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Abstract. We investigate the computational complexity of several deci-
sion, enumeration and counting problems related to pseudo-intents. We
show that given a formal context and a subset of its set of pseudo-intents,
checking whether this context has an additional pseudo-intent is in conp,
and it is at least as hard as checking whether a given simple hypergraph is
not saturated. We also show that recognizing the set of pseudo-intents is
also in conp, and it is at least as hard as identifying the minimal transver-
sals of a given hypergraph. Moreover, we show that if any of these two
problems turns out to be conp-hard, then unless p = np, pseudo-intents
cannot be enumerated in output polynomial time. We also investigate
the complexity of finding subsets of a given Duquenne-Guigues Base from
which a given implication follows. We show that checking the existence
of such a subset within a specified cardinality bound is np-complete, and
counting all such minimal subsets is #p-complete.

1 Introduction

Pseudo-intents play an important rôle in Formal Concept Analysis (FCA) [8].
They form the premises of the Duquenne-Guigues Base [10], which is a mini-
mum cardinality base for the set of implications that hold in a formal context.
Computational complexity of problems related to pseudo-intents have been of
major interest to the FCA community since their introduction.

One central computational problem related to pseudo-intents is determining
whether a given set is a pseudo-intent of a given formal context. It has been
shown in [15,16] that this problem is in conp. However, the lower complexity
bound for this problem is still open. One other natural problem is enumerating
the pseudo-intents of a given formal context. The most well-known algorithm
for this purpose is the next-closure algorithm [7]. Recently, an algorithm that
computes the pseudo-intents by processing a single attribute at a single step,
namely attribute-incremental algorithm, has been introduced in [18]. In [19],
an algorithm for checking whether a set is pseudo-intent, has been presented.
Another problem related to pseudo-intents is given a formal context, determining
the number of its pseudo-intents. In [14], it has been shown that this counting
problem is #p-hard. In addition to this, there it has also been shown that the
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number of pseudo-intents of a formal context can be exponential in the size of
the incidence relation of this formal context. Given this fact, it is clearly not
possible to enumerate all pseudo-intents of a formal context in time polynomial
in the size of this context. In complexity theory, for analyzing the performance
of enumeration algorithms where the number of solutions can be exponential
in the size of the input, one considers other measures. One such measure is to
take into account not only the size of the input, but also the size of the output.
An algorithm is said to run in output polynomial time [13] if it enumerates
the solutions in time polynomial in the size of the input and the output. One
advantage of an output polynomial algorithm is that it runs in polynomial time
(in the size of the input) when there are only polynomially many solutions.

In the present work we investigate whether pseudo-intents can be enumerated
in output polynomial time. We start with the observation that next-closure and
attribute-incremental algorithms do not run in output polynomial time since
their running times depend not only on the number of pseudo-intents, but also
on the number of intents. We formulate two decision problems that are of sig-
nificant importance for the existence of an output polynomial time algorithm.
In Section 3 we work on the first problem, which is given a formal context K

and a subset P of its set of pseudo-intents, the problem of checking whether
K has an additional pseudo-intent, i.e., a pseudo-intent that does not already
appear in P . We show that this problem is in conp, and it is at least as hard
as the complement problem of checking whether a given simple hypergraph is
saturated [3], which is a prominent open problem in hypergraph theory [2]. In
Section 4 we work on the second problem, which is given a formal context K

and a set P of subsets of its attribute set, the problem of checking whether P
is precisely the set of pseudo-intents of K. We show that this problem is also
in conp, and it is at least as hard as identifying the minimal transversals of a
given hypergraph [3], which is also an open problem. Moreover, we show that
if any of these two problems turns out to be conp-hard, then unless p = np,
pseudo-intents cannot be enumerated in output polynomial time. In Section 5
we investigate the complexity of finding subsets of a given Duquenne-Guigues
Base from which a given implication follows. We show that checking the exis-
tence of such a subset within a specified cardinality bound is np-complete, and
counting all such minimal subsets is #p-complete.

2 Preliminaries

We briefly introduce basic notions of Formal Concept Analysis [8]. Given a formal
context K = (G,M, I) with the derivation operator (·)′, and an implication
P → Q, where P,Q ⊆M , we say that P → Q holds in K if the objects that have
the attributes in P also have the attributes in Q, i.e., P ′ ⊆ Q′. A set A ⊆ M
respects an implication P → Q if P �⊆ A or Q ⊆ A. An implication P → Q
follows semantically from a set of implications L (written L |= P → Q) if each
subset of M respecting the implications in L also respects P → Q. We denote
the implicational theory of L, i.e, the set of all implications that follow from L,
with Imp(L).
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In [10], a minimum cardinality base, which is called the Duquenne-Guigues
Base, of a given formal context has been characterized, and it has been shown
that there cannot be another base with fewer implications. The premises of the
implications in a Duquenne-Guigues Base are called the pseudo-intents of the
underlying formal context. A set P ⊆ M is a pseudo-intent if P �= P ′′ and
Q′′

� P holds for every pseudo-intent Q � P . Equivalently, a set P ⊆ M is a
pseudo-intent if P �= P ′′, it is a quasi-intent, and for every quasi-intent Q � P ,
Q′′

� P holds, where a quasi-intent is defined as a set Q ⊆ M that satisfies
R′′ ⊆ Q or R′′ = Q′′ for any R ⊆ Q.

2.1 Hypergraphs and Related Problems

A hypergraph [2] H = (V, E) consists of a set of vertices V = {vi | 1 ≤ i ≤ n},
and a set of nonempty (hyper)edges E = {Ej | 1 ≤ j ≤ m} where Ej ⊆ V .
A set W ⊆ V is called a transversal of H if it intersects all edges of H, i.e.,
∀E ∈ E . E ∩ W �= ∅. A transversal is called minimal if no proper subset of
it is a transversal. The set of all minimal transversals of H constitute another
hypergraph on V called the transversal hypergraph of H, which is denoted by
Tr(H). Generating Tr(H) is an important problem which has applications in
many fields of computer science. It is defined as follows:

Problem: transversal enumeration (trans-enum)
Input: A hypergraph H = (V, E) on a finite set V .
Output: The edges of the transversal hypergraph Tr(H).

The well-known decision problem associated to this computation problem is
defined as follows:

Problem: transversal hypergraph (trans-hyp)
Input: Two hypergraphs H = (V, EH) and G = (V, EG).
Question: Is G the transversal hypergraph of H, i.e., does Tr(H) = G hold?

Computational complexity of these problems have now been extensively studied
[3,5,6] and many important applications of these problems have been identified
in logic and artificial intelligence [4], databases [17] and data mining [11]. trans-
hyp is known to be in conp, but so far neither a polynomial time algorithm has
been found, nor has it been proved to be conp-complete. Similarly, it is an open
problem whether trans-enum can be solved in output polynomial time. We
say that a decision problem Π is trans-hyp-hard if trans-hyp can be reduced
to Π by a standard polynomial transformation. We say that Π is trans-hyp-
complete if it is trans-hyp-hard and Π can be reduced to trans-hyp by a
polynomial transformation.

3 Complexity of Enumerating Pseudo-Intents

For enumerating pseudo-intents, unfortunately no output polynomial algorithm
is known currently. The most well-known algorithm next-closure [7] for enumer-
ating the pseudo-intents always enumerates the concept intents as well, i.e, its
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running time depends not only on the number of pseudo-intents but also on the
number of concept intents. Since the number of concept intents can be expo-
nential in the number of pseudo-intents, this algorithm in general does not run
in output polynomial time. Similarly, the attribute-incremental algorithm in [18]
has also time complexity depending on both the number of pseudo-intents and
the number of concept intents. In the light of our current knowledge, it is not
even clear whether there can be an algorithm at all that enumerates pseudo-
intents in output polynomial time. In order to investigate this further, let us
first formally define the problem.

Problem: pseudo-intent enumeration (pie)
Input: A formal context K.
Output: The set of pseudo-intents of K.

For solving this enumeration problem, the following decision problem has crucial
importance:

Problem: additional pseudo-intent (api)
Input: A formal context K = (G,M, I), and a set P of pseudo-intents of K, i.e.,
P ⊆ {P | P ⊆M, P pseudo-intent of K}.
Question: Is there an additional pseudo-intent, i.e., Q ⊆ M s.t. Q is a pseudo-
intent of K and Q �∈ P?

Because, as Proposition 1 below shows, if this problem cannot be decided in
polynomial time, then unless p = np, pie cannot be solved in output polynomial
time.

Proposition 1. If api cannot be decided in polynomial time, then unless p =
np, pie cannot be solved in output-polynomial time.

Proof. Assume that we have an algorithmA that solves pie in output-polynomial
time. Let its runtime be bounded by a polynomial p(IS,OS) where IS denotes
the size of the input context and OS denotes the size of the output, i.e., the set
of all pseudo-intents of the input context.

In order to decide api for an instance given by the context K and a set
P of pseudo-intents of K, we construct another algorithm A′ that works as
follows: It runs A on K for at most p(|K|, |P|)-many steps. If A terminates
within p(|K|, |P|)-many steps, it means that P contains all pseudo-intents of
K, i.e., there is no additional pseudo-intent. So A′ returns no. If A does not
terminate after p(|K|, |P|)-many steps, this implies that there is an additional
pseudo-intent that is not contained in P , so A′ returns yes. It is easy to see that
the runtime of A′ is bounded by a polynomial in |K| and |P|, that is A′ decides
api in time polynomial in the size of the input. �

The proposition shows that determining the complexity of api is indeed crucial
for determining the complexity of pie. In the following we show that api is in
conp, and it is at least as hard as the complement of a prominent open problem
on hypergraphs. However, whether api is conp-hard remains unfortunately open.
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Proposition 2. api is in conp.

Proof. Given an instance of api with the input K and P , construct the set of
implications L = {P → P ′′ | P ∈ P} and nondeterministically guess a set
Q ⊆ M . We can verify in polynomial time that Q → Q′′ does not follow from
L, i.e., the complement of the problem is in np, thus api is in conp. �

Before we can continue with the proof of lower bound, we need to introduce some
more notions from hypergraphs. A hypergraph H = (V, E) is called saturated [3]
if every subset of V is contained in at least one of the edges of H, or it contains
at least one edge of H, i.e., for every W ⊆ V , W ⊆ E holds, or E ⊆ W holds
for some E ∈ E . It has been shown in [3] that checking whether a hypergraph is
saturated is conp-complete. There, a special case of the problem where the given
hypergraph is restricted to be simple, has also been considered. A hypergraph is
called simple if no edge contains another edge.

Problem: simple hypergraph saturation (simple-h-sat)
Input: A simple hypergraph H = (V, E), i.e., ∀E,E′ ∈ E .E ⊆ E′ ⇒ E = E′.
Question: Is H saturated, i.e., is it true that for every W ⊆ V , W ⊆ E holds or
E ⊆W holds for some E ∈ E?

It is not difficult to see that this problem is in conp. However, up to now there
has neither been a proof that it is conp-hard, nor a proof that it is in p. It has
been shown in [3] that this problem is under polynomial transformations compu-
tationally equivalent to trans-hyp, which as mentioned before is a prominent
open problem in hypergraph theory. In the following we show that our problem
api is at least as hard as the complement of simple-h-sat:

Theorem 1. api is cosimple-h-sat-hard.

Proof. Let an instance of simple-h-sat be given with the simple hypergraph
H = (V, E) where E = {E1, . . . , En}. From H we construct the formal context
KH = (G,M, I) where M = V , and G and I are defined as follows: For every
Ei, 1 ≤ i ≤ n, we create the following objects: For every D � Ei such that
|D| = |Ei| − 1, we create an object with the intent D. Ei has |Ei|-many such
subsets. We name these objects as gij where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ei|. In
total, G contains

∑n
i=1 |Ei| objects. We construct P by just taking the edges of

H, i.e, P = {E1, . . . , En}. Obviously, both KH and P can be constructed in time
polynomial in the size of H.

Note that KH has the following property: Since H is simple, no edge is con-
tained in another edge, and obviously not in strict subsets of any other edge.
Then, for every i such that 1 ≤ i ≤ n, E′

i = ∅ and E′′
i = M . That is Ei is

not closed. Moreover all its strict subsets are closed. Because for every D � Ei

either there is an object whose intent is D, or there is a set of objects such
that the intersection of their intents is D. This is due to the objects gij , where
1 ≤ j ≤ |Ei|, whose intents are strict subsets of Ei with cardinality |Ei| − 1.
Thus, the edges Ei are pseudo-intents of KH, which means that KH and P in-
deed form an instance of api. We claim that H is not saturated if and only if
KH has an additional pseudo-intent.
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(⇒) Assume H is not saturated. Then, there exists a W ⊆ V such that for
every i such that 1 ≤ i ≤ n, W �⊆ Ei holds and Ei �⊆W holds. Assume without
loss of generality that W is minimal with respect to property W �⊆ Ei for every
1 ≤ i ≤ n. Since W is not contained in any Ei, and obviously not contained
in any strict subset of any Ei, W ′ = ∅ and W ′′ = M . That is W is not closed.
Take any X � W . Since W is minimal, X ⊆ Ei holds for some 1 ≤ i ≤ n. We
know that Ei �⊆ W , then X = Ei cannot hold, thus X satisfies X � Ei. Since
all strict subsets of Ei are closed, X is closed. We have shown that W is not
closed but all its strict subsets are closed, thus W is a pseudo-intent. Moreover,
it is an additional pseudo-intent since W �= Ej , for all 1 ≤ j ≤ n.

(⇐) Assume KH has an additional pseudo-intent, i.e., a pseudo-intent Q such
that Q �= Ei for every 1 ≤ i ≤ n. Since strict subsets of Ei are closed, Q cannot
be a strict subset of any Ei. Thus Q �⊆ Ei for every 1 ≤ i ≤ n. Moreover, by
definition Q contains the closure of strictly smaller pseudo-intents. We know
that for every 1 ≤ i ≤ n, Ei is a pseudo-intent, and E′′

i = M . Since Q does
not strictly contain M , it cannot strictly contain any Ei either. Together with
Q �= Ei, this implies that Ei �⊆ Q. We have shown that there exists a Q ⊆ V
such that Q �⊆ Ei and Ei �⊆ Q for every 1 ≤ i ≤ n, thus H is not saturated. �

The following is an immediate consequence of Theorem 1 above and Theorem
4.12 in [3]:

Corollary 1. api is cotrans-hyp-hard.

Theorem 1 has some interesting consequences. The formal context we have con-
structed in the proof has a special property; namely, subsets of object intents are
closed in this formal context. The proof suggests that for the formal contexts of
this form, the problem api and the complement problem of simple-h-sat are
computationally equivalent problems, i.e., api is cosimple-h-sat-complete. For
such formal contexts, in addition to the reduction given in the proof, one can
also easily reduce api to the complement of simple-h-sat, i.e, take an instance
of api given with such a context and a set of pseudo-intents of this context,
construct an instance of simple-h-sat and show that there is an additional
pseudo-intent if and only if the constructed simple hypergraph is not saturated.
It would definitely be interesting to investigate whether formal contexts of this
form are natural in some application domains.

One other point that should be noted here is that simple-h-sat lies at
the boundary of intractability. As mentioned before, for arbitrary graphs it is
conp-complete [3]. The proof of Theorem 1 depends on the fact that the given
hypergraph is simple. Whether this restriction can be eliminated and thus the
intractability result carries over to api for arbitrary formal contexts, is definitely
an interesting question that should be investigated.

4 Complexity of Recognizing the Set of Pseudo-Intents

Next we consider another problem about pseudo-intents, namely recognizing the
set of pseudo-intents. More precisely, given a formal context K = (G,M, I) and
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a set P ⊆ P(M) it is the problem of deciding whether P is precisely the set
of pseudo-intents of K. Clearly, this problem can also be formulated as: Given a
formal context K and a set of implications L, decide whether L is the Duquenne-
Guigues Base of K. In the following we are going to investigate its computational
complexity. We start with defining the problem formally:

Problem: pseudo-intents (pis)
Input: A formal context K = (G,M, I), and a set P ⊆ P(M).
Question: Is P precisely the set of pseudo-intents of K?

The following proposition shows that like computational complexity of api, the
complexity of pis has also crucial importance for the solvability of pie in output
polynomial time.

Proposition 3. If pis cannot be decided in polynomial time, then unless p =
np, pie cannot be solved in output-polynomial time.

Proof. The proof is almost the same as the proof of Proposition 1. Again we
assume that we have an algorithm A that solves pie in output-polynomial time
and construct another algorithm A′ that runs A for at most p(|K|, |P|)-many
steps. The only difference is that, if A terminates within p(|K|, |P|)-many steps,
then A′ first compares the output of A with P and then returns yes if and only
if they are equal. If they are not equal, or if A has not yet terminated, then
A′ returns no. Thus if pie can be solved in output polynomial time, pis can be
decided in polynomial time. �

In the following we show that just like in the case of api, pis is also in conp,
and it is at least as hard as trans-hyp. However, whether pis is polynomial, or
it is conp-hard also remains open.

Proposition 4. pis is in conp.

Proof. Given an instance with the input K = (G,M, I) and P , an algorithm that
decides pis for this instance first checks whether the elements of P are pseudo-
intents of K. If it encounters an element that is not a pseudo-intent, it terminates
and returns no. If every P ∈ P is a pseudo-intent, then it continues with the
second step. This step is the same as the algorithm in the proof of Proposition
2. The algorithm constructs the set of implications L = {P → P ′′|P ∈ P} and
non-deterministically guesses a set Q ⊆ M . Obviously the implication Q → Q′′

holds in K, thus if L is a base for K then Q → Q′′ follows from L. Then the
algorithm verifies that this is not the case.

It is not difficult to see that this is a conp algorithm. In the first step the
algorithm performs polynomially-many checks each of which can be done in
conp by using the algorithm in [15]. In the second step the algorithm non-
deterministically guesses a Q and in polynomial time verifies that Q→ Q′′ does
not follow from L, which means that L is not a base, which implies that P is
not the set of all pseudo-intents of K. This step can be performed in conp as
well, thus the whole algorithm is a conp algorithm. �



Some Computational Problems Related to Pseudo-Intents 137

Theorem 2. pis is trans-hyp-hard.

Proof. Let an instance of trans-hyp be given by the hypergraphs H = (V, EH)
and G = (V, EG), where EH = {hi | 1 ≤ i ≤ n} and EG = {gi | 1 ≤ i ≤ m}.
From H we construct the context KH = (G,M, I) where M = V , and G and
I are defined as follows: For every edge hi ∈ EH, create an object whose intent
is the complement of hi, i.e., M \ hi. Let us denote this with hi. Moreover, for
each set f � hi such that |f | = |hi| − 1, create an object with the intent f . hi

has |hi|-many such subsets. That is, for every edge hi ∈ EH we create |hi| + 1
objects, which means that KH contains

∑n
i=1 |hi|+n objects in total. From G we

construct PG by simply defining PG = EG . It is easy to see that this construction
indeed creates an instance of pis and the context KH as well as the set PG can
be constructed in time polynomial in the sizes of H and G. Note that KH has the
following property: (∗) If B ⊆ M is an object intent, then any A ⊆ B is closed
since every such A can be expressed as the intersection of some object intents.
We claim that G is the transversal hypergraph of H if and only if PG is precisely
the set of pseudo-intents of KH.

(⇒) Assume G is the transversal hypergraph of H. Take an edge of G, say
g. g is a minimal transversal of H. By definition, for every hi ∈ EH, g satisfies
g ∩ hi �= ∅, which is equivalent to g �⊆ hi. This means that g is not closed in
KH. Because g is not contained in any object intent, hence g′′ = M . Now take
any f � g. Since g is a minimal transversal, f will not be a transversal. That
is, for some hi ∈ EH, f ∩ hi = ∅, which is equivalent to f ⊆ hi. Due to Property
(∗), such f are closed. This means that g is not closed in KH, but its all proper
subsets f are closed, which implies that g is a pseudo-intent of KH. Thus we
have shown that if G is the transversal hypergraph of H, then PG is precisely
the set of pseudo-intents of KH.

(⇐) Assume PG is precisely the set of pseudo-intents of KH. Take any pseudo-
intent p ∈ PG . By definition, p is not closed. Due to Property (∗), p is not
contained in any object intent, i.e., p �⊆ hi, and thus p′′ = M . This means that p
satisfies p∩hi �= ∅ for every edge hi ∈ EH, i.e., p is a transversal of H. Moreover, p
is minimal. Assume it were not. Then there would be another transversal q � p,
and q would satisfy q �⊆ hi for every hi ∈ EH as well. This would mean that q
is not closed in KH and has the same closure as p which is M . This contradicts
the fact that p is a pseudo-intent. Thus, p is indeed a minimal transversal of H.
We have shown that if PG is precisely the set of pseudo-intents of KH, then G is
the transversal hypergraph of H, which completes the proof of our claim. �

Theorem 2 has the following consequences: For the type of formal contexts used
in the reduction, i.e., where subsets of object intents are also closed sets, pis and
trans-hyp are computationally equivalent with respect to polynomial transfor-
mations, that is pis is trans-hyp-complete. One can take an instance of pis
given with such a formal context and easily reduce it to trans-hyp. In this
case, enumerating pseudo-intents (pie) and enumerating hypergraph transver-
sals (trans-enum) also become computationally equivalent problems. In order
to solve an instance of pie, one can construct the corresponding hypergraph and
solve trans-enum on this hypergraph for instance by using the algorithm in [6]
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by Fredman and Khachiyan. The minimal transversals of this hypergraph will
be the pseudo-intents of the original formal context.

5 Finding Explanations in the Duquenne-Guigues Base

In the present section, we investigate the problem of finding explanations in a
Duquenne-Guigues Base, in other words, finding subsets of a given Duquenne-
Guigues Base that has a given implication as consequence. In logic, for an ar-
bitrary set of axioms, this problem is known as axiom pinpointing. In [1] it
has been shown that in propositional Horn logic a given consequence can have
exponentially many minimal explanations, and finding a minimum cardinality
explanation is np-complete.

From a logical point of view, our implications in FCA are also propositional
Horn clauses. However, here we consider the above problem when the given set
of implications is not an arbitrary set of implications, but it is the Duquenne-
Guigues Base of a formal context. Our motivation for considering the problem
under this restriction can be explained with the following scenario: Consider
a domain expert that explores a context with attribute exploration and works
with the resulting Duquenne-Guigues Base as a compact representation of the
implications holding in her formal context. She notices that from this base, an
implication that actually is not true in her application domain follows. That
is, during attribute exploration she has wrongly confirmed some implication
questions. In this scenario, finding explanations for the unwanted consequences
would help the domain expert to solve the problem. We start with the formal
definition of an explanation in a Duquenne-Guigues Base:

Definition 1. Let L be the Duquenne-Guigues Base of a formal context on the
set of attributes M , and P → Q be an implication such that L |= P → Q. We
say that a subset J ⊆ L explains P → Q if J |= P → Q is satisfied. In this case
we call J an explanation of P → Q. We say that J is a minimal explanation
of P → Q if no proper subset of J explains P → Q.

In the following for a set of implications L we will sometimes abuse the terminol-
ogy and say “the Duquenne-Guigues Base of Imp(L)” for the Duquenne-Guigues
Base of the set of all implications that follow from L. The following lemma gives
a syntactic characterization of the Duquenne-Guigues Base that will later help
us to recognize whether a given set of implications is a Duquenne-Guigues Base.
For a set X , L(X) denotes the implicational closure of X under the implication
set L.

Lemma 1. Let L = {Pi → Qi | 1 ≤ i ≤ n} be a set of implications such that
Pi, Qi ⊆ M and Qi �⊆ Pi. L is the Duquenne-Guigues Base of Imp(L) if and
only if for every 1 ≤ i ≤ n the following two conditions are satisfied:

– Pi is closed under L \ {Pi → Qi}, and
– Pi ∪Qi is closed under L \ {Pi → Qi}.
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Proof. (⇒) If L is the Duquenne-Guigues Base of Imp(L), then P1, . . . , Pn are
pseudo-closed sets of the closure system induced by Imp(L). Take any Pi . By
definition Pi contains the closure of all Pj such that Pj � Pi. Thus Pi is closed
under L \ {Pi → Qi}. By the definition of Duquenne-Guigues Base, Pi ∪ Qi is
also closed under L \ {Pi → Qi}.

(⇐) Assume L is a set of implications that satisfies the two conditions. We
claim that it is the Duquenne-Guigues Base of Imp(L). In order to prove this
we need to show:

i) Pi are the pseudo-closed sets of the closure system induced by Imp(L), where
1 ≤ i ≤ n, and

ii) for every 1 ≤ i ≤ n, (Imp(L))(Pi) = Pi ∪Qi holds.

Since for any X ⊆ M , L(X) = (Imp(L))(X) holds, we are going to show these
for L.

We start with ii): Take any Pi → Qi and let L′ = L \ {Pi → Qi}. We know
that Pi ∪Qi is closed under L′, i.e., L′(Pi ∪Qi) = Pi ∪Qi. Then Pi ∪Qi is also
closed under L, i.e., L(Pi ∪Qi) = Pi ∪Qi. Obviously L(Pi) = L(Pi ∪Qi) holds
for every Pi → Qi ∈ L. Then L(Pi) = Pi ∪Qi holds. Thus we have shown ii.

In order to show i we need to show that:

1. Pi is not closed, i.e., Pi �= L(Pi),
2. Pi is quasi-closed, i.e., for every R ⊆ Pi, L(R) ⊆ Pi holds or L(R) = L(Pi)

holds,
3. Pi strictly contains the closure of every strictly contained quasi-closed set,

i.e., for every quasi-closed set R � Pi, L(R) � Pi holds.

We start with 1: We are given that for every 1 ≤ i ≤ n, Qi �⊆ Pi. Then
Pi �= L(Pi) holds trivially. For showing 2, take any Pi and some R ⊆ Pi. Let
L′ = L \ {Pi → Qi}. Since implicational closure is monotone, L′(R) ⊆ L′(Pi).
We are given that Pi is closed under L′, i.e., L′(Pi) = Pi hence L′(R) ⊆ Pi. If
L′(R) = Pi, then L(R) = L(Pi) and we are done. If L′(R) � Pi, then L′(R) =
L(R) � Pi and we are done. Thus we have shown that Pi is quasi-closed.

Now we are going to show 3: Take any Pi and some quasi-closed set R � Pi.
Since implicational closure is extensive, R ⊆ L(R) holds. If L(R) = R then
L(R) � Pi and we are done. If R � L(R), then there exists an implication
Pj → Qj , where 1 ≤ j ≤ n, such that Pj ⊆ R and Qj �⊆ R. Together with
R � Pi, this implies Pj � Pi.

We know that Pi is closed under L \ {Pi → Qi}. Since Pj � Pi, this implies
Qj ⊆ Pi, hence Pj ∪ Qj ⊆ Pi. Since Qi �⊆ Pi, Qi �⊆ Pj ∪ Qj . We know that
Pj ∪ Qj is closed under L \ {Pj → Qj}. If Pj ∪ Qj = Pi were satisfied, then
Pj ∪ Qj would not be closed under L \ {Pj → Qj} since Qi �⊆ Pj ∪ Qj. Thus,
Pj ∪Qj � Pi. By using ii, we can rewrite it as L(Pj) � Pi.

We know that R is quasi-closed. Since Pj ⊆ R, L(Pj) ⊆ R holds or L(Pj) =
L(R) holds. By ii we know that L(Pj) = Pj ∪ Qj . Since Qj �⊆ R, L(Pj) ⊆ R
cannot hold. Thus, L(Pj) = L(R) holds. Together with L(Pj) � Pi from above,
this implies that L(R) � Pi. Thus we have shown 3, which completes the proof
of i, which in turn completes the proof of our claim. �
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Using Lemma 1, we can show that in the worst case, a given implication can have
exponentially many minimal explanations in a given Duquenne-Guigues Base.
The following example demonstrates this situation:

Example 1. Consider the set of implications

L :=
⋃

1≤i≤n

{{x, bi−1} → {pi, qi}, {y, pi} → {bi}, {y, qi} → {bi}}

on the set of attributes M = {b0, x, y, } ∪ {bi, pi, qi | 1 ≤ i ≤ n}. Note that none
of the left handsides is contained in another left handside or in the union of left
and right handsides of another implication, i.e., L satisfies the two conditions
stated in Lemma 1 thus, L is the Duquenne-Guigues Base of Imp(L).

Consider the implication {b0, x, y} → {bn} that follows from L. A minimal
explanation of this implication is either of the form {{b0, x} → {p1, q1}, {y, p1} →
{b1}, . . .} or, {{b0, x} → {p1, q1}, {y, q1} → {b1}, . . .}. That is at each step i,
where 1 ≤ i ≤ n, we have two choices since the attribute bi can be generated
either by the implication {y, pi} → {bi}, or by the implication {y, qi} → {bi}.
This means that there are 2n minimal explanations. Since the size of L is linear in
n, the example shows that there can be exponentially many minimal explanations
in a given Duquenne-Guigues Base.

5.1 Minimum Cardinality Explanation

Although there can be exponentially minimal explanations, given a Duquenne-
Guigues Base L and an implication ψ that follows from it, it is not difficult
to find one minimal explanation of ψ in L. We can just start with L, iterate
over the implications in L and remove an implication if ψ still follows from the
remaining set of implications. Clearly, this algorithm terminates since L is finite.
It is correct since ψ still follows from the remaining set of implications and none
of the implications in the remaining set can be removed without destroying this
property.

However, if we want an explanation that is not only minimal w.r.t. set inclu-
sion, but also minimal w.r.t. cardinality, the problem becomes harder. In [1] it
has been shown that for an arbitrary set of implications (there called proposi-
tional Horn axioms) finding an explanation within a specified cardinality bound
is np-complete. Here we consider this problem for the case when the given set
of implications is not arbitrary, but it is the Duquenne-Guigues Base of impli-
cations holding in a closure system. It turns out that under this restriction the
problem does not become easier, i.e., it remains np-complete.

Problem: minimum cardinality explanation (mce)
Input: A Duquenne-Guigues Base L, an implication L → R s.t. L |= L → R
and a natural number n.
Question: Is there an explanation of L → R in L with cardinality less than or
equal to n, i.e., is there an L′ ⊆ L such that L′ |= L→ R and |L′| ≤ n?
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Theorem 3. mce is np-complete.

Proof. The problem is in np. We can nondeterministically guess a subset L′ of
L with cardinality n, and in polynomial time check whether L′ |= L → R. This
test can indeed be done in polynomial time by checking whether R ⊆ L′(L).

In order to show np-hardness, we are going to give a reduction from the np-
complete problem vertex cover [9]. Recall that a vertex cover of the graph
G = (V,E) is a set W ⊆ V such that for every edge {u, v} ∈ E, u ∈W holds, or
v ∈ W holds. The problem vertex cover is defined as follows:

Problem: vertex cover
Input: Graph G = (V,E), a natural number n.
Question: Is there a vertex cover of G of size less than or equal to n?

Consider an instance of the vertex cover problem given by G = (V,E), where
V = {v1, . . . , vl}, E = {e1, . . . , ek}, and edge ei = {vi1, vi2}. We construct an
instance of the mce in the following way: For every vertex v ∈ V we introduce
an attribute mv, for every edge ej , 1 ≤ j ≤ k, we introduce an attribute mej ,
and finally two more additional attributes ma and mb. Using these attributes
we construct the following set of implications:

L :={{mv}→{mej |v ∈ ej, 1≤j≤k} | v ∈ V } ∪ {{ma,me1 , . . . ,mek
}→{mb}}.

Note that none of the implications in L contains the left handside of another
implication in its left handside or in the union of its left and right handsides.
Thus, due to Lemma 1, L is indeed the Duquenne-Guigues Base of Imp(L). In
addition to L, we construct the following implication ψ that follows from L:
ψ : {ma} ∪ {mv | v ∈ V } → {mb}. It is not difficult to see that both L and
ψ can be constructed in time polynomial in the size of G, and that ψ follows
from L. We claim that G has a vertex cover of size less than or equal to n, where
n ≤ |V |, if and only if L has a subset L′ that explains ψ, and the size of L′ is
polynomial in n.

(⇒) Assume W ⊆ V is a vertex cover of G. Then the following set L′ ⊆ L
constructed by using W is an explanation of ψ:

L′ := {{mw} → {mej | w ∈ ej, 1 ≤ j ≤ k} | w ∈ W} ∪
{{ma,me1 , . . . ,mek

} → {mb}}.
Since W is a vertex cover, it contains at least one vertex from every edge ej ,
1 ≤ j ≤ k. Thus, {me1 , . . .mek

} ⊆ L′({mw | w ∈ W}). Since {mw | w ∈ W} ⊆
{mv | v ∈ V }, this implies that {me1 , . . .mek

} ⊆ L′({mv | v ∈ V }), which in
turn implies that {mb} ⊆ L′({ma} ∪ {mv | v ∈ V }). Thus we have shown that
L′ is indeed an explanation of ψ, and that it contains exactly n+1 implications.

(⇐) Now assume that L has a subset L′ of size m that is an explanation of ψ.
L′ should contain the implication {ma,me1 , . . . ,mek

} → {mb}, since otherwise
the attribute mb cannot be generated. Moreover, since the premise of this impli-
cation contains the attributes me1 , . . . ,mek

, L′ should also contain implications
of type {mw} → {mej | w ∈ ej} such that every mej , 1 ≤ j ≤ k, is generated.
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This means that the set W of such w is indeed a vertex cover since it intersects
every edge ej, 1 ≤ j ≤ k. Thus we have shown that W is a vertex cover of G and
it has size m− 1. This finishes the proof of the claim that G has a vertex cover
of size n if and only if L has a subset of size n+ 1 that explains ψ. �

5.2 Counting Minimal Explanations

In applications where one is interested in all explanations that are minimal w.r.t.
set inclusion, it might be useful to know in advance how many of them exist.
Next we consider this counting problem. It turns out that it is hard for the
counting complexity class #p [20], i.e., it is intractable.

Problem: #minimal explanation (#me)
Input: A Duquenne-Guigues Base L, and an implication L→ R s.t. L |= L→ R.
Output: The number of all minimal explanations of L→ R, i.e., |{L′ ⊆ L | L′ |=
L→ R and ∀L′′

� L′.L′′ �|= L→ R}|.
Theorem 4. #me is #p-complete.

Proof. The problem is in #p. Given a Duquenne-Guigues Base L, an implication
L → R that follows from L, and a set L′ ⊆ L we can in polynomial time verify
whether L′ |= L→ R just by checking whether R ⊆ L′(L) holds.

In order to show #p-hardness, we are going to give a parsimonious reduction
from the #p-complete problem #minimal vertex cover, which is the problem
of counting the minimal vertex covers of a graph. It has been shown to be #p-
complete in [21]. In our reduction we are going to use the same construction as
in the proof of Theorem 3, i.e., from a given graph G we construct the same
Duquenne-Guigues Base L, and the same implication ψ as in Theorem 3. What
we additionally need to show here is that this construction establishes a bijection
between minimal vertex covers of G and minimal explanations of ψ in L.

First we show that the construction in the proof of Theorem 3 establishes an
injection: Assume W ⊆ V is a minimal vertex cover of G, then the following set
of implications is a minimal explanation of ψ in L:

L′ := {{mw} → {mej | w ∈ ej, 1 ≤ j ≤ k} | w ∈ W} ∪
{{ma,me1 , . . . ,mek

} → {mb}}.

In the proof of Theorem 3 we have already shown that L′ is an explanation.
Here we need to show that it is minimal as well. If W is minimal, then removal
of any vertex w from W will result in a Y � W such that vj1 �∈ Y and vj2 �∈ Y
for some edge ej . This implies that removal of the corresponding implication
{mw} → {mej | w ∈ ej} from L′ will result in a L′′ such that the attribute mej

does not appear on the right handside of any of the implications in L′′, which
means that L′′ cannot explain ψ, i.e., L′ is minimal.

Now we show that it establishes a surjection: Assume L′ is a minimal expla-
nation. Then every mej , 1 ≤ j ≤ k, occurs at least once on the right handside of
some implication of the form {mw} → {mej | w ∈ ej}, where w ∈ W , because
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otherwise L′ cannot explain ψ. We have already shown in the proof of Theorem
Theorem 3 that such a W is a vertex cover. Moreover, removal of any implication
of this form from L′ results in a set of implications that is not an explanation.
This is because L′ is a minimal explanation. That is, removal of any w from W
results in a Y � W such that vj1 �∈ Y and vj2 �∈ Y for some 1 ≤ j ≤ k, i.e.,
W is minimal. Thus we have shown that our construction establishes a bijection
between minimal vertex covers and minimal explanations. �

5.3 Computing All Minimal Explanations

In Example 1 we have demonstrated that a given implication can have expo-
nentially many minimal explanations in a given Duquenne-Guigues Base. Given
this fact, it is clearly not possible to enumerate all minimal explanations in time
polynomial in the size of the input. In this case one can investigate the existence
of an output polynomial algorithm for this problem:

Problem: minimal explanation enumeration (mee)
Input: A Duquenne-Guigues Base L and an implication L→ R s.t. L |= L→ R.
Output: The set of all minimal explanations of L→ R in L, i.e., {L′ ⊆ L | L′ |=
L→ R and ∀L′′

� L′. L′′ �|= L→ R}.
In order to investigate the complexity of this enumeration problem, we need to
investigate the following decision problem:

Problem: additional minimal explanation (ame)
Input: A Duquenne-Guigues Base L, an implication L → R s.t. L |= L → R,
and a set of minimal explanations of L → R in L, i.e, J = {Ji | Ji ⊆ L,Ji |=
L→ R and ∀J ′

� Ji. J ′ �|= L→ R}
Question: Is there a minimal explanation that is not already listed in J , i.e.,
J ⊆ L such that J |= L→ R, ∀J ′

� J . J ′ �|= L→ R and J �∈ J ?

Because if ame is not in p, there cannot be an algorithm that solves mee in
output polynomial time (unless p = np). We can show it by the same argument
used in the proofs of Propositions 1 and 3. It is not difficult to see that ame
is in conp. Given an instance of ame with the Duquenne-Guigues Base L, the
implication ψ and a set of minimal explanations J , we can nondeterministically
guess a minimal subset of L that is not already contained in J and in polynomial
time verify that this subset does not explain ψ. Unfortunately we do not know
the lower bound of this problem at the moment. It is definitely an interesting
question whether this problem, like api and pis, is also related to the decision
problems simple-h-sat and trans-hyp from hypergraph theory.

6 Concluding Remarks and Future Work

We have considered several decision, enumeration and counting problems related
to pseudo-intents. Among them, pie, the problem of enumerating pseudo-intents
has been the central point of our interest. The question whether this problem
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can be solved in output polynomial time or not remains unfortunately open.
However we have formulated two decision questions, namely api and pis, that
are crucial in determining the complexity of pie. Some interesting consequences
of our results can be summed up as follows:

– If any of the problems api, or pis turns out to be conp-hard, then unless p
= np, there cannot be an algorithm that solves pie in output polynomial
time (Proposition 1, Proposition 3).

– Showing that any of the problems api or pis is polynomial implies that the
open problems trans-hyp and simple-h-sat are also polynomial (Theorem
1, Theorem 2, [3]).

– Even if trans-hyp and simple-h-sat turn out to be polynomial, api and
pis can still be conp-hard, thus it can still be the case that pie is not solvable
in output polynomial time.

– Even if api and pis turn out to be polynomial, it can still be the case that
pie is not solvable in output polynomial time.

We have also investigated the complexity of finding explanations, i.e., subsets
from which a given implication follows, in a given Duquenne-Guigues Base. We
have shown that finding a minimum cardinality one is np-complete, and counting
minimal explanations is #p-complete.

As future work, we are going to work on determining the exact complexity
of the problems api and pis. For api, we are going to investigate whether the
hardness result [3] on hypergraph saturation for arbitrary graphs carries over to
api on arbitrary formal contexts. For pis, we are going to investigate the types
of formal context where pis and trans-hyp (and thus pie and trans-enum)
become computationally equivalent problems, and find out whether this type
of formal contexts are natural in some applications, and how often they occur
in practice. One other interesting question is of course the lower complexity
bound for checking whether a set is a pseudo-intent. We are going to investigate
whether this problem is also related to some hypergraph problem. In addition
to this, we are going to work on determining the exact complexity of counting
pseudo-intents.Note that in [15,16] it has been mentioned that this problem is
in #p, but this is not true. The results there only imply that this problem is in
#·conp [12], which contains #p. On the explanations side, we are going to work
on determining the exact complexity of ame.

Acknowledgments. Thanks to Felix Distel for proof-reading a preliminary
version of this work.
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