Putting ABox Updates into Action

Conrad Drescher, Hongkai Liu, Franz Baader, Peter Steinke, Mitael Thielscher
Department of Computer Science,
Dresden University of Technology
Nothnitzer Str. 46, 01187 Dresden, Germany

Abstract room for optimizations since the updated ABoxes contain a
lot of redundant information. The second problem is that the
updated ABoxes are so-called Boolean ABoxes, which can-
not be directly handled by traditional DL reasoners. Themai
contributions of this paper are, on the one hand, that we pro-
pose and evaluate different optimization approaches fiorco
puting more concise updated ABoxes. On the other hand,
we compare different approaches for reasoning with Boolean
ABoxes, among them one based on the DPLL(T) approach.

The rest of this paper is organized as follows. In Section 2,
we recall the basic notions for DLs and ABox updates. In
Sections 3 we present optimizations that enable the canstru
tion of more concise updated ABoxes, and in Section 4 we
discuss reasoning with Boolean ABoxes. In Section 5, the
1 Introduction approaches introduced in the previous two sections are em-
pirically evaluated.

When trying to apply recently developed ap-
proaches for updating Description Logic ABoxes
in the context of an action programming language,
one encounters two problems. First, updates gen-
erate so-calledooleanABoxes, which cannot be
handled by traditional Description Logic reasoners.
Second, iterated update operations resultény
large Boolean ABoxes, which, however, contain a
huge amount of redundant information. In this pa-
per, we address both issues from a practical point
of view.

Agent programming languages such as Gdlogvesqueet
al., 1997 and Flux[Thielscher, 200bemploy actions whose
effects are defined in a logic-based calculus to describe an@ Preliminaries

implement the behaviour of intelligent agents. In the so-))

called progression approach, the agent starts with a (@yssi In DLs, knoyvledge is representgd with the_ help of concepts
incomplete) description of the initial state of the world. &vh ~ (Unary predicates) and roles (binary predicates). Complex
an action is performed, it updates this description to take i concepts and roles are inductively defined starting withta se
account the effects of this action. Reasoning about the ddYc Of concept namesa setNr of role namesand a seN; of
scription of the current state of the world is then, for exénp individual namesThe expressiveness of aDLis determined
used in the control structures of the agent program to decidBY the set of availableonstructorsto build conceptsarg@d
which action to apply. The calculi underlying Golog and Flux foles The concept and role constructors of the DASCO™
(situation calculus and fluent calculus, respectively) lemp and. ALCO™ that form the base of our work on ABox up-
full first-order predicate logic, which makes the computati date are shown in Table 1, whefe D are concepts;, r are

of exact updates as well as the use of decision procedures féples, andz, b are individual names. The DL that allows only
reasoning about descriptions of the state of the world imposfor negation, conjunction, disjunction, and universal amel
sible. To overcome this pr0b|em’ recent padaaadeet al,, istential restrictions is calledlLC. By addlng nominalg),
2005; Liuet al, 2006 have proposed to employ a decidable we obtain ALCO, which is extended toALCO® by the @-
Description Logic (DL)[Baaderet al., 2009 in place of full constructor from hybrid logi¢Areceset al, 1999, and to
first-order predicate logic. In particular, states of theldo ALCO™ by the Boolean constructors on roles and the nom-
are then described using a DL ABox. [hiu et al, 2004, inal role [Liu et al, 2006. We will use T (L) to denote

a method for updating DL ABoxes has been developed, andrbitrary tautological (unsatisfiable) concepts and rolgg

in [Drescher and Thielscher, 2007was shown that this no- sub(¢) we denote the set of all subconcepts and subroles of a
tion of an update conforms with the semantics employed byoncept or roleb, respectively.

Golog and Flux. The semantics of concepts and roles is definedntier-

In practice, however, there are two obstacles towards enpretationsZ = (A%, -7). ThedomainAZ is a non-empty set
ploying the update approach frofhiu et al, 2004 in the and theinterpretation function? maps each concept name
context of agent programs. First, using the update proesdur A € N¢ to a subsetd” of A7, each role name € Ng to a
in the form described ifiLiu et al, 2004 quickly leads to binary relationr? on AZ, and each individual name € N,
unmanageably large ABoxes. However, there is quite some an individuala® € AZ. The interpretation functiorf is

Name | Syntax [Semantics | Intuitively, an update literad(¢) says that this literal holds

negation -C AT\ C* after the change of the world state. The formal semantics of
conjunction cnD | cZnD? updates given ifiLiu et al,, 2004 defines, for every interpre-
L 2 sccessoreretala oblanec by Shanns
univ. res. vr.C | {z | Vy.((z,y) € rF —y € CT)} 9 P :

mantics first introduced ifWwinslett, 1983. Given an ABox

exist. res. IC | {z]y((y) er" AyeCT)} | 4 allits models are considered to be possible current states
nominal {a} | {a”} of the world. The goals is then to find an updated ABbxt/

@ constructor | @,C | A'if o” € C*, and(otherwise that has exactly the successor of the modeld afs its mod-

role negation o (AT x AT\ 2 els, i.e., A x U must be such that/ (A +U) = {I¥ | T €

role conjunction| grir | g2 nrZ M(A)}.2 In general, such an updated ABox need not exists.

role disjunction | ¢ Ui~ Furt The minimal DLs that contain both the basic DALC and

are closed under ABox updates afCO® and Boolean

B s v ~
nominal TOle {(a.b)} {(a_ b)) S T ALCO. For ALCO®, updated ABoxes are exponential in the
Table 1: Syntax and semantics4£CO™ and ALCO™. size of the original ABox and the update. The DLLCO™T
inductively extended to complex concepts and roles as showidMits updated ABoxes that are exponential in the size of the
in Table 1. update, but polynomial in the size of the original ABox. This

An ABox assertioris of the formC'(a), 7(a, b), or —r(a, b) Is the E@eason why, n this work, we focus othCOJr "?‘”d .
with r a role,C’ a concept and, b individual names. Alas- A£CO . The following two propositions, which are simpli-
sical ABox or anABoxfor short, is a finite conjunction of fied and streamlined versions of the ones giveftin et al,
ABox assertions. /Boolean ABoss a Boolean combination 2008, tell us how updated ABoxes can be computed for these
of ABox assertions. For convenience we will also sometimedW0 DLS:
represent classical and Boolean ABoxes as finite sets atasseeroposition 2.2 (Updated ABox forALCO™) Let oM be
tions by breaking the toplevel conjunctions. An interptieta the concept (role) obtained by the construction definedgp Fi
7 is amodelof an assertion’(a) if a € CT. Tisamodel yre 1. Let the ABoxd’ be defined as
of an assertiom(a, b) (resp.—r(a, b)) if (aZ,b%) € r* (resp.

(a®,b%) ¢ rT). A model of a (Boolean) ABox is defined in A = /\(A uiU) Vv /\(A“ ul), (1)
the obvious way. We us&/(A) to denote the set of models
of a Boolean ABoxA. A (Boolean) ABoxA is consistenif where the ABoxd! is defined asd" = {o¥ (1) | a(f) € A}.
M(A) # (. Two (Boolean) ABoxes4d and. A’ areequiva- ThenA U = A'.

— VA / 1
lent, denoted byd = A', if M(A) = M(A'). An assertion For the DL ALCO®, the part of the construction of up-

 is entail Bool AB itt if ; .
o is entailedby a Boolean ABoxA, written asA = a, i dated concept€¥ that differs from the construction for

M(A) € M({a}). ClassicalALCO®-ABoxes can equiv- ALCOY is depi P -
) . picted in Figure 2. Her@bj(i{) denotes all
alently be compiled to Booleartl LCO-ABoxes (and vice the individuals that occur in the upddte

versa) — the translation in the first direction is exponénitia
the other direction it is linediLiu et al, 200§. Consistency Proposition 2.3 (Updated ABox for.ALCO®) For
checkingandentailmentfor classical ABoxes are standard in- _4,cO® the ABoxAP is defined as

ference problems and supported by all DL reasdnevkile,

to the best of our knowledge, no state of the art reasoner di- A” ={C”(a) | C(a) € A}U
rectly supports tJrrweTse inferences for Boolean ABoxes. Rea- {r(a,b) | r(a,b) € AN —-r(a,b) ¢ D}U
soning inALCO™ is NExPTIME complete[Tobies, 200; {~r(a,b) | ~r(a,b) € AAT(a,b) ¢ D).

for ALCO“ itis PSPACE completelAreceset al, 1999.
Let A’ be as defined in (1). TheA* U = A’.
ABox Update

To see how the construction of updated ABoxes works con-
An ABox can be used to represent knowledge about the statg ; .
o ; der the following example:
of some world. Anupdatecontains information on changes
that have taken place in that world. Example 2.4 (Updated ABox)Let the ABox4 = {A(a)}

o . be updated witli{ = {—A(a)}. Following Propositions 2.2
Definition 2.1 (Update) An updatel/ = {4(t)} contains a and 2.3 we obtain the (highly redundant) updated ABox
single literal, i.e.5(%) is of the formA(a), —A(a), r(a,b),
or —r(a, b) with A a concept name; a role name, and, b {(A(a) A =A(a)) vV ((AU{a})(a) A —A(a))},

individual names. 7 which can be simplified t§—A(a)}. The first disjunct is for

the case that the update was already true, whereas the second

IAlist of DL i ilable http://www.cs. . e . :
Istol DL reasoners is available attp ¢s-man disjunct is for the case that it wasn't.

ac.uk/ - sattler/reasoners.html

2In [Liu et al, 2004, an update is defined as a consistentsetof
literals, not as a single literal. Updating an ABgkwith a set of %It should be noted that for deterministic updates the Winslett
literals can in our setting be achieved by iteratively updatihgith semantics is uncontroversial, even though it does not extend to non-
the individual literals. deterministic effects or ramifications.

u P -/
A= (o L tepn-(L ten
u _
= eu L t@omn-c L oy
{a}" = {a} {(@,0)} = {(a,b)}
(O = -CY (=r) = -r
(cnp¥ = c“np" (rig¥ = HMng”
(CuDM = Cc*up“ (rug = HMug!
Fr.0M = IrH.cH (vr.OM = wH.c4
Figure 1: Constructing™ andr¥ for ALCO™
(@O0 = @cY
Fr.oM = | |_| -{a} N 3r.C")3r(|_| -{a} 1 CY)
a€0bj(U) |_| ac0bj(U) I_l
U U
H a,bGObj(M),T(a,b)&M({a} i EIT({b} ||_|_|C)) - ﬁT(a,b)GM({a} : @bc)
U _ - e U - — u
(Vr.C)" = (aGObj(u) {a} = Vr.C") 11 VT'(aEObj(u) {a} Cl’_l)
— 4 — U
a,bEObj(Z/{),r(a,b)gl/{({a} vr({b} = ¢ N ﬁr(a,b)Gl/l({a} @)
Figure 2: Constructing for ALCO®
3 Optimizations for ABox Updates By updating a Boolean ABox directly we also obtain a

Lo . slightly more compact representation than the original-ene
It turns out that a naive implementation of the update algoy - updaté/ is no longer contained in two disjuncts:
rithms based on Proposition 2.2 or 2.3 is not practical. Even _)
for very simple update problems — where simple means e.dobservation 3.2 (Updating Boolean ABoxes)or a
small initial ABoxes containing only literals — after only a Boolean ABoxA (we assume negation has been pushed
few updates we obtain ABoxes so huge and redundant thdside the assertions), let the updated ABthbe defined as
the reasoners cannot handle them anymore. In this section A = (A®U) A /\L{.

we propose a range of techniques for obtaining less redun-

dantupdated ABoxes. Here A ® U is defined recursively as
In particular we are looking for ABoxes that are smaller u
than, but equivalent to, the updated ABoxes. In principle a®U = aVoa
this could be done by enumerating ever bigger ABoxes, and (aR®kB)eU= (acdU)X(Bal)

checking for equivalence to the updated ABox. This is not . . D

likely to be practical, though. Instead we focus on logi- Where& denotesi or V, a is an assertion, ani{a} IS

cal transformations for obtaining smaller updated ABoxes.def'”edd as in Proposition 2.2 (or 2.3) foALCO™ (or for

Since these transformations can be computationally experdLCO®, respectively). Thenl U = A'.

sive themselves, we also identify fragments of the transfor)

mations that we expect to be relatively cheap. The proposeB€términate Updates

techniques are each motivated by avoidable redundancy thkoking at the construction of updated ABoxes, we see that

we observed in practical examples. We present the variou§0m an ABox.A by an update we get a disjunctichv A“.

techniques for obtaining smaller updated ABoxes individu-This causes a rapid growth of the updated ABox. If, however,

ally; they can be combined in a modular fashion. either the update or its negation is entailed by the ABbx
then one of the disjuncts is inconsistent and can be removed:

Updating Boolean ABoxes Observation 3.3 (Determinate Updates)For (Boolean)

Updating an ABox according to Proposition 2.2 or 2.3 resultsanBox .4, updateld = {6}, and updated ABoxd’ we have
in a Boolean ABox. IrfLiu et al, 2004 this updated ABoxis that A’ = Aif Ak 6 and A = UU A4 if A E 64

transformed to a non-Boolean ABox using theconstructor, Otherwis:e, if neithetd = ¢ nor A |= -4, both A? and .AY
before it is updated again. The following observation showsgre consistent witk.

Fhat BOQ'G?F‘ ABoxes can dlrectly_ b.e updated again by UpdarIf)etecting this type of situation requires up to two reasgnin
ing the individual assertions, avoiding the transformatio steps:A = 6 and.A = -3, resulting in a tradeoff between

Observation 3.1 (Distributivity of Update) Update dis- time and space efficiency.
tributes over conjunction and disjunction in Boolean ABnxe

e Exploiting the Unique Name Assumption

_ The common unique name assumption (UNA) means that no
(A1 B Az) x U = (Ar+ U)K (Az * U), two individual names may denote the same object. The con-
wherel denotes eithen or v (negation can be pushed inside structions depicted in Figure 1 and 2 do not take the UNA

the assertions).
) “The latter of these two observations is frohiu et al, 2004.

into account; but we can construct simpler updated ABoxes Removing all entailed assertions might be too expensive in

by keeping track of the individuals andt that an assertion
~(5) refers to when updating it with(#):

Observation 3.4 (Updated Assertion with UNA) Let A be
an ABox,U/ an update, and4’ the updated ABox. Further,
let the ABoxB3 be obtained by re-defining the ABo¥! as
At = {CY(a) | C(a) € AYU{rY=b(a,b) | r(a,b) € A}
for ALCOT,

where C¥-% and ¥~ are given in Figure ¥ For
ALco®
concept assertions. Theff = B.

practice; one might try doing this periodically.

Propositional ABoxes

Sometimes we do not need the full power of DL reasoning,
but propositional reasoning is enough:

Definition 3.9 (Propositional ABox) We call a Boolean
ABoxA propositionalf it does not contain quantifiers. -

For propositional ABoxes we could in principle use pro-

ABoxes we only use the modified construction ofyression algorithms for propositional logidmir and Rus-

sell, 2003 and efficient SAT-technology, since an updated

This UNA-based construction is not costly at all. It can- Propositional ABox is propositional, too.

not identify all cases where the UNA admits a more concis
updated ABox, though. The next example illustrates both i

strength and limitations:

Example 3.5 (Exploiting UNA) If we update the ABoX =
{C(i)} withd = {~C(j)}, using C*>* we obtainC (i),
instead ofC' LI {;j}(i) using C“. Next consider the ABox
A={Vr.({j} 1 C)}(), updated byl = {C(k)}. As part of
the update construction we obtaitr.({j} 1 (C' 1 —{k})) (%)
which can be simplified using UNA to-.({j} 1 C)(¢). Our
method for exploiting UNA cannot detect this latter case.

Omitting Subsuming Disjuncts and Entailed Assertions
Intuitively, in a disjunction we can omit the “stronger” afd
disjuncts:

Observation 3.6 (Omitting Subsuming Disjuncts) Let the
disjunction(AV AY) be part of an updated ABox. 4 = AY
(or A4 E A)then(A Vv AY) = AY (or (A vV AY) = A).

Detecting subsuming disjuncts in general requires reagoni

telndependent Assertions
Next we address the guestion under which conditions an as-

sertion in an ABox is not affected by an update, i.e. indepen-
dent. The more independent assertions we can identify, the
more compact our ABox representation becomes.

Definition 3.10 (Independent Assertion) Assertion in an
ABox A is independent from updaté = {5} iff AxU =
a A (BxU)whereB = A\ {a}. =

Detecting this in all cases requires reasoning steps aisd thu
is costly. Itis easy, though, to syntactically detect soffrtb®
independent assertions:

Observation 3.11 (Independent Assertion)For an ABoxA
in negation normal form and updaté = {(-)d(¢1)}, the
assertion(z) € A is independent if ¢ sub(a). Itis also
independent if4 = t; # ts, 6 occurs ina only outside the
scope of a quantifier, and for all subconceptsC' of « the
assertionC'(4) is independent df.

But by a simple, syntactic check we can detect beforehand
some cases where one of the dlSJl_JnAfé and A vv_|II su_b—_ 4 Reasoning with Boolean ABoxes
sume the other. Then the computation of subsuming disjuncts

can be avoided. We say that an occurrence of a concept é&s we have seen in the previous sections, updated ABoxes

role named in an assertion ipositive if it is in the scope

of an even number of negation signs, aregjativeotherwise;

0 occurs only positively (negatively) an assertion if every
occurrence ob is positive (negative).

Observation 3.7 (Detecting Subsuming Disjuncts)f for
an ABox.A, updated with updaté/ = {(—)d(¢)}, we have
that:

(1) if the update is positive (i.6(t)) then
— if § occurs only positively id thenAY E A; and
— if § occurs only negatively i then 4 = AY.

(2) if the update is negative (i.e4(¢)) then
— if § occurs only positively iod then A = AY; and
— if § occurs only negatively inl thenAY E A.

Conversely, we can also avoid updating entailed assertions

Observation 3.8 (Omitting Entailed Assertions) Let A be
an ABox and/ an update. It/ = aor A\ {a} E « for
some assertion € A, then A «U = (A\ {a}) xU.

SWe omit the Boolean constructors.

are Booleand£LCO“- or ALCO'-ABoxes, so that an intelli-
gent agent built on top of ABox update needs Boolean ABox
reasoning. Reasoning witd£C-LTL formulas [Baaderet

al., 2009 requires Boolean ABox reasoning, too. However,
Boolean ABox reasoning is not directly supported by DL rea-
soners. In this section, we present four different reagpnin
methods that can handle Boolean ABoxes:

e one where a DL reasoner operates on single disjuncts of
a Boolean ABox in DNF;

e one which uses Otter, a first-order theorem prover;

e one which uses a consistency preserving reduction from
a Boolean ABox to a non-Boolean ABox; and

e one which is based on propositional satisfiability testing
modulo theories — the DPLL(T) approach.

Replacing every assertion in a Boolean AB&xvith a propo-
sitional letter results in a propositional formuldy. The
ABox A is aBoolean ABox in CNF (resp. DNHR) F4 is

in CNF (resp. DNF). The first approach works on Boolean
ABoxes in DNF while the other approaches are based on
CNF.

At = T, ifU = {-A@G)} At = 1, ifu = {AG) e}
AU = A, if U # {~A(i)} andid # {A(i)}
riI = T, if U = {-r(i,) i = L, it ={r(i,j)}
Eu}:] = ro it U # {-r(i,j)} andUd # {r(i,)} oy
iy = T iy = L
{Gaye =T {9} = Lifksiorl#;
(Fr.0)Ht = Ir.(CY),ifU # {q(i,z)} for ¢ € sub(r) (Vr.C)"" = Vr.(CH), if U # {q(i,x)} for ¢ € sub(r)
(Fr.0)H" = (Fr.C)4, otherwise (Vr.O)H" = (vr.C)4, otherwise
(@jC)u’i = @jC’”’j (@—LC)M = @—L‘Cu’i

Figure 3: Constructing-* andrt:i~7 for ALCO™ and ALCO®
In all approaches we do not use the equivalence-preservinghe theory to solve the satisfiability problem modulo theo-
exponential transformation frofiiiu et al, 2004 for com- ries (SMT)[Nieuwenhuiset al,, 2007. In DPLL(T) a DPLL
piling the @ constructor away. Instead we simulate the procedure works on the propositional formula obtained by re
operator by a universal rolBong, 2007T; this consistency- placing the theory atoms with propositional letters. Whenev

preserving transformation is linear. the DPLL procedure extends the current partial interpiciat
We use Pellet as a DL reasoner because it supports nomdy a new element the theory solver is invoked to check con-
nals, query-answering and pinpointifjrin et al., 2007. sistency of the conjunction of the theory atoms correspundi
to the partial, propositional interpretation. If the thgesolver
The DNF Approach reports an inconsistency, the DPLL procedure will backjump

A Boolean ABox in DNF is consistent iff it contains a con- and thus the search space is pruned_

sistent disjunct. We can employ a DL reasoner to decide the The consistency problem of Boolean ABoxes can be
consistency of each disjunct. We refer to this approach agiewed as an instance of SMT where ABox assertions are the
Pellet-DNF. A drawback of this approach is that we will seetheory atoms and a DL reasoner serves as theory solver.
that the less redundant updated ABoxes are in CNF, and thus The non-standard DL inference of pinpointifchlobach,
require a costly translation to DNF (using de Morgan’s laws) 2003; Baader and Raloza, 200Bis highly relevant to this
The Theorem Prover Approach approach. Explaining why an ABox is inconsistent is an in-
The DL ALCO* admits smaller updated ABoxes than stance of the pinpointing problem, where an explanation is a

ar)) minimal sub-conjunction of the input ABox, containing only
ALCO™ [Liu etal, 2006; however, its role operators are not se assertions that are responsible for the inconsistenc

supported by current mature DL reasoners. Once we translaig,sed on these explanations in the DPLL(T) approach we can
ALCO™ tofirst order logidBorgida, 1996, we can use theo- il better backjump clausélieuwenhuiget al, 2007.

rem provers that can cope with Boolean role constructors. We \ye implemented an algorithm based on the DPLL(T) ap-
chose to use OttéMcCune, 200Bbecause it supports query- proach with the strategy of MiISAT [Een and Srensson,
answering via answer litera&reen, 196B this is usefule.g. 5003, Pellet was chosen as the theory solver because it sup-

for parametric actions, which are to be instantiated to conyqtg pinpointing. This approach is called Pellet-DPLL.
crete actions. After a few experiments we chose to configurg

Otter to use hyperresolution combined with Knuth-Bendix-Propositional Reasoning

rewriting, plus the set-of-support strategy. For the case where we can identify propositional ABoxes
. we have developed and implemented a simple, specialized
The Reduction Approach method. Reasoning there is reduced to efficient list opera-
We can linearly compile Boolead LCO®-ABoxes to classi- tions. This reasoner is used to supplement the other reasoni
cal ALCO“®-ABoxes|[Liu et al, 2004. Then, simulating the approaches (if possible).

@-operator by a universal role, we can directly use a standard

DL reasoner; this approach is henceforth called Pellet-UR. 5 Experimental Results

The DPLL(T) Approach In this section, we evaluate the efficiency of the differgmt u
Most modern SAT-solver§Een and Brensson, 2003; de date and reasoning mechanisms. The relevant measures are
Moura and Bjgrner, 20Q&re variants of the Davis-Putnam- the time needed for computing the updated ABox together
Logemann-Loveland (DPLL) procedufBavis and Putnam, With its size, and the efficiency of reasoning with it. We will
1960; Daviset al, 1964. Such a SAT-solver exhaustively See that choosing the right update and reasoning algorithms
applies transition rulésto generate and extend a partial in- depends upon a problem’s specifics.
terpretation and thus decides satisfiability of a proposi An update algorithm based on Proposition 2.2 or 2.3 gen-
formula in CNF. One of the strengths of the DPLL proceduresrates Boolean ABoxes in DNF, while an algorithm based
is that they can efficiently prune the search space by bgjldinon Proposition 3.2 outputs ABoxes in CNF. Of course, every
and learning backjump clausgghanget al, 2001. Boolean ABox can equivalently be represented in CNF or in
The DPLL(T) approach combines a DPLL procedure with DNF; however, this transformation (using De Morgan’s laws)

a theory solver that can handle conjunctions of literals inis rather expensive. The performance of reasoning with up-
dated ABoxes strongly depends on the choice of underlying

See[Nieuwenhuiset al, 2007 for the details. representation. We use several types of testing data:

e a set of randomly generated Boolean ABoxes in CNF; corner). On inconsistent ABoxes Pellet-DPLL also exhibits
a set of random ABoxes, Updates, and Queries; and & linear increase in runtime, while on consistent ABoxes the
¢ P Q runtime is less predictable. Pellet-DPLL performs better o

e the Wumpus worldRussell and Norvig, 2003 all of the inconsistent Boolean ABoxes. On most of the con-
We distinguish two main types of update algorithms that weSiStent ABoxes, the Pellet-UR approach does better. This is
implemented: due to the fact that in Pellet-DPLL the frequent invocations

. of the theory solver Pellet are more likely to pay off if ineon
e In one we compute updated ABoxes in DNF; sistency of the current, partial model can be detected often

e alternatively, we compute updated ABoxes in CNF. We then can build a bac_k—Jump clause that helps to prune the
, , .. search space. The runtimes of Pellet-UR are about the same
Both approaches are further parametrized by using differg poth consistent and inconsistent input data.
ent reasoners, and a different combination of optimization £, otter the conversion from ABoxes in CNF to full first
techniques. We have implemented the different ABox updat@qer CNF proved to be a big obstacle, as did the conversion
algorithms in ECLiPSe-Prolog. to DNEF for Pellet-DNF

The reasoning methods have already been described in
Section 4. We call a reasoning methiogbrid if it resortsto . 53 Random Updates
our propositional reasoner whenever possible; for exampl

we then speak of hybrid Pellet-UR. eiNe have extensively experimented with a set of randomly

generated ABoxes and updates. Initial ABoxes were between
5.1 Representation: DNF or CNF? two and thirty assertions in size.We were mostly interested
in runtime and space consumption for iterated updates. We

We have used both the Wumpus world and the random updaig, ;14 make a number of interesting observations:

examples to compare DNF and CNF based update algorithms) .
(with and without optimizations). CNF representation con- ¢ The UNA-based concept update construction from Fig-
sistently proved to be superior: The DNF approach quickly ure 3 always paid.

drowns in redundant information. This is because to compute ¢ The reasoning needed to identify determinate updates
an updated ABox in DNF is to include both the update and pays in the long run.

all the non-affected information in both disjuncts. Deitegt
subsuming disjuncts and determinate updates alleviaigs th
problem, but does not eliminate it. By avoiding this redun-
dancy we immediately obtain an updated ABox in CNF. On e Identifying all entailed assertions to shrink the ABoxes
DNF-based updated ABoxes Pellet-DNF performs best—the proved to be too expensive, too.

other methods suffer from the expensive conversion to CNF.
In the following we only consider the CNF-based representa-
tion of updated ABoxes.

e Syntactically detecting subsuming disjuncts worked,
too. Doing so using a reasoner proved too expensive.

e Resorting to our dedicated propositional reasoner when-
ever possible resulted in significantly better perfor-

mance.

5.2 Consistency Checking for Boolean ABoxes in e We can keep updated ABoxes much smaller at a low cost
CNF by syntactically identifying independent assertions.
We implemented a random generator of BooledrdC- Updating an ABox according téLiu et al, 2004 is a

ABoxes, which randomly generates a propositional formulgourely syntactic procedure. But if we iteratively update
in CNF and then assigns a randomly generated assertion #sBoxes, then in the long run we get both a lower space and
each propositional letter. Several parameters are usaghto ¢ time consumption by calling a reasoner to identify determi-
trol the shape of the generated Boolean ABoxes (the numbersate updates. Using our propositional reasoner wheneger po
in parentheses indicate the upper bound on the parameters wible for this resulted in better performance. If identifyi
used): the numben; of literals in a clause (53), the num- determinate updates required DL reasoning then Pellet-UR
berns of propositional letters (36), the numbey of clauses performed slightly better than Pellet-DPLL. This is due to
(83), the numbet of nested roles in a concept assertion (23),the fact that less updates were determinate than not, asd thu
the numberncs of the constructors in a concept assertioninconsistency was not detected often. On a subset of the ran-
(106), the numbersc, nr, andni of concept names, role dom examples where there were more determinate updates
names, and individual names in an assertion (12 each), arfeellet-DPLL performed better than Pellet-UR. The runtimes
the probabilitypr of generating a role assertion (0.2). for Otter widely varied: converting CNF-ABoxes to full first

In Figure 4, we plot the runtimes of Pellet-DPLL and order CNF proved the bottleneck. Pellet-DNF was not com-
Pellet-UR on these testing data against the number of synpetitive because of the expensive conversion to DNF.
bols in the Boolean ABox. The points plotted -asndicate We could also identify characteristics of initial ABoxes
the runtime of Pellet-DPLL while those plotted asndicate that allow to predict performance: If the initial ABox does
the runtime of Pellet-UR. We depict the performance on connot contain nested quantifiers then performance is acdeptab
sistent and inconsistent Boolean ABoxes separately — there.g. we can iteratively apply 300 singleton updates to afifte
were more consistent than inconsistent Boolean ABoxes. assertion ABox in 90 seconds, without a significant increase

For Pellet-UR, the runtime linearly increases with the sizein size. If the initial ABox contains nested quantifiers spac
of the input (the bar from the lower left to the upper right consumption quickly grows out of bounds. This is because

On consistent ABoxes On inconsistent ABoxes
2000 5 ‘ ‘ 900 ‘ ; ;
1800 | Pellet-DPLL + + | 800 | Pellet-DPLL —+ X
Pellet-UR X i Pellet-UR X %
1600 + + H (S 700 t 1
++ X
_ 1400 t N 1 —~ 600 | x X 1
g 1200 | S £ 500 X
S L A
S 1000 | ‘ T RS+ ﬁi o 400 | ><>><<]
E 800 ; . E X
T 600 | S 300 y ><><]
400 200 N Lo+
+ ++
200 100 | o2 T]
0 p A A A 0 W #‘# A
0 40000 80000 120000 160000 0 20000 40000 60000 80000
number of symbols in the input number of symbols in the input

Figure 4: Benchmarks for Pellet-DPLL and Pellet-UR

we then cannot cheaply identify independent assertions and Model Prop | hybrid Otter | hybrid Pellet-UR| Flux

use the UNA-based concept update construction. For nested#x4 PL1 | 0.008s| 0.008 s 0.008 s 06s
quantifiers usinglLCO™ instead ofALCO® helps to reduce | 8X8PL1| 0.26s 0.26s 0.26s 149s
space consumption; but this still does not result in satisfy 2))(‘2 [F)'I'f 1%2 s ég-i 2 1565955 2;2
overall performance. 4x4DL2 | nla * 23.93s n/a

5.4 The Wumpus World Table 2: Runtimes for the Wumpus World.

The Wumpus WorldRussell and Norvig, 20Q3s a well- proved to be the best DL reasoner in this setting. This is due

known challenge problem in the reasoning about action comy, the fact that this domain requires query-answering: The
munity. It consists of a grid-like world: cells may contain ggent e.g. needs to know for which valuesazofind y we
pits, one cell contains gold, and one the fearsome Wumpusaye that gagentz) A connected, y). Pellet-DPLL is the
The agent dies if she enters a cell containing a pit or thgnly reasoner that lacks direct support for query-answgerin
Wumpus. But she carries one arrow so that she can shoqtys, for quenyC(x), we iteratively check for every individ-
the Wumpus from an adjacent cell. If the agent is next to ;3| namei € N, whetherC (i) holds — but this results in bad
cell containing a pit (Wumpus), she can detect that one of thgerformance for Pellet-DPLL.

surrounding cells contains a pit (the Wumpus), but doesn't e also see that the propositional reasoner performs quite
know which one. She knows the contents of the visited cellsye|| on the propositional models. Including more informa-
Getting the gold without getting killed is the agent's goal. tjon wrt. the Wumpus’ location results in worse performance
At each step, the agent performs sensing to learn whethefe ysed Model DL2 to see if it pays to identify all en-
one of the adjacent cells contains a pit or the Wumpus. SinCgyjjed assertions: after omitting the entaiféat T (wumpus
the sensing results are disjunctive, we cannot treat th@m Viihe model is propositional again. In practice this proves to
ABox updates. But since the properties sensed are st&tic (i. costly. The other observations from Section 5.3 also hold in
cannot change once we know them), we can simply adjoifhis domain. Sometimes removing assertions entailed by the
the sensing results to the ABox serving as the agent’s aurreRpdate did help, though. In particular, once the Wumpus is
world model. The effects of the agent’s (non-sensing) astio to,nd, we can remove the assertigat T (wumpus entailed

(like moving to another cell) are modelled as ABox update. py the respective update and then resort to efficient preposi
The Wumpus World can be modelled in different ways. Intjonal reasoning.

the simplest model, the initial ABox contains the connetio
between the cells, the agent’s location, and the facts lieat t
agent carries an arrow, and that the Wumpus is alive (Modeﬁ5 Summary and Future Work
PL1). For this, Boolean combinations of concept/role diter In this work, we have investigated implementation techegju
als are enough. In Model PL2, we include the fact that thefor ABox update, and for reasoning with (updated) Boolean
Wumpus is at exactly one location by enumerating all possiABoxes. We have introduced and evaluated several optimiza-
ble cases in a big disjunction. We turn PL1 into a DL problemtions of the ABox update algorithms iiLiu et al, 2004.
by including the informatiordat T (wumpug (Model DL1). The lessons learnt were: Using CNF-representation of up-
Model DL2 is obtained from PL2 by adding this same asserdated ABoxes is strongly recommended. The (incomplete)
tion, which here is redundant. Table 2 shows the runtimessyntactic techniques for exploiting the unique name assump
where n/a stands for unavailable expressivity and * for nontion, and detecting subsuming disjuncts and independent as
termination in 15 minutes. For the propositional models wesertions have also resulted in an improved performance. The
also used the action language F[Thielscher, 200b benefit of identifying determinate updates made up for the as
Pellet-DNF, and to a lesser extent also Otter, again hadociated reasoning costs. Other techniques requiring BL re
difficulties with the necessary input conversion. Pell®-U soning in general proved to be too expensive; but removing

some entailed assertions helped in the Wumpus world. [Baaderet al, 2009 Franz Baader, Silvio Ghilardi, and Carsten
Regarding the investigated reasoning methods for Boolean Lutz. LTL over Description Logic Axioms. IIfKR2008) 2008.
ABoxes, we have come to the following conclusions. Pellet{Bong, 2007 Yusri Bong. Description Logic ABox Updates Revis-
DNF is the best reasoner for Boolean ABoxes in DNF. For ited. Master thesis, TU Dresden, Germany, 2007.
consistency checking of ABoxes in CNF, Pellet-DPLL and[Borgida, 1995 Alexander Borgida. On the Relative Expressive-
Pellet-UR worked best. Pellet-DPLL did better for detect- ness of Description Logics and Predicate Logikstificial Intel-
ing an actual inconsistency, while it performed worse than ligence 1996.
Pellet-UR on most of the consistent Boolean ABoxes. ONpayis and Putnam, 1960Martin Davis and Hilary Putnam. A
the randomly generated update examples, Pellet-UR also per Computing Procedure for Quantification Theodpurnal of the
formed slightly better than Pellet-DPLL because inconsis- ACM, 1960.
tency was not detected often. On a subset where the updatg$ayiset al, 1964 Martin Davis, George Logemann, and Donald
were mostly determinate, Pellet-DPLL outperformed Pellet [oveland. A Machine Program for Theorem-provit@pmmuni-
UR. If query-answering is among the reasoning tasks, then cations of the ACM1962.
Pellet-UR is to be preferred over Pellet-DPLL because of Pel[ge Moura and Bjerner, 2008.eonardo de Moura and Nikolaj

let’s direct support for this inference. Bjgrner. Z3: An efficient SMT Solver. IGTACAS2008)2008.

I,t WOU!d k_)‘? interesting to develop heuristic_s for finding [Drescher and Thielscher, 200Conrad Drescher and Michael
suitable individual names as well as other optimizations fo Thjelscher. Integrating Action Calculi and Description Logics.

query-answering in the DPLL(T) approach. The performance |n (K12007), 2007.

of the DPLL(T) approach also d_ep_ends On, the performancﬁfen and 8rensson, 2043Niklas Een and Niklas &ensson. An
of the SAT solver and the pinpointing service. Thus Pellet-" gyensible SAT-solver. IGSAT2003)2003.

DPLL can benefit from more efficient implementation of [Green, 196D Cordell Green. Theorem Proving by Resolution as

these tasks as well. . . .) .
. . a Basis for Question-answering Systenvsachine Intelligenc
The tests on the Wumpus world confirmed that resorting 1969 Q 9>y gence

to our dedicated propositional reasoner whenever posisibleél_

useful. In the Wumpus world, removing entailed assertion Lesperance, Fangzhen Lin, and Richard Scherl. GOLOG: A logic

helped a Io@. In contrast, for the randomly generated update programming language for dynamic domairkaurnal of Logic
examples, finding entailed assertions proved to be tooycostl Programming 1997.

Using Qtteras atheorem prover might be consiqereq SOM&iy et al, 200§ H. Liu, C. Lutz, M. Milicic, and F. Wolter. Up-

}Nhat unfal_r (tlo the'the'orec;n prdovmg e}pp(rjoacr:]), Since itis N0 yating Description Logic ABoxes. IiKR2006) 2006.

onger actively maintained and optimized. The conversion t .

full first order CNF proved to be the biggest obstacle for Otte [M(:C%l;?;‘nizr?g BRZZQA?Q\ l\é(;Cpggﬁ(.)@%‘B'IéER 3.3 Reference Manual.

We chose to use Otter because it supports query-answerin ’

which is not supported by most currepnr'z proﬁé\r‘@?/dinger ﬂ'lieuwenhuisat al, 2007 Robert Nieuwenhuis, Albert Oliveras,
Lot ; - ' Enric Rodfguez-Carbonell, and Albert Rubio. Challenges in Sat-

2007, but vital in some domains. If this is to changeye isfiability Modulo Theories. I(TRA2007)2007

can try to resort to state-of-the art theorem provers fsaora ') '

ing in>./A£C0+ This may allow us to reallypexploit the fact [Russell and Norvig, 20Q3Stuart J. Russell and Peter Norvigyr-

that ALCO™ aamits smaller undated ABoxes t co® tificial Intelligence: A Modern ApproachHPrentice Hall, 2003.

Alternatively, one could also th to use a more dedicated realSchlobach, 2003Stefan Schiobach. ~ Non-Standard Reasoning

soning system ford £CO* [Schmidt and Tishkovsky, 2007 ﬁ,e(rl‘g'gisl_fgé)‘hz%g;b”gg'”g of Description Logic Terminologies.

Acknowledgments Many thanks to Albert Oliveras for his , , . .
: : . : Schmidt and Tishkovsky, 2007Renate A. Schmidt and Dmitry
help regarding the construction of a backjump clause in thé Tishkovsky. Using tableau to decide expressive description logics

DPLL(T) approach. with role negation. I{ISWC2007)2007.

[Sirinet al, 2007 Evren Sirin, Bijan Parsia, Bernardo Cuenca
References _ _ Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A practical
[Amir and Russell, 2003 Eyal Amir and Stuart J. Russell. Logical OWL-DL reasonerJournal of Web Semantic2007.

Filtering. In(1JCAI2003) 2003. [Thielscher, 2006 M. Thielscher. FLUX: A Logic Programming
[Areceset al, 1999 Areces, Blackburn, and Marx. Aroad-mapon Method for Reasoning AgentsTheory and Practice of Logic

evesqueet al, 1997 Hector Levesque, Raymond Reiter, Yves

complexity for hybrid logics. I{CSL1999)1999. Programming 2005.
[Baader and Haloza, 200B Franz Baader and Rafael fRdoza. [Tobies, 2001 Stephan TobiesComplexity Results and Practical
Automata-Based Axiom Pinpointing. [(ICAR2008)2008. Algorithms for Logics in Knowledge Representati®hD thesis,

[Baaderet al, 2003 F. Baader, D. Calvanese, D. L. Mcguinness, ~RWTH-Aachen, Germany, 2001.
D. Nardi, and P. F. Patel-Schneider, editor§he Description [Waldinger, 2007 Richard J. Waldinger. Whatever happened to de-
Logic Handbook Cambridge University Press, 2003. ductive question answering? (hPAR2007)2007.

[Baaderet al, 2009 F. Baader, C. Lutz, M. Milicic, U. Sattler, [Winslett, 1988 Marianne Winslett. Reasoning about Action Using
and F. Wolter. Integrating Description Logics and Action For- a Possible Models Approach. (AAAI1988) 1988.

malisms: First Results. I(AAAI2005) 2005. [Zhanget al, 2001 Lintao Zhang, Conor F. Madigan, Matthew H.
7 Moskewicz, and Sharad Malik. Efficient Conflict Driven Learn-

cf. _ www.cs.miami.edu/ = tptp/TPTP/Proposals/ ing in a Boolean Satisfiability Solver. (KCCAD2001) 2001.

AnswerExtraction.html

