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Abstract. In the reasoning about actions community, causal relation-
ships have been proposed as a possible approach for solving the ramifi-
cation problem, i.e., the problem of how to deal with indirect effects of
actions. In this paper, we show that causal relationships can be added to
action formalisms based on Description Logics (DLs) without destroying
the decidability of the consistency and the projection problem. We in-
vestigate the complexity of these decision problems based on which DL
is used as base logic for the action formalism.

1 Introduction

For action theories represented in the situation or fluent calculus [13, 16], impor-
tant inference problems such as the projection problem are in general undecid-
able since these calculi encompass full first-order logic (FOL). One possibility
for avoiding this source of undecidability is to restrict the underlying logic from
FOL to a decidable Description Logic [1]. The main argument for using DLs in
this setting is that they offer considerable expressive power, going far beyond
propositional logic, while reasoning is still decidable. An action formalism based
on DLs was first introduced in [3], and it was shown that important reason-
ing problems such as the projection problem become decidable in this restricted
formalism.

An action theory basically consists of three components: (i) a (possibly in-
complete) description of the initial state; (ii) a description of the possible actions,
which specifies the pre-conditions that need to be satisfied for an action to be
applicable as well as the post-conditions, i.e., the changes to the current state
that its application causes; and (iii) domain constraints, which formulate gen-
eral knowledge about the functioning of the domain in which the actions are
executed, and thus restrict the possible states. In a DL-based action formalism,
the initial state is (incompletely) described by an ABox, pre-conditions are ABox
assertions that must hold, post-conditions are ABox assertions that are added or
removed, and domain constraints are specified using TBox axioms. Given a finite
sequence of actions α1 . . . αn, an incomplete description A0 of the initial state,
? supported by DFG under grant BA 1122/13-1.



and a formula ϕ specifying a (desired or unwanted) property of states, projection
[13] is the inference problem that asks whether ϕ holds in all states that can be
reached from a possible initial state (i.e., a state satisfying A0) by applying this
sequence of actions. The formula ϕ may, for example, be the prerequisite of an
action α to be applied after the last action of the sequence, or a condition used
in the control structure of an agent’s program. In [3], it was shown that the
projection problem is decidable in action theories based on DLs between ALC
and ALCQIO. However, this paper did not deal with the so-called ramification
problem [8, 15].

The ramification problem is caused by the interaction of the post-conditions
of an action with the domain constraints. To be more precise, when applying an
action, it may not be enough to make only those changes to the current state
that are explicitly required by its post-conditions (direct effects) since it might
happen that the resulting state does not satisfy the domain constraints, in which
case one needs to make additional changes in order to satisfy these constraints
(indirect effects). For example, assume that we have a hiring action, which has
the direct effect that the person that is hired is then an employee, and that
we have a domain constraint that says that any employee must have a health
insurance. If John does not have health insurance, then just applying the hiring
action for John would result in a state that violates the health insurance domain
constraint.

One approach for solving the ramification problem is trying to find a seman-
tics for action theories that automatically deals with such indirect effects, i.e.,
somehow makes additional changes to the state in order to satisfy the domain
constraints, while taking care that only “necessary” changes are made. An exam-
ple of such an attempt is the possible models approach (PMA) [18, 7]. However,
without additional restrictions, the PMA and all the other approaches in this
direction can lead to unintuitive results. It is not clear how to construct a general
semantics that does not suffer from this problem. In our example, assume that
there are only two insurance companies that offer health insurance: AOK and
TK. In order to satisfy the health insurance domain constraint, John must get
insured by one of them, but how should a general semantic framework be able
to decide which one to pick.

A second approach is to avoid rather than solve the issues raised by the
ramification problem. This is actually what is done in [3]: the domain constraints
are given by an acyclic TBox and post-conditions of actions are restricted such
that only primitive concepts and roles are changed. Since, w.r.t. an acyclic TBox,
the interpretations of the primitive concepts and roles uniquely determine the
interpretations of the defined concepts, it is then clear what indirect effects such
a change has. The semantics obtained this way can be seen as an instance of the
PMA. It is shown in [3] that the use of the PMA in a less restrictive setting (use
of more general TBoxes as domain constraints or of non-primitive concepts in
post-conditions) leads to unintuitive results.

A third approach is to let the user rather than a general semantic machinery
decide which are the implicit effects of an action. In our example, assume that



employers actually are required to enroll new employees with AOK in case they
do not already have a health insurance. One can now try to extend the action
formalism such that it allows the user to add such information to the action the-
ory. For DL-based action formalisms, this approach was first used in [9], where
the formalism for describing the actions is extended such that the user can make
complex statements about the changes to the interpretations of concepts and
roles that can be caused by a given action. It is shown in [9] that important
inference problems such as the projection problem stay decidable in this set-
ting, but that the consistency1 problem for actions becomes undecidable. In the
present paper, we realize this third approach in a different way, by adapting a
method for addressing the ramification problem that has already been employed
in the reasoning about actions community [8, 15, 17, 6]. Instead of changing the
formalism for defining actions, we introduce so-called causal relationships as an
additional component of action theories. In our example, such a causal relation-
ship would state that, whenever someone becomes a new employee, this person
is then insured by AOK, unless (s)he already had a health insurance.

In this paper, we formally introduce DL-based action theories with causal
relationships. The semantics we define for such theories is an adaptation of the
one introduced in [17, 6] in a more general setting, and it inherits the advantages
and disadvantages of this approach. The main thrust of this work is not to
invent a new solution of the ramification problem and discuss its appropriateness,
but to show that adding a well-accepted existing solution from the reasoning
about actions community [17, 6] to DL-based action theories leaves important
inference problems such as the consistency problem and the projection problem
decidable. More precisely, we provide not only decidability results, but detailed
results on the complexity of these two problems depending on which DL is used
as base logic. With a few exceptions, these results show that adding causal
relationships to DL-based action formalisms does not increase the complexity of
these inference problems.

Using causal relationships has two advantages over the formalism for handling
the ramification problem introduced in [9]. First, the formalism in [9] requires
the user to deal with the ramification problem within every action description. In
our formalism, causal relationships are defined independently of a specific action,
stating general facts about causation. The semantics then takes care of how these
relationships are translated into indirect effects of actions. A second, and more
tangible, advantage is that, in our formalism, consistency of actions is decidable.
Basically, an action is consistent if, whenever it is applicable in a state, there is
a well-defined successor state that can be obtained by applying it. We believe
that, in the context of the third approach, where the user is supposed to deal
with the ramification problem (in our formalism by defining appropriate causal
relationships), testing consistency helps the user to check whether (s)he got it
right. For instance, consider our health insurance example. If the user does not
specify any causal relationships, then the hiring action is inconsistent since its
application may result in a state that does not satisfy the domain constraints,

1 In [9], this is actually called strong consistency.



Table 1. Syntax and semantics of ALCO

Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

nominal {a} {aI}
value restriction ∀r.C {x | ∀y. ((x, y) ∈ rI → y ∈ CI)}
existential restriction ∃r.C {x | ∃y. ((x, y) ∈ rI ∧ y ∈ CI)}

general concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

negated role assertion ¬r(a, b) (aI , bI) 6∈ rI

and thus is not well-defined. If (s)he adds the causal relationship mentioned
above, then the action becomes consistent.

Due to space constraints, we cannot give complete proofs of all our results
here. They can be found in the accompanying technical report [2].

2 DL-based Action Formalisms and Causal Relationships

We assume that the reader is familiar with the basic notions from Description
Logics, which can, for example, be found in [1]. In principle, our action formal-
ism can be parameterized with any DL. In this paper, we restrict the detailed
presentation to the DL ALCO, and only list the results that we have obtained
for other DLs in Section 5. The DL ALCO extends the smallest propositionally
closed DL ALC with so-called nominals. In ALC, one can build complex concept
descriptions from atomic concepts (concept names) using the Boolean construc-
tors (u, t, ¬) as well as value restrictions (∀r.C) and existential restrictions
(∃r.C), where r is a role name. In ALCO, one can additionally use individual
names a to build nominal concepts {a}, which are interpreted as singleton sets.

An ABox is a finite set of concept assertions C(a) and role assertions r(a, b),
and negated role assertions ¬r(a, b), where C is a concept description, r is a
role name, and a, b are individual names. An ABox is simple if all its concept
assertions are of the form A(a) or ¬A(a), where A is a concept name. We will
call the concept and (negated) role assertions that may occur in simple ABoxes
literals. Literals of the form A(a) and r(a, b) (¬A(a) and ¬r(a, b)) are called
positive (negative). Given a literal L, its negation ¬̇L is ¬L if L is positive, and
it is L′ if L = ¬L′ is negative. A TBox is a finite set of general concept inclusions
(GCIs) of the form C v D, where C,D are concept descriptions.

Example 2.1. Coming back to the health insurance example from the introduc-
tion, the following GCIs express that all employees must be insured by a health



insurance company, and that AOK and TK are health insurance companies:

Employee v ∃insuredBy.HealthInsuranceCompany

{AOK} t {TK} v HealthInsuranceCompany

The assertion ¬Employee(JOHN) says that John is not an employee.

The semantics of ALCO is defined in terms of an interpretation I = (∆I , ·I),
where ∆I , the domain, is a non-empty set, and ·I , the interpretation function,
maps each concept name A to a subset AI ⊆ ∆I , each role name r to a binary
relation rI ⊆ ∆I×∆I , and each individual name a to an element aI ∈ ∆I . The
extension of ·I to complex concept descriptions is defined inductively, as shown
in the semantics column of Table 1. The interpretation I satisfies a GCI or
assertion ϕ (written I |= ϕ) if the condition in the semantics column of Table 1
is satisfied. If I satisfies all the assertions of the ABox A (GCIs of the TBox T ),
then we say that I is a model of A (T ), and write I |= A (I |= T ). The ABox
A is consistent w.r.t. T if there exists an interpretation that is a model of A
and T . We say that the assertion ϕ (the TBox T ′) is a logical consequence of
the ABox A and the TBox T , denoted with A ∪ T |= ϕ (A ∪ T |= T ′) iff every
interpretation that is a model of A and T is also a model of ϕ (T ′).

The following definition recalls the notion of a DL action without occlusions,
which has first been introduced in [3].2 At the moment, we do not allow for
occlusions in our framework since it is not yet clear how to handle them algo-
rithmically in the presence of causal relationships.

Definition 2.2. An action is a pair α = (pre, post), where pre is a finite set
of assertions, the pre-conditions, and post is a finite set of conditional post-
conditions of the form ϕ/ψ, where ϕ is an assertion and ψ is a literal. Such an
action is called unconditional if all its post-conditions are of the form true/ψ,
where “true” stands for an assertion that is satisfied in every interpretation. We
write such unconditional post-conditions simply as ψ rather than true/ψ.

Basically, an action is applicable in an interpretation if its pre-conditions are
satisfied. The conditional post-condition ϕ/ψ requires that ψ must hold after
the application of the action if ϕ was satisfied before the application. According
to the semantics of DL actions defined in [3], nothing should change that is not
explicitly required to change by some post-condition. As already discussed in
the introduction, this semantics is not appropriate if the domain constraints are
given by a TBox containing arbitrary GCIs.

For examples, consider the TBox T consisting of the GCIs of Example 2.1
and the action HireJohn = (∅, {Employee(JOHN)}), which has no pre-conditions
and a single unconditional post-condition. Assume that I is a model of T with
I 6|= Employee(JOHN) and I 6|= ∃insuredBy.HealthInsuranceCompany(JOHN) (ob-
viously, such models exist). If we apply the semantics of DL actions introduced
2 Intuitively, occlusions describe parts of the domain that can change arbitrarily when

the action is applied. More details about occlusions can be found in [3] and in
Section 7 of [2].



in [3], then I is transformed into an interpretation I ′, whose only difference to I
is that now John is an employee, i.e., I ′ |= Employee(JOHN). Since nothing else
changes, we still have I ′ 6|= ∃insuredBy.HealthInsuranceCompany(JOHN), which
shows that I ′ is not a model of T . Consequently, although the action HireJohn is
applicable to I (since the empty set of pre-conditions does not impose any appli-
cability condition), its application does not result in an interpretation satisfying
the domain constraints in T . We will call an action where this kind of problem
can occur an inconsistent action. In our example, consistency can be achieved
by complementing the action HireJohn with an appropriate causal relationship.

Definition 2.3. A causal relationship is of the form A1 −→B A2, where A1,A2

are simple ABoxes and B is an ABox.

Such a causal relationship can be read as “A1 causes A2 if B holds.” To be
more precise, it says the following:3 if B is satisfied before4 the application of an
action and A1 is newly satisfied by its application (i.e., was not satisfied before,
but is satisfied after the application), then A2 must also be satisfied after the
application. In our health insurance example, the causal relationship

{Employee(JOHN)} −→{¬∃insuredBy.HealthInsuranceCompany(JOHN)} {insuredBy(JOHN, AOK)}

adds the following indirect effect to the direct effect of the HireJohn action: (i) if
John becomes newly employed (i.e., was not an employee before) and did not
have a health insurance before the application of the action, then he is newly
insured with AOK after its application; (ii) if he becomes newly employed, but
already has a health insurance, then he keeps his old health insurance and is not
newly insured with AOK. In both cases, the GCIs of Example 2.1 stay satisfied.

In order to define the semantics of DL actions in the presence of causal
relationships formally, we consider an action α = (pre, post), a finite set of causal
relationships CR, and an interpretation I to which the action is supposed to be
applied. The actions and causal relationships introduced above can only effect
changes to the membership of named individuals (pairs of named individuals)
in atomic concepts (roles). Consequently, such effects can be described in an
obvious way using literals. For this reason, we will sometimes call a simple ABox
a set of effects.

Using the semantics of actions introduced in [3], the set of direct effects of α
given I is defined as

Dir(α, I) := {ψ | ϕ/ψ ∈ post ∧ I |= ϕ}.

Direct effects of an action may cause indirect effects specified by causal rela-
tionships, and these indirect effects may again cause indirect effects, etc. Thus,
the overall effects of an action are obtained by iteratively adding indirect effects
to the direct ones until no new indirect effects can be added.
3 Actually, there are different ways of defining the meaning of causal relationships.

Here, we follow the approach used in [17, 6] rather than the one employed by [8, 15].
4 In the semantics of causal relationship introduced in [8, 15], this “before” would need

to be replaced by “after.”



To be more precise, we start the iteration by defining E0 := Dir(α, I). As-
suming that Ei (i ≥ 0) is already defined, we define Ei+1 := Ei ∪ Indi+1, where

Indi+1 := {ψ | ∃A1 −→B A2 ∈ CR such that
(i) ψ ∈ A2, (ii) I |= B, (iii) I 6|= A1, and

(iv) ∀ϕ ∈ A1. (ϕ ∈ Ei ∨ (I |= ϕ ∧ ¬̇ϕ 6∈ Ei))} .

Thus, we add the indirect effect ψ to our set of effects if (i) it is in the consequence
set A2 of a causal relationship A1 −→B A2 for which (ii) the condition B is
satisfied in I (i.e., before applying the action), and (iii)+(iv) the trigger A1 is
newly satisfied, i.e., (iii) A1 is not satisfied in I, but (iv) it is satisfied according
to the current effect set, i.e., every assertion ϕ ∈ A1 is a (direct or indirect)
effect, or it is satisfied in I and this is not changed by an effect.

By definition, we have E0 ⊆ E1 ⊆ E2 · · · . Since we only add literals that
belong to the consequence set of a causal relationship in the finite set CR, there
is an n such that En = En+1 = En+2 = · · · . We define

E(α, I,CR) := En .

This set of literals represents the effects of applying the action α to the inter-
pretation I w.r.t. the causal relationships in CR. It could happen, however, that
this set is contradictory, and thus cannot lead to a well-defined successor inter-
pretation: we say that E(α, I,CR) is contradictory if there is a literal L such that
{L, ¬̇L} ⊆ E(α, I,CR).

Now, we are ready to introduce our semantics of actions in the presence of
causal relationships.

Definition 2.4. Let α be an action, CR a finite set of causal relationships, T
a TBox, and I, I ′ two interpretations. We say that α may transform I to I ′
w.r.t. T and CR (denoted by I =⇒T ,CR

α I ′) if

– ∆I = ∆I′ and aI = aI
′
for every individual name a,

– I |= T and I ′ |= T ,
– E(α, I,CR) is not contradictory,
– for all concept names A we have AI

′
= (AI ∪ {aI | A(a) ∈ E(α, I,CR)}) \

{aI | ¬A(a) ∈ E(α, I,CR)}, and
– for all role names r we have rI

′
= (rI ∪ {(aI , bI) | r(a, b) ∈ E(α, I,CR)}) \

{(aI , bI) | ¬r(a, b) ∈ E(α, I,CR)}.

The sequence of actions α1, . . . , αn may transform I to I ′ w.r.t. T and CR
(denoted by I =⇒T ,CR

α1,...,αn
I ′) iff there are interpretations I0, . . . , In such that

I = I0, In = I ′, and Ii−1 =⇒T ,CR
αi

Ii for all i, 1 ≤ i ≤ n.

If T and CR are empty, then this semantics coincides with the one given in [3] for
actions without occlusions. Note that our actions are deterministic in the sense
that, for every model I of T , there exists at most one interpretation I ′ such that
I =⇒T ,CR

α I ′. However, sometimes there may not exist any such interpretation
I ′, either because E(α, I,CR) is contradictory, or because the new interpretation



induced by E(α, I,CR) is not a model of T . If this happens in the case where
α = (pre, post) is actually applicable to I (i.e., I |= pre), then this indicates a
modeling error. In fact, the correct modeling of an action theory should ensure
that, whenever an action is applicable, there is a well-defined successor state.

Definition 2.5. The action α is consistent w.r.t. the TBox T and the finite set
CR of causal relationships iff, for every model I of T with I |= pre, there exists
an interpretation I ′ with I =⇒T ,CR

α I ′.

As argued above, the action HireJohn is not consistent w.r.t. the TBox con-
sisting of the GCIs of Example 2.1 and the empty set of causal relationships,
but it becomes consistent if we add the causal relationship introduced below
Definition 2.3.

The projection problem is one of the most basic reasoning problems for ac-
tion theories [13]. Given a (possibly incomplete) description of the initial world
(interpretation), it asks whether a certain property is guaranteed to hold after
the execution of a sequence of actions. Our formal definition of this problems is
taken from [3], with the only difference that we use the “may transform” rela-
tion introduced in Definition 2.4, which takes causal relationships into account,
instead of the one employed in [3].

Definition 2.6 (Projection problem). Let α1, . . . , αn be a sequence of ac-
tions such that, for all i, 1 ≤ i ≤ n, the action αi is consistent w.r.t. T and CR.
The assertion ϕ is a consequence of applying α1, . . . , αn to A w.r.t. T and CR
iff, for all I and I ′, if I |= A and I =⇒T ,CR

α1,...,αn
I ′, then I ′ |= ϕ.

Note that we consider only consistent actions in our definition of the pro-
jection problem. In fact, if an action is inconsistent, then there is something
wrong with the action theory, and this problem should be solved before start-
ing to ask projection questions. Another interesting inference problem for action
theories is executability : Are all pre-conditions guaranteed to be satisfied during
the execution of a sequence of actions? As shown in [3], the projection and the
executability problem can be reduced to each other in polynomial time. For this
reason, we restrict our attention to the consistency and the projection problem.

3 Deciding Consistency

First, we develop a solution for the restricted case where the TBox is empty, and
then we show how this solution can be extended to the general case.

3.1 Consistency w.r.t. the Empty TBox

We will show that, in this case, testing consistency of an action w.r.t. a set of
causal relationships has the same complexity as the (in)consistency problem of an
ABox. Given an action α and a finite set of causal relationships CR, we basically
consider all the possible situations that the action could encounter when it is
applied to an interpretation.



Definition 3.1. Let α = (pre, post) be an action and CR a finite set of causal
relationships. The ABox A(α,CR) is defined as follows:

A(α,CR) := {ϕ,¬ϕ | ϕ/ψ ∈ post or ϕ ∈ A1 ∪ B for some A1 −→B A2 ∈ CR}.

A diagram D for α and CR is a maximal, consistent subset of A(α,CR). We
denote the set of all diagrams for α and CR by D(α,CR).

For a given interpretation I, there is exactly one diagram D such that I |= D. It
is sufficient to know this diagram to determine what are the direct and indirect
effects of applying α to I w.r.t. CR. Given a diagram D, we will now define a set
Ê(α,D,CR) such that Ê(α,D,CR) = E(α, I,CR) for every interpretation I with
I |= D. The definition of the direct effects of an action can easily be adapted to
the diagram case: D̂ir(α,D) := {ψ | ϕ/ψ ∈ post ∧ ϕ ∈ D}.

The same is true for the sets Ei. We start the iteration by defining Ê0 :=
D̂ir(α,D). Assuming that Êi (i ≥ 0) is already defined, we define Êi+1 := Êi ∪
Îndi+1, where

Îndi+1 := {ψ | ∃A1 −→B A2 ∈ CR such that
(i) ψ ∈ A2, (ii) B ⊆ D, (iii) A1 6⊆ D, and

(iv) ∀ϕ ∈ A1. (ϕ ∈ Êi ∨ (ϕ ∈ D ∧ ¬̇ϕ 6∈ Êi))} .

Again, there exists an n ≥ 0 such that Ên = Ên+1 = Ên+2 = · · · , and we define
Ê(α,D,CR) := Ên. This set is contradictory if there is a literal L such that
{L, ¬̇L} ⊆ Ê(α,D,CR).

Checking which of the sets Ê(α,D,CR) for D ∈ D(α,CR) are contradictory
is sufficient for deciding the consistency problem in the case where the TBox is
assumed to be empty. In fact, in this case the only reason for an interpretation
not to have a successor interpretation w.r.t. α is that the set of effects is con-
tradictory. Since we require the existence of a successor interpretation only for
interpretations that satisfy the precondition set pre of α, it is enough to consider
diagrams D that are consistent with pre.

Lemma 3.2. The action α = (pre, post) is consistent w.r.t. CR iff Ê(α,D,CR)
is not contradictory for all D ∈ D(α,CR) for which D ∪ pre is consistent.

This lemma yields a PSpace decision procedure for deciding consistency of
an action w.r.t. a finite set of causal relationships. In order to check whether α
is inconsistent, we first guess5 a diagram D ∈ D(α,CR), and then check whether
D∪pre is consistent using the PSpace decision procedure for ABox consistency in
ALCO [14]. If D∪pre is consistent, we compute the set Ê(α,D,CR). This can be
realized in polynomial time by performing the iteration used in the definition of
Ê(α,D,CR). Checking whether this set is contradictory is obviously also possible
in polynomial time.
5 Recall that PSpace = NPSpace according to Savitch’s theorem.



This PSpace upper bound is optimal since the ABox inconsistency problem
in ALCO, which is known to be PSpace-complete [14], can be reduced to our
action consistency problem: for every ABox A, we have that A is inconsistent
iff (A, {A(a),¬A(a)}) is consistent w.r.t. the empty set of causal relationships,
where A is an arbitrary concept name and a is an arbitrary individual name.

Theorem 3.3. The problem of deciding consistency of an action w.r.t. a finite
set of causal relationships is PSpace-complete for ALCO.

3.2 The General Case

If T is not empty, then there is an additional possible reason for an action to be
inconsistent: the successor interpretation induced by a non-contradictory set of
effects may not be a model of T . Thus, given a non-contradictory set of effects
Ê(α,D,CR), we must check whether, for any model I of T and D that satisfies
the preconditions of α, the interpretation I ′ obtained from I by applying the
effects in Ê(α,D,CR) (see Definition 2.4) is a model of T . To this purpose, we
first define an unconditional action βα,CR,D that, applied to models of D, has
the same effect as α w.r.t. CR. Then, we adapt the approach for solving the
projection problem introduced in [3] to the problem of checking whether βα,CR,D
transforms models of T into models of T .

Definition 3.4. Let α = (pre, post) be an action, CR a finite set of causal re-
lationships, and D ∈ D(α,CR). The action βα,CR,D has pre ∪ D as set of pre-
conditions and Ê(α,D,CR) as set of (unconditional) post-conditions.

The following lemma is an easy consequence of the definition of Ê(α,D,CR)
and the semantics of actions (Definition 2.4).

Lemma 3.5. For all D ∈ D(α,CR), all models I of D, and all interpretations
I ′, we have I =⇒∅,CR

α I ′ iff I =⇒∅,∅
βα,CR,D

I ′.

The approach for solving the projection problem introduced in [3] considers a
finite sequence of actions β1, . . . , βn. In the present section, we are only interested
in the special case where n = 1. However, since we will adopt this approach also
in the next section, where we consider the case n ≥ 1, we recall the relevant
notions and results for the general case. In this approach, time-stamped copies
r(i) (0 ≤ i ≤ n) for all relevant role names and new time-stamped concept
names T (i)

C (0 ≤ i ≤ n) for all relevant concept descriptions are introduced.
In our setting, the relevant role names (concept descriptions) will be the ones
occurring in the input of the consistency or projection algorithm (see [2] for
details). For every ABox assertion ϕ built using a relevant concept description
C or a relevant role name r (called relevant assertion in the following) and every
i, 0 ≤ i ≤ n, we can then define a time-stamped variant ϕ(i) as follows:

C(a)(i) := T
(i)
C (a), r(a, b)(i) := r(i)(a, b), ¬r(a, b)(i) := ¬r(i)(a, b).



Given a set of relevant assertions A, we define its time-stamped copy as A(i) :=
{ϕ(i) | ϕ ∈ A}. Given a set of GCIs T built from relevant concept descriptions,
we define its time-stamped copy as T (i) := {T (i)

C v T
(i)
D | C v D ∈ T }.

Intuitively, given an initial interpretation I0, the application of β1 to I0

yields a successor interpretation I1, the application of β2 to I1 yields a succes-
sor interpretation I2, etc. Using the time-stamped copies of the relevant role
names and concept descriptions, we can encode the sequence of interpretations
I0, I1, . . . , In into a single interpretation J such that the relevant assertion ϕ
holds in Ii iff its time-stamped variant ϕ(i) holds in J . In order to enforce that
J really encodes a sequence of interpretations induced by the application of the
action sequence β1, . . . , βn, we require it to be a model of the (acyclic) TBox
Tred and the ABox Ared. Due to the space constraints, we cannot describe the
construction of Tred and Ared here. This construction is very similar to the one
introduced in [4], and it is described in detail in [2].6 Here, we only recall the
pertinent properties of Tred and Ared in the next lemma (whose proof is very
similar to the one of Theorem 14 in [4]). It should be noted that our results
actually do not depend on how the TBox Tred and the ABox Ared are exactly
constructed. Any TBox and ABox satisfying the properties stated in the lemma
can be used in our approach.

Lemma 3.6. Let β1, . . . , βn be a sequence of ALCO actions, and R a set of rele-
vant role names and concept descriptions such that R contains all the role names
and concept descriptions occurring in β1, . . . , βn. Then, there are an ALCO
ABox Ared and an (acyclic) ALCO TBox Tred of size polynomial in the size
of β1, . . . , βn and R, such that the following properties (a) and (b) hold:

(a) For all interpretations I0, . . . , In such that Ii =⇒∅,∅
βi

Ii+1 for every i, 0 ≤
i < n, there exists an interpretation J such that J |= Ared, J |= Tred, and
(i) for all i, 0 ≤ i ≤ n and for all relevant assertions ψ: Ii |= ψ iff J |= ψ(i);
(ii) for all i, 0 ≤ i ≤ n and all relevant concept descriptions C, we have

CIi = (T (i)
C )J .

(b) For all interpretations J such that J |= Ared and J |= Tred, there exist
interpretations I0, . . . , In such that Ii =⇒∅,∅

βi
Ii+1 for every i, 0 ≤ i < n,

and (i) and (ii) of (a) hold.

Now, we can come back to the consistency problem for actions. Let α =
(pre, post) be an action, CR a finite set of causal relationships, and T a TBox.
The set R of relevant role names and concept descriptions consists of the ones
occurring in α, CR, or T . Given a diagram D ∈ D(α,CR), we can compute the
set Ê(α,D,CR), and check whether this set is non-contradictory. If this is the
case, then we consider the action βα,CR,D, and test whether an application of this
action transforms models of T satisfying pre and D into models of T . This test
can be realized using the ABox Ared and the (acyclic) TBox Tred of Lemma 3.6.

Lemma 3.7. The action α is consistent w.r.t. T and CR iff the following holds
for all D ∈ D(α,CR): if D ∪ pre is consistent w.r.t. T , then
6 Note that this construction makes use of nominals.



– Ê(α,D,CR) is non-contradictory, and
– Ared ∪ Tred ∪D(0) ∪ pre(0) ∪ T (0) |= T (1), where Ared and Tred are constructed

using βα,CR,D and R.

This lemma shows that consistency of an action w.r.t. a TBox and a finite set
of causal relationships can be tested by considering the exponentially many ele-
ments of D(α,CR). For each element D ∈ D(α,CR), consistency of D∪pre w.r.t.
T can be tested in exponential time since reasoning in ALCO w.r.t. (general)
TBoxes is ExpTime-complete [5]. For a given diagram D, the set Ê(α,D,CR)
as well as βα,CR,D and R can be computed in polynomial time, and the same is
true for the construction of the ABox Ared and the TBox Tred using βα,CR,D and
R. Checking whether Ê(α,D,CR) is contradictory or not can also be realized in
polynomial time. Finally, testing whether Ared∪Tred∪D(0)∪pre(0)∪T (0) |= T (1)

is again a reasoning problem for ALCO, which can be solved in exponential time.
Overall, we have seen that Lemma 3.7 yields a consistency test that requires at
most exponentially many calls to ExpTime reasoning procedures. This yields
an ExpTime upper bound for the complexity of the consistency problem. Exp-
Time-hardness can be shown similarly to our proof of PSpace-hardness for the
case with an empty TBox.

Theorem 3.8. The problem of deciding consistency of an action w.r.t. a TBox
and a finite set of causal relationships is ExpTime-complete for ALCO.

4 Deciding Projection

The projection problem considers a sequence of actions α1, . . . , αn, together
with a TBox T , a finite set of causal relationships CR, an initial ABox A, and an
assertion ϕ. By definition, ϕ is a consequence of applying α1, . . . , αn to A w.r.t.
T and CR iff, for all interpretations I0, . . . , In−1, In, if I0 |= A and I0 =⇒T ,CR

α1

I1 =⇒T ,CR
α2

· · · In−1 =⇒T ,CR
αn

In , then In |= ϕ.
Our solution of the projection problem w.r.t. T and CR uses the same ideas

as the solution of the consistency sketched in Section 3. First, instead of con-
sidering interpretations I0, . . . , In−1, we consider diagrams D0, . . . ,Dn−1, where
Di ∈ D(αi+1,CR) for i = 0, . . . , n − 1.7 Second, we use the original sequence of
actions α1, . . . , αn and the diagrams D0, . . . ,Dn−1 to build the corresponding
sequence of actions βα1,CR,D0 , . . . , βαn,CR,Dn−1 . Lemma 3.5 then tells us that, for
all models Ii−1 of Di−1 and all interpretations Ii we have Ii−1 =⇒∅,CR

αi
Ii iff

Ii−1 =⇒∅,∅
βαi,CR,Di−1

Ii. Third, we use the sequence βα1,CR,D0 , . . . , βαn,CR,Dn−1 and
the set of relevant role names and concept descriptions R to construct an ABox
Ared and (acyclic) a TBox Tred such that the properties (a) and (b) of Lemma 3.6
hold. These properties can be used to express that the initial interpretation I0

must be a model of A and that we only consider interpretations Ii that are

7 Note that it is enough to consider diagrams D0, . . . ,Dn−1 for I0, . . . , In−1 since no
action is applied to In.



models of T . In addition, we can then check, whether all this implies that the
final interpretation In is a model of ϕ. To be more precise, we can show that
the following characterization of the projection problem holds:

Lemma 4.1. Let α1, . . . , αn be a sequence of actions, T a TBox, CR a finite
set of causal relationships, A an initial ABox, and ϕ an assertion. Then, ϕ is
a consequence of applying α1, . . . , αn to A w.r.t. T and CR iff for all diagrams
D0, . . . ,Dn−1 such that Di ∈ D(αi+1,CR) for i = 0, . . . , n− 1, we have

n−1⋃
i=0

D(i)
i ∪

n⋃
i=0

T (i) ∪ A(0) ∪ Ared ∪ Tred |= ϕ(n), (1)

where Ared and Tred are constructed from βα1,CR,D0 , . . . , βαn,CR,Dn−1 and R.

It is easy to see that this lemma yields an ExpTime decision procedure for
the projection problem in ALCO. In fact, one needs to consider exponentially
many sequences of diagrams D0, . . . ,Dn−1. For each such sequence, the actions
βα1,CR,D0 , . . . , βαn,CR,Dn−1 , and thus also Ared and Tred, can be constructed in
polynomial time. Thus, the inference problem (1) is of polynomial size, and it
can be solved in exponential time since reasoning in ALCO w.r.t. a (general)
TBox is ExpTime-complete. ExpTime-hardness of the projection problem can
easily be shown by a reduction of concept satisfiability w.r.t. a TBox in ALCO.

Theorem 4.2. The projection problem w.r.t. a TBox and a finite set of causal
relationships for ALCO is ExpTime-complete.

For the special case of an empty TBox, the decision procedure derived from
Lemma 4.1 actually needs only polynomial space. In fact, the exponentially
many sequences of diagrams D0, . . . ,Dn−1 can be enumerated within polynomial
space, and for T = ∅, the inference problem (1) contains no GCIs since TBox
Tred is acyclic. Thus, it can be solved within PSpace. PSpace-hardness of the
projection problem is again easy to show.

Corollary 4.3. The projection problem w.r.t. the empty TBox and a finite set
of causal relationships is PSpace-complete for ALCO.

5 Additional Results and Future Work

Our approach for deciding the consistency and the projection problem works
not only for ALCO, but also for all the other DLs considered in [3]. Basically,
we can use the same algorithms. What differs from DL to DL is the complexity
of the basic inference problems in the respective DL (extended with nominals).
Except for two cases (consistency of actions in ALCQI and ALCQIO in the
case where the TBox is non-empty), we get the matching hardness results by a
reduction from such a basic inference problem. The complexity results obtained
this way are listed in Table 2. They are proved in detail in [2]. The table shows



Table 2. The complexity of the consistency and the projection problem. PSp is short
for PSpace-complete, Exp for ExpTime-complete, cNE for co-NExpTime-complete,
PNE for in PTimeNExpTime.

TBox
?

AL
C

AL
CO

AL
CQ

AL
CI

AL
CQ
O

AL
CQ
I

AL
CI
O

AL
CQ
IO

Consistency T = ∅ PSp PSp PSp PSp PSp PSp Exp cNE
T 6= ∅ Exp Exp Exp Exp Exp PNE Exp PNE

Projection T = ∅ PSp PSp PSp Exp PSp cNE Exp cNE
T 6= ∅ Exp Exp Exp Exp Exp cNE Exp cNE

that (with the two exceptions mentioned above) the projection problem and the
consistency problem in DL-based action formalisms with causal relationships is
not harder than reasoning in the underlying DL (extended with nominals).

Regarding future work, one interesting question is whether our approach for
deciding the consistency and the projection problem can be extended to actions
with occlusions. Note that such actions are non-deterministic, i.e., their appli-
cation to an interpretation may yield several possible successor interpretations.
Consequently, such an action may still be consistent although some of the suc-
cessors interpretations are not models of the TBox. Thus, consistency can no
longer be characterized by an analog of Lemma 3.7.

When defining our semantics for actions in the presence of causal relation-
ships, we followed the approach used in [17, 6] rather than the one employed
by [8, 15]. In our health insurance example, this was actually the appropriate
semantics, but there may also be examples where it would be better to use the
other semantics. Thus, it would be interesting to see whether our approach for
deciding the consistency and the projection problem can be adapted to deal with
the semantics of [8, 15].

Instead of trying to decide the projection problem directly, one can also follow
the progression approach: given an action and a (possibly incomplete) descrip-
tion of the current state, this approach tries to compute a description of the
possible successor states. Projection then boils down to computing consequences
of this successor description. For DL-based action theories, progression has been
investigated in [10]. It would be interesting to see whether the results obtained
there can be extended to the DL-based action theories with causal relationships
considered in the present paper.

This paper follows the approach for obtaining decidability results for action
theories introduced in [3], which is based on the idea of restricting the base logic
to a decidable DL. In the literature, other ways of restricting the base logic to
achieve this goal have been considered. For example, in [11] the authors consider
so-called local effect actions8 and restrict the base logic to so-called “proper+

knowledge bases” [12]. They show that, in this setting, progression is efficiently

8 Note that our DL-based actions are local effect actions.



computable, which implies that the projection problem is efficiently decidable.
It would be interesting to see whether this result can be extended to actions
theories with causal relationships.
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