-optimzed reasoners, rather thanhaving to implement a new reasoner from scratch.Our general framework allows to use any restriction criterion that can berepresented using a lattice, such as user roles, levels of trust, granularity, ordegrees of uncertainty. In the presence of access restrictions, each user label de-�nes a sub-ontology containing the axioms visible to this user. In the presenceof trust restrictions, the user label speci�es the trust level required for the on-tology axiom. This supports scenarios with axioms from di�erent sources, likecompany-internal with high trust level and public Web with low trust level. Inthe presence of uncertainty, e.g. in possibilistic reasoning, each axiom has anassociated certainty degree in the interval [0, 1]. The user label then speci�esthe certainty degree required for the axioms and the consequences. Similarly,granularity restrictions (i.e., on how much details the ontology should providefor the user) can be expressed by a total order.Our experiments have shown that this framework can be applied to largeontologies. From the two black-box algorithms that can deal with arbitrary lat-tices, the Full Axiom Pinpointing approach is clearly outperformed by the Label-Optimized Axiom Pinpointing approach. For the special case where the labelinglattice is a total order, the latter is again outperformed by the Binary Searchapproach.References1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of 19th Int.Joint Conf. on Art. Int. IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann.2. F. Baader, M. Knechtel, and R. Peñaloza. Computing boundaries for reasoning insub-ontologies. Technical Report 09-02, LTCS, 2009. available at http://lat.inf.tu-dresden.de/research/reports.html.3. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. In Proc. of theInt. Conf. on Analytic Tableaux and Related Methods (TABLEAUX 2007), volume4548 of Lecture Notes in Arti�cial Intelligence, pages 11�27. Springer-Verlag, 2007.4. F. Baader and R. Peñaloza. Automata-based axiom pinpointing. In A. Armando,P. Baumgartner, and G. Dowek, editors, Proc. of the Int. Joint Conf. on AutomatedReasoning (IJCAR 2008), Lecture Notes in Arti�cial Intelligence, pages 226�241.Springer-Verlag, 2008.5. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal ofLogic and Computation, 2009. To appear.

6. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the descriptionlogic EL+. In Proc. of the 30th German Annual Conf. on Arti�cial Intelligence(KI'07), volume 4667 of Lecture Notes in Arti�cial Intelligence, pages 52�67, Os-nabrück, Germany, 2007. Springer-Verlag.7. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pin-pointing in the description logic EL+. In Proc. of the International Conference onRepresenting and Sharing Knowledge Using SNOMED (KR-MED'08), Phoenix,Arizona, 2008.8. F. Dau and M. Knechtel. Access policy design supported by FCA methods. InF. Dau and S. Rudolph, editors, Proc. of the 17th Int. Conf. on Conceptual Struc-tures, (ICCS 2009), 2009.9. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. CambridgeUniversity Press, second edition, 2002.10. A. Gaag, A. Kohn, and U. Lindemann. Function-based solution retrieval andsemantic search in mechanical engineering. In Proc. of the 17th Int. Conf. onEngineering Design (ICED'09), 2009. To appear.11. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justi�cations ofOWL DL entailments. In Proc. of the 6th Int. Semantic Web Conf. and 2nd AsianSemantic Web Conf., ISWC 2007 + ASWC 2007, volume 4825 of Lecture Notes inComputer Science, pages 267�280, Busan, Korea, 2007. Springer-Verlag.12. A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. Debugging unsatis�ableclasses in OWL ontologies. J. Web Sem., 3(4):268�293, 2005.13. M.-J. Lesot, O. Couchariere, B. Bouchon-Meunier, and J.-L. Rogier. Inconsistencydegree computation for possibilistic description logic: An extension of the tableaualgorithm. In Proc. of NAFIPS 2008, pages 1�6. IEEE Comp. Soc. Press, 2008.14. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satis�able termi-nologies for the description logic ALC. In Proc. of the 21st Nat. Conf. on Arti�cialIntelligence (AAAI 2006). AAAI Press/The MIT Press, 2006.15. G. Qi and J. Z. Pan. A tableau algorithm for possibilistic description logic. InJ. Domingue and C. Anutariya, editors, Proc. of the 3rd Asian Semantic WebConf. (ASWC'08), volume 5367 of Lecture Notes in Computer Science, pages 61�75. Springer-Verlag, 2008.16. G. Qi, J. Z. Pan, and Q. Ji. Extending description logics with uncertainty rea-soning in possibilistic logic. In K. Mellouli, editor, Proc. of the 9th Eur. Conf.on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-SQARU 2007), volume 4724 of Lecture Notes in Computer Science, pages 828�839.Springer-Verlag, 2007.17. R. Reiter. A theory of diagnosis from �rst principles. Arti�cial Intelligence,32(1):57�95, 1987.18. S. Schenk. On the semantics of trust and caching in the semantic web. In Int.Semantic Web Conf., pages 533�549, 2008.19. S. Schlobach and R. Cornet. Non-standard reasoning services for the debuggingof description logic terminologies. In G. Gottlob and T. Walsh, editors, Proc. ofthe 18th Int. Joint Conf. on Arti�cial Intelligence (IJCAI 2003), pages 355�362,Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.20. E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proc. of the 2004 De-scription Logic Workshop (DL 2004), pages 212�213, 2004.21. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Mainte-nance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik, TUDresden, 2009. http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008.

