
Putting ABox Updates into Action

Conrad Drescher, Hongkai Liu, Franz Baader, Peter Steinke, Michael Thielscher
Department of Computer Science,
Dresden University of Technology

Nöthnitzer Str. 46, 01187 Dresden, Germany

Abstract

When trying to apply recently developed ap-
proaches for updating Description Logic ABoxes
in the context of an action programming language,
one encounters two problems. First, updates gen-
erate so-calledBooleanABoxes, which cannot be
handled by traditional Description Logic reasoners.
Second, iterated update operations result invery
large Boolean ABoxes, which, however, contain a
huge amount of redundant information. In this pa-
per, we address both issues from a practical point
of view.

1 Introduction
Agent programming languages such as Golog[Levesqueet
al., 1997] and Flux[Thielscher, 2005] employ actions whose
effects are defined in a logic-based calculus to describe and
implement the behaviour of intelligent agents. In the so-
called progression approach, the agent starts with a (possibly
incomplete) description of the initial state of the world. When
an action is performed, it updates this description to take into
account the effects of this action. Reasoning about the de-
scription of the current state of the world is then, for example,
used in the control structures of the agent program to decide
which action to apply. The calculi underlying Golog and Flux
(situation calculus and fluent calculus, respectively) employ
full first-order predicate logic, which makes the computation
of exact updates as well as the use of decision procedures for
reasoning about descriptions of the state of the world impos-
sible. To overcome this problem, recent papers[Baaderet al.,
2005; Liuet al., 2006] have proposed to employ a decidable
Description Logic (DL)[Baaderet al., 2003] in place of full
first-order predicate logic. In particular, states of the world
are then described using a DL ABox. In[Liu et al., 2006],
a method for updating DL ABoxes has been developed, and
in [Drescher and Thielscher, 2007] it was shown that this no-
tion of an update conforms with the semantics employed by
Golog and Flux.

In practice, however, there are two obstacles towards em-
ploying the update approach from[Liu et al., 2006] in the
context of agent programs. First, using the update procedures
in the form described in[Liu et al., 2006] quickly leads to
unmanageably large ABoxes. However, there is quite some

room for optimizations since the updated ABoxes contain a
lot of redundant information. The second problem is that the
updated ABoxes are so-called Boolean ABoxes, which can-
not be directly handled by traditional DL reasoners. The main
contributions of this paper are, on the one hand, that we pro-
pose and evaluate different optimization approaches for com-
puting more concise updated ABoxes. On the other hand,
we compare different approaches for reasoning with Boolean
ABoxes, among them one based on the DPLL(T) approach.

The rest of this paper is organized as follows. In Section 2,
we recall the basic notions for DLs and ABox updates. In
Sections 3 we present optimizations that enable the construc-
tion of more concise updated ABoxes, and in Section 4 we
discuss reasoning with Boolean ABoxes. In Section 5, the
approaches introduced in the previous two sections are em-
pirically evaluated.

2 Preliminaries

In DLs, knowledge is represented with the help of concepts
(unary predicates) and roles (binary predicates). Complex
concepts and roles are inductively defined starting with a set
NC of concept names, a setNR of role names, and a setNI of
individual names. The expressiveness of a DL is determined
by the set of availableconstructorsto build conceptsand
roles. The concept and role constructors of the DLsALCO@

andALCO+ that form the base of our work on ABox up-
date are shown in Table 1, whereC,D are concepts,q, r are
roles, anda, b are individual names. The DL that allows only
for negation, conjunction, disjunction, and universal andex-
istential restrictions is calledALC. By adding nominalsO,
we obtainALCO, which is extended toALCO@ by the@-
constructor from hybrid logic[Areceset al., 1999], and to
ALCO+ by the Boolean constructors on roles and the nom-
inal role [Liu et al., 2006]. We will use⊤ (⊥) to denote
arbitrary tautological (unsatisfiable) concepts and roles. By
sub(φ) we denote the set of all subconcepts and subroles of a
concept or roleφ, respectively.

The semantics of concepts and roles is defined viainter-
pretationsI = (∆I , ·I). Thedomain∆I is a non-empty set
and theinterpretation function·I maps each concept name
A ∈ NC to a subsetAI of ∆I , each role namer ∈ NR to a
binary relationrI on ∆I , and each individual namea ∈ NI

to an individualaI ∈ ∆I . The interpretation function·I is

Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

univ. res. ∀r.C {x | ∀y.((x, y) ∈ rI → y ∈ CI)}

exist. res. ∃r.C {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}

nominal {a} {aI}

@ constructor @aC ∆I if aI ∈ CI , and∅ otherwise

role negation ¬r (∆I × ∆I) \ rI

role conjunction q ⊓ r qI ∩ rI

role disjunction q ⊔ r qI ∪ rI

nominal role {(a, b)} {(aI , bI)}

Table 1: Syntax and semantics ofALCO@ andALCO+.

inductively extended to complex concepts and roles as shown
in Table 1.

An ABox assertionis of the formC(a), r(a, b), or¬r(a, b)
with r a role,C a concept anda, b individual names. Aclas-
sical ABox, or anABox for short, is a finite conjunction of
ABox assertions. ABoolean ABoxis a Boolean combination
of ABox assertions. For convenience we will also sometimes
represent classical and Boolean ABoxes as finite sets of asser-
tions by breaking the toplevel conjunctions. An interpretation
I is amodelof an assertionC(a) if aI ∈ CI . I is a model
of an assertionr(a, b) (resp.¬r(a, b)) if (aI , bI) ∈ rI (resp.
(aI , bI) /∈ rI). A model of a (Boolean) ABox is defined in
the obvious way. We useM(A) to denote the set of models
of a Boolean ABoxA. A (Boolean) ABoxA is consistentif
M(A) 6= ∅. Two (Boolean) ABoxesA andA′ areequiva-
lent, denoted byA ≡ A′, if M(A) = M(A′). An assertion
α is entailedby a Boolean ABoxA, written asA |= α, if
M(A) ⊆ M({α}). ClassicalALCO@-ABoxes can equiv-
alently be compiled to BooleanALCO-ABoxes (and vice
versa) — the translation in the first direction is exponential, in
the other direction it is linear[Liu et al., 2006]. Consistency
checkingandentailmentfor classical ABoxes are standard in-
ference problems and supported by all DL reasoners1, while,
to the best of our knowledge, no state of the art reasoner di-
rectly supports these inferences for Boolean ABoxes. Rea-
soning inALCO+ is NEXPTIME complete[Tobies, 2001];
for ALCO@ it is PSPACE complete[Areceset al., 1999].

ABox Update
An ABox can be used to represent knowledge about the state
of some world. Anupdatecontains information on changes
that have taken place in that world.

Definition 2.1 (Update) An updateU = {δ(t̄)} contains a
single literal, i.e.δ(t̄) is of the formA(a), ¬A(a), r(a, b),
or ¬r(a, b) with A a concept name,r a role name, anda, b
individual names.2 ⊣

1A list of DL reasoners is available athttp://www.cs.man.
ac.uk/ ˜ sattler/reasoners.html .

2In [Liu et al., 2006], an update is defined as a consistent set of
literals, not as a single literal. Updating an ABoxA with a set of
literals can in our setting be achieved by iteratively updatingA with
the individual literals.

Intuitively, an update literalδ(t̄) says that this literal holds
after the change of the world state. The formal semantics of
updates given in[Liu et al., 2006] defines, for every interpre-
tationI, a successor interpretationIU obtained by changing
this model according to the update. This is the Winslett se-
mantics first introduced in[Winslett, 1988]. Given an ABox
A, all its models are considered to be possible current states
of the world. The goals is then to find an updated ABoxA∗U
that has exactly the successor of the models ofA as its mod-
els, i.e.,A ∗ U must be such thatM(A ∗ U) = {IU | I ∈
M(A)}.3 In general, such an updated ABox need not exists.

The minimal DLs that contain both the basic DLALC and
are closed under ABox updates areALCO@ and Boolean
ALCO. ForALCO@, updated ABoxes are exponential in the
size of the original ABox and the update. The DLALCO+

admits updated ABoxes that are exponential in the size of the
update, but polynomial in the size of the original ABox. This
is the reason why, in this work, we focus onALCO+ and
ALCO@. The following two propositions, which are simpli-
fied and streamlined versions of the ones given in[Liu et al.,
2006], tell us how updated ABoxes can be computed for these
two DLs:

Proposition 2.2 (Updated ABox forALCO+) Let αU be
the concept (role) obtained by the construction defined in Fig-
ure 1. Let the ABoxA′ be defined as

A′ =
∧

(A ∪ U) ∨
∧

(AU ∪ U), (1)

where the ABoxAU is defined asAU = {αU (t̄) | α(t̄) ∈ A}.
ThenA ∗ U ≡ A′.

For the DLALCO@, the part of the construction of up-
dated conceptsCU that differs from the construction for
ALCO+ is depicted in Figure 2. HereObj(U) denotes all
the individuals that occur in the updateU .

Proposition 2.3 (Updated ABox forALCO@) For
ALCO@ the ABoxAD is defined as

AD ={CD(a) | C(a) ∈ A}∪

{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ D}∪

{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ D}.

LetA′ be as defined in (1). ThenA ∗ U ≡ A′.

To see how the construction of updated ABoxes works con-
sider the following example:

Example 2.4 (Updated ABox)Let the ABoxA = {A(a)}
be updated withU = {¬A(a)}. Following Propositions 2.2
and 2.3 we obtain the (highly redundant) updated ABox

{(A(a) ∧ ¬A(a)) ∨ ((A ⊔ {a})(a) ∧ ¬A(a))},

which can be simplified to{¬A(a)}. The first disjunct is for
the case that the update was already true, whereas the second
disjunct is for the case that it wasn’t.

3It should be noted that for deterministic updates the Winslett
semantics is uncontroversial, even though it does not extend to non-
deterministic effects or ramifications.

AU = (A ⊔ ⊔
¬A(a)∈U

{a}) ⊓ ¬(⊔
A(a)∈U

{a})

rU = (r ⊔ ⊔
¬r(a,b)∈U

{(a, b)}) ⊓ ¬(⊔
r(a,b)∈U

{(a, b)})

{a}U = {a} {(a, b)}U = {(a, b)}
(¬C)U = ¬CU (¬r)U = ¬rU

(C ⊓ D)U = CU ⊓ DU (r ⊓ q)U = rU ⊓ qU

(C ⊔ D)U = CU ⊔ DU (r ⊔ q)U = rU ⊔ qU

(∃r.C)U = ∃rU .CU (∀r.C)U = ∀rU .CU

Figure 1: ConstructingCU andrU for ALCO+

(@iC)U = @iC
U

(∃r.C)U = (⊓
a∈Obj(U)

¬{a} ⊓ ∃r.CU) ⊔ ∃r.(⊓
a∈Obj(U)

¬{a} ⊓ CU)

⊔ ⊔
a,b∈Obj(U),r(a,b) 6∈U

({a} ⊓ ∃r.({b} ⊓ CU)) ⊔ ⊔
¬r(a,b)∈U

({a} ⊓ @bC
U)

(∀r.C)U = (⊓
a∈Obj(U)

¬{a} → ∀r.CU) ⊓ ∀r.(⊓
a∈Obj(U)

¬{a} → CU)

⊓ ⊓
a,b∈Obj(U),r(a,b) 6∈U

({a} → ∀r.({b} → CU)) ⊓ ⊓
¬r(a,b)∈U

({a} → @bC
U)

Figure 2: ConstructingCU for ALCO@

3 Optimizations for ABox Updates
It turns out that a naive implementation of the update algo-
rithms based on Proposition 2.2 or 2.3 is not practical. Even
for very simple update problems — where simple means e.g.
small initial ABoxes containing only literals — after only a
few updates we obtain ABoxes so huge and redundant that
the reasoners cannot handle them anymore. In this section
we propose a range of techniques for obtaining less redun-
dant updated ABoxes.

In particular we are looking for ABoxes that are smaller
than, but equivalent to, the updated ABoxes. In principle
this could be done by enumerating ever bigger ABoxes, and
checking for equivalence to the updated ABox. This is not
likely to be practical, though. Instead we focus on logi-
cal transformations for obtaining smaller updated ABoxes.
Since these transformations can be computationally expen-
sive themselves, we also identify fragments of the transfor-
mations that we expect to be relatively cheap. The proposed
techniques are each motivated by avoidable redundancy that
we observed in practical examples. We present the various
techniques for obtaining smaller updated ABoxes individu-
ally; they can be combined in a modular fashion.

Updating Boolean ABoxes
Updating an ABox according to Proposition 2.2 or 2.3 results
in a Boolean ABox. In[Liu et al., 2006] this updated ABox is
transformed to a non-Boolean ABox using the@-constructor,
before it is updated again. The following observation shows
that Boolean ABoxes can directly be updated again by updat-
ing the individual assertions, avoiding the transformation.

Observation 3.1 (Distributivity of Update) Update dis-
tributes over conjunction and disjunction in Boolean ABoxes;
i.e.

(A1 ⊠ A2) ∗ U ≡ (A1 ∗ U) ⊠ (A2 ∗ U),

where⊠ denotes either∧ or ∨ (negation can be pushed inside
the assertions).

By updating a Boolean ABox directly we also obtain a
slightly more compact representation than the original one—
the updateU is no longer contained in two disjuncts:

Observation 3.2 (Updating Boolean ABoxes)For a
Boolean ABoxA (we assume negation has been pushed
inside the assertions), let the updated ABoxA′ be defined as

A′ = (A ⊛ U) ∧
∧

U .

HereA ⊛ U is defined recursively as

α ⊛ U = α ∨ αU

(α ⊠ B) ⊛ U = (α ⊛ U) ⊠ (B ⊛ U)

where⊠ denotes∧ or ∨, α is an assertion, and{α}D is
defined as in Proposition 2.2 (or 2.3) forALCO+ (or for
ALCO@, respectively). ThenA ∗ U ≡ A′.

Determinate Updates
Looking at the construction of updated ABoxes, we see that
from an ABoxA by an update we get a disjunctionA ∨AU .
This causes a rapid growth of the updated ABox. If, however,
either the update or its negation is entailed by the ABoxA,
then one of the disjuncts is inconsistent and can be removed:

Observation 3.3 (Determinate Updates)For (Boolean)
ABoxA, updateU = {δ}, and updated ABoxA′ we have
that A′ ≡ A if A � δ; and A′ ≡ U ∪ AU if A � ¬δ.4

Otherwise, if neitherA |= δ nor A |= ¬δ, bothA∅ andAU

are consistent withU .

Detecting this type of situation requires up to two reasoning
steps:A |= δ andA |= ¬δ, resulting in a tradeoff between
time and space efficiency.

Exploiting the Unique Name Assumption
The common unique name assumption (UNA) means that no
two individual names may denote the same object. The con-
structions depicted in Figure 1 and 2 do not take the UNA

4The latter of these two observations is from[Liu et al., 2006].

into account; but we can construct simpler updated ABoxes
by keeping track of the individuals̄s and t̄ that an assertion
γ(s̄) refers to when updating it withδ(t̄):

Observation 3.4 (Updated Assertion with UNA) Let A be
an ABox,U an update, andA′ the updated ABox. Further,
let the ABoxB be obtained by re-defining the ABoxAU as
AU = {CU,a(a) | C(a) ∈ A}∪{rU,a−b(a, b) | r(a, b) ∈ A}
for ALCO+,

where CU,i and rU,i−j are given in Figure 3.5 For
ALCO@ ABoxes we only use the modified construction of
concept assertions. ThenA′ ≡ B.

This UNA-based construction is not costly at all. It can-
not identify all cases where the UNA admits a more concise
updated ABox, though. The next example illustrates both its
strength and limitations:

Example 3.5 (Exploiting UNA) If we update the ABoxA =
{C(i)} with U = {¬C(j)}, using CU,i we obtainC(i),
instead ofC ⊔ {j}(i) using CU . Next consider the ABox
A = {∀r.({j} ⊓C)}(i), updated byU = {C(k)}. As part of
the update construction we obtain∀r.({j} ⊓ (C ⊓ ¬{k}))(i)
which can be simplified using UNA to∀r.({j} ⊓ C)(i). Our
method for exploiting UNA cannot detect this latter case.

Omitting Subsuming Disjuncts and Entailed Assertions
Intuitively, in a disjunction we can omit the “stronger” of two
disjuncts:

Observation 3.6 (Omitting Subsuming Disjuncts)Let the
disjunction(A∨AU) be part of an updated ABox. IfA � AU

(or AU � A) then(A ∨AU) ≡ AU (or (A ∨AU) ≡ A).

Detecting subsuming disjuncts in general requires reasoning.
But by a simple, syntactic check we can detect beforehand
some cases where one of the disjunctsAU andA will sub-
sume the other. Then the computation of subsuming disjuncts
can be avoided. We say that an occurrence of a concept or
role nameδ in an assertion ispositive, if it is in the scope
of an even number of negation signs, andnegativeotherwise;
δ occurs only positively (negatively)in an assertion if every
occurrence ofδ is positive (negative).

Observation 3.7 (Detecting Subsuming Disjuncts)If for
an ABoxA, updated with updateU = {(¬)δ(t̄)}, we have
that:

(1) if the update is positive (i.e.δ(t̄)) then

– if δ occurs only positively inA thenAU � A; and
– if δ occurs only negatively inA thenA � AU .

(2) if the update is negative (i.e.¬δ(t̄)) then

– if δ occurs only positively inA thenA � AU ; and
– if δ occurs only negatively inA thenAU � A.

Conversely, we can also avoid updating entailed assertions:

Observation 3.8 (Omitting Entailed Assertions) Let A be
an ABox andU an update. IfU |= α or A \ {α} |= α for
some assertionα ∈ A, thenA ∗ U ≡ (A \ {α}) ∗ U .

5We omit the Boolean constructors.

Removing all entailed assertions might be too expensive in
practice; one might try doing this periodically.

Propositional ABoxes
Sometimes we do not need the full power of DL reasoning,
but propositional reasoning is enough:

Definition 3.9 (Propositional ABox) We call a Boolean
ABoxA propositionalif it does not contain quantifiers. ⊣

For propositional ABoxes we could in principle use pro-
gression algorithms for propositional logic[Amir and Rus-
sell, 2003] and efficient SAT-technology, since an updated
propositional ABox is propositional, too.

Independent Assertions
Next we address the question under which conditions an as-
sertion in an ABox is not affected by an update, i.e. indepen-
dent. The more independent assertions we can identify, the
more compact our ABox representation becomes.

Definition 3.10 (Independent Assertion)Assertionα in an
ABoxA is independent from updateU = {δ} iff A ∗ U ≡
α ∧ (B ∗ U) whereB = A \ {α}. ⊣

Detecting this in all cases requires reasoning steps and thus
is costly. It is easy, though, to syntactically detect some of the
independent assertions:

Observation 3.11 (Independent Assertion)For an ABoxA
in negation normal form and updateU = {(¬)δ(t̄1)}, the
assertionα(t̄2) ∈ A is independent ifδ /∈ sub(α). It is also
independent ifA � t̄1 6= t̄2, δ occurs inα only outside the
scope of a quantifier, and for all subconcepts@iC of α the
assertionC(i) is independent ofU .

4 Reasoning with Boolean ABoxes
As we have seen in the previous sections, updated ABoxes
are BooleanALCO@- orALCO+-ABoxes, so that an intelli-
gent agent built on top of ABox update needs Boolean ABox
reasoning. Reasoning withALC-LTL formulas [Baaderet
al., 2008] requires Boolean ABox reasoning, too. However,
Boolean ABox reasoning is not directly supported by DL rea-
soners. In this section, we present four different reasoning
methods that can handle Boolean ABoxes:

• one where a DL reasoner operates on single disjuncts of
a Boolean ABox in DNF;

• one which uses Otter, a first-order theorem prover;

• one which uses a consistency preserving reduction from
a Boolean ABox to a non-Boolean ABox; and

• one which is based on propositional satisfiability testing
modulo theories — the DPLL(T) approach.

Replacing every assertion in a Boolean ABoxA with a propo-
sitional letter results in a propositional formulaFA. The
ABox A is a Boolean ABox in CNF (resp. DNF)if FA is
in CNF (resp. DNF). The first approach works on Boolean
ABoxes in DNF while the other approaches are based on
CNF.

AU,i = ⊤, if U = {¬A(i)} AU,i = ⊥, if U = {A(i) ∈ U}
AU,i = A, if U 6= {¬A(i)} andU 6= {A(i)}
rU,i−j = ⊤, if U = {¬r(i, j)} rU,i−j = ⊥, if U = {r(i, j)}
rU,i−j = r, if U 6= {¬r(i, j)} andU 6= {r(i, j)}
{i}U,i = ⊤ {i}U,j = ⊥
{(i, j)}U,i−j = ⊤ {(i, j)}U,k−l = ⊥, if k 6= i or l 6= j

(∃r.C)U,i = ∃r.(CU), if U 6= {q(i, x)} for q ∈ sub(r) (∀r.C)U,i = ∀r.(CU), if U 6= {q(i, x)} for q ∈ sub(r)
(∃r.C)U,i = (∃r.C)U , otherwise (∀r.C)U,i = (∀r.C)U , otherwise
(@jC)U,i = @jC

U,j (@iC)U = @iC
U,i

Figure 3: ConstructingCU,i andrU,i−j for ALCO+ andALCO@

In all approaches we do not use the equivalence-preserving,
exponential transformation from[Liu et al., 2006] for com-
piling the @ constructor away. Instead we simulate the@-
operator by a universal role[Bong, 2007]; this consistency-
preserving transformation is linear.

We use Pellet as a DL reasoner because it supports nomi-
nals, query-answering and pinpointing[Sirin et al., 2007].

The DNF Approach
A Boolean ABox in DNF is consistent iff it contains a con-
sistent disjunct. We can employ a DL reasoner to decide the
consistency of each disjunct. We refer to this approach as
Pellet-DNF. A drawback of this approach is that we will see
that the less redundant updated ABoxes are in CNF, and thus
require a costly translation to DNF (using de Morgan’s laws).

The Theorem Prover Approach
The DL ALCO+ admits smaller updated ABoxes than
ALCO@ [Liu et al., 2006]; however, its role operators are not
supported by current mature DL reasoners. Once we translate
ALCO+ to first order logic[Borgida, 1996], we can use theo-
rem provers that can cope with Boolean role constructors. We
chose to use Otter[McCune, 2003] because it supports query-
answering via answer literals[Green, 1969]; this is useful e.g.
for parametric actions, which are to be instantiated to con-
crete actions. After a few experiments we chose to configure
Otter to use hyperresolution combined with Knuth-Bendix-
rewriting, plus the set-of-support strategy.

The Reduction Approach
We can linearly compile BooleanALCO@-ABoxes to classi-
calALCO@-ABoxes[Liu et al., 2006]. Then, simulating the
@-operator by a universal role, we can directly use a standard
DL reasoner; this approach is henceforth called Pellet-UR.

The DPLL(T) Approach
Most modern SAT-solvers[Een and S̈orensson, 2003; de
Moura and Bjørner, 2008] are variants of the Davis-Putnam-
Logemann-Loveland (DPLL) procedure[Davis and Putnam,
1960; Daviset al., 1962]. Such a SAT-solver exhaustively
applies transition rules6 to generate and extend a partial in-
terpretation and thus decides satisfiability of a propositional
formula in CNF. One of the strengths of the DPLL procedures
is that they can efficiently prune the search space by building
and learning backjump clauses[Zhanget al., 2001].

The DPLL(T) approach combines a DPLL procedure with
a theory solver that can handle conjunctions of literals in

6See[Nieuwenhuiset al., 2007] for the details.

the theory to solve the satisfiability problem modulo theo-
ries (SMT)[Nieuwenhuiset al., 2007]. In DPLL(T) a DPLL
procedure works on the propositional formula obtained by re-
placing the theory atoms with propositional letters. Whenever
the DPLL procedure extends the current partial interpretation
by a new element the theory solver is invoked to check con-
sistency of the conjunction of the theory atoms corresponding
to the partial, propositional interpretation. If the theory solver
reports an inconsistency, the DPLL procedure will backjump
and thus the search space is pruned.

The consistency problem of Boolean ABoxes can be
viewed as an instance of SMT where ABox assertions are the
theory atoms and a DL reasoner serves as theory solver.

The non-standard DL inference of pinpointing[Schlobach,
2003; Baader and Peñaloza, 2008] is highly relevant to this
approach. Explaining why an ABox is inconsistent is an in-
stance of the pinpointing problem, where an explanation is a
minimal sub-conjunction of the input ABox, containing only
those assertions that are responsible for the inconsistency.
Based on these explanations in the DPLL(T) approach we can
build better backjump clauses[Nieuwenhuiset al., 2007].

We implemented an algorithm based on the DPLL(T) ap-
proach with the strategy of MINI SAT [Een and S̈orensson,
2003]. Pellet was chosen as the theory solver because it sup-
ports pinpointing. This approach is called Pellet-DPLL.

Propositional Reasoning
For the case where we can identify propositional ABoxes
we have developed and implemented a simple, specialized
method. Reasoning there is reduced to efficient list opera-
tions. This reasoner is used to supplement the other reasoning
approaches (if possible).

5 Experimental Results
In this section, we evaluate the efficiency of the different up-
date and reasoning mechanisms. The relevant measures are
the time needed for computing the updated ABox together
with its size, and the efficiency of reasoning with it. We will
see that choosing the right update and reasoning algorithms
depends upon a problem’s specifics.

An update algorithm based on Proposition 2.2 or 2.3 gen-
erates Boolean ABoxes in DNF, while an algorithm based
on Proposition 3.2 outputs ABoxes in CNF. Of course, every
Boolean ABox can equivalently be represented in CNF or in
DNF; however, this transformation (using De Morgan’s laws)
is rather expensive. The performance of reasoning with up-
dated ABoxes strongly depends on the choice of underlying
representation. We use several types of testing data:

• a set of randomly generated Boolean ABoxes in CNF;

• a set of random ABoxes, Updates, and Queries; and

• the Wumpus world[Russell and Norvig, 2003].

We distinguish two main types of update algorithms that we
implemented:

• In one we compute updated ABoxes in DNF;

• alternatively, we compute updated ABoxes in CNF.

Both approaches are further parametrized by using differ-
ent reasoners, and a different combination of optimization
techniques. We have implemented the different ABox update
algorithms in ECLiPSe-Prolog.

The reasoning methods have already been described in
Section 4. We call a reasoning methodhybrid if it resorts to
our propositional reasoner whenever possible; for example,
we then speak of hybrid Pellet-UR.

5.1 Representation: DNF or CNF?
We have used both the Wumpus world and the random update
examples to compare DNF and CNF based update algorithms
(with and without optimizations). CNF representation con-
sistently proved to be superior: The DNF approach quickly
drowns in redundant information. This is because to compute
an updated ABox in DNF is to include both the update and
all the non-affected information in both disjuncts. Detecting
subsuming disjuncts and determinate updates alleviates this
problem, but does not eliminate it. By avoiding this redun-
dancy we immediately obtain an updated ABox in CNF. On
DNF-based updated ABoxes Pellet-DNF performs best — the
other methods suffer from the expensive conversion to CNF.
In the following we only consider the CNF-based representa-
tion of updated ABoxes.

5.2 Consistency Checking for Boolean ABoxes in
CNF

We implemented a random generator of BooleanALC-
ABoxes, which randomly generates a propositional formula
in CNF and then assigns a randomly generated assertion to
each propositional letter. Several parameters are used to con-
trol the shape of the generated Boolean ABoxes (the numbers
in parentheses indicate the upper bound on the parameters we
used): the numbern1 of literals in a clause (53), the num-
bern2 of propositional letters (36), the numbern3 of clauses
(83), the numberd of nested roles in a concept assertion (23),
the numberncs of the constructors in a concept assertion
(106), the numbersnc, nr, andni of concept names, role
names, and individual names in an assertion (12 each), and
the probabilitypr of generating a role assertion (0.2).

In Figure 4, we plot the runtimes of Pellet-DPLL and
Pellet-UR on these testing data against the number of sym-
bols in the Boolean ABox. The points plotted as+ indicate
the runtime of Pellet-DPLL while those plotted as× indicate
the runtime of Pellet-UR. We depict the performance on con-
sistent and inconsistent Boolean ABoxes separately — there
were more consistent than inconsistent Boolean ABoxes.

For Pellet-UR, the runtime linearly increases with the size
of the input (the bar from the lower left to the upper right

corner). On inconsistent ABoxes Pellet-DPLL also exhibits
a linear increase in runtime, while on consistent ABoxes the
runtime is less predictable. Pellet-DPLL performs better on
all of the inconsistent Boolean ABoxes. On most of the con-
sistent ABoxes, the Pellet-UR approach does better. This is
due to the fact that in Pellet-DPLL the frequent invocations
of the theory solver Pellet are more likely to pay off if incon-
sistency of the current, partial model can be detected often:
We then can build a back-jump clause that helps to prune the
search space. The runtimes of Pellet-UR are about the same
on both consistent and inconsistent input data.

For Otter the conversion from ABoxes in CNF to full first
order CNF proved to be a big obstacle, as did the conversion
to DNF for Pellet-DNF.

5.3 Random Updates
We have extensively experimented with a set of randomly
generated ABoxes and updates. Initial ABoxes were between
two and thirty assertions in size.We were mostly interested
in runtime and space consumption for iterated updates. We
could make a number of interesting observations:

• The UNA-based concept update construction from Fig-
ure 3 always paid.

• The reasoning needed to identify determinate updates
pays in the long run.

• Syntactically detecting subsuming disjuncts worked,
too. Doing so using a reasoner proved too expensive.

• Identifying all entailed assertions to shrink the ABoxes
proved to be too expensive, too.

• Resorting to our dedicated propositional reasoner when-
ever possible resulted in significantly better perfor-
mance.

• We can keep updated ABoxes much smaller at a low cost
by syntactically identifying independent assertions.

Updating an ABox according to[Liu et al., 2006] is a
purely syntactic procedure. But if we iteratively update
ABoxes, then in the long run we get both a lower space and
time consumption by calling a reasoner to identify determi-
nate updates. Using our propositional reasoner whenever pos-
sible for this resulted in better performance. If identifying
determinate updates required DL reasoning then Pellet-UR
performed slightly better than Pellet-DPLL. This is due to
the fact that less updates were determinate than not, and thus
inconsistency was not detected often. On a subset of the ran-
dom examples where there were more determinate updates
Pellet-DPLL performed better than Pellet-UR. The runtimes
for Otter widely varied: converting CNF-ABoxes to full first
order CNF proved the bottleneck. Pellet-DNF was not com-
petitive because of the expensive conversion to DNF.

We could also identify characteristics of initial ABoxes
that allow to predict performance: If the initial ABox does
not contain nested quantifiers then performance is acceptable;
e.g. we can iteratively apply 300 singleton updates to a fifteen
assertion ABox in 90 seconds, without a significant increase
in size. If the initial ABox contains nested quantifiers space
consumption quickly grows out of bounds. This is because

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 40000 80000 120000 160000

tim
e

(m
s)

number of symbols in the input

On consistent ABoxes

Pellet-DPLL
Pellet-UR

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20000 40000 60000 80000

tim
e

(m
s)

number of symbols in the input

On inconsistent ABoxes

Pellet-DPLL
Pellet-UR

Figure 4: Benchmarks for Pellet-DPLL and Pellet-UR
we then cannot cheaply identify independent assertions and
use the UNA-based concept update construction. For nested
quantifiers usingALCO+ instead ofALCO@ helps to reduce
space consumption; but this still does not result in satisfactory
overall performance.

5.4 The Wumpus World
The Wumpus World[Russell and Norvig, 2003] is a well-
known challenge problem in the reasoning about action com-
munity. It consists of a grid-like world: cells may contain
pits, one cell contains gold, and one the fearsome Wumpus.
The agent dies if she enters a cell containing a pit or the
Wumpus. But she carries one arrow so that she can shoot
the Wumpus from an adjacent cell. If the agent is next to a
cell containing a pit (Wumpus), she can detect that one of the
surrounding cells contains a pit (the Wumpus), but doesn’t
know which one. She knows the contents of the visited cells.
Getting the gold without getting killed is the agent’s goal.

At each step, the agent performs sensing to learn whether
one of the adjacent cells contains a pit or the Wumpus. Since
the sensing results are disjunctive, we cannot treat them via
ABox updates. But since the properties sensed are static (i.e.,
cannot change once we know them), we can simply adjoin
the sensing results to the ABox serving as the agent’s current
world model. The effects of the agent’s (non-sensing) actions
(like moving to another cell) are modelled as ABox update.

The Wumpus World can be modelled in different ways. In
the simplest model, the initial ABox contains the connections
between the cells, the agent’s location, and the facts that the
agent carries an arrow, and that the Wumpus is alive (Model
PL1). For this, Boolean combinations of concept/role liter-
als are enough. In Model PL2, we include the fact that the
Wumpus is at exactly one location by enumerating all possi-
ble cases in a big disjunction. We turn PL1 into a DL problem
by including the information∃at.⊤(wumpus) (Model DL1).
Model DL2 is obtained from PL2 by adding this same asser-
tion, which here is redundant. Table 2 shows the runtimes,
where n/a stands for unavailable expressivity and * for non-
termination in 15 minutes. For the propositional models we
also used the action language Flux[Thielscher, 2005].

Pellet-DNF, and to a lesser extent also Otter, again had
difficulties with the necessary input conversion. Pellet-UR

Model Prop hybrid Otter hybrid Pellet-UR Flux
4x4 PL1 0.008 s 0.008 s 0.008 s 0.6 s
8x8 PL1 0.26 s 0.26 s 0.26 s 14.9 s
8x8 PL2 16.9 s 16.9 s 16.9 s n/a
4x4 DL1 n/a 36.4 s 5.5 s n/a
4x4 DL2 n/a * 23.93 s n/a

Table 2: Runtimes for the Wumpus World.

proved to be the best DL reasoner in this setting. This is due
to the fact that this domain requires query-answering: The
agent e.g. needs to know for which values ofx and y we
have that at(agent, x) ∧ connected(x, y). Pellet-DPLL is the
only reasoner that lacks direct support for query-answering.
Thus, for queryC(x), we iteratively check for every individ-
ual namei ∈ NI whetherC(i) holds — but this results in bad
performance for Pellet-DPLL.

We also see that the propositional reasoner performs quite
well on the propositional models. Including more informa-
tion wrt. the Wumpus’ location results in worse performance.
We used Model DL2 to see if it pays to identify all en-
tailed assertions: after omitting the entailed∃at.⊤(wumpus)
the model is propositional again. In practice this proved too
costly. The other observations from Section 5.3 also hold in
this domain. Sometimes removing assertions entailed by the
update did help, though. In particular, once the Wumpus is
found, we can remove the assertion∃at.⊤(wumpus) entailed
by the respective update and then resort to efficient proposi-
tional reasoning.

6 Summary and Future Work
In this work, we have investigated implementation techniques
for ABox update, and for reasoning with (updated) Boolean
ABoxes. We have introduced and evaluated several optimiza-
tions of the ABox update algorithms in[Liu et al., 2006].
The lessons learnt were: Using CNF-representation of up-
dated ABoxes is strongly recommended. The (incomplete)
syntactic techniques for exploiting the unique name assump-
tion, and detecting subsuming disjuncts and independent as-
sertions have also resulted in an improved performance. The
benefit of identifying determinate updates made up for the as-
sociated reasoning costs. Other techniques requiring DL rea-
soning in general proved to be too expensive; but removing

some entailed assertions helped in the Wumpus world.
Regarding the investigated reasoning methods for Boolean

ABoxes, we have come to the following conclusions. Pellet-
DNF is the best reasoner for Boolean ABoxes in DNF. For
consistency checking of ABoxes in CNF, Pellet-DPLL and
Pellet-UR worked best. Pellet-DPLL did better for detect-
ing an actual inconsistency, while it performed worse than
Pellet-UR on most of the consistent Boolean ABoxes. On
the randomly generated update examples, Pellet-UR also per-
formed slightly better than Pellet-DPLL because inconsis-
tency was not detected often. On a subset where the updates
were mostly determinate, Pellet-DPLL outperformed Pellet-
UR. If query-answering is among the reasoning tasks, then
Pellet-UR is to be preferred over Pellet-DPLL because of Pel-
let’s direct support for this inference.

It would be interesting to develop heuristics for finding
suitable individual names as well as other optimizations for
query-answering in the DPLL(T) approach. The performance
of the DPLL(T) approach also depends on the performance
of the SAT solver and the pinpointing service. Thus Pellet-
DPLL can benefit from more efficient implementation of
these tasks as well.

The tests on the Wumpus world confirmed that resorting
to our dedicated propositional reasoner whenever possibleis
useful. In the Wumpus world, removing entailed assertions
helped a lot. In contrast, for the randomly generated update
examples, finding entailed assertions proved to be too costly.

Using Otter as a theorem prover might be considered some-
what unfair (to the theorem proving approach), since it is no
longer actively maintained and optimized. The conversion to
full first order CNF proved to be the biggest obstacle for Otter.
We chose to use Otter because it supports query-answering,
which is not supported by most current provers[Waldinger,
2007], but vital in some domains. If this is to change,7 we
can try to resort to state-of-the art theorem provers for reason-
ing in ALCO+. This may allow us to really exploit the fact
thatALCO+ admits smaller updated ABoxes thanALCO@.
Alternatively, one could also try to use a more dedicated rea-
soning system forALCO+ [Schmidt and Tishkovsky, 2007].
Acknowledgments: Many thanks to Albert Oliveras for his
help regarding the construction of a backjump clause in the
DPLL(T) approach.

References
[Amir and Russell, 2003] Eyal Amir and Stuart J. Russell. Logical

Filtering. In (IJCAI2003), 2003.

[Areceset al., 1999] Areces, Blackburn, and Marx. A road-map on
complexity for hybrid logics. In(CSL1999), 1999.

[Baader and Pẽnaloza, 2008] Franz Baader and Rafael Peñaloza.
Automata-Based Axiom Pinpointing. In(IJCAR2008), 2008.

[Baaderet al., 2003] F. Baader, D. Calvanese, D. L. Mcguinness,
D. Nardi, and P. F. Patel-Schneider, editors.The Description
Logic Handbook. Cambridge University Press, 2003.

[Baaderet al., 2005] F. Baader, C. Lutz, M. Milicic, U. Sattler,
and F. Wolter. Integrating Description Logics and Action For-
malisms: First Results. In(AAAI2005), 2005.

7cf. www.cs.miami.edu/ ˜ tptp/TPTP/Proposals/
AnswerExtraction.html .

[Baaderet al., 2008] Franz Baader, Silvio Ghilardi, and Carsten
Lutz. LTL over Description Logic Axioms. In(KR2008), 2008.

[Bong, 2007] Yusri Bong. Description Logic ABox Updates Revis-
ited. Master thesis, TU Dresden, Germany, 2007.

[Borgida, 1996] Alexander Borgida. On the Relative Expressive-
ness of Description Logics and Predicate Logics.Artificial Intel-
ligence, 1996.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A
Computing Procedure for Quantification Theory.Journal of the
ACM, 1960.

[Daviset al., 1962] Martin Davis, George Logemann, and Donald
Loveland. A Machine Program for Theorem-proving.Communi-
cations of the ACM, 1962.

[de Moura and Bjørner, 2008] Leonardo de Moura and Nikolaj
Bjørner. Z3: An efficient SMT Solver. In(TACAS2008), 2008.

[Drescher and Thielscher, 2007] Conrad Drescher and Michael
Thielscher. Integrating Action Calculi and Description Logics.
In (KI2007), 2007.

[Een and S̈orensson, 2003] Niklas Een and Niklas S̈orensson. An
Extensible SAT-solver. In(SAT2003), 2003.

[Green, 1969] Cordell Green. Theorem Proving by Resolution as
a Basis for Question-answering Systems.Machine Intelligence,
1969.

[Levesqueet al., 1997] Hector Levesque, Raymond Reiter, Yves
Lesṕerance, Fangzhen Lin, and Richard Scherl. GOLOG: A logic
programming language for dynamic domains.Journal of Logic
Programming, 1997.

[Liu et al., 2006] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Up-
dating Description Logic ABoxes. In(KR2006), 2006.

[McCune, 2003] William McCune. OTTER 3.3 Reference Manual.
Computing Research Repository, 2003.

[Nieuwenhuiset al., 2007] Robert Nieuwenhuis, Albert Oliveras,
Enric Rodŕıguez-Carbonell, and Albert Rubio. Challenges in Sat-
isfiability Modulo Theories. In(TRA2007), 2007.

[Russell and Norvig, 2003] Stuart J. Russell and Peter Norvig.Ar-
tificial Intelligence: A Modern Approach. Prentice Hall, 2003.

[Schlobach, 2003] Stefan Schlobach. Non-Standard Reasoning
Services for the Debugging of Description Logic Terminologies.
In (IJCAI-03), 2003.

[Schmidt and Tishkovsky, 2007] Renate A. Schmidt and Dmitry
Tishkovsky. Using tableau to decide expressive description logics
with role negation. In(ISWC2007), 2007.

[Sirin et al., 2007] Evren Sirin, Bijan Parsia, Bernardo Cuenca
Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A practical
OWL-DL reasoner.Journal of Web Semantics, 2007.

[Thielscher, 2005] M. Thielscher. FLUX: A Logic Programming
Method for Reasoning Agents.Theory and Practice of Logic
Programming, 2005.

[Tobies, 2001] Stephan Tobies.Complexity Results and Practical
Algorithms for Logics in Knowledge Representation. PhD thesis,
RWTH-Aachen, Germany, 2001.

[Waldinger, 2007] Richard J. Waldinger. Whatever happened to de-
ductive question answering? In(LPAR2007), 2007.

[Winslett, 1988] Marianne Winslett. Reasoning about Action Using
a Possible Models Approach. In(AAAI1988), 1988.

[Zhanget al., 2001] Lintao Zhang, Conor F. Madigan, Matthew H.
Moskewicz, and Sharad Malik. Efficient Conflict Driven Learn-
ing in a Boolean Satisfiability Solver. In(ICCAD2001), 2001.

