
Description Logics

Franz Baader

Theoretical Computer Science, TU Dresden, Germany
baader@inf.tu-dresden.de

Abstract. Description Logics (DLs) are a well-investigated family of
logic-based knowledge representation formalisms, which can be used to
represent the conceptual knowledge of an application domain in a struc-
tured and formally well-understood way. They are employed in various
application domains, such as natural language processing, configuration,
and databases, but their most notable success so far is the adoption
of the DL-based language OWL as standard ontology language for the
semantic web.
This article concentrates on the problem of designing reasoning proce-
dures for DLs. After a short introduction and a brief overview of the
research in this area of the last 20 years, it will on the one hand present
approaches for reasoning in expressive DLs, which are the foundation for
reasoning in the Web ontology language OWL DL. On the other hand, it
will consider tractable reasoning in the more light-weight DL EL, which
is employed in bio-medical ontologies, and which is the foundation for
the OWL 2 profile OWL 2 EL.

1 Introduction

In their introduction to The Description Logic Handbook [11], Brachman and
Nardi point out that the general goal of knowledge representation (KR) is to
“develop formalisms for providing high-level descriptions of the world that can
be effectively used to build intelligent applications” [32]. This sentence states in a
compact way some of the key requirements that a KR formalism needs to satisfy.
In order to be accepted as a formalism in this sense, a knowledge representa-
tion language needs to be equipped with a well-defined syntax and a formal,
unambiguous semantics, which was not always true for early KR approaches
such as semantic networks [101] and frames [90]. A high-level description con-
centrates on the representation of those aspects relevant for the application at
hand while ignoring irrelevant details. In particular, this facilitates the use of
relatively inexpressive languages even though they may not be able to faithfully
represent the whole application domain. Intelligent applications should be able
to reason about the knowledge and infer implicit knowledge from the explicitly
represented knowledge, and thus the effective use of the knowledge depends on
the availability of practical reasoning tools.

Description logics (DLs) [11] are a family of logic-based knowledge repre-
sentation formalisms that are tailored towards representing the terminological

knowledge of an application domain in a structured and formally well-understood
way. They allow their users to define the important notions (classes, relations,
objects) of the domain using concepts, roles, and individuals; to state constraints
on the way these notions can be interpreted; and to deduce consequences such
as subclass and instance relationships from the definitions and constraints. The
name description logics is motivated by the fact that, on the one hand, classes
are described by concept descriptions, i.e., expressions that are built from atomic
concepts (unary predicates) and atomic roles (binary predicates) using the con-
cept and role constructors provided by the particular DL; on the other hand,
DLs differ from their predecessors, such as semantic networks and frames, in
that they are equipped with a formal, logic-based semantics. For example, in
a conference domain, we may have classes (concepts) like Person, Speaker, Au-
thor, Talk, Participant, PhD student, Workshop, Tutorial; relations (roles) like
gives, attends, attended by, likes; and objects (individuals) like Richard, Frank,
Paper 176. A speaker can be defined as a person that gives a talk:

Speaker ≡ Person u ∃gives.Talk,

we can say that Frank is a speaker and attends the DL tutorial using the asser-
tions:

Speaker(FRANK), attends(FRANK,DL TUTORIAL), Tutorial(DL TUTORIAL),

and state the constraints that tutorials are only attended by PhD students:

Tutorial v ∀attended by.PhD student,

and that the relation attended by is the inverse of the relation attends:

attended by ≡ attends−1.

DLs have been employed in various application domains, such as natural lan-
guage processing, configuration, databases, and biomedical ontologies, but their
most notable success so far is probably the adoption of the DL-based language
OWL1 as standard ontology language for the semantic web [69, 15]. The three
main reasons for the adoption of DLs as ontology languages are

– the availability of a formal, unambiguous semantics, which is based on the
Tarski-style semantics of first-order predicate logic, and is thus fairly easy
to describe and comprehend;

– the fact that DLs provide their users with various carefully chosen means of
expressiveness for constructing concepts and roles, for further constraining
their interpretations, and for instantiating concepts and roles with individ-
uals;

– the fact that DL systems provide their users with highly-optimized inference
procedures that allow them to deduce implicit knowledge from the explicitly
represented knowledge.

1 http://www.w3.org/TR/owl-features/

The formal semantics of DLs and typical concept and role constructors as well
as the formalism for expressing constraints will be introduced in the next section.
In the remainder of this section, we concentrate on the inference capabilities of
DL systems. The subsumption algorithm determines subconcept-superconcept
relationships: C is subsumed by D iff all instances of C are necessarily instances
of D, i.e., the first concept is always interpreted as a subset of the second concept.
For example, given the definition of Speaker from above, Speaker is obviously sub-
sumed by Person. In general, however, induced subsumption relationships may
be much harder to detect. The instance algorithm determines induced instance
relationships: the individual i is an instance of the concept description C iff i
is always interpreted as an element of C. For example, given the assertions for
Frank and the DL tutorial from above, the constraint for tutorials, and the con-
straint expressing that attends is the inverse of attended by, we can deduce that
FRANK is an instance of Phd student. The consistency algorithm determines
whether a knowledge base (consisting of a set of assertions and a set of termi-
nological axioms, i.e., concept definitions and constraints) is non-contradictory.
For example, if we added a disjointness constraint

Speaker u PhD student v ⊥

for speakers and PhD students to the conference knowledge base introduced so
far, then this knowledge base would become inconsistent since it follows from the
knowledge base that Frank is both a speaker and a PhD students, contradicting
the stated disjointness of these two concepts.

In order to ensure a reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed by
the system, and preferably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions of the application
domain can no longer be expressed. Investigating this trade-off between the
expressivity of DLs and the complexity of their inference problems has been one
of the most important issues in DL research. The research related to this issue
can be classified into the following five phases.2

Phase 1 (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [33, 88, 100, 87]. These systems em-
ployed so-called structural subsumption algorithms, which first normalize the
concept descriptions, and then recursively compare the syntactic structure of
the normalized descriptions [93]. These algorithms are usually quite efficient
(polynomial), but they have the disadvantage that they are complete only for
very inexpressive DLs, i.e., for more expressive DLs they cannot detect all the
existing subsumption/instance relationships. At the end of this phase, early for-
mal investigations into the complexity of reasoning in DLs showed that most
DLs do not have polynomial-time inference problems [30, 94]. As a reaction, the

2 Note, however, that the assigned temporal intervals are only rough estimates, and
thus should not be taken too seriously.

implementors of the Classic system (the first industrial-strength DL system)
carefully restricted the expressive power of their DL [99, 29].

Phase 2 (1990–1995) started with the introduction of a new algorithmic paradigm
into DLs, so-called tableau-based algorithms [108, 50, 66]. They work on proposi-
tionally closed DLs (i.e., DLs with full Boolean operators) and are complete also
for expressive DLs. To decide the consistency of a knowledge base, a tableau-
based algorithm tries to construct a model of it by breaking down the concepts in
the knowledge base, thus inferring new constraints on the elements of this model.
The algorithm either stops because all attempts to build a model failed with ob-
vious contradictions, or it stops with a “canonical” model. Since in proposition-
ally closed DLs, subsumption and satisfiability can be reduced to consistency,
a consistency algorithm can solve all inference problems mentioned above. The
first systems employing such algorithms (Kris and Crack) demonstrated that
optimized implementations of these algorithm lead to an acceptable behavior
of the system, even though the worst-case complexity of the corresponding rea-
soning problems is no longer in polynomial time [14, 35]. This phase also saw a
thorough analysis of the complexity of reasoning in various DLs [50, 51, 49, 47].
Another important observation was that DLs are very closely related to modal
logics [103].

Phase 3 (1995–2000) is characterized by the development of inference procedures
for very expressive DLs, either based on the tableau-approach [70, 71] or on a
translation into modal logics [44, 45, 43, 46]. Highly optimized systems (FaCT,
Race, and Dlp [67, 61, 98]) showed that tableau-based algorithms for expres-
sive DLs lead to a good practical behavior of the system even on (some) large
knowledge bases. In this phase, the relationship to modal logics [44, 104] and
to decidable fragments of first-order logic was also studied in more detail [28,
96, 59, 57, 58, 75], and applications in databases (like schema reasoning, query
optimization, and integration of databases) were investigated [36, 40, 42].

During Phase 4 (2000–2005), industrial strength DL systems employing very
expressive DLs and tableau-based algorithms were developed [115, 62, 109], with
applications like the Semantic Web or knowledge representation and integration
in bio-informatics in mind. In this phase, the Web Ontology Language OWL,
whose sublanguages OWL DL and OWL Lite are based on expressive DLs, be-
came an official W3C recommendation,3 thus boosting the use of DLs for the
definition of ontologies. On the more foundational side, this phase saw the de-
velopment of alternative approaches for reasoning in expressive DLs, such as
resolution-based approaches [73, 74, 2, 72, 78], which use an optimized transla-
tion of DLs into first-order predicate logic and then apply appropriate first-order
resolution provers, and automata-based approaches [41, 86, 84, 114, 25, 13], which
are often more convenient for showing ExpTime complexity upper-bounds than
tableau-based approaches.

We are now in Phase 5, where on the one hand even more expressive DLs with
highly-optimized tableau-based algorithms [68] are proposed as basis for the
3 http://www.w3.org/TR/owl-features/

new Web Ontology Language OWL 2.4 On the other hand, more light-weight
DLs are investigated and proposed as profiles of OWL 2,5 such as members of
the EL family [7, 8], for which the subsumption and the instance problem are
polynomial, and of the DL Lite family [38, 39], for which the instance problem
and query answering are polynomial w.r.t. data complexity. Another important
development in this phase is that inference problems other than the classical ones
(subsumption, instance, consistency) are gaining importance, such as query an-
swering (i.e., answering conjunctive queries w.r.t. DL knowledge bases) [1, 55, 85,
95], pinpointing (i.e., exhibiting the axioms responsible for a given consequence)
[105, 97, 89, 22, 24], and modularization (i.e., extracting a part of a knowledge
base that has the same consequence as the full knowledge base, for consequences
formulated using a certain restricted vocabulary) [60, 79, 110].

2 Basic definitions

As mentioned above, a key component of a DL is the description language, which
allows its users to build complex concepts (and roles) out of atomic ones. These
descriptions can then be uses in the terminological part of the knowledge base
(TBox) to introduce the terminology of an application domain, by defining con-
cepts and imposing additional (non definitional) constraints on their interpreta-
tion. In the assertional part of the knowledge base (ABox), facts about a specific
application situation can be stated, by introducing named individuals and re-
lating them to concepts and roles. Reasoning then allows us to derive implicit
knowledge from the explicitly represented one. In the following, we introduce
these four components of a DL more formally.

2.1 The basic description language ALC and some extensions

Starting with a set of concept names (atomic concepts) and role names (atomic
roles), concept descriptions are built using concept constructors. The semantics
of concept descriptions is defined using the notion of an interpretation, which
assigns sets to concepts and binary relations to roles. First, we introduce the
constructors available in the basic description language ALC,6 together with
their semantics.

Definition 1 (ALC concept descriptions). Let NC be a set of concept names
and NR a set of role names. The set of ALC concept descriptions is the smallest
set such that

– all concept names are ALC concept descriptions;

4 http://www.w3.org/TR/2009/WD-owl2-overview-20090327/
5 http://www.w3.org/TR/owl2-profiles/
6 Following the usage in the literature, we will sometimes call description languages

like ALC “Description Logics,” thereby ignoring the additional ingredients of a DL,
such as the terminological formalism.

– if C and D are ALC concept descriptions, then so are ¬C, CtD, and CuD;
– if C is an ALC concept description and r ∈ NR, then ∃r.C and ∀r.C are
ALC concept descriptions.

An interpretation is a pair I = (∆I , ·I) where the domain ∆I is a non-empty
set and ·I is a function that assigns to every concept name A a set AI ⊆ ∆I and
to every role name r a binary relation rI ⊆ ∆I ×∆I . This function is extended
to ALC concept descriptions as follows:

– (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ;
– (∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI};
– (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI}.

As usual, the Boolean constructors u,t,¬ are respectively called conjunc-
tion, disjunction, and negation. We call a concept description of the form ∃r.C
an existential restriction, and a concept description of the form ∀r.C a value
restriction. In the following, we will us > as an abbreviation for A t ¬A, where
A is an arbitrary concept name (top concept, which is always interpreted as
the whole domain), ⊥ as an abbreviation for ¬> (bottom concept, which is al-
ways interpreted as the empty set), and C ⇒ D as an abbreviation for ¬C tD
(implication).

The following are examples of ALC concept descriptions that may be of
interest in the conference domain. Assume that Participant,Talk,Boring,DL are
concept names, and attends, gives, topic are role names. The description

Participant u ∃attends.Talk

describes conference participants that attend at least on talk,

Participant u ∀attends.(Talk u ¬Boring)

describes conference participants that attend only non-boring talks, and

Speaker u ∃gives.(Talk u (Boring t ∀topic.DL))

describes speakers giving a talk that is boring or has as its only topic DL.

Relationship with first-order logic. Given the semantics of ALC concept
descriptions, it is easy to see that ALC can be viewed as a fragment of first-
order predicate logic.7 Indeed, concept names (which are interpreted as sets)
are simply unary predicates, and role names (which are interpreted as binary
relations) are simply binary predicates. For a given first-order variable x, an
ALC concept description C is translated into a formula τx(C) with free variable
x:

– τx(A) := A(x) for concept names A;
7 More information about the connection between DLs and first-order predicate logic

can be found in [28].

– τx(C uD) := τx(C) ∧ τx(D);
– τx(C tD) := τx(C) ∨ τx(D);
– τx(¬C) := ¬τx(C);
– τx(∀r.C) := ∀y.(r(x, y)→ τy(C)) where y is a variable different from x;
– τx(∃r.C) := ∃y.(r(x, y) ∧ τy(C)) where y is a variable different from x.

Regarding the semantics, any first-order interpretation I (over the signature
consisting of the concept names in NC as unary predicates and the role names
in NR as binary predicates) can be viewed as an ALC interpretation and vice
versa. Intuitively, the first-order formula τx(C) describes all domain elements
d ∈ ∆I that make τx(C) true if x is replaced by them. It is easy to see that this
set coincides with the interpretation of the concept description C, i.e.,

CI = {d ∈ ∆I | I |= τx(C)[x← d]}.

The resolution-based approaches for reasoning in DLs are based on such a trans-
lation to first-order predicate logic. It should be noted, however, that the trans-
lation sketched above does not yield arbitrary first-order formulae. Instead, we
obtain formulae belonging to known decidable fragments of first-order predicate
logic: the guarded fragment [58] and the two-variable fragment [91, 59]. Intu-
itively, the formulae of the form τx(C) belong to the guarded fragment since
every quantified variable y is guarded by a role r(x, y). Regarding membership
in the two-variable fragment, it is easy to see that it is enough to use just two
first-order variables x, y in the translation: in τx one uses y as the variable dif-
ferent from x, and in τy one uses x for this purpose.

Relationship with modal logics. There is also a close connection between
DLs and modal logics. In particular, ALC is just a syntactic variant of the
basic multimodal logic K [103], where “multimodal” means that one has several
pairs of box and diamond operators, which are indexed with the name of the
corresponding transition relation. In the following, we assume that the reader is
familiar with the basic notions of modal logics (see, e.g., [27] for more details).
Intuitively, concept names A correspond to propositional variables a and role
names r to names for transition relations r. An ALC concept description C is
translated into a modal formula θ(C) as follows:

– θ(A) := a for concept names A;
– θ(C uD) := θ(C) ∧ θ(D);
– θ(C tD) := θ(C) ∨ θ(D);
– θ(¬C) := ¬θ(C);
– θ(∀r.C) := �rθ(C));
– θ(∃r.C) := ♦rθ(C)).

Regarding the semantics, any ALC interpretation I can be viewed as a Kripke
structure KI (and vice versa): every element w of ∆I is a possible world of KI ,
the world w makes the propositional variable a true iff w ∈ AI for the concept
name A corresponding to a, and there is a transition from world w to world

w′ with the transition relation r iff (w,w′) ∈ rI . The translation function θ
preserves the semantics in the following sense: CI is the set of worlds that make
θ(C) true in KI .

The translation-based approaches that reduce reasoning in DLs to reasoning
in appropriate modal logics are based on (extensions of) this translation.

Additional constructors. ALC is only one example of a description language.
DL researchers have introduced many additional constructors and investigated
various description languages obtained by combining such constructors. Here, we
only introduce qualified number restrictions as examples for additional concept
constructors, and inverse roles as example for a role constructor (see [5] for an
extensive list of additional concept and role constructors).

Qualified number restrictions are of the form (≥n r.C) (at-least restriction)
and (≤n r.C) (at-most restriction), where n ≥ 0 is a non-negative integer, r ∈
NR is a role name, and C is a concept description. The semantics of these
additional constructors is defined as follows:

(≥n r.C)I := {d ∈ ∆I | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≥ n},
(≤n r.C)I := {d ∈ ∆I | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≤ n},

where card(X) yields the cardinality of the set X. Using qualified number re-
strictions, we can define the concept of all persons that attend at most 20 talks,
of which at least 3 have the topic DL:

Person u (≤ 20 attends.Talk) u (≥ 3 attends.(Talk u ∃topic.DL)).

The inverse role constructor applies to a role name r and yields its inverse
r−1, where the semantics is the obvious one, i.e.,

(r−1)I := {(e, d) | (d, e) ∈ rI}.

Inverse roles can be used like role names within concept descriptions. Using the
inverse of the role attends, we can define the concept of a speaker giving a boring
talk as

Speaker u ∃gives.(Talk u ∀attends−1.(Bored t Sleeping)).

In the following, we will use the notion “concept description” to refer to a
description built using the (concept and role) constructors of some description
language. Indeed, the definitions of the other three components of a DL (ter-
minological formalism, assertional formalism, reasoning) is independent of the
description language. Accordingly, we will also use the notion “role description”
to refer to a role name or a role description (such as r−1) built using the con-
structors of some description language.

2.2 Terminological knowledge

In its simplest form, a TBox introduces names (abbreviations) for complex de-
scriptions.

Woman ≡ Person u Female

Man ≡ Person u ¬Female

Talk ≡ ∃topic.>

Speaker ≡ Person u ∃gives.Talk

Participant ≡ Person u ∃attends.Talk

BusySpeaker ≡ Speaker u (≥ 3 gives.Talk)

BadSpeaker ≡ Speaker u ∀gives.(∀attends−1.(Bored t Sleeping))

Fig. 1. A TBox for the conference domain

Definition 2. A concept definition is of the form A ≡ C where A is a concept
name and C is a concept description. Given a set T of concept definitions, we
say that the concept name A directly uses the concept name B if T contains
a concept definition A ≡ C such that B occurs in C. Let uses be the transitive
closure of the relation “directly uses.” We say that T is cyclic if there is a concept
name A that uses itself, and acyclic otherwise.

A TBox is a finite set T of concept definitions that is acyclic and such that
every concept name occurs at most once on the left-hand side of a concept def-
inition in T . Given a TBox T , we call the concept name A a defined concept
if A occurs on the left-hand side of a definition in T . All other concept names
are called primitive concepts. An interpretation I is a model of the TBox T if
it satisfies all its concept definitions, i.e., AI = CI holds for all A ≡ C in T .

Fig. 1 shows a small TBox with concept definitions relevant in our example
domain. Modern DL systems allow their users to state more general constraints
for the interpretation of concepts and roles.

Definition 3. A general concept inclusion axiom (GCI) is of the form C v D
where C,D are concept descriptions. A finite set of GCIs is called a general
TBox.

An interpretation I is a model of the general TBox T if it satisfies all its
GCIs, i.e., CI ⊆ DI holds for all GCIs C v D in T .

Obviously, the concept definition A ≡ C is equivalent (in the sense that is has
the same models) to the pair of GCIs A v C,C v A, which shows that TBoxes
can be expressed using general TBoxes. Thus, we assume in the following that
the notion of a general TBox subsumes the notion of a TBox. In general, GCIs
with complex concept descriptions on their left-hand side cannot be expressed
with the help of TBoxes. Using GCIs we can, e.g., say that talks in which all

Lecturer(FRANZ), teaches(FRANZ,Tut03),

Tutorial(Tut03), topic(Tut03,ReasoningInDL), DL(ReasoningInDL)

Fig. 2. An ABox for the conference domain

attendants are sleeping are boring

Talk u ∀attends−1.Sleeping v Boring,

and that PC chairs cannot as well be authors

Author u PCchair v ⊥.

In some applications, it also makes sense to consider a generalization of
TBoxes where one only allows the use of unambiguous definitions, but dispenses
with the acyclicity requirement. Such cyclic TBoxes T are thus finite sets of
concept definitions such that every concept name occurs at most once on the
left-hand side of a concept definition in T (see, e.g., [4, 21] for details).

2.3 Assertional knowledge

Assertions can be used to state facts about named individuals. Thus, we assume
that there is a third set NI of names, called individual names, which is disjoint
with the sets of concept and role names. An interpretation additional assigns an
element aI ∈ ∆I to every individual name a ∈ NI .

Definition 4. Let C be a concept description, r be a role description, and
a, b ∈ NI . An assertion is of the form C(a) (concept assertion) or r(a, b) (role
assertion). An ABox is a finite set of assertions.

An interpretation I is a model of the ABox A if it satisfies all its assertions,
i.e., aI ∈ CI holds for all concept assertions C(a) ∈ A and (aI , bI) ∈ rI holds
for all role assertions r(a, b) ∈ A.

Fig. 2 shows a small ABox with assertions describing a specific DL tutorial.

2.4 Inference problems

DL systems provide their users with inference capabilities that allow them to
derive implicit knowledge from the one explicitly represented. The following are
the most important “classical” inference problems supported by DL systems.

Definition 5. Let T be a generalized TBox, A an ABox, C,D concept descrip-
tions, and a an individual name.

– C is subsumed by D w.r.t. T (C vT D) iff CI ⊆ DI for all models I of T .
– C is equivalent to D w.r.t. T (C ≡T D) iff CI = DI for all models I of T .

– C is satisfiable w.r.t. T iff CI 6= ∅ for some model I of T .
– A is consistent w.r.t. T iff it has a model that is also a model of T .
– a is an instance of C w.r.t. A and T (A |=T C(a)) iff aI ∈ CI for all models
I of T and A.

One might think that, in order to realize the inference component of a DL
system, on needs to design and implement five algorithms, each solving one of
the above inference problems. Fortunately, this is not the case since there exist
the following polynomial time reductions, which only require the availability of
the concept constructors conjunction and negation in the description language:

– Subsumption can be be reduced in polynomial time to equivalence:

C vT D iff C uD ≡T C

– Equivalence can be be reduced in polynomial time to subsumption:

C ≡T D iff C vT D and D vT C

– Subsumption can be be reduced in polynomial time to (un)satisfiability:

C vT D iff C u ¬D is unsatisfiable w.r.t. T

– Satisfiability can be be reduced in polynomial time to (non-)subsumption:

C is satisfiable w.r.t. T iff not C vT ⊥

– Satisfiability can be be reduced in polynomial time to consistency:

C is satisfiable w.r.t. T iff {C(a)} is consistent w.r.t. T

– The instance problem can be reduced in polynomial time to (in)consistency:

A |=T C(a) iff A ∪ {¬C(a)} is inconsistent w.r.t. T

– Consistency can be reduced in polynomial time to the (non-)instance prob-
lem:

A is consistent w.r.t. T iff A 6|=T ⊥(a)

Thus, if one is only interested in terminological reasoning (i.e., satisfiability,
equivalence, and subsumption), it is enough to have a satisfiability algorithm.
If one is additionally interested in assertional reasoning (i.e., consistency and
instance), then it is enough to have a consistency algorithm.

Another important observation is that reasoning w.r.t. a normal (i.e., not
general) TBox can be reduced to reasoning w.r.t. the empty TBox.8 Intuitively,

8 Instead of saying “w.r.t. ∅” one usually says “without a TBox,” and omits the index
T for subsumption, equivalence, and instance, i.e., writes ≡, v, |= instead of ≡T ,
vT , and |=T .

A0 ≡ ∀r.A1 u ∀s.A1

A1 ≡ ∀r.A2 u ∀s.A2

...
An−1 ≡ ∀r.An u ∀s.An

Fig. 3. A TBox T that causes exponential blow-up during expansion

TBoxes merely state that defined concepts are abbreviations for certain com-
plex concept descriptions. These complex descriptions can be made explicit by
expanding the definitions from T : given a concept description C, its expan-
sion exp(C, T) w.r.t. T is obtained by exhaustively replacing all defined concept
names A occurring on the left-hand side of concept definitions A ≡ C by their
defining concept descriptions C. For example, w.r.t. the TBox of Fig. 1, the
concept description Woman u BusySpeaker is expanded to

Person u Female u Person u ∃gives.Talk u (≥ 3 gives.Talk),

which is equivalent to Person u Female u (≥ 3 gives.Talk).
It is easy to show that C vT D iff exp(C, T) v exp(D, T). Similar reduc-

tion are possible for the other inference problems. It should be noted, however,
that these reductions are in general exponential. For example, expanding the
concept description A0 w.r.t. the TBox of Fig. 3 yields an expanded description
exp(A0, T) that contains the concept name An 2n times. This exponential blow-
up can sometimes be avoided by devising satisfiability algorithms that explicitly
take acyclic TBoxes into account. For example, satisfiability of ALC concept de-
scriptions w.r.t. TBoxes is PSpace-complete, and without TBoxes this problem
is of exactly the same complexity [107, 83]. However this is not always the case:
in Section 4, we will introduce the DL FL0, for which reasoning w.r.t. TBoxes
is considerably more difficult than reasoning without them [94].

For some expressive DLs it is possible to reduce reasoning w.r.t. a general
TBox to reasoning without a TBox [10, 70], but for ALC this is not possible, i.e.,
one really needs to design algorithms that take GCIs into account.

Compound inferences. Some of the most important inference problems in
DLs are of a compound nature in the sense that, in principle, they can be reduced
to multiple invocations of the more basic inference problems mentioned above.
However, when the goal is to achieve an efficient implementation, it is vital to
consider compound inferences as first-class citizens since a näıve reduction to
the basic inference problems may be too inefficient [12]. Here, we define two of
these compound inference problems, but do not deal with the efficiency issue.

Classification. Given a (general) TBox T , compute the restriction of the sub-
sumption relation “vT ” to the set of concept names used in T .

Realization. Given an ABox A, a (general) TBox T , and an individual name a,
compute the set RA,T (a) of those concept names A that are used in T , satisfy

A |=T A(a), and are minimal with this property w.r.t. the subsumption relation
“vT ”.

Complexity of reasoning. In the 1980ies, it was a commonly held belief that
reasoning in knowledge representation systems should be tractable, i.e., of poly-
nomial time complexity. The precursor of all DL systems, Klone [33], as well
as its early successor systems, like K-Rep [88], Back [100], and Loom [87],
indeed employed polynomial-time subsumption algorithms. Later on, however,
it turned out that subsumption in rather inexpressive DLs may be intractable
[82], that subsumption in Klone is even undecidable [106], and that subsump-
tion w.r.t. a TBox in a description language with conjunction (u) and value
restriction (∀r.C)9 is intractable [94]. The reason for the discrepancy between
the complexity of the subsumption algorithms employed in the above mention
early DL systems and the worst-case complexity of the subsumption problems
these algorithms were supposed to solve was, as mentioned in the introduction,
due to the fact that these systems employed sound, but incomplete subsumption
algorithms, i.e., algorithms whose positive answers to subsumption queries are
correct, but whose negative answers may be incorrect.

The use of incomplete algorithms has since then largely been abandoned
in the DL community, mainly because of the problem that the behavior of the
systems is no longer determined by the semantics of the description language: an
incomplete algorithm may claim that a subsumption relationship does not hold,
although it should hold according to the semantics. This left the DL community
with two ways out of the complexity dilemma:

– Employ expressive DLs with sound and complete, but intractable inference
procedures.

– Employ inexpressive DLs that allow the use of sound, complete, and tractable
inference procedures.

In the next two sections, we treat these two approaches in more detail.
It should be noted that here we have barely scratched the surface of the

research on the complexity of reasoning in DLs. Indeed, DL researchers have
investigated the complexity of reasoning in a great variety of DLs in detail.
Giving an overview of the results obtained in this direction in the last 20 years
is beyond the scope of this article. We refer the reader to overview articles such
as [47, 18] and the Description Logic Complexity Navigator10 for more details.

3 Reasoning in expressive DLs

As mentioned in the introduction, a variety of of reasoning techniques have been
introduced for expressive DLs. Here, we describe tableau-based and automata-
9 All the systems mentioned above supported these two concept constructors, which

were at that time viewed as being indispensable for a DL.
10 http://www.cs.man.ac.uk/∼ezolin/dl/

based approaches in some detail, but do not treat approaches based on transla-
tions to first-order or modal logic.

Before looking at specific inference procedures in detail, let us first state some
general requirements on the behavior of such procedures:

– The procedure should be a decision procedure for the problem, which means
that it should be:
• sound, i.e., the positive answers should be correct;
• complete, i.e., the negative answers should be correct;
• terminating, i.e., it should always give an answer in finite time

– The procedure should be as efficient as possible. Preferably, it should be
optimal w.r.t. the (worst-case) complexity of the problem.

– The procedure should be practical, i.e., easy to implement and optimize, and
behave well in applications.

Both tableau-based and automata-based approaches to reasoning in DLs yield
decision procedures. Tableau-based approaches often yield practical procedures:
optimized implementations of such procedures have turned out to behave quite
well in applications even for expressive DLs with a high worst-case complexity.
However, these practical procedures are often not optimal w.r.t. the worst-case
complexity of the problem: in particular, satisfiability in ALC w.r.t. general
TBoxes is ExpTime-complete, but it is very hard to design a tableau-based
procedure for it that runs in deterministic exponential time. In contrast, it is
quite easy to design an ExpTime automata-based procedure for this problem,
but there are no practical implementations for this procedure.

3.1 Tableau-based approaches

The most widely used reasoning technique for DLs is the tableau-based approach,
which was first introduced in the context of DLs by Schmidt-Schauß and Smolka
[108], though it had already been used for modal logics long before that [53].
In this section, we first describe this technique for the case of consistency of
an ABox (without a TBox11) in our basic DL ALC. Then we show how the
approach can be extended to deal with qualified number restrictions and with
general TBoxes.

Given an ALC ABox A0, the tableau algorithm for consistency tries to con-
struct a finite interpretation I that is a model of A0. Before we can describe
the algorithm more formally, we need to introduce an appropriate data struc-
ture in which to represent the (partial descriptions of) finite interpretations that
are generated during the run of the algorithm. The original paper by Schmidt-
Schauß and Smolka [108], and also many other papers on tableau algorithms for
DLs, introduce the new notion of a constraint system for this purpose. How-
ever, if we look at the information that must be expressed (namely, the elements

11 As mentioned above, inference problems w.r.t. a TBox can be reduced to the corre-
sponding ones without TBoxes by expanding the concept definitions from T .

of the interpretation, the concept descriptions they belong to, and their role
relationships), we see that ABox assertions are sufficient for this purpose.

It will be convenient to assume that all concept descriptions are in negation
normal form (NNF), i.e., that negation occurs only directly in front of concept
names. Using de Morgan’s rules and the usual rules for quantifiers, any ALC
concept description can be transformed (in linear time) into an equivalent de-
scription in NNF. An ABox is in NNF if all the concept descriptions occurring
in it are in NNF.

The →u-rule
Condition: A contains (C1 u C2)(x), but not both C1(x) and C2(x).
Action: A′ := A ∪ {C1(x), C2(x)}.

The →t-rule
Condition: A contains (C1 t C2)(x), but neither C1(x) nor C2(x).
Action: A′ := A ∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

The →∃-rule
Condition: A contains (∃r.C)(x), but there is no individual name z such that

C(z) and r(x, z) are in A.
Action: A′ := A∪{C(y), r(x, y)} where y is an individual name not occurring in
A.

The →∀-rule
Condition: A contains (∀r.C)(x) and r(x, y), but it does not contain C(y).
Action: A′ := A ∪ {C(y)}.

Fig. 4. Tableau rules of the consistency algorithm for ALC.

Let A0 be an ALC ABox in NNF. In order to test consistency of A0, the al-
gorithm starts with A0, and applies consistency preserving transformation rules
(see Fig. 4) to this ABox. The transformation rule that handles disjunction is
nondeterministic in the sense that a given ABox is transformed into two new
ABoxes such that the original ABox is consistent iff one of the new ABoxes is so.
For this reason we will consider finite sets of ABoxes S = {A1, . . . ,Ak} instead
of single ABoxes. Such a set is consistent iff there is some i, 1 ≤ i ≤ k, such that
Ai is consistent. A rule of Fig. 4 is applied to a given finite set of ABoxes S as
follows: it takes an element A of S, and replaces it by one ABox A′ or by two
ABoxes A′ and A′′.

Definition 6. An ABox A is called complete iff none of the transformation
rules of Fig. 4 applies to it. The ABox A contains a clash iff {A(x), ¬A(x)} ⊆ A
for some individual name x and some concept name A. An ABox is called closed
if it contains a clash, and open otherwise.

The consistency algorithm for ALC works as follows. It starts with the sin-
gleton set of ABoxes {A0}, and applies the rules of Fig. 4 (in arbitrary order)
until no more rules apply. It answers “consistent” if the set Ŝ of ABoxes obtained
this way contains an open ABox, and “inconsistent” otherwise. The fact that
this algorithm is a decision procedure for consistency of ALC ABoxes is an easy
consequence of the following lemma.

Lemma 1. Let A0 be an ALC ABox in negation normal form.

1. Local correctness: the rules preserve consistency, i.e., if S ′ is obtained from
the finite set of ABoxes S by application of a transformation rule, then S is
consistent iff S ′ is consistent.

2. Termination: there cannot be an infinite sequence of rule applications

{A0} → S1 → S2 → · · · .

3. Soundness:12 any complete and open ABox A is consistent.
4. Completeness:13 any closed ABox A is inconsistent.

Proof. 1. Local correctness: We treat the →∃-rule and the →t-rule in detail.
The other rules can be handled similarly.

First, assume that S ′ is obtained from S by an application of the →∃-rule.
Then there is an ABox A ∈ S containing an assertion of the form (∃r.C)(x),
and S ′ is obtained from S by replacing A by A′ := A ∪ {C(y), r(x, y)} where y
is an individual name not occurring in A.

Obviously, it is enough to show that A has a model iff A′ has a model. The
if-direction is trivial since A ⊆ A′. To show the only-if direction, assume that I
is a model of A. Since (∃r.C)(x) ∈ A, there is a d ∈ ∆I such that

(xI , d) ∈ rI and d ∈ CI .

Let I ′ be the interpretation that coincides with I, with the exception that yI
′

=
d. Since y does not occur in A, I ′ is a model of A. By the definition of yI

′
, it is

also a model of {r(x, y), C(y)}, and thus of A′.
Second, assume that S ′ is obtained from S by an application of the→t-rule.

Then there is an ABox A ∈ S containing an assertion of the form (C1 tC2)(x),
and S ′ is obtained from S by replacing A by A′ := A ∪ {C1(x)} and A′′ :=
A ∪ {C2(x)}.

It is enough to show that A has a model iff A′ has a model or A′′ has a
model. The if-direction is again trivial since A ⊆ A′ and A ⊆ A′′. To show the
12 Recall that soundness means that the positive answers of the algorithm are correct,

i.e., if the algorithm says “consistent,” then the input ABox A0 is indeed consistent.
This follows from the part 3. of the lemma together with part 1. (local correctness).

13 Recall that completeness means that the negative answers of the algorithm are cor-
rect, i.e., if the algorithm says “inconsistent,” then the input ABox A0 is indeed
inconsistent. This follows from the part 4. of the lemma together with part 1. (local
correctness).

only-if direction, assume that I is a model of A. Since (C1 t C2)(x) ∈ A, we
have

xI ∈ (C1 t C2)I = CI1 ∪ CI2 .

If xI ∈ CI1 , then I is a model of A′. If xI ∈ CI2 , then I is a model of A′′.

2. Termination: Define the label LA(x) of an individual name x in an ABox A
to consist of the concept descriptions in concept assertions for x, i.e.,

LA(x) := {C | C(x) ∈ A}.

Let S be a set of ABoxes reached by a finite number of rule applications, starting
with {A0}, and let A ∈ S. The following are easy consequences of the definition
of the tableau rules.

1. rule application is monotonic, i.e., every application of a rule to A extends
the label of an individual, by adding a new concept assertion, and does not
remove any element from a label;

2. concept descriptions occurring in labels in A are subdescriptions of concept
descriptions occurring in the initial ABox A0.

Clearly, these two facts imply that there can only be a finite number of rule
applications per individual. Thus, it remains to show that the number of newly
introduced individuals in a chain of rule applications is bounded as well. Let
us call an individual name occurring in A a new individual if it is not one of
the individuals already present in A0. We say that y is an r-successor of x if
r(x, y) ∈ A.

3. for a given individual x, an existential restriction in the label of x can trigger
at most one introduction of a new individual, and thus the number of new
individuals that are r-successors of an individual in A is bounded by the
number of existential restrictions in A0;

4. the length of successor chains of new individuals in A is bounded by the max-
imal size of the concept descriptions occurring in A0. This is an immediate
consequence of the following two facts:
– if x is a new individual in A, then it has a unique predecessor y
– the maximal size of concept descriptions in LA(x) is strictly smaller than

the maximal size of concept descriptions in LA(y)

Facts 3. and 4. yield an overall bound on the number of new individuals in A.
Since only a finite number of individuals can be introduced during rule appli-
cation, and only finitely many rules can be applied to a fixed individual, this
shows that overall we can have only a finite number of rule applications, which
completes the proof of termination.

3. Soundness: LetA be a complete and open ABox. To prove thatA is consistent,
we define the canonical interpretation IA, and show that it is a model of A:

1. The domain ∆IA of IA consists of the individual names occurring in A.
2. For all individual names x we define xIA := x.

3. For all concept names A we define AIA := {x | A(x) ∈ A}.
4. For all role names r we define rIA := {(x, y) | r(x, y) ∈ A}.

By definition, IA satisfies all the role assertions in A. To prove that IA satisfies
the concept assertions as well, we consider C(x) ∈ A and show xIA = x ∈ CIA
by induction on the size of C:

– C = A for A ∈ NC : x ∈ AIA is an immediate consequence of the definition
of AIA .

– C = ¬A for A ∈ NC : since A is open, A(x) 6∈ A, and thus x 6∈ AIA by the
definition of AIA .

– C = C1 uC2: since A is complete, (C1 uC2)(x) ∈ A implies that C1(x) ∈ A
and C2(x) ∈ A; by induction, this yields x ∈ CIA1 and x ∈ CIA2 , and thus
x ∈ (C1 u C2)IA .

– the other constructors can be treated similarly.

4. Completeness: the fact that a closed ABox cannot have a model is an imme-
diate consequence of the definition of a clash. ut

Theorem 1. The tableau algorithm introduced above is a decision procedure for
consistency of ALC ABoxes.

Proof. Started with a finite ALC ABox A0 in NNF, the algorithm always termi-
nates with a finite set of complete ABoxes A1, . . . ,An. Local correctness implies
that A0 is consistent iff one of A1, . . . ,An is consistent.

If the algorithm answers “inconsistent,” then all the ABoxes A1, . . . ,An are
closed. Completeness then yields that all the ABoxesA1, . . . ,An are inconsistent,
and thus A0 is inconsistent, by local correctness.

If the algorithm answers “consistent,” then one of the complete ABoxes
A1, . . . ,An, say Ai, is open. Soundness then yields that Ai is consistent, and
thus A0 is consistent, by local correctness.

To sum up, we have shown that the algorithm always terminates, and that
both the positive answers (“consistent”) and the negative answers (“inconsis-
tent”) are correct. ut

Adding qualified number restrictions. The description language obtained
from ALC by adding qualified number restrictions is called ALCQ. In order to
transform also ALCQ ABoxes into negation normal form, we additionally use
the following equivalence preserving rules:

¬(≥n+ 1 r.C) (≤n r.C)

¬(≥ 0 r.C) ⊥
¬(≤n r.C) (≥n+ 1 r.C)

In the following, we assume that all ALCQ ABoxes are in NNF.

The →≥-rule
Condition: A contains (≥n r.C)(x), and there are no individual names z1, . . . , zn

such that r(x, zi), C(zi) (1 ≤ i ≤ n) and zi 6
.
= zj (1 ≤ i < j ≤ n) are in A.

Action: A′ := A∪ {r(x, yi), C(yi) | 1 ≤ i ≤ n} ∪ {yi 6
.
= yj | 1 ≤ i < j ≤ n}, where

y1, . . . , yn are distinct individual names not occurring in A.

The →≤-rule
Condition: A contains distinct individual names y1, . . . , yn+1 such that

(≤n r.C)(x) and r(x, y1), C(y1) . . . , r(x, yn+1), C(yn+1) are in A, and yi 6
.
= yj

is not in A for some i, j, 1 ≤ i < j ≤ n+ 1.
Action: For each pair yi, yj such that 1 ≤ i < j ≤ n+ 1 and yi 6

.
= yj is not in A,

the ABox Ai,j := [yi/yj]A is obtained from A by replacing each occurrence
of yi by yj .

Fig. 5. Tableau rules for qualified number restrictions.

The main idea underlying the extension of the tableau algorithm for ALC
to ALCQ is quite simple. At-least restrictions are treated by generating the re-
quired role successors as new individuals. At-most restrictions that are currently
violated are treated by (non-deterministically) identifying some of the role suc-
cessors. To avoid running into a generate-identify cycle, we introduce explicit
inequality assertions that prohibit the identification of individuals that were in-
troduced to satisfy the same at-least restriction. This use of inequality assertions
also creates new types of clashes, which occur when an at-most restriction re-
quires some identification, but all identifications are prohibited by inequality
assertions.

To be more precise, the tableau algorithm for consistency of ALC ABoxes is
extended to ALCQ as follows:

– For each of the new concept constructors, we add a new tableau rule: the
→≥-rule and the →≤-rule are shown in Fig. 5.

– In the formulation of these rules, we have used inequality assertions, which
are of the form x 6 .= y for individual names x, y, and have the obvious se-
mantics that an interpretation I satisfies such an assertion iff xI 6= yI .

– Finally, there are new types of clashes:
• x 6 .= x ∈ A for an individual name x.
• {(≤n r.C)(x)} ∪ {r(x, yi), C(yi) | 1 ≤ i ≤ n + 1} ∪ {yi 6

.= yj | 1 ≤ i <
j ≤ n+ 1} ⊆ A for individual names x, y1, . . . , yn+1, an ALCQ concept
description C, a role name r, and a non-negative integer n.

The main question is then, of course, whether this extended algorithm really
yields a decision procedure for consistency of ALCQ ABoxes. To prove this, it
would be enough to show that the four properties stated in Lemma 1 also hold
for the extended algorithm. Local correctness and completeness are easy to show.
Unfortunately, neither soundness nor termination hold.

To see that the algorithm is not sound, consider the ABox

A0 := {(≥ 3 child.>)(x), (≤ 1 child.Female)(x), (≤ 1 child.¬Female)(x)}.

Obviously, this ABox is inconsistent, but the algorithm does not find this out.
In fact, it would introduce three new individuals y1, y2, y3 as r-successors of x,
each belonging to >. In an interpretation, the element yIi (i = 1, 2, 3) belongs to
either FemaleI or to (¬Female)I , but in the ABox A1 obtained by applying the
→≥-rule to A0, the only concept assertion for yi (i = 1, 2, 3) is >(yi). Thus, the
→≤-rule does not apply to A1, and A1 also does not contain a clash. The ABox
A1 is thus complete and open, but it is not consistent.

The soundness problem illustrated by this example can be avoided by adding
as a third rule the →choose-rule shown in Fig. 6, where ∼C denotes the negation
normal form of C. It is easy to show that this rule preserves local correctness,
and that its addition allows us to regain soundness.

The →choose-rule
Condition: A contains (≤n r.C)(x) and r(x, y), but neither C(y) nor ¬C(y).
Action: A′ := A ∪ {C(y)}, A′′ := A ∪ {∼C(y)}.

Fig. 6. The →choose-rule for qualified number restrictions.

However, we still need to deal with the termination problem. This problem
is illustrated in the following example. Consider the ABox

A0 := {A(a), r(a, a), (∃r.A)(a), (≤ 1 r.>)(a), (∀r.∃r.A)(a), r(a, x), A(x)}.

The →∀-rule can be used to add the assertion (∃r.A)(x), which yields the new
ABox

A1 := A0 ∪ {(∃r.A)(x)}.

This triggers an application of the→∃-rule to x. Thus, we obtain the new ABox

A2 := A1 ∪ {r(x, y), A(y)}.

Since a has two r-successors in A2, the →≤-rule is applicable to a. By replacing
every occurrence of x by a, we obtain the ABox

A3 := {A(a), r(a, a), (∃r.A)(a), (≤ 1 r.>)(a), (∀r.∃r.A)(a), r(a, y), A(y)},

Except for the individual names (i.e., y instead of x), A3 is identical to A1.
For this reason, we can continue as above to obtain an infinite chain of rule
applications.

We can easily regain termination by requiring that generating rules (i.e., the
rules →∃ and →≥, which generate new individuals) may only be applied if none

of the other rules is applicable. In the above example, this strategy would prevent
the application of the →∃-rule to x in the ABox A1 since the →≤-rule is also
applicable. After applying the →≤-rule (which replaces x by a), the →∃-rule is
no longer applicable since a already has an r-successor that belongs to A.

Consistency w.r.t. general TBoxes. Let T = {C1 v D1, . . . , Cn v Dn} be
a general TBox. It is easy to see that the general TBox consisting of the single
GCI

> v (¬C1 tD1) u . . . u (¬Cn tDn)

is equivalent to T in the sense that it has the same models. Thus, it is sufficient
to deal with the case where the general TBox consists of a single GCI of the form
> v C for a concept description C. Obviously, this GCI says that every element
of the model belongs to C. Thus, to reason w.r.t. a general TBox consisting of
this GCI, it makes sense to add a new rule, the →>vC-rule, which adds the
concept assertion C(x) in case the individual name x occurs in the ABox, and
this assertion is not yet present.

Does the addition of the→>vC-rule yield a decision procedure for ABox con-
sistency w.r.t. the general TBox {> v C}? Local correctness, soundness, and
completeness can indeed easily be shown, but the procedure does not terminate,
as illustrated by the following example. Consider the ABox A0 := {(∃r.A)(x0)},
and assume that we want to test its consistency w.r.t. the general TBox {> v
∃r.A}. The procedure generates an infinite sequence of ABoxesA1,A2, . . . and in-
dividuals x1, x2, . . . such that Ai+1 := Ai∪{r(xi, xi+1), A(xi+1), (∃r.A)(xi+1)}.
Since all individuals xi (i ≥ 1) receive the same concept assertions as x1, we
may say that the procedure has run into a cycle.

Termination can be regained by using a mechanism that detects cyclic com-
putations, and then blocking the application of generating rules: the application
of the →∃- and the →≥-rule to an individual x is blocked by an individual y in
an ABox A iff LA(x) ⊆ LA(y).14 The main idea underlying blocking is that the
blocked individual x can use the role successors of y instead of generating new
ones. For example, instead of generating a new r-successor for x2 in the above
example, one can simply use the r-successor of x1. This yields an interpretation I
with ∆I := {x0, x1, x2}, AI := {x1, x2}, and rI := {(x0, x1), (x1, x2), (x2, x2)}.
Obviously, I is a model of both A0 and the general TBox {> v ∃r.A}.

To avoid cyclic blocking (of x by y and vice versa), we consider an enu-
meration of all individual names, and require that an individual x may only be
blocked by individuals y that occur before x in this enumeration. This, together
with some other technical assumptions, makes sure that a tableau algorithm
using this notion of blocking is sound and complete as well as terminating both
for ALC and ALCQ (see, e.g., [37, 9] for details).

Complexity of reasoning. For ALC, the satisfiability and the consistency
problem (without TBox) are PSpace-complete [107, 64]. The tableau algorithm
14 Recall that LA(z) = {C | C(z) ∈ A} for any individual z occurring in A.

as described above needs exponential space, but it can be modified such that it
needs only polynomial space [107]. Both TBoxes [83] and qualified number re-
strictions [65, 113] can be added without increasing the complexity. W.r.t. general
TBoxes, the satisfiability and the consistency problem are ExpTime-complete
[103]. However, it is not easy to show the ExpTime-upper bound using tableau
algorithms, though it is in principle possible [48, 56]. As we will see in the next
section, automata-based algorithms are well-suited to show such ExpTime-upper
bounds. The tableau algorithms implemented in systems like FaCT, Racer, and
Pellet are not worst-case optimal, but they are nevertheless highly optimized
and behave quite well on large knowledge bases from applications.

3.2 Automata-based approaches

Although the tableau-based approach is currently the most widely used tech-
nique for reasoning in DLs, other approaches have been developed as well. In
general, a reasoning algorithm may be developed with different intentions in
mind, such as using it for an optimized implementation or using it to prove a
decidability or computational complexity result. Certain approaches may (for a
given logic) be better suited for the former task, whereas others may be better
suited for the latter—and it is sometimes hard to find one that is well-suited
for both. As mentioned above, the tableau-based approach often yields practical
algorithms, whereas it is not well-suited for proving ExpTime-upper bounds. In
contrast, such upper bounds can often be shown in a very elegant way using
automata-based approach [41, 86, 84, 114].15

In this subsection, we restrict our attention to concept satisfiability, possibly
w.r.t. (general) TBoxes. This is not a severe restriction since most of the other in-
teresting inference problems can be reduced to satisfiability.16 There are various
instances of the automata-based approach, which differ not only w.r.t. the DL
under consideration, but also w.r.t. the employed automaton model. However,
in principle all these instances have the following general ideas in common:

– First, one shows that the DL in question has the tree model property.
– Second, one devises a translation from pairs C, T , where C is a concept

description and T is a TBox, into an appropriate tree automata AC,T such
that AC,T accepts exactly the tree models of C w.r.t. T .

– Third, one applies the emptiness test for the employed automaton model to
AC,T to test whether C has a (tree) model w.r.t. T .

The complexity of the satisfiability algorithm obtained this way depends on the
complexity of the translation and the complexity of the emptiness tests. The
latter complexity in turn depends on which automaton model is employed.

15 The cited papers actually use automata-based approaches to show ExpTime results
for extensions of ALC.

16 Using the so-called pre-completion technique [64], this is also the case for inference
problems involving ABoxes.

Below, we will use a simple form of non-deterministic automata working on
infinite trees of fixed arity, so-called looping automata [116]. In this case, the
translation is exponential, but the emptiness test is polynomial (in the size of
the already exponentially large automaton obtained through the translation).
Thus, the whole algorithm runs in deterministic exponential time. Alternatively,
one could use alternating tree automata [92], where a polynomial translation is
possible, but the emptiness test is exponential.

Instead of considering automata working on trees of fixed arity, one could
also consider so-called amorphous tree automata [26, 76], which can deal with
arbitrary branching. This simplifies defining the translation, but uses a slightly
more complicated automaton model. For some very expressive description logics
(e.g., ones that allow for transitive closure of roles [3]), the simple looping au-
tomata introduced below are not sufficient since one needs additional acceptance
conditions such as the Büchi condition [112] (which requires the occurrence of
infinitely many final states in every path).

The Tree Model Property. The first step towards showing that satisfiability
in ALC w.r.t. general TBoxes can be decided with the automata-based approach
is to establish the tree model property, i.e., to show that any ALC concept
description C satisfiable w.r.t. a general ALC TBox T has a tree-shaped model.
Note that this model may, in general, be infinite. One way of seeing this is to
consider the tableau algorithm introduced above, applied to the ABox {C(x)}
w.r.t. the representation of the general TBox T as a single GCI, and just dispose
of blocking. Possibly infinite runs of the algorithm then generate tree-shaped
models. However, one can also show the tree model property of ALC by using
the well-known unraveling technique of modal logic [27], in which an arbitrary
model of C w.r.t. T is unraveled into a bisimilar tree-shaped interpretation.
Invariance of ALC under bisimulation [80] (which it inherits from its syntactic
variant multimodal K) then implies that the tree shaped interpretation obtained
by unraveling is also a model of C w.r.t. T .

Instead of defining unraveling in detail, we just give an example in Fig. 7,
and refer the reader to [27] for formal definitions and proofs. The graph on the
left-hand side of Fig. 7 describes an interpretation I: the nodes of the graph
are the elements of ∆I , the node labels express to which concept names the
corresponding element belongs, and the labelled edges of the graph express the
role relationships. For example, a ∈ ∆I belongs to AI , but not to BI , and it
has r-successor b and s-successor c. It is easy to check that I is a model of the
concept A w.r.t. the TBox

T := {A v ∃r.B, B v ∃r.A, A tB v ∃s.>}.

The graph on the right-hand side of Fig. 7 describes (a finite part of) the corre-
sponding unraveled model, where a was used as the start node for the unraveling.
Basically, one considers all paths starting with a in the original model, but when-
ever one would re-enter a node one makes a copy of it. Like I, the corresponding
unraveled interpretation Î is a model of T and it satisfies a ∈ AbI .

I

r
r s

s
b c

a

{A}

{B} ∅

{B}

b

a1

b1

c ∅

c1 ∅

c2 ∅

s

a

{A}bI
r

r

r

{A}

{B}

r s

s

s

Fig. 7. Unraveling of a model into a tree-shaped model.

Looping Tree Automata. As mentioned above, we consider automata working
on infinite trees of some fixed arity k. To be more precise, the nodes of the trees
are labelled by elements from some finite alphabet Σ, whereas the edges are
unlabeled, but ordered, i.e., there is a first, second, to kth successor for each
node. Such trees, which we call k-ary Σ-trees, can formally be represented as
mappings T : {0, . . . , k − 1}∗ → Σ. Thus, nodes are represented as words over
{0, . . . , k−1}, the root is the word ε, and a node u has exactly k successor nodes
u0, . . . , u(k−1), and its label is T (u). For example, the binary tree that has root
label a, whose left subtree contains only nodes labelled by b, and whose right
subtree has only nodes labelled by a (see the left-hand side of Fig. 8) is formally
represented as the mapping

T : {0, 1}∗ → {a, b} with T (u) =
{
b if u starts with 0
a otherwise

A looping automaton working on k-aryΣ-trees is of the formA = (Q,Σ, I,∆),
where

– Q is a finite set of states and I ⊆ Q is the set of initial states;
– Σ is a finite alphabet;
– ∆ ⊆ Q×Σ ×Qk is the transition relation.

We will usually write tuples (q, a, q1, . . . , qk) ∈ ∆ in the form (q, a)→ (q1, . . . , qk).
A run ofA = (Q,Σ, I,∆) on the tree T : {0, . . . , k−1}∗ → Σ is a k-aryQ-tree

R : {0, . . . , k− 1}∗ → Q such that (R(u), T (u))→ (R(u0), . . . , R(u(k− 1))) ∈ ∆
for all u ∈ {0, . . . , k − 1}∗. This run is called accepting if R(ε) ∈ I.

For example, consider the automaton A = (Q,Σ, I,∆), where

– Q = {q0, q1, q2} and I = {q0};

a

b b
a a

a

b

q1

q0

q1
q2

q2 q2q1

Fig. 8. A tree and a run on it.

– Σ = {a, b};
– ∆ consists of the transitions

(q0, a)→ (q1, q2), (q0, a)→ (q2, q1), (q1, b)→ (q1, q1), (q2, a)→ (q2, q2).

The k-ary Q-tree R from the right-hand side of Fig. 8 maps ε to q0, nodes starting
with 0 to q1, and nodes starting with 1 to q2. This tree R is an accepting run of
A on the tree T on the left hand side of Figure 8.

The tree language accepted by a given looping automaton A = (Q,Σ, I,∆)
is

L(A) := {T : {0, . . . , k − 1}∗ → Σ | there is an accepting run of A on T}.

In our example, the language accepted by the automaton consists of two trees,
the tree T defined above and the symmetric tree where the left subtree contains
only nodes labelled with a and the right subtree contains only nodes labelled
with b.

The Emptiness Test. Given a looping tree automaton A, the emptiness test
decides whether L(A) = ∅ or not. Based on the definition of the accepted lan-
guage, one might be tempted to try to solve the problem in a top-down manner,
by first choosing an initial state to label the root, then choosing a transition
starting with this state to label its successors, etc. However, the algorithm ob-
tained this way is non-deterministic since one may have several initial states,
and also several possible transitions for each state.

To obtain a deterministic polynomial time emptiness test, it helps to work
bottom-up. The main idea is that one wants to compute the set of bad states,
i.e., states that do not occur in any run of the automaton. Obviously, any state
q that does not occur on the left-hand side of a transition (q, ·)→ (· · ·) is bad.
Starting with this set, one can then extend the set of states known to be bad
using the fact that a state q is bad if all transitions (q, ·)→ (q1, . . . , qk) starting
with q contain a bad state qj in their right-hand side. Obviously, this process
of extending the set of known bad states terminates after a linear number of

additions of states to the set of known bad states, and it is easy to show that
the final set obtained this way is indeed the set of all bad states. The accepted
language is then empty iff all initial states are bad. By using appropriate data
structures, one can ensure that the overall complexity of the algorithm is linear
in the size of the automaton. A more detailed description of this emptiness test
for looping tree automata can be found in [25].

The Reduction. Recall that we want to reduce the satisfiability problem for
ALC concepts w.r.t. general TBoxes to the emptiness problem for looping tree
automata by constructing, for a given input C, T , an automaton AC,T that
accepts exactly the tree-shaped models of C w.r.t. T .

Before this is possible, however, we need to overcome the mismatch between
the underlying kinds of trees. The tree-shaped models of C w.r.t. T are trees
with labelled edges, but without a fixed arity. In order to express such trees
as k-ary Σ-trees for an appropriate k, where Σ consists of all sets of concept
names, we consider all the existential restrictions occurring in C and T . The
number of these restrictions determines k. Using the bisimulation invariance of
ALC [80], it is easy to show that the existence of a tree-shaped model of C w.r.t.
T also implies the existence of a tree-shaped model where every node has at
most k successor nodes. To get exactly k successors, we can do some padding
with dummy nodes if needed. The edge label is simply pushed into the label of
the successor node, i.e., each node label contains, in addition to concept names,
exactly one role name, which expresses with which role the node is reached from
its unique predecessor. For the root, an arbitrary role can be chosen.

The states of AC,T are sets of subexpressions of the concepts occurring in C
and T . Intuitively, a run of the automaton on a tree-shaped model of C w.r.t.
T labels a node not only with the concept names to which this element of the
model belongs, but also with all the subexpressions to which it belongs. For
technical reasons, we need to normalize the input concept description and TBox
before we build these subexpressions. First, we ensure that all GCIs in T are of
the form > v D by using the fact that the GCIs C1 v C2 and > v ¬C1 t C2

are equivalent. Second, we transform the input concept description C and every
concept D in a GCI > v D into negation normal form as described in Section 3.1.
In our example, the normalized TBox consists of the GCIs

> v ¬A t ∃r.B, > v ¬B t ∃r.A, > v (¬A u ¬B) t ∃s.>,

whose subexpressions are>,¬At∃r.B,¬A,A,∃r.B,B,¬Bt∃r.A,¬B, ∃r.A, (¬Au
¬B) t ∃s.>,¬A u ¬B, ∃s.>. Of these, the node a in the tree-shaped model de-
picted on the right-hand side of Fig. 7 belongs to >,¬A t ∃r.B,A,∃r.B,¬B t
∃r.A,¬B, (¬A u ¬B) t ∃s.>,∃s.>.

We are now ready to give a formal definition of the automaton AC,T =
(Q,Σ, I,∆). Let SC,T denote the set of all subexpressions of C and T , RC,T
denote the set of all role names occurring in C and T , and k the number of
existential restrictions contained in SC,T . The alphabet Σ basically consists of
all subsets of the set of concept names occurring in C and T . As mentioned

above, in order to encode the edge labels (i.e., express for which role r the node
is a successor node), each “letter” contains, additionally, exactly one role name.
Finally, the alphabet contains the empty set (not even containing a role name),
which is used to label nodes that are introduced for padding purposes.

The set of states Q of AC,T consists of the Hintikka sets for C, T , i.e., subsets
q of SC,T ∪RC,T such that q = ∅ or

– q contains exactly one role name;
– if > v D ∈ T then D ∈ q;
– if C1 u C2 ∈ q then {C1, C2} ⊆ q;
– if C1 t C2 ∈ q then {C1, C2} ∩ q 6= ∅; and
– {A,¬A} 6⊆ q for all concept names A.

The set of initial states I consists of those states containing C, and the transi-
tion relation ∆ consists of those transitions (q, σ) → (q1, . . . , qk) satisfying the
following properties:

– q and σ coincide w.r.t. the concept and role names contained in them;
– if q = ∅, then q1 = . . . = qk = ∅;
– if ∃r.D ∈ q, then there is an i such that {D, r} ⊆ qi; and
– if ∀r.D ∈ q and r ∈ qi, then D ∈ qi.

It is not hard to show that the construction of AC,T indeed yields a reduction of
satisfiability w.r.t. general TBoxes in ALC to the emptiness problem for looping
tree automata.

Proposition 1. The ALC concept description C is satisfiable w.r.t. the general
ALC TBox T iff L(AC,T) 6= ∅.

Obviously, the number of states of AC,T is exponential in the size of C and
T . Since the emptiness problem for looping tree automata can be decided in
polynomial time, we obtain an deterministic exponential upper-bound for the
time complexity of the satisfiability problem. ExpTime-hardness of this problem
can be shown by adapting the proof of ExpTime-hardness of satisfiability in
propositional dynamic logic (PDL) in [52].

Theorem 2. Satisfiability in ALC w.r.t. general TBoxes is ExpTime-complete.

4 Reasoning in the light-weight DLs EL and FL0

As mentioned in the introduction, early DL systems were based on so-called
structural subsumption algorithms, which first normalize the concepts to be
tested for subsumption, and then compare the syntactic structure of the nor-
malized concepts. The claim was that these algorithms can decide subsumption
in polynomial time. However, the first complexity results for DLs, also men-
tioned in the introduction, showed that these algorithms were neither polyno-
mial nor decision procedures for subsumption. For example, all early systems
used expansion of concept definitions, which can cause an exponential blow-up

of the size of concepts. Nebel’s coNP-hardness result [94] for subsumption w.r.t.
TBoxes showed that this blow-up cannot be avoided whenever the constructors
conjunction and value restriction are available. In addition, the early structural
subsumption algorithms were not complete, i.e., they were not able to detect
all valid subsumption relationships. These negative results for structural sub-
sumption algorithms together with the advent of tableau-based algorithms for
expressive DLs, which behaved well in practice, was probably the main reason
why structural approaches—and with them the quest for DLs with a polynomial
subsumption problem—were largely abandoned during the 1990s. More recent
results [6, 34, 7, 8] on the complexity of reasoning in DLs with existential re-
strictions, rather than value restrictions, have led to a partial rehabilitation of
structural approaches and light-weight DLs with polynomial reasoning problems
(see the description of Phase 5 in the introduction).

When trying to find a DL with a polynomial subsumption problem, it is clear
that one cannot allow for all Boolean operations, since then one would inherit
NP-hardness from propositional logic. It should also be clear that conjunction
cannot be dispensed with since one must be able to state that more than one
property should hold when defining a concept. Finally, if one wants to call the
logic a DL, one needs a constructor using roles. This leads to the following two
minimal candidate DLs:

– the DL FL0 [4], which offers the concept constructors conjunction, value
restriction (∀r.C), and the top concept;

– the DL EL [7], which offers the concept constructors conjunction, existential
restriction (∃r.C), and the top concept.

In the following, we will look at the subsumption problem17 in these two DLs in
some detail. Whereas subsumption without a TBox turns out to be polynomial
in both cases, we will also see that EL exhibits a more robust behavior w.r.t.
the complexity of the subsumption problem in the presence of TBoxes.

Subsumption in FL0. First, we consider the case of subsumption of FL0-
concept descriptions without a TBox. There are basically two approaches for
obtaining a structural subsumption algorithm in this case, which are based on
two different normal forms. One can either use the equivalence ∀r.(C u D) ≡
∀r.C u ∀r.D as a rewrite rule from left-to-right or from right-to-left. Here we
will consider the approach based on the left-to-right direction, whereas all of the
early structural subsumption algorithms were based on a normal form obtained
by rewriting in the other direction.18

By using the rewrite rule ∀r.(CuD)→ ∀r.Cu∀r.D together with associativ-
ity, commutativity and idempotence19 of u, any FL0-concept can be transformed
17 Note that the satisfiability problem is trivial in FL0 and EL, since any concept

expressed in these languages is satisfiable. The reduction of subsumption to satisfi-
ability is not possible due to the absence of negation.

18 A comparison between the two approaches can be found in [17].
19 I.e., (A uB) u C ≡ A u (B u C), A uB ≡ B uA, and A uA ≡ A.

into an equivalent one that is a conjunction of concepts of the form ∀r1. · · · ∀rm.A
for m ≥ 0 (not necessarily distinct) role names r1, . . . , rm and a concept name A.
We abbreviate ∀r1. · · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm is viewed as a word
over the alphabet of all role names. In addition, instead of ∀w1.A u . . . u ∀w`.A
we write ∀L.A where L := {w1, . . . , w`} is a finite set of words over Σ. The term
∀∅.A is considered to be equivalent to the top concept >, which means that it
can be added to a conjunction without changing the meaning of the concept.
Using these abbreviations, any pair of FL0-concept descriptions C,D containing
the concept names A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 u . . . u ∀Uk.Ak and D ≡ ∀V1.A1 u . . . u ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This
normal form provides us with the following characterization of subsumption of
FL0-concept descriptions [20]:

C v D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the normal forms is polynomial in the size of the original concept
descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized in poly-
nomial time, this yields a polynomial-time decision procedure for subsumption
in FL0.

This characterization of subsumption via inclusion of finite sets of words can
be extended to TBoxes as follows. A given TBox T can be translated into a
finite (word) automaton20 AT , whose states are the concept names occurring in
T , and whose transitions are induced by the value restrictions occurring in T
(see Fig. 9 for an example). A formal definition of this translation can be found
in [4], where the more general case of cyclic TBoxes is treated. In the case of
TBoxes, which are by definition acyclic, the resulting automata are also acyclic.

For a defined concept A and a primitive concept P in T , the language
LAT (A,P) is the set of all words labeling paths in AT from A to P . The lan-
guages LAT (A,P) represent all the value restrictions that must be satisfied by
instances of the concept A. With this intuition in mind, it should not be sur-
prising that subsumption w.r.t. FL0 TBoxes can be characterized in terms of
inclusion of languages accepted by acyclic automata. Indeed, the following is a
characterization of subsumption in FL0 w.r.t. TBoxes:

A vT B iff LAT (A,P) ⊇ LT (B,P) for all primitive concepts P .

In the example of Fig. 9, we have LAT (A,P) = {r, sr, rsr} ⊃ {sr} = LAT (B,P),
and thus A vT B, but B 6vT A.

Since the inclusion problem for languages accepted by acyclic finite automata
is coNP-complete [54], this reduction shows that the subsumption problem in
FL0 w.r.t. TBoxes is in coNP. As shown by Nebel [94], the reduction also works
in the opposite direction, which yields the matching lower bound. For cyclic
20 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions

that may be labelled with a word over Σ rather than a letter of Σ.

A ≡ C u ∀r.B u ∀s.∀r.P
B ≡ ∀s.C
C ≡ ∀r.P

r

A P

CB s

sr

r ε

Fig. 9. An FL0 TBox and the corresponding acyclic automaton.

TBoxes, the subsumption problem corresponds to the inclusion problem for lan-
guages accepted by arbitrary finite automata, which is PSpace-complete, and
thus the subsumption problem is also PSpace-complete [4, 77]. In the presence
of general TBoxes, the subsumption problem in FL0 actually becomes as hard
as for ALC, namely ExpTime-hard [7, 63].

Theorem 3. Subsumption in FL0 is polynomial without TBox, coNP-complete
w.r.t. TBoxes, PSpace-complete w.r.t. cyclic TBoxes, and ExpTime-complete
w.r.t. general TBoxes.

Subsumption in EL. In contrast to the negative complexity results for sub-
sumption w.r.t. TBoxes in FL0, subsumption in EL remains polynomial even in
the presence of general TBoxes [34].21 The polynomial-time subsumption algo-
rithm for EL that will be sketched below actually classifies a given TBox T , i.e.,
it simultaneously computes all subsumption relationships between the concept
names occurring in T . This algorithm proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into a graph.
3. Complete the graph using completion rules.
4. Read off the subsumption relationships from the normalized graph.

A general EL-TBox is normalized if it only contains GCIs of the following form:

A1 uA2 v B, A v ∃r.B, or ∃r.A v B,

where A,A1, A2, B are concept names or the top-concept >. One can transform
a given TBox into a normalized one by applying normalization rules. Instead of
describing these rules in the general case, we just illustrate them by an example,
where we underline GCIs on the right-hand side that need further rewriting:

∃r.A u ∃r.∃s.A v A uB ∃r.A v B1, B1 u ∃r.∃s.A v A uB
B1 u ∃r.∃s.A v A uB ∃r.∃s.A v B2, B1 uB2 v A uB

∃r.∃s.A v B2 ∃s.A v B3, ∃r.B3 v B2,
B1 uB2 v A uB B1 uB2 v A, B1 uB2 v B

21 The special case of cyclic TBoxes was already treated in [6].

For example, in the first normalization step we introduce the abbreviation B1 for
the description ∃r.A. One might think that one must make B1 equivalent to ∃r.A,
i.e., also add the GCI B1 v ∃r.A. However, it can be shown that adding just
∃r.A v B1 is sufficient to obtain a subsumption-equivalent TBox, i.e., a TBox
that induces the same subsumption relationships between the concept names
occurring in the original TBox. All normalization rules preserve equivalence in
this sense, and if one uses an appropriate strategy (which basically defers the
applications of the rule applied in the last step of our example to the end), then
the normal form can be computed by a linear number of rule applications.

In the next step, we build the classification graph GT = (V, V × V, S,R)
where

– V is the set of concept names (including >) occurring in the normalized
TBox T ;

– S labels nodes with sets of concept names (again including >);
– R labels edges with sets of role names.

It can be shown that the label sets satisfy the following invariants:

– B ∈ S(A) implies A vT B, i.e., S(A) contains only subsumers of A w.r.t.
T .

– r ∈ R(A,B) implies A vT ∃r.B, i.e., R(A,B) contains only roles r such that
∃r.B subsumes A w.r.t. T .

Initially, we set S(A) := {A,>} for all nodes A ∈ V , and R(A,B) := ∅ for all
edges (A,B) ∈ V × V . Obviously, the above invariants are satisfied by these
initial label sets.

The labels of nodes and edges are then extended by applying the rules of
Fig. 10, where we assume that a rule is only applied if it really extends a label
set. It is easy to see that these rules preserve the above invariants. For example,

(R1) A1 uA2 v B ∈ T and A1, A2 ∈ S(A) then add B to S(A)
(R2) A1 v ∃r.B ∈ T and A1 ∈ S(A) then add r to R(A,B)
(R3) ∃r.B1 v A1 ∈ T and B1 ∈ S(B), r ∈ R(A,B) then add A1 to S(A)

Fig. 10. The completion rules for subsumption in EL w.r.t. general TBoxes.

consider the (most complicated) rule (R3). Obviously, ∃r.B1 v A1 ∈ T implies
∃r.B1 vT A1, and the assumption that the invariants are satisfied before ap-
plying the rule yields B vT B1 and A vT ∃r.B. The subsumption relationship
B vT B1 obviously implies ∃r.B vT ∃r.B1. By applying transitivity of the
subsumption relation vT , we thus obtain A vT A1.

The fact that subsumption in EL w.r.t. general TBoxes can be decided in
polynomial time is an immediate consequence of the following statements:

1. Rule application terminates after a polynomial number of steps.
2. If no more rules are applicable, then A vT B iff B ∈ S(A).

Regarding the first statement, note that the number of nodes is linear and the
number of edges is quadratic in the size of T . In addition, the size of the label
sets is bounded by the number of concept names and role names, and each rule
application extends at least one label. Regarding the equivalence in the second
statement, the “if” direction follows from the fact that the above invariants are
preserved under rule application. To show the “only-if” direction, assume that
B 6∈ S(A). Then the following interpretation I is a model of T in which A ∈ AI ,
but A 6∈ BI :

– ∆I := V ;
– rI := {(A′, B′) | r ∈ R(A′, B′)} for all role names r;
– B′I := {A′ | B′ ∈ S(A′)} for all concept names A′.

More details can be found in [34, 7].

Theorem 4. Subsumption in EL is polynomial w.r.t. general TBoxes.

In [7] this result is extended to the DL EL++, which extends EL with the bottom
concept, nominals, a restricted form of concrete domains, and a restricted form of
so-called role-value maps. In addition, it is shown in [7] that almost all additions
of other typical DL constructors to EL make subsumption w.r.t. general TBoxes
ExpTime-complete.

It should be noted that these results are not only of theoretical interest. In
fact, both the large medical ontology Snomed ct22 and the Gene Ontology23

can be expressed in EL, and the same is true for large parts of the medical
ontology Galen [102]. First implementations of the subsumption algorithm for
EL sketched above behave well on these very large knowledge bases [19, 81, 111].

In [8], the DL EL++ is extended with reflexive roles and range restrictions
since these means of expressivity have turned out to be important in medical
ontologies. It is shown that subsumption remains tractable if a certain syntactic
restriction is adopted. The DL obtained this way corresponds closely to the
OWL 2 profile OWL 2 EL.24

Acknowledgement

This article is, on the one hand, based on the Description Logic tutorial by the
author, which he first taught at the 2005 Logic Summer School organized by the
Research School of Information Sciences and Engineering, Australian National
University, Canberra, Australia. This tutorial in turn took some inspirations
from the Description Logic tutorial taught by Carsten Lutz and Ulrike Sattler
at the 2005 ICCL Summer School on Logic-Based Knowledge Representation
22 http://www.ihtsdo.org/snomed-ct/
23 http://www.geneontology.org/
24 http://www.w3.org/TR/owl2-profiles/

organized by the International Center for Computational Logic, TU Dresden,
Germany. On the other hand, this article reuses some of the material from the
overview articles [23, 18, 16], written by the author in collaboration with Ian
Horrocks, Carsten Lutz, and Ulrike Sattler.

References

1. Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. Quonto: Querying
ontologies. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proc.
of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 1670–1671.
AAAI Press/The MIT Press, 2005.

2. Carlos Areces, Maarten de Rijke, and Hans de Nivelle. Resolution in modal,
description and hybrid logic. J. of Logic and Computation, 11(5):717–736, 2001.

3. Franz Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence (IJCAI’91), 1991.

4. Franz Baader. Using automata theory for characterizing the semantics of ter-
minological cycles. Ann. of Mathematics and Artificial Intelligence, 18:175–219,
1996.

5. Franz Baader. Description logic terminology. In [11], pages 485–495. 2003.
6. Franz Baader. Terminological cycles in a description logic with existential re-

strictions. In Georg Gottlob and Toby Walsh, editors, Proc. of the 18th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2003), pages 325–330, Acapulco, Mexico,
2003. Morgan Kaufmann, Los Altos.

7. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369, Edinburgh
(UK), 2005. Morgan Kaufmann, Los Altos.

8. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope
further. In Kendall Clark and Peter F. Patel-Schneider, editors, In Proceed-
ings of the Fifth International Workshop on OWL: Experiences and Directions
(OWLED’08), Karlsruhe, Germany, 2008.

9. Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions
on concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

10. Franz Baader, Hans-Jürgen Bürckert, Bernhard Nebel, Werner Nutt, and Gert
Smolka. On the expressivity of feature logics with negation, functional uncer-
tainty, and sort equations. J. of Logic, Language and Information, 2:1–18, 1993.

11. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

12. Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and Hans-
Jürgen Profitlich. An empirical analysis of optimization techniques for termino-
logical representation systems or: Making KRIS get a move on. Applied Artificial
Intelligence. Special Issue on Knowledge Base Management, 4:109–132, 1994.

13. Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From tableaux to au-
tomata for description logics. Fundamenta Informaticae, 57(2–4):247–279, 2003.

14. Franz Baader and Bernhard Hollunder. A terminological knowledge represen-
tation system with complete inference algorithm. In Proc. of the Workshop on

Processing Declarative Knowledge (PDK’91), volume 567 of Lecture Notes in Ar-
tificial Intelligence, pages 67–86. Springer-Verlag, 1991.

15. Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Steffen
Staab and Rudi Studer, editors, Handbook on Ontologies, International Hand-
books in Information Systems, pages 3–28. Springer–Verlag, Berlin, Germany,
2003.

16. Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Frank van
Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge
Representation, pages 135–179. Elsevier, 2007.

17. Franz Baader, Ralf Küsters, and Ralf Molitor. Structural subsumption considered
from an automata theoretic point of view. In Proc. of the 1998 Description
Logic Workshop (DL’98). CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-11/, 1998.

18. Franz Baader and Carsten Lutz. Description logic. In Patrick Blackburn, Johan
van Benthem, and Frank Wolter, editors, The Handbook of Modal Logic, pages
757–820. Elsevier, 2006.

19. Franz Baader, Carsten Lutz, and Bontawee Suntisrivaraporn. CEL—a polynomial-
time reasoner for life science ontologies. In Ulrich Furbach and Natarajan Shankar,
editors, Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-
Verlag, 2006.

20. Franz Baader and Paliath Narendran. Unification of concepts terms in description
logics. J. of Symbolic Computation, 31(3):277–305, 2001.

21. Franz Baader and Werner Nutt. Basic description logics. In [11], pages 43–95.
2003.

22. Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pinpointing in
the description logic EL+. In Proc. of the 30th German Annual Conf. on Artificial
Intelligence (KI’07), volume 4667 of Lecture Notes in Artificial Intelligence, pages
52–67, Osnabrück, Germany, 2007. Springer-Verlag.

23. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for descrip-
tion logics. Studia Logica, 69:5–40, 2001.

24. Franz Baader and Boontawee Suntisrivaraporn. Debugging SNOMED CT using
axiom pinpointing in the description logic EL+. In Proceedings of the Inter-
national Conference on Representing and Sharing Knowledge Using SNOMED
(KR-MED’08), Phoenix, Arizona, 2008.

25. Franz Baader and Stephan Tobies. The inverse method implements the automata
approach for modal satisfiability. In Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intelligence,
pages 92–106. Springer-Verlag, 2001.

26. Orna Bernholtz and Orna Grumberg. Branching time temporal logic and amor-
phous tree automata. In Eike Best, editor, Proc. of the 4th Int. Conf. on Concur-
rency Theory (CONCUR’93), volume 715 of Lecture Notes in Computer Science,
pages 262–277, 1993.

27. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

28. Alexander Borgida. On the relative expressiveness of description logics and pred-
icate logics. Artificial Intelligence, 82(1–2):353–367, 1996.

29. Ronald J. Brachman. “Reducing” CLASSIC to practice: Knowledge representa-
tion meets reality. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge

Representation and Reasoning (KR’92), pages 247–258. Morgan Kaufmann, Los
Altos, 1992.

30. Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in
frame-based description languages. In Proc. of the 4th Nat. Conf. on Artificial
Intelligence (AAAI’84), pages 34–37, 1984.

31. Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowledge
Representation. Morgan Kaufmann, Los Altos, 1985.

32. Ronald J. Brachman and Daniele Nardi. An introduction to description logics.
In [11], pages 1–40. 2003.

33. Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171–216, 1985.

34. Sebastian Brandt. Polynomial time reasoning in a description logic with exis-
tential restrictions, GCI axioms, and—what else? In Ramon López de Mántaras
and Lorenza Saitta, editors, Proc. of the 16th Eur. Conf. on Artificial Intelligence
(ECAI 2004), pages 298–302, 2004.

35. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: Preliminary report. In Proc. of the 1995 Description Logic
Workshop (DL’95), pages 131–139, 1995.

36. Martin Buchheit, Francesco M. Donini, Werner Nutt, and Andrea Schaerf. A
refined architecture for terminological systems: Terminology = schema + views.
Artificial Intelligence, 99(2):209–260, 1998.

37. Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning
in terminological knowledge representation systems. J. of Artificial Intelligence
Research, 1:109–138, 1993.

38. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable description logics for ontologies. In
Manuela M. Veloso and Subbarao Kambhampati, editors, Proc. of the 20th Nat.
Conf. on Artificial Intelligence (AAAI 2005), pages 602–607. AAAI Press/The
MIT Press, 2005.

39. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429,
2007.

40. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages
149–158, 1998.

41. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in
expressive description logics with fixpoints based on automata on infinite trees.
In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages
84–89, 1999.

42. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description logic framework for information integration. In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 2–13, 1998.

43. Giuseppe De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università
di Roma “La Sapienza”, 1995.

44. Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspondence be-
tween description logics and propositional dynamic logics. In Proc. of the 12th

Nat. Conf. on Artificial Intelligence (AAAI’94), pages 205–212. AAAI Press/The
MIT Press, 1994.

45. Giuseppe De Giacomo and Maurizio Lenzerini. Concept language with number
restrictions and fixpoints, and its relationship with µ-calculus. In Proc. of the
11th Eur. Conf. on Artificial Intelligence (ECAI’94), pages 411–415, 1994.

46. Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in ex-
pressive description logics. In Luigia C. Aiello, John Doyle, and Stuart C. Shapiro,
editors, Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR’96), pages 316–327. Morgan Kaufmann, Los Altos, 1996.

47. Francesco Donini. Complexity of reasoning. In [11], pages 96–136. 2003.
48. Francesco Donini and Fabio Massacci. EXPTIME tableaux for ALC. Acta Infor-

matica, 124(1):87–138, 2000.
49. Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini, Alberto Marchetti

Spaccamela, Daniele Nardi, and Werner Nutt. The complexity of existential quan-
tification in concept languages. Artificial Intelligence, 2–3:309–327, 1992.

50. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The
complexity of concept languages. In James Allen, Richard Fikes, and Erik Sande-
wall, editors, Proc. of the 2nd Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR’91), pages 151–162. Morgan Kaufmann, Los Altos,
1991.

51. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
Tractable concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 458–463, Sydney (Australia), 1991.

52. Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. of Computer and System Sciences, 18:194–211, 1979.

53. Melvin Fitting. Tableau methods of proof for modal logics. Notre Dame J. of
Formal Logic, 13(2):237–247, 1972.

54. Michael R. Garey and David S. Johnson. Computers and Intractability — A guide
to NP-completeness. W. H. Freeman and Company, San Francisco (CA, USA),
1979.

55. Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query
answering for the description logic SHIQ. In Manuela M. Veloso, editor, Proc. of
the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pages 399–404,
Hyderabad, India, 2007.

56. Rajeev Goré and Linh Anh Nguyen. Exptime tableaux for ALC using sound
global caching. In Proc. of the 2007 Description Logic Workshop (DL 2007),
Brixen-Bressanone, Italy, 2007.

57. Erich Grädel. Guarded fragments of first-order logic: A perspective for new de-
scription logics? In Proc. of the 1998 Description Logic Workshop (DL’98). CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.

58. Erich Grädel. On the restraining power of guards. J. of Symbolic Logic, 64:1719–
1742, 1999.

59. Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem
for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

60. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A
logical framework for modularity of ontologies. In Manuela M. Veloso, editor,
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pages
298–303, Hyderabad, India, 2007.

61. Volker Haarslev and Ralf Möller. RACE system description. In Proc. of the 1999
Description Logic Workshop (DL’99), pages 130–132. CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-22/, 1999.

62. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture
Notes in Artificial Intelligence, pages 701–706. Springer-Verlag, 2001.

63. Martin Hofmann. Proof-theoretic approach to description-logic. In Prakash
Panangaden, editor, Proc. of the 20th IEEE Symp. on Logic in Computer Sci-
ence (LICS 2005), pages 229–237. IEEE Computer Society Press, 2005.

64. Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts
in terminological systems. Ann. of Mathematics and Artificial Intelligence, 18(2–
4):133–157, 1996.

65. Bernhard Hollunder and Franz Baader. Qualifying number restrictions in con-
cept languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’91), pages 335–346, 1991.

66. Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. Subsumption
algorithms for concept description languages. In Proc. of the 9th Eur. Conf.
on Artificial Intelligence (ECAI’90), pages 348–353, London (United Kingdom),
1990. Pitman.

67. Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636–647, 1998.

68. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ.
In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), pages 57–67, Lake District, UK, 2006. AAAI Press/The MIT Press.

69. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.

70. Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse
roles and role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

71. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive description logics. In Harald Ganzinger, David McAllester, and Andrei
Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial
Intelligence, pages 161–180. Springer-Verlag, 1999.

72. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ-description
logic to disjunctive datalog programs. In Didier Dubois, Christopher A. Welty,
and Mary-Anne Williams, editors, Proc. of the 9th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2004), pages 152–162. Morgan
Kaufmann, Los Altos, 2004.

73. Ullrich Hustadt and Renate A. Schmidt. On the relation of resolution and
tableaux proof systems for description logics. In Proc. of the 16th Int. Joint
Conf. on Artificial Intelligence (IJCAI’99), pages 110–117, 1999.

74. Ullrich Hustadt and Renate A. Schmidt. Issues of decidability for description
logics in the framework of resolution. In R. Caferra and G. Salzer, editors, Au-
tomated Deduction in Classical and Non-Classical Logics, volume 1761 of Lecture
Notes in Artificial Intelligence, pages 191–205. Springer-Verlag, 2000.

75. Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey of decidable
first-order fragments and description logics. Journal of Relational Methods in
Computer Science, 1:251–276, 2004.

76. David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and
related results. In Jiŕı Wiedermann and Petr Hájek, editors, Proc. of the 20th Int.

Symp. on Foundations of Computer Science (MFCS’95), volume 969 of Lecture
Notes in Computer Science, pages 552–562. Springer-Verlag, 1995.

77. Yevgeny Kazakov and Hans de Nivelle. Subsumption of concepts in FL0 for
(cyclic) terminologies with respect to descriptive semantics is PSPACE-complete.
In Proc. of the 2003 Description Logic Workshop (DL 2003). CEUR Electronic
Workshop Proceedings, http://CEUR-WS.org/Vol-81/, 2003.

78. Yevgeny Kazakov and Boris Motik. A resolution-based decision procedure for
SHOIQ. In Ulrich Furbach and Natarajan Shankar, editors, Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes
in Computer Science, pages 662–677. Springer-Verlag, 2006.

79. Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Semantic modularity
and module extraction in description logics. In Malik Ghallab, Constantine D.
Spyropoulos, Nikos Fakotakis, and Nikos Avouris, editors, Proc. of the 18th Eur.
Conf. on Artificial Intelligence (ECAI 2008), pages 55–59. IOS Press, 2008.

80. Natasha Kurtonina and Maarten de Rijke. Expressiveness of concept expressions
in first-order description logics. Artificial Intelligence, 107(2):303–333, 1999.

81. Michael Lawley. Exploiting fast classification of SNOMED CT for query and
integration of health data. In Ronald Cornet and Kent Spackman, editors, Proc.
of the 3rd Int. Conf. on Knowledge Representation in Medicine (KR-MED 2008),
Phoenix (Arizona), USA, 2008.

82. Hector J. Levesque and Ron J. Brachman. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence, 3:78–93,
1987.

83. Carsten Lutz. Complexity of terminological reasoning revisited. In Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
volume 1705 of Lecture Notes in Artificial Intelligence, pages 181–200. Springer-
Verlag, 1999.

84. Carsten Lutz. Interval-based temporal reasoning with general TBoxes. In Proc.
of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 89–94,
2001.

85. Carsten Lutz. The complexity of conjunctive query answering in expressive de-
scription logics. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2008),
Lecture Notes in Artificial Intelligence, pages 179–193. Springer-Verlag, 2008.

86. Carsten Lutz and Ulrike Sattler. Mary likes all cats. In Proc. of the 2000 De-
scription Logic Workshop (DL 2000), pages 213–226. CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-33/, 2000.

87. Robert MacGregor. The evolving technology of classification-based knowledge
representation systems. In John F. Sowa, editor, Principles of Semantic Networks,
pages 385–400. Morgan Kaufmann, Los Altos, 1991.

88. E. Mays, R. Dionne, and R. Weida. K-REP system overview. SIGART Bull.,
2(3), 1991.

89. Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding maximally
satisfiable terminologies for the description logic ALC. In Proc. of the 21st Nat.
Conf. on Artificial Intelligence (AAAI 2006). AAAI Press/The MIT Press, 2006.

90. Marvin Minsky. A framework for representing knowledge. In John Haugeland,
editor, Mind Design. The MIT Press, 1981. A longer version appeared in The
Psychology of Computer Vision (1975). Republished in [31].

91. Michael Mortimer. On languages with two variables. Zeitschrift für Mathematis-
che Logik und Grundlagen der Mathematik, 21:135–140, 1975.

92. D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

93. Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, vol-
ume 422 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1990.

94. Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235–249, 1990.

95. Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query
answering in expressive description logics via tableaux. J. of Automated Reason-
ing, 41(1):61–98, 2008.

96. Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-variable
logic with counting. In Proc. of the 12th IEEE Symp. on Logic in Computer
Science (LICS’97), pages 318–327. IEEE Computer Society Press, 1997.

97. Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies.
In Allan Ellis and Tatsuya Hagino, editors, Proc. of the 14th International Con-
ference on World Wide Web (WWW’05), pages 633–640. ACM, 2005.

98. Peter F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic Work-
shop (DL’99), pages 9–13. CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-22/, 1999.

99. Peter F. Patel-Schneider, Deborah L. McGuiness, Ronald J. Brachman, Lori
Alperin Resnick, and Alexander Borgida. The CLASSIC knowledge represen-
tation system: Guiding principles and implementation rational. SIGART Bull.,
2(3):108–113, 1991.

100. Christof Peltason. The BACK system — an overview. SIGART Bull., 2(3):114–
119, 1991.

101. M. Ross Quillian. Semantic memory. In M. Minsky, editor, Semantic Information
Processing, pages 216–270. The MIT Press, 1968.

102. Alan Rector and Ian Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In
Proceedings of the Workshop on Ontological Engineering, AAAI Spring Sympo-
sium (AAAI’97), Stanford, CA, 1997. AAAI Press.

103. Klaus Schild. A correspondence theory for terminological logics: Preliminary
report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),
pages 466–471, 1991.

104. Klaus Schild. Querying Knowledge and Data Bases by a Universal Description
Logic with Recursion. PhD thesis, Universität des Saarlandes, Germany, 1995.

105. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In Georg Gottlob and Toby Walsh,
editors, Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pages 355–362, Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

106. Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Ron J.
Brachman, Hector J. Levesque, and Ray Reiter, editors, Proc. of the 1st Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR’89),
pages 421–431. Morgan Kaufmann, Los Altos, 1989.

107. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
unions and complements. Technical Report SR-88-21, Fachbereich Informatik,
Universität Kaiserslautern, Kaiserslautern (Germany), 1988.

108. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991.

109. Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of the 2004
Description Logic Workshop (DL 2004), pages 212–213, 2004.

110. Boontawee Suntisrivaraporn. Module extraction and incremental classification: A
pragmatic approach for EL+ ontologies. In Sean Bechhofer, Manfred Hauswirth,
Joerg Hoffmann, and Manolis Koubarakis, editors, Proceedings of the 5th Eu-
ropean Semantic Web Conference (ESWC’08), volume 5021 of Lecture Notes in
Computer Science, pages 230–244. Springer-Verlag, 2008.

111. Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and
Maintenance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Infor-
matik, TU Dresden, 2009. http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-
2008.

112. Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, volume B, chapter 4, pages 134–189. Elsevier Science Publish-
ers (North-Holland), Amsterdam, 1990.

113. Stephan Tobies. A PSPACE algorithm for graded modal logic. In Har-
ald Ganzinger, editor, Proc. of the 16th Int. Conf. on Automated Deduction
(CADE’99), volume 1632 of Lecture Notes in Artificial Intelligence, pages 52–
66. Springer-Verlag, 1999.

114. Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany, 2001.

115. Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System
description. In Ulrich Furbach and Natarajan Shankar, editors, Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes
in Artificial Intelligence, pages 292–297. Springer-Verlag, 2006.

116. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1–37, 1994.

