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Automata-based Axiom PinpointingFranz Baader � Rafael Pe~naloza
the date of reeipt and aeptane should be inserted laterAbstrat Axiom pinpointing has been introdued in desription logis (DL) to helpthe user understand the reasons why onsequenes hold by omputing minimal subsetsof the knowledge base that have the onsequene in question (MinA). Most of thepinpointing algorithms desribed in the DL literature are obtained as extensions oftableau-based reasoning algorithms for omputing onsequenes from DL knowledgebases. In this paper, we show that automata-based algorithms for reasoning in DLsand other logis an also be extended to pinpointing algorithms. The idea is that thetree automaton onstruted by the automata-based approah an be transformed intoa weighted tree automaton whose so-alled behaviour yields a pinpointing formula,i.e., a monotone Boolean formula whose minimal valuations orrespond to the MinAs.We also develop an approah for omputing the behaviour of a given weighted treeautomaton. We use the DL SI as well as Linear Temporal Logi (LTL) to illustrateour new pinpointing approah.1 IntrodutionDesription logis (DLs) [2℄ are a family of logi-based knowledge representation for-malisms, whih are employed in various appliation domains, suh as natural languageproessing, on�guration, databases, and bio-medial ontologies, but their most no-table suess so far is the adoption of the DL-based language OWL [21℄ as standardontology language for the semanti web. As the size of DL-based ontologies grows,tools that support improving the quality of suh ontologies beome more important.DL reasoners [20,19,38℄ an be used to detet inonsistenies and to infer other impliitonsequenes, suh as subsumption relationships between onepts or instane relation-ships between individuals and onepts. However, for a developer or user of a DL-basedontology, it is often quite hard to understand why a ertain onsequene omputed bythe reasoner atually follows from the knowledge base. For example, in the urrentFirst author partially supported by NICTA, Canberra Researh Lab., and seond author fundedby the German Researh Foundation (DFG) under grant GRK 446.Theoretial Computer Siene, TU Dresden, GermanyE-mail: fbaader,penalozag�ts.inf.tu-dresden.de



2DL version of the medial ontology SNOMED CT,1 the onept Amputation-of-Fingeris lassi�ed as a subonept of Amputation-of-Arm. Finding the six axioms that areresponsible for this error [10℄ among the more than 350,000 terminologial axioms ofSNOMED without support by an automated reasoning tool is not easy.Axiom pinpointing [34℄ has been introdued to help developers or users of DL-based ontologies understand the reasons why a ertain onsequene holds by omputingminimal subsets of the knowledge base that have the onsequene in question (MinA).There are two general approahes for omputing MinAs: the blak-box approah andthe glass-box approah. The most na��ve variant of the blak-box approah onsidersall subsets of the ontology, and omputes for eah of them whether it still has theonsequene or not. More sophistiated versions [35,22℄ use a variant of Reiter's [32℄hitting set tree algorithm to ompute all MinAs. Instead of applying suh a blak-boxapproah to a large ontology, one an also �rst try to �nd a small and easy to omputesubset of the ontology that ontains all MinAs, and then apply the blak-box approahto this subset [10℄. The main advantage of the blak-box approah is that it an useexisting highly-optimized DL reasoners unhanged. However, it may be neessary toall the reasoner an exponential number of times. In ontrast, the glass-box approahtries to �nd all MinAs by a single run of a modi�ed reasoner.Most of the glass-box pinpointing algorithms desribed in the DL literature (e.g.,[4,34,33,27,25℄) are obtained as extensions of tableau-based reasoning algorithms [9℄for omputing onsequenes from DL knowledge bases. The pinpointing algorithms andproofs of their orretness in these papers are given for a spei� DL and a spei�type of knowledge base only, and it is not lear to whih of the known tableau-basedalgorithms for DLs the approahes really generalize. For example, the pinpointing ex-tension desribed in [25℄, whih an deal with general onept inlusions (GCIs) inthe DL ALC, follows the approah introdued in [4℄, but sine GCIs require the in-trodution of so-alled bloking onditions into the tableau-based algorithm to ensuretermination [9℄, there are some new non-trivial problems to be solved.To overome the problem of having to design a new pinpointing extension for everytableau-based algorithm, we have introdued in [5℄ a general approah for extendingtableau-based algorithms to pinpointing algorithms. This approah has, however, someannoying limitations. First, it only applies to tableau-based algorithms that terminatewithout requiring any yle-heking mehanism suh as bloking. Seond, terminationof the tableau-based algorithm one starts with does not neessarily transfer to its pin-pointing extension. Though these problems an, in priniple, be solved by restritingthe general framework to so-alled forest tableaux [8,7℄, this solution makes the de�ni-tions and proofs quite ompliated and less intuitive. Also, the approah an still onlyhandle the most simple version of bloking, usually alled subset bloking in the DLliterature.In the present paper, we propose a di�erent general approah for obtaining glass-boxpinpointing algorithms, whih also applies to DLs for whih the termination of tableau-based algorithms requires the use of appropriate bloking onditions. It is well-knownthat automata working on in�nite trees an often be used to onstrut worst-ase opti-mal deision proedures for suh DLs [13,26,11,14,3℄. In this automata-based approah,the input inferene problem � is translated into a tree automaton A� , whih is thentested for emptiness. Basially, our approah transforms the tree automaton A� intoa weighted tree automaton working on in�nite trees, whose so-alled behaviour yields1 see http://www.ihtsdo.org/our-standards/



3a pinpointing formula, i.e., a monotone Boolean formula that enodes all the MinAsof � . To obtain an atual pinpointing algorithm, we had to develop an algorithm foromputing the behaviour of weighted tree automata working on in�nite trees. When westarted our work, we ould not �nd suh an algorithm in the quite extensive literatureon weighted automata. In fat, although weighted automata working on �nite trees[37℄ and weighted automata working on in�nite words [16℄ have been onsidered forquite a while, the researh on weighted automata working on in�nite trees has startedonly reently [23,15℄. During the development of our work, an alternative algorithmfor omputing the behaviour of weighted tree automata working on in�nite trees hasindependently been developed in [15℄. It turns out, however, that using this algorithmin our pinpointing appliation basially yields a blak-box approah for pinpointing,rather than a glass-box approah, as our algorithm does (see Setion 5.4).We will use the DL SI, whih extends the basi DL ALC [36℄ with transitiveand inverse roles, as well as Linear Temporal Logi (LTL) [28,17℄ to illustrate ournew pinpointing approah. The use of SI is, on the one hand, motivated by the fatthat the presene of inverses in SI requires tableau-based algorithms to use a blokingondition that is more sophistiated than subset bloking [9℄. Consequently, our generalresults on tableau-based approah for pinpointing [8,7℄ do not apply to this DL. On theother hand, the extension of their approah to SI is mentioned as an open problem in[25℄. The automata used to deide satis�ability in SI are so-alled looping automata,whih do not use an aeptane ondition. Our hoie of LTL as a seond exampleis, on the one hand, motivated by the fat that automata-based algorithms for LTLrequire the use of automata with a B�uhi aeptane ondition.2 One the other hand,we believe that pinpointing an also be a useful inferene servie in appliations ofLTL. In LTL model heking [12℄, it does not make sense to hek whether a systemdesription satis�es a given LTL formula if this formula or its negation is unsatis�able.Pinpointing ould help the user to �nd the reasons for the unsatis�ability and thusorret the formula. In LTL synthesis [29,24℄ one tries to generate a reative �nite-statesystem from a formal spei�ation, whih is given as an LTL formula. If the formulais unsatis�able, then the spei�ation is obviously faulty, and needs to be repaired.Pinpointing ould be used to support the repair proess by larifying the reasons forunsatis�ability.In the next setion, we �rst introdue the DL SI and the temporal logi LTL, andthen reall the relevant de�nitions regarding pinpointing. Setion 3 de�nes generalizedB�uhi tree automata, their restritions to B�uhi tree automata and looping tree au-tomata, and their generalization to the weighted ase. In Setion 4, we �rst presentour general approah for automata-based pinpointing, whih is based on the notion ofan axiomati automaton and its transformation into a pinpointing automaton. Then,we show that this approah an be applied to SI and LTL by introduing axiomatiautomata for these logis. The pinpointing automaton is a weighted automaton whosebehaviour is the pinpointing formula. Thus, to apply our approah in pratie, oneneeds to be able to ompute the behaviour of weighted generalized B�uhi tree au-tomata. In Setion 5, we �rst show how to ompute the behaviour of weighted B�uhitree automata. Seond, we explain how this omputation an be simpli�ed for the aseof weighted looping tree automata. For the DL SI, the pinpointing automaton on-2 We ould, of ourse, also have used a DL with transitive losure of roles [1℄ for this purpose.However, suh DLs are until now not used in appliations, and we also wanted to make learthat our approah for automata-based pinpointing is not restrited to Desription Logis.



4struted by our approah is suh a weighted looping tree automaton. Third, we de�nea behaviour-preserving polynomial-time redution of weighted generalized B�uhi treeautomata to weighted B�uhi tree automata, whih yields an approah for omput-ing the behaviour of weighted generalized B�uhi tree automata. For the temporal logiLTL, the pinpointing automaton onstruted by our approah is a weighted generalizedB�uhi tree automaton. Fourth, we ompare our approah for omputing the behaviourof weighted B�uhi tree automata with the one developed in [15℄. Setion 6 summarizesthe results of the paper and gives some perspetives on further researh.This work extends the results in [6℄ (the onferene version of this paper), whihapply to looping automata only, to the ase of automata with B�uhi aeptane on-ditions.2 PreliminariesIn this setion, we �rst introdue the DL SI and the temporal logi LTL, and thenreall the relevant de�nitions regarding pinpointing from [5℄.2.1 The Desription Logi SIAs mentioned above, SI extends the basi DL ALC with transitive and inverse roles.An example of a role that should be interpreted as transitive is has-desendant, whilehas-anestor should be interpreted as the inverse of has-desendant. Instead of employingthe usual approah of \hard-oding" inverse and transitive roles into the syntax andsemantis of onept desriptions, we allow the use of inverse and transitivity axioms inthe knowledge base. This enables us to pinpoint also these kinds of axioms as reasonsfor ertain onsequenes. Thus, the onept desriptions that we onsider in this aseare simply ALC onept desriptions.De�nition 1 (ALC onept desriptions) Let NC be a set of onept names andNR a set of role names. The set of ALC onept desriptions is the smallest set suhthat{ all onept names are ALC onept desriptions;{ if C and D are ALC onept desriptions, then so are :C, C tD, and C uD;{ if C is an ALC onept desription and r 2 NR, then 9r:C and 8r:C are ALConept desriptions.An interpretation is a pair I = (�I ; �I) where the domain �I is a non-empty set and�I is a funtion that assigns to every onept name A a set AI � �I and to every rolename r a binary relation rI � �I � �I . This funtion is extended to ALC oneptdesriptions as follows:{ (C uD)I = CI \DI ; (C tD)I = CI [DI ; (:C)I = �I n CI ;{ (9r:C)I = fx 2 �I j there is a y 2 �I with (x; y) 2 rI and y 2 CIg;{ (8r:C)I = fx 2 �I j for all y 2 �I , (x; y) 2 rI implies y 2 CIg.In this paper we restrit our attention to terminologial knowledge, whih is givenby a so-alled TBox.



5De�nition 2 (SI TBoxes) An SI TBox is a �nite set of axioms of the followingform:(i) C v D where C and D are ALC onept desriptions (GCI);(ii) trans(r) where r 2 NR (transitivity axiom);(iii) inv(r; s), where r 6= s 2 NR (inverse axiom),suh that every r 2 NR appears in at most one inverse axiom.An interpretation I is alled a model of the SI TBox T if it satis�es all axioms inT , i.e., if(i) C v D 2 T implies CI � DI ;(ii) trans(r) 2 T implies that rI is transitive;(iii) inv(r; s) 2 T implies that (x; y) 2 rI i� (y; x) 2 sI .The main inferene problems for terminologial knowledge are satis�ability andsubsumptionDe�nition 3 (satis�ability, subsumption) Let C and D be ALC onept desrip-tions and T an SI TBox. We say that C is satis�able w.r.t. T if there is a model Iof T suh that CI 6= ;. In this ase, I is also alled a model of C w.r.t. T . We allC unsatis�able w.r.t. T if it does not have a model w.r.t. T . Finally, we say that C issubsumed by D w.r.t. T if CI � DI holds in every model I of T .We want to pinpoint reasons for unsatis�ability and for subsumption. Sine C is sub-sumed by D w.r.t. T i� C u :D is unsatis�able w.r.t. T , it is obviously suÆient todesign a pinpointing algorithm for unsatis�ability.The automata-based approah for deiding (un)satis�ability uses the fat that anALC onept desription C is satis�able w.r.t. an SI TBox T i� it has a ertain tree-shaped model, alled Hintikka tree for C and T . It onstruts a looping tree automatonworking on in�nite trees whose runs are exatly the Hintikka trees for C and T (see[3℄ and Setion 4.2), and then tests this automaton for emptiness.2.2 Linear Temporal LogiLinear Temporal Logi (LTL) is an extension of propositional logi that allows reason-ing about temporal properties, where time is seen as disrete and linear. The semantisof this logi use the notion of a omputation, whih intuitively orrespond to interpre-tations whose domain is �xed to be the set of natural numbers.De�nition 4 (LTL formulae) Let P be a set of propositional variables. The set ofLTL formulae is the smallest set suh that{ all propositional variables are LTL formulae,{ if � and  are LTL formulae, then so are :�; � ^  ;�, and �U .A omputation is a funtion � : N ! P(P), where N represents the set of naturalnumbers. This funtion is extended to LTL formulae as follows, for every i 2 N:{ :� 2 �(i) i� � =2 �(i); � ^  2 �(i) i� f�;  g � �(i);{ � 2 �(i) i� � 2 �(i+ 1); and



6{ �U 2 �(i) i� there is a j � i suh that  2 �(j) and for all k; i � k < j, it holdsthat � 2 �(k).The LTL formula � is satis�able if there is a omputation � suh that � 2 �(0).One is usually interested in deiding whether a given LTL formula is satis�able ornot. Here, we will look at the satis�ability problem in a more �ne-grained manner. Weare interested in deteting whih parts of the formula atually ause the unsatis�ability.More preisely, we will assume that our formula is a onjuntion of LTL formulae,and we want to �nd out whih onjunts are responsible for the unsatis�ability. Weadditionally allow some of these onjunts to be trusted in the sense that they willnever be onsidered as the auses for unsatis�ability. Thus, we onsider LTL formulaethat are onjuntions of a stati formula �, whih must always be there, and a set ofrefutable formulae R, whih an be removed.De�nition 5 (axiomati satis�ability) Let � be an LTL formula and R a �nite setof LTL formulae. We say that � is a-satis�able w.r.t. R if � ^ V 2R  is satis�able,i.e., there is a omputation � suh that R [ f�g � �(0). In this ase, � is alled aomputation for (�;R).We will show in Setion 4.3 how one an onstrut a B�uhi tree automaton that hasas its suessful runs all omputations for the input, thus allowing us to redue a-satis�ability to the emptiness problem for B�uhi tree automata.2.3 Basi De�nitions for PinpointingFollowing [5℄, we de�ne pinpointing not for a spei� logi and inferene problem, butrather in a more general setting. The type of inferene problems that we will onsideris deiding a so-alled -property for a given set of axiomatized inputs. To obtain anintuitive understanding of the following de�nition, just assume that inputs are ALConept desriptions, admissible sets of axioms are SI TBoxes, and the -property isunsatis�ablility.De�nition 6 (axiomatized input, -property) Let I and T be sets of inputs andaxioms, respetively, and let Padmis (T) � P�n (T) be a set of �nite subsets of T suhthat T 2 Padmis(T) implies T 0 2 Padmis(T) for all T 0 � T . An axiomatized input forI and Padmis (T) is of the form (I; T ) where I 2 I and T 2 Padmis(T).A onsequene property (or -property for short) is a set P � I�Padmis (T) suhthat (I; T ) 2 P implies (I; T 0) 2 P for every T 0 2 Padmis (T) with T 0 � T .The reason why we have introdued the set Padmis(T) of admissible subsets ofT (rather than taking all �nite subsets of T ) is to allow us to impose additionalrestritions on the sets of axioms that must be onsidered. For instane, SI TBoxesare not arbitrary �nite sets of axioms of the form (i), (ii), and (iii) (see De�nition 2).In addition, we require that every role name appears in at most one inverse axiom.Clearly, this restrition satis�es our requirement for admissible sets of axioms.The problems of unsatis�ability of ALC onept desriptions w.r.t. SI TBoxes anda-unsatis�ability of sets of LTL formulae are indeed -properties. More formally, let I



7onsist of all ALC onept desriptions, T of all GCIs, transitivity axioms, and inverseaxioms, and Padmis (T) of all SI TBoxes. The following is a -property:P = f(C; T ) j C is unsatis�able w.r.t. T g:Likewise, if I and T both onsist of all LTL formulae and Padmis(T) = P�n(T), thenP = f(�;R) j � is a-unsatis�able w.r.t. Rgis a -property.De�nition 7 Given an axiomatized input � = (I; T ) and a -property P, a set ofaxioms S � T is alled a minimal axiom set (MinA) for � w.r.t. P if (I;S) 2 Pand (I;S 0) =2 P for every S 0 � S. The set of all MinAs for � w.r.t. P is denoted byMINP(� ).Note that the notion of a MinA is only interesting if � 2 P; otherwise, the monotoniityrequirement for P entails that MINP(� ) = ;. Let us instantiate this de�nition for thetwo -properties we have introdued above.In our SI example, onsider the axiomatized input � = (A u 8r:C;T ) where Tonsists ofax1: A v 9r:B; ax2: B v 8s::A; ax3: C v :B; ax4: inv(r; s) (1)It is easy to see that � 2 P, and that the set of all MinAs for � is MINP(� ) =ffax1; ax2; ax4g; fax1; ax3gg.For the logi LTL, onsider the axiomatized input � = (q;R) where R is given byax1: pU:q; ax2: :p; ax3:  q; ax4: :(q ^ p): (2)The set of all MinAs for � is then MINP(� ) = ffax1; ax2; ax3g; fax1; ax3; ax4gg. Thus,in the LTL formula q ^ pU:q ^ :p ^ q ^ :(q ^ p), the MinAs tell us whihminimal ombinations of the last four onjunts are responsible for unsati�ability inthe presene of q.One might think that pinpointing (i.e., the omputation of MinAs) an only beapplied in the LTL setting if the formula one is interested in is a large onjuntion ofsmall formulae. At �rst sight, it is not lear how a subformula  that does not ouras a top-level onjunt ould be pinpointed as a ulprit for unsatis�ability. This is,however, possible by replaing suh a subformula  by a new propositional variable p and adding the \de�nition" �(p ,  ) as a top-level onjunt to the formula obtainedthis way.3Instead of omputing all MinAs, one an also ompute a pinpointing formula. Tode�ne this formula, we assume that every axiom t 2 T is labelled with a unique propo-sitional variable, lab(t). Let lab(T ) be the set of all propositional variables labelling anaxiom in T . A monotone Boolean formula over lab(T ) is a Boolean formula using vari-ables in lab(T ) and only the onnetives onjuntion and disjuntion. In addition, theonstants > and ?, whih always evaluate to true and false, respetively, are monotoneBoolean formulae. We identify a propositional valuation with the set of propositionalvariables that it makes true. For a valuation V � lab(T ), let TV = ft 2 T j lab(t) 2 Vg.Reall that if T 2 Padmis(T) then for every T 0 � T it holds that T 0 2 Padmis(T). Inpartiular this means that TV 2 Padmis (T) for every valuation V.3 Here, �� is an abbreviation for :(>U:�) and �1 , �2 is an abbreviation for :(�1^:�2)^:(:�1 ^ �2).



8De�nition 8 (pinpointing formula) Given a -property P and an axiomatized in-put � = (I; T ), the monotone Boolean formula � over lab(T ) is alled a pinpointingformula for � w.r.t. P if the following holds for every valuation V � lab(T ):(I; TV) 2 P i� V satis�es �:In our SI example, we an take lab(T ) = fax1; : : : ; ax4g as set of propositional vari-ables. It is easy to see that ax1 ^ ((ax2 ^ ax4) _ ax3) is a pinpointing formula. Inthe LTL example, we an take the same set of propositional variables. In this ase,ax1 ^ ax3 ^ (ax2 _ ax4) is a pinpointing formula.Valuations an be ordered by set inlusion. The following is an immediate onse-quene of the de�nition of a pinpointing formula [4℄: if � a pinpointing formula for �w.r.t. P, then MINP(� ) = fTV j V is a minimal valuation satisfying �g:This shows that it is enough to design an algorithm for omputing a pinpointing for-mula to obtain all MinAs. However, the redution suggested by the above identity isnot polynomial. One possible way to obtain MINP(� ) from � is to �rst transform �into disjuntive normal form, and then remove superuous disjunts. It is well-knownthat this an ause an exponential blow-up. This should, however, not be viewed asa disadvantage of approahes omputing the pinpointing formula rather than diretlyMINP(� ). If suh a blow-up happens, then the pinpointing formula atually yields aompat representation of all MinAs.3 B�uhi Tree AutomataIn this setion, we introdue both unweighted and weighted generalized B�uhi treeautomata. These automata reeive in�nite trees of a �xed arity k as inputs. For apositive integer k, we denote the set f1; : : : ; kg by K. The nodes of our trees an beidenti�ed by words in K� in the usual way: the root node is identi�ed by the emptyword ", and the i-th suessor of the node u is identi�ed by ui for 1 � i � k. In thease of labelled trees, we will refer to the labelling of the node u 2 K� in the tree rby r(u). We will also use ��!r(u) to denote the tuple ��!r(u) = (r(u); r(u1); : : : ; r(uk)). Anin�nite tree r with labels from a set Q an be represented as a mapping r : K� ! Q.For our purpose, it is suÆient to use unlabelled in�nite trees as inputs for ourtree automata. For a �xed arity k, there is exatly one suh tree, whih we an identifywith the set of its nodes, i.e., with K�. We will also use the onept of a path in thistree. A path is a subset p � K� suh that " 2 p and for every u 2 p there is exatlyone i; 1 � i � k with ui 2 p.De�nition 9 (B�uhi tree automaton) A generalized B�uhi tree automaton for arityk is a tuple (Q;�; I; F1; : : : ; Fn), where Q is a �nite set of states, � � Qk+1 is thetransition relation, I � Q is the set of initial states, and F1; : : : ; Fn � Q are sets of�nal states. A generalized B�uhi tree automaton is alled B�uhi automaton if it hasonly one set of �nal states; i.e., if n = 1. It is alled looping tree automaton if n = 0.A run of a generalized B�uhi automaton on the unlabelled tree K� is a labelledk-ary tree r : K� ! Q suh that ��!r(u) 2 � for all u 2 K�. This run is suessful if for



9every path p and every i; 1 � i � n, there are in�nitely many nodes u 2 p suh thatr(u) 2 Fi.The emptiness problem for generalized B�uhi tree automata for arity k is the prob-lem of deiding whether a given suh automaton has a suessful run r with r(") 2 Ior not.Let us illustrate the notions introdued in this de�nition on a simple B�uhi au-tomaton.Example 1 Consider the B�uhi tree automaton Aex = (Q;�; I; F ) for arity 2, where{ Q = fq0; q1; q2; q3g, I = fq0g, and F = fq1; q3g:{ � = f(q0; q1; q1); (q0; q2; q2); (q1; q1; q1); (q2; q2; q2); (q2; q3; q3)g.This automaton has two runs that label the root with the initial state q0: r1, whihlabels all the non-root nodes with q1, and r2, whih labels all the non-root nodes withq2; the latter is not suessful, but the former is. Thus, Aex has r1 as a suessful runthat labels the root with an initial state. The binary tree r3 that labels the root withq0 and all the non-root nodes with q3 is not a run of Aex. Finally, the run r4, whihlabels all nodes with q1, is a suessful run of Aex, but it does not label the root withan initial state.Although a diret algorithm for deiding the emptiness problem for a generalizedB�uhi automaton is skethed in [40℄, in the journal version of that paper [41℄, the idea issimpli�ed by presenting a redution to the emptiness problem for B�uhi automata. Ourtreatment of weighted automata will follow a similar approah. First, we will show howto ompute the behaviour of weighted B�uhi automata by an approah that is inspiredby the emptiness test for B�uhi automata.4 Then, we will introdue a redution fromweighted generalized B�uhi automata to weighted B�uhi automata that preserves thebehaviour.We will later extend automata-based deision proedures into algorithms that om-pute pinpointing formulae by transforming B�uhi automata into weighted B�uhi au-tomata. The weights of suh automata ome from a distributive lattie [18℄.De�nition 10 (distributive lattie) A distributive lattie is a partially ordered set(S;�S) suh that in�ma and suprema of arbitrary �nite subsets of S always exist anddistribute over eah other. The distributive lattie (S;�S) is alled �nite if its arrierset S is �nite.Any weighted automaton uses as weights only �nitely many elements of the under-lying distributive lattie. Sine �nitely generated distributive latties are �nite [18℄,the losure of this set under the lattie operations in�mum and supremum yields a�nite distributive lattie. For this reason, we will in the following assume without lossof generality that the weights of our weighted B�uhi automaton ome from a �nitedistributive lattie (S;�S).In the following, we will often simply use the arrier set S to denote the �nitedistributive lattie (S;�S). The in�mum (supremum) of a subset T � S will be de-noted by Nt2T t (Lt2T t). We will often ompute the in�mum (supremum) Ni2I ti(Li2I ti) over an in�nite set of indies I. However, the �niteness of the lattie and the4 This emptiness test is skethed in Setion 5.1.



10idempoteny of the operators in�mum and supremum ensure that the sets over whihthe operators are atually applied are �nite, and hene in�mum and supremum arewell-de�ned in this ase. For the in�mum (supremum) of two elements, we will also usein�x notation, i.e., write t1
 t2 (t1� t2) to denote the in�mum (supremum) of the setft1; t2g. The least element of S (i.e., the in�mum of the whole set S) will be denotedby 0, and the greatest element (i.e., the supremum of the whole set S) by 1.It should be noted that our assumption that the weights ome from a �nite distribu-tive lattie is stronger than the one usually enountered in the literature on weightedautomata. In fat, for automata working on �nite words or trees, it is suÆient toassume that the weights ome from a so-alled semiring [37℄. In order to have a well-de�ned behaviour also for weighted automata working on in�nite objets, the existeneof in�nite produts and sums is required [16,31℄. As mentioned above, our �nitenessassumption ensures that suh in�nite produts and sums are atually �nite. The ad-ditional properties imposed by our requirement to have a distributive lattie (in par-tiular, distributivity and the idempoteny of produt and sum) are neessary for ourapproah of omputing the behaviour of weighted B�uhi automata (see Setion 5).These stronger assumptions are not problemati in our pinpointing appliation: as wewill see later, the weights we will enounter in our omputation of the pinpointingformula atually ome from a �nitely generated free distributive lattie.De�nition 11 (weighted B�uhi automaton) Let S be a �nite distributive lattie.A weighted generalized B�uhi automaton (WGBA) over S for arity k is a tuple A =(Q; in; wt; F1; : : : ; Fn) where Q is a �nite set of states, in : Q ! S is the initialdistribution, wt : Qk+1 ! S assigns weights to transitions, and F1; : : : ; Fn � Q are thesets of �nal states. A WGBA is alled weighted B�uhi automaton (WBA) if n = 1 andweighted looping automaton (WLA) if n = 0.A run of the WGBA A is a labelled tree r : K� ! Q. The weight of this runis wt(r) = Nu2K� wt(��!r(u)). This run is suessful if, for every path p and everyi; 1 � i � n, there are in�nitely many nodes u 2 p suh that r(u) 2 Fi. Let suAdenote the set of all suessful runs of A. The behaviour of the automaton A iskAk := Mr2suA in(r("))
 wt(r):Let us illustrate this de�nition on the example of a WBA over the Boolean semiringthat simulates an (unweighted) B�uhi tree automaton.Example 2 The Boolean semiring B = (f0; 1g;^;_; 1; 0) is a �nite distributive lattie,where the partial order is de�ned as 1 �B 0. Note that we have de�ned 1 to be smallerthan 0, and thus onjuntion yields the supremum (i.e., is the \addition" �) anddisjuntion yields the in�mum (i.e., is the \multipliation" 
). Likewise, 1 is the leastelement 0, and 0 is the greatest element 1. The reason for this unorthodox de�nitionis that this makes it easy to transform a given B�uhi tree automaton A = (Q;�; I; F )into a WBA Aw on B suh that the behaviour of Aw is 0 i� A has a suessful runthat labels the root with an initial state. In Aw, the initial distribution maps initialstates to 0 and all other states to 1; a tuple in Qk+1 gets weight 0 if it belongs to �,and weight 1 otherwise.Consider the WBA Aexw that is obtained by applying this onstrution to the B�uhitree automaton Aex of Example 1. The run r1 has weight 0 sine all the transitions ituses have weight 0, and these weights are multiplied with eah other, i.e., onneted by



11disjuntion. Sine this run is suessful, it ontributes the summand in(q0)
wt(r1) =0 _ 0 = 0 to the behaviour of Aexw . Sine addition is onjuntion, this auses thebehaviour of Aexw to be 0. Let us nevertheless onsider some other runs. The run r2also has weight 0 and starts with the initial state q0. However, sine this run is notsuessful, in(q0)
 wt(r2) is not used as a summand when omputing the behaviourof Aexw . The tree r3 is a suessful run of Aexw , but it is not a run of Aex. Sine it usesthe transition (q3; q3; q3), whose weight is 1, its overall weight is 1 as well. Thus, itontributes the summand in(q0)
wt(r3) = 0_1 = 1 to the behaviour of Aexw , but thissummand is \eaten up" by the summand 0 ontributed to the sum (i.e., onjuntion)by the run r1. Finally, the run r4, is a suessful run of Aexw , whih has weight 0. Sineq1 is not an initial state of Aex, it ontributes the summand wt(q1)
wt(r4) = 1_0 = 1to the behaviour of Aexw .By generalzing the observations we have made for the runs r1; r2; r3; r4 of Aexw , itis easy see that the following holds for any B�uhi tree automaton A: the behaviour ofAw is 0 i� A has a suessful run that labels the root with an initial state.In Setion 5, we will develop an approah for omputing the behaviour of weighted(generalized) B�uhi tree automata that generalizes the emptiness test for (generalized)B�uhi tree automata. But �rst, we show how to redue the problem of omputing thepinpointing formula to the problem of omputing the behaviour of a WGBA.4 Automata-based PinpointingIn this setion, we �rst introdue our general approah for automata-based pinpointing,and then show how it an be applied to �nding a pinpointing formula for unsatis�abilityin SI and LTL.4.1 The General ApproahBasially, the automata-based approah for deiding a -property P takes axiomatizedinputs � = (I; T ) and translates them into automata A� suh that � 2 P i� A� doesnot have a suessful run. For example, the automaton onstruted from a oneptdesription C and a TBox T has a suessful run i� C is satis�able w.r.t. T , where the-property is unsatis�ability. If the translation from � to A� is an arbitrary funtion,then we have no way of knowing how the axioms in T inuene the behaviour ofthe automaton, and thus it is not lear how to onstrut a orresponding pinpointingautomaton. For this reason, we will assume that the automaton A� for � = (I; T ) in aertain sense also ontains automata for all axiomatized inputs (I; T 0) with T 0 � T ,5whih an be obtained by appropriately restriting the states and transitions of A� .To be more preise, let A = (Q;�; I; F1; : : : ; Fn) be a generalized B�uhi automatonfor arity k and � = (I; T ) an axiomatized input. The funtions �res : T ! P(Qk+1)and Ires : T ! P(Q) are respetively alled a transition restriting funtion and aninitial restriting funtion. The restriting funtions �res and Ires an be extended tosets of axioms T 0 � T as follows:�res(T 0) := \t2T 0�res(t) and Ires(T 0) := \t2T 0 Ires(t):5 Reall that every subset of an admissible set of axioms is also admissible.



12For T 0 � T , the T 0-restrited subautomaton of A w.r.t. �res and Ires is de�ned asAjT 0 := (Q;� \�res(T 0); I \ Ires(T 0); F1; : : : ; Fn):De�nition 12 (axiomati automaton) Let A = (Q;�; I; F1; : : : ; Fn) be a gener-alized B�uhi automaton for arity k, � = (I; T ) an axiomatized input, and �res :T ! P(Qk+1) and Ires : T ! P(Q) a transition and an initial restriting funtion,respetively. Then we all (A; �res; Ires) an axiomati automaton for � .Given a -property P, we say that (A; �res; Ires) is orret for � w.r.t. P if thefollowing holds for every T 0 � T : (I; T 0) 2 P i� AjT 0 does not have a suessful run rwith r(") 2 I \ Ires(T 0).Given a orret axiomati automaton for � = (I; T ), we an deide (I; T 0) 2 Pfor T 0 � T by applying the emptiness test for generalized B�uhi automata to AjT 0 .Example 3 Let � = (I; T ) be an axiomatized input, where T = fax1; ax2; ax3g, andassume that, for all T 0 � T , the -property P holds for (I; T 0) i� fax1; ax2g \ T 0 6= ;.Thus, MINP(� ) = ffax1g; fax2gg, and ax1 _ ax2 is a pinpointing formula.Consider the axiomati automaton (Aex; �res; Ires), where{ Aex is the B�uhi tree automaton introdued in Example 1;{ the transition restriting funtion is de�ned as �res(ax1) = � n f(q1; q1; q1)g,�res(ax2) = �, and �res(ax3) = � n f(q2; q2; q2)g;{ the initial restriting funtion is de�ned as Ires(ax1) = I, Ires(ax2) = ;,and Ires(ax3) = I.It is easy to see that (Aex; �res; Ires) is orret for � w.r.t. P. In fat, reall thatthe only suessful run of Aex is r1, whih labels the root with q0 and all non-rootnodes with q1. Now, assume that T 0 � T . If ax1 2 T 0, then the transition (q1; q1; q1),whih is used in the run r1, is no longer available, and thus r1 is not a run of AjT 0 . Ifax2 2 T 0, then AjT 0 does not have an initial state, and thus r1 no longer starts withan initial state. Finally, having ax3 in T 0 does not remove the run r1 sine this axiomonly removes the transition (q2; q2; q2), whih is not used in r1, and it also does nothange the set of initial states. Consequently, we have seen that AjT 0 does not havea run that labels the root with an initial state i� fax1; ax2g \ T 0 6= ;, and thus i� Pholds for (I; T 0).Now, we show how to transform a orret axiomati automaton into a weightedgeneralized B�uhi automaton whose behaviour is a pinpointing formula for the input.This weighted automaton uses the T -Boolean semiring, whih is de�ned as BT :=(B̂ (T );^;_;>;?), where B̂ (T ) is the quotient set of all monotone Boolean formulaeover lab(T ) by the propositional equivalene relation, i.e., two propositionally equiv-alent formulae orrespond to the same element of B̂ (T ). It is easy to see that thissemiring is indeed a distributive lattie, where the partial order is de�ned as � �  i�  ! � is valid. Furthermore, as T is �nite, this lattie is also �nite.6 Note that,similar to the ase of the Boolean semiring B , onjuntion is the semiring addition (i.e.,yields the supremum �) and disjuntion is the semiring multipliation (i.e., yields thein�mum 
). Likewise, > is the least element 0 and ? is the greatest element 1.6 More preisely, BT is the free distributive lattie over the generators lab(T ).



13De�nition 13 (pinpointing automaton) Let (A; �res; Ires) be an axiomati au-tomaton for � = (I; T ), with A = (Q;�; I; F1; : : : ; Fn). The violating funtions�vio : Qk+1 ! BT and Ivio : Q! BT are given by�vio(q0; q1; : : : ; qk) := _ft2T j(q0;q1;:::;qk)=2�res(t)g lab(t);Ivio(q) := _ft2T jq=2Ires(t)g lab(t);where the empty disjuntion yields ?.The pinpointing automaton indued by (A; �res; Ires) w.r.t. T is the WGBA overBT (A; �res; Ires)pin = (Q; in; wt; F1; : : : ; Fn), wherein(q) := ( Ivio(q) if q 2 I,> otherwise;wt(q0; q1; : : : ; qk) := (�vio(q0; q1; : : : ; qk) if (q0; q1; : : : ; qk) 2 �,> otherwise.It is easy to see that, if r : K� ! Q is a run of A, then its weight is given bywt(r) = Wu2K� �vio(��!r(u)); otherwise, wt(r) = >. Intuitively, the violating funtion�vio expresses whih axioms are not \satis�ed" by a given transition, and thus theweight of a run aumulates all the axioms violated by any of the transitions appearingas labels in it. Additionally, the funtion Ivio represents the axioms that are violated bythe initial state of this run. Removing all the axioms appearing in these two formulaewould yield a subset of axioms whih atually allows for this run; and hene, if therun is suessful and the root is labelled with an initial state, due to orretness, theproperty does not hold anymore. Conjoining this information for all possible suessfulruns leads us to a pinpointing formula.Before formulating and proving this fat more formally, let us illustrate the on-strution of the pinpointing automaton on the axiomati automaton introdued inExample 3.Example 4 Let (Aex; �res; Ires) be the axiomati automaton from Example 3. Theorresponding pinpointing automaton has the initial distribution in, wherein(q0) = ax2 and in(q1) = in(q2) = in(q3) = >;and the weight funtion wt, wherewt(q1; q1; q1) = ax1 and wt(q2; q2; q2) = ax3;wt(q; q0; q00) = ? if (q; q0; q00) 2 � n f(q1; q1; q1); (q2; q2; q2)g;wt(q; q0; q00) = > if (q; q0; q00) 62 �:The behaviour of this WBA is k(Aex; �res; Ires)pink = Vr2suAex in(r(")) _ wt(r).Obviously, only suessful runs that label the root with q0 an ontribute a onjuntdi�erent from> to this onjuntion. There is a single suessful run of Aex that satis�esthis restrition: the run r1, whih labels the root with q0 and all other nodes with q1.The weight of this run is wt(r1) = wt(q0; q1; q1)_wt(q1; q1; q1) = ?_ ax1 = ax1. Sinein(q0) = ax2, this shows that k(Aex; �res; Ires)pink = ax2_ax1, whih is a pinpointingformula for � w.r.t. P (see Example 3).



14Theorem 1 Let P be a -property, and � = (I; T ) an axiomatized input. If the ax-iomati automaton (A; �res; Ires) is orret for � w.r.t. P, then k(A; �res; Ires)pink isa pinpointing formula for � w.r.t. P.Proof We need to show that, for every valuation V � lab(T ), it holds that V satis�esk(A; �res; Ires)pink i� (I; TV) 2 P. Let V � lab(T ). Suppose �rst that (I; TV) =2 P.Sine (A; �res; Ires) is orret for � w.r.t. P, there must be a suessful run r of AjTVwith r(") 2 I \ Ires(TV). Consequently, ��!r(u) 2 �res(TV) holds for every u 2 K�,and thus V annot satisfy �vio(��!r(u)), for any u 2 K�. Sine r is a suessful runof AjTV , it is also a suessful run of A, whih implies wt(r) = Wu2K� �vio(��!r(u)).Thus, V does not satisfy wt(r). Sine r(") 2 I, we know that in(r(")) = Ivio(r("));additionally, r(") 2 Ires(TV) implies that V does not satisfy Ivio(r(")). Thus, V doesnot satisfy in(r("))_wt(r). But then V also annot satisfy Vr2suA in(r("))_wt(r) =k(A; �res; Ires)pink.Conversely, if V does not satisfy k(A; �res; Ires)pink = Vr2suA in(r(")) _ wt(r),then there must exist a suessful run r suh that V does not satisfy in(r(")) _ wt(r).This implies that r(") 2 I \ Ires(TV) and that ��!r(u) 2 �res(TV) for all u 2 K�.Consequently, r is a suessful run of AjTV with r(") 2 I \ Ires(TV ), whih shows(I; TV) =2 P, by the orretness of the axiomati automaton. ut4.2 Construting Axiomati Automata for SIIf we want to apply Theorem 1 to obtain an automata-based approah for pinpointingunsatis�ability in SI, we must show how, given an ALC onept desription C and anSI TBox T , we an onstrut an axiomati automaton (AC;T ; �resC;T ; IresC;T ) thatis orret for (C; T ) w.r.t. unsatis�ability. For this purpose, we must adapt the knownonstrution of a looping automaton for SI from [3℄ suh that it yields an axiomatiautomaton.7As mentioned before, the automata-based approah for deiding (un)satis�abilityuses the fat that a onept is satis�able i� it has a so-alled Hintikka tree. The au-tomaton to be onstruted will have exatly these Hintikka trees as its runs. Intuitively,Hintikka trees are obtained from tree-shaped models by labelling every node with the\relevant" onept desriptions to whih it belongs.Following [3℄, we assume that all onept desriptions are in negation normal form(NNF), i.e., negation appears only diretly in front of onept names. AnyALC oneptdesription an be transformed into NNF in linear time using de Morgan, duality ofquanti�ers, and elimination of double negations. We denote the NNF of C by nnf(C)and nnf(:C) by vC. Given an ALC onept desription C and an SI TBox T , the setof relevant onept desriptions is the set of all subdesriptions of C and of the oneptdesriptions vD tE for D v E 2 T . We denote this set by sub(C; T ). The set of rolenames ourring in C or T is denoted by rol(C; T ). The states of our automaton areso-alled Hintikka sets, whih in addition to subdesriptions also ontain informationabout whih roles are supposed to be transitive.7 On the one hand, the onstrution in [3℄ is more omplex than the one given here sinethe states of the automata in [3℄ ontain additional information needed for deteting ylesin a run as early as possible, whih is not relevant for the present paper. On the other hand,the states of the automata onstruted here ontain additional information about transitivityneeded for de�ning the restriting funtion.



15De�nition 14 (Hintikka set) A set H � sub(C; T ) [ rol(C; T ) is alled a Hintikkaset for (C; T ) if the following three onditions are satis�ed:(i) if D uE 2 H, then fD;Eg � H;(ii) if D tE 2 H, then fD;Eg \H 6= ;; and(iii) there is no onept name A suh that fA;:Ag � H.The Hintikka set H is ompatible with the GCI D v E 2 T if it is the empty set orontains vD t E. It is ompatible with the transitivity axiom trans(r) 2 T if it is theempty set or ontains r. Finally, it is ompatible with the inverse axiom inv(r; s) 2 T ifr 2 H implies s 2 H and vie versa.The arity k of our automaton is determined by the number of existential restri-tions, i.e., onept desriptions of the form 9r:D, ontained in sub(C;T ). Sine we needto know whih suessor in the tree orresponds to whih existential restrition, we �xan arbitrary bijetion ' : f9r:D j 9r:D 2 sub(C; T )g ! K. To obtain full k-ary trees,we will use nodes labelled with the empty set (whih is a Hintikka set) as dummynodes. The following Hintikka onditions will be used to de�ne the transitions of ourautomaton.De�nition 15 (Hintikka ondition) The tuple of Hintikka sets (H0; H1; : : : ; Hk)for (C;T ) satis�es the Hintikka ondition if the following holds for every existentialrestrition 9r:D 2 sub(C; T ):{ If 9r:D 2 H0, then H'(9r:D) ontains D as well as every E for whih there is avalue restrition 8r:E 2 H0; if, in addition, r 2 H0, then 8r:E belongs to H'(9r:D)for every value restrition 8r:E 2 H0.{ If 9r:D =2 H0, then H'(9r:D) = ;.This tuple is ompatible with the GCI D v E 2 T (ompatible with the transitivityaxiom trans(r) 2 T ) if all its omponents are ompatible with D v E (trans(r)). It isompatible with the inverse axiom inv(r; s) 2 T if all its omponents are ompatiblewith inv(r; s), and the following holds for all t 2 fr; sg and t� 2 fr; sg n ftg: for every8t:F 2 H'(9t�:D), the set H0 ontains F , and additionally 8t�:F if t 2 H0.We are now ready to de�ne the axiomati automaton for unsatis�ability in SI.De�nition 16 (axiomati automaton for SI) Let C be an ALC onept desrip-tion, T an SI TBox, and k the number of existential restritions in sub(C; T ). Theaxiomati automaton (AC;T ; �resC;T ; IresC;T ) has as its �rst omponent the loopingautomaton AC;T := (Q;�; I), where{ Q onsists of all Hintikka sets for (C; T );{ � onsists of all (H0; H1; : : : ; Hk) 2 Qk+1 that satisfy the Hintikka ondition;{ I := fH 2 Q j C 2 Hg.The transition restriting funtion �resC;T maps eah axiom t 2 T to the set of alltuples in � that are ompatible with t. The initial restriting funtion IresC;T mapseah axiom t 2 T to the set Q, i.e., there is e�etively no restrition on the initialstates imposed by the axioms.Corretness of this automaton onstrution an be shown by an easy adaptation ofthe arguments used in [3℄.



16Theorem 2 Let C be an ALC onept desription and T an SI TBox. The axiomatiautomaton (AC;T ; �resC;T ; IresC;T ) is orret for (C;T ) w.r.t. unsatis�ability.Theorem 1 shows that it is enough to ompute the behaviour of the pinpointingautomaton (AC;T ; �resC;T ; IresC;T )pin indued by (AC;T ; �resC;T ; IresC;T ) in orderto obtain a pinpointing formula for (C; T ) w.r.t. unsatis�ability. In Setion 5, we willshow how this behaviour an be omputed, but �rst we present an example of anaxiomati automaton where the use of a B�uhi aeptane ondition is neessary.4.3 Construting Axiomati Automata for LTLThe axiomati automaton for LTL a-unsatis�ability will have as states sets of formulaesimilar to the Hintikka sets introdued for SI, but they will need to satisfy slightlydi�erent onditions, due to the fat that we will not assume that the formulae used arein negation normal form.8 Given an LTL formula � and a set of LTL formulae R, thelosure of (�;R) is the set of all subformulae of � and R, and their negations, wheredouble negations are anelled. We denote this set as l(�;R).Following [42℄, the states of our automaton are elementary sets of formulae, whihplay the role of the Hintikka sets of the previous subsetion. Elementary sets are max-imal and onsistent sets of subformulae in l(�;R).De�nition 17 (elementary set) The set H � l(�;R) is alled an elementary setfor (�;R) if it satis�es the following onditions:{ :� 2 H i� � =2 H, for all :� 2 l(�;R);{ � ^  2 H i� f�;  g � H, for all � ^  2 l(�;R);{  2 H implies �U 2 H, for all �U 2 l(�;R);{ if �U 2 H and  =2 H, then � 2 HThe automaton onstruted from a given input (�;R) takes unary trees as input, i.e.,its runs are in�nite words over the set of states. The transition relation is thus binary.It plays the role of the Hintikka ondition, ensuring that temporal restritions aretransfered to suessor nodes when neessary.De�nition 18 (ompatible) A tuple (H;H 0) of elementary sets is alled ompatibleif it satis�es the following onditions:{ for all  2 l(�;R),  2 H i�  2 H 0; and{ for all �U 2 l(�;R), �U 2 H i� either (i)  2 H or (ii) � 2 H and �U 2 H 0.The runs of our automaton will be sequenes of elementary sets where eah two on-seutive ones form a ompatible tuple. In ontrast to the ase for SI, the presene ofa run of this automaton does not imply the existene of a omputation. The reasonis that one an delay the satisfation of an until formula inde�nitely; that is, everynode in the run may ontain the formula �U while none ontains  , violating thisway the last ondition in the de�nition of a omputation for the input. In order to ruleout these kinds of runs and make sure that eah until formula is eventually satis�ed,we will impose a generalized B�uhi ondition, whih introdues a set of �nal states foreah until formula in l(�;R).8 Although it is possible to transform LTL formulae into negation normal form, we deidednot to do this in order to stay as lose as possible to the known automaton onstrution forLTL [42℄. This allows us to reuse the proof of orretness of this onstrution.



17De�nition 19 (axiomati automaton for LTL) Let � and R be an LTL formulaand a set of LTL formulae, respetively, and let �1U 1; : : : ; �nU n be all the untilformulae in l(�;R). The axiomati automaton (A�;R; �res�;R; Ires�;R) has as its �rstomponent the generalized B�uhi automaton A�;R := (Q;�; I; F1; : : : ; Fn),9 where{ Q is the set of all elementary sets for (�;R);{ � onsists of all ompatible pairs (H;H 0) 2 Q�Q;{ I := fH 2 Q j � 2 Hg;{ Fi := fH 2 Q j  i 2 H or �iU i =2 Hg.For every  2 R, the transition restriting and initial restriting funtions are givenby �res�;R( ) := � and Ires�;R( ) := fH 2 Q j  2 Hg, respetively.Corretness of this automaton an be shown by a simple adaptation of the proof in [42℄.Theorem 3 Let � be an LTL formula and R a set of LTL formulae. The axiomatiautomaton (A�;R; �res�;R; Ires�;R) is orret for (�;R) w.r.t. a-unsatis�ability.From Theorem 1 we know that it suÆes to ompute the behaviour of the pin-pointing automaton (A�;R; �res�;R; Ires�;R)pin indued by (A�;R; �res�;R; Ires�;R)in order to obtain a pinpointing formula for (�;R) w.r.t. a-unsatis�ability. We willshow now how this behaviour an be omputed.5 Computing the Behaviour of Weighted Tree AutomataIn this setion, we �rst show how the behaviour of a weighted B�uhi automaton (WBA)on a �nite distributive lattie an be omputed by two nested iterations. Then, wedesribe how this approah an be simpli�ed to a single \bottom-up" iteration for thespeial ase of a weighted looping automaton (WLA). Next, we show that any weightedgeneralized B�uhi automaton (WGBA) an be redued, in polynomial time, to a WBAthat has the same behaviour. This redution follows the ideas that have previously beenused for the ase of unweighted automata [41℄. Finally, we ompare our approah foromputing the behaviour of a weighted B�uhi automaton with the one independentlydeveloped in [15℄.5.1 Computing the Behaviour of a WBAClearly, the na��ve approah that diretly uses the de�nition of the behaviour by �rstomputing and then adding up the weights of all suessful runs would not produe aresult in �nite time sine there are potentially in�nitely many suessful runs, whihare themselves in�nite. Instead, we will use an iterative method for omputing thebehaviour, whih generalizes the emptiness test for B�uhi automata9 If n = 0, i.e., � and R do not ontain until formulae, then this automaton is atually alooping automaton.



18The Emptiness Test for B�uhi AutomataThe emptiness problem for B�uhi automata an be deided in time polynomial in thesize of the automaton [30,41℄. The deision proedure onstruts the set of all statesthat annot our as labels in any suessful run; we will all these states bad states.We an try to disprove that a state is bad by trying to onstrut a �nite partial runwhere every path ends in a �nal state.10 Every state for whih this onstrution failsis learly bad, but there may be bad states for whih this onstrution sueeds. Thereason is that some of the �nal states reahed by the �nite run may themselves bebad. Thus, in order to ompute all bad states we must iterate this proess, where inthe next iteration the partial run is required to reah �nal states that are not alreadyknown to be bad. Notie, however, that the onstrution of a �nite partial run ending innon-bad �nal states an itself be realized by an iterative proedure. Hene, the deisionproedure for the emptiness problem uses two nested iterations. In the inner loop, wetry to onstrut a �nite partial run �nishing in (non-bad) �nal states for every state. Inthe outer loop, we use the result of the inner iteration to update the set of (known) badstates, and then re-start the inner iteration with this new information. Let us all thestates for whih there is a �nite partial run �nishing in non-bad �nal states adequate.First, any state q 2 Q for whih there is a transition leading to only non-bad �nalstates is learly adequate. Then, every state for whih there is a transition leading onlyto states that are either (i) �nal and not bad or (ii) already known to be adequateis also adequate. Obviously, during this iteration, the set of adequate states beomesstable after at most jQj iterations. The outer loop then adds all the states that werefound not to be adequate to the set of bad states. The set of bad states maintained inthis outer iteration beomes stable after at most jQj steps. It an be shown that thereis a suessful run that starts with an initial state i� not all initial states are ontainedin the set of bad states omputed this way. This yields an emptiness test that runs intime polynomial in the number of states (see [41℄ for details).Example 5 Let us illustrate this approah on the B�uhi automaton Aex of Example 1.First, we try to onstrut, for every state, a �nite partial run where every path ends ina �nal state. This is possible for q0, q1, and q2, but not for q3. Thus, in this iteration,q0; q1; q2 are the adequate states, and q3 is not adequate, whih means that q3 is addedto the set of bad states. In the next iteration, q2 turns out to be no longer adequatesine it an only reah the bad �nal state q3. Thus, it is also put into the set of badstates. After that, the proess beomes stable, i.e., the set fq2; q3g is the set of badstates omputed by the algorithm. Sine the initial state q0 does not belong to this set,we know that there is a suessful run that starts with this initial state.Emptiness Test by Behaviour ComputationBefore treating the general ase of a WBA, we onsider the speial ase of a weightedautomaton over the Boolean semiring that simulates an unweighted one. In Example 2,we have de�ned, for every B�uhi tree automaton A a WBA Aw suh that the behaviourof Aw is 0 i� A has a suessful run that labels the root with an initial state. In thisase, the omputation of the behaviour of Aw basially oinides with the emptinesstest applied to A.10 See De�nition 20 below for a formal de�nition of this notion.



19In fat, the emptiness test for B�uhi automata skethed above an be adapted suhthat it omputes the behaviour of Aw as follows. We onstrut a funtion bad : Q !f0; 1g suh that bad(q) = 1 i� q is a bad state. The outer iteration of the algorithmwill update this funtion at every step. In the beginning, no state is known to be bad,and thus we start the iteration with bad0(q) = 0 for all q 2 Q. Now assume that thefuntion badi : Q! f0; 1g for i � 0 has already been omputed. For the next step ofthe iteration, we all the inner loop to update the set of adequate states. In this loop,we are going to ompute the funtion adqi : Q! f0; 1g. Here, adqi(q) = 1 means thatq is not an adequate state, i.e., that it is not possible to onstrut a run starting withthis state where eah path reahes at least one non-bad �nal state. At the beginningwe know nothing about the adequate states, so we set adqi0(q) = 1 for all q 2 Q.Assume that we have already omputed adqin : Q ! f0; 1g. To know whether a stateshould beome adequate in the next step, we need to hek for eah transition startingfrom this state whether the �nal states reahed by the transition are non-bad and thenon-�nal states are already known to be adequate. Thus, we haveadqin+1(q) = ^(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk) _ _qj =2F adqij(qj) _ _qj2F badi(qj): (3)The funtion adqi is the limit of this inner iteration, whih is reahed after at most jQjsteps. With this funtion, we de�nebadi+1(q) = badi(q) _ adqi(q):The funtion bad is the limit of this outer iteration, whih is also reahed after at mostjQj steps. This omputation of the funtion bad by two nested iterations basially sim-ulates the omputation of all bad states in the emptiness test for B�uhi tree automataskethed above. It is thus easy to show that bad(q) = 1 i� q is a bad state, i.e., annotour as a label in a suessful run of A.Given the de�nition of Aw , it is easy to see that a run r : K� ! Q of Aw hasweight 0 i� it is a run of A (see Example 2). Consequently, A has a suessful run thatstarts with an initial state i� kAwk = Vr2suAw in(r(")) _ wt(r) = 0. Putting theseobservations together, we thus have: the behaviour of Aw is 0 i� A has a suessfulrun that starts with an initial state i� there is an initial state q (i.e., in(q) = 0)that is not bad (i.e., bad(q) = 0). This shows that the behaviour of Aw is given byVq2Q in(q) _ bad(q).Next, we show that the behaviour of a WBA an always be omputed by suh aproedure with two nested iterations.Computing the Behaviour in the General Case of an Arbitrary WBAIn the following, we assume that A = (Q; in; wt; F ) is an arbitrary, but �xed, WBAover the �nite distributive lattie (S;�S). We will show that the WBA A indues amonotone operator Q : SQ ! SQ, where SQ is the set of all mappings from Q to S,and that the behaviour of A an easily be obtained from the greatest �xpoint of thisoperator. The partial order �S an be transferred to SQ in the usual way, by applyingit omponent-wise: for �; �0 2 SQ, we de�ne � �SQ �0 i� �(q) �S �0(q) for all q 2 Q.It is easy to see that (SQ;�SQ) is again a �nite distributive lattie. We will use 
 and� also to denote the in�mum and supremum in SQ. The least (greatest) element ofSQ is the funtion e0 (e1) that maps every q 2 Q to 0 (1).



20 The de�nition of the operator Q will follow the idea of the iterative proedure weskethed before for solving the emptiness problem. We fous �rst on the inner loop,whih is realized by another monotone operator O. Notie that the internal iteration ofthe algorithm depends on the set of bad states omputed so far. We will assume thatthis information is given by a funtion f 2 SQ. Thus, we atually de�ne an operatorOf for eah suh f . Following the idea of Equation (3), the operator Of is de�ned asfollows for every � 2 SQ:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj); (4)where stepf (�)(q) = (f(q) if q 2 F�(q) otherwiseLemma 1 For every f 2 SQ the operator Of is monotone, i.e., � �SQ �0 impliesOf (�) �SQ Of (�0).Proof Let �; �0 2 SQ be suh that � �SQ �0. This implies also stepf (�) �SQ stepf (�0).Thus, we have for every q 2 Q:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj)�S M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�0)(qj) = Of (�0): utSine we know that SQ is �nite, this in partiular means that the operator Of isontinuous. By Tarski's �xpoint theorem [39℄, this implies that Of has Ln�0Onf (e0) asits least �xpoint (lfp). Finiteness of SQ yields that this lfp is reahed after �nitely manyiterations: there exists a smallest m; 0 � m � jSjjQj suh that Omf (e0) = Om+1f (e0),and for this m we have Ln�0Onf (e0) = Omf (e0). This yields a bound on the numberof iterations that is exponential in the size of the automaton. We will later show(see Theorem 6) that it is possible to improve this bound to a polynomial number ofiterations, measured in the number of states.Reall that the intuition of the internal iteration was to �nd out from whih statesit is possible to build a �nite partial run that �nishes in �nal states. In the generalase, the operators O will help in omputing the weights of all suh partial runs. Next,we give a formal de�nition of the notion of a �nite partial run.De�nition 20 (�nite run) A �nite tree is a �nite set t � K� that is losed underpre�xes and suh that, if ui 2 t for some u 2 K� and i 2 K, then uj 2 t for allj; 1 � j � k. A node u 2 t is alled a leaf if there is no j; 1 � j � k, suh that uj 2 t.The set of all leaf nodes of a �nite tree t is denoted by lnode(t). The depth of a �nitetree t is the length of the largest word in t.A �nite run is a mapping r : t ! Q, where t is a �nite tree. Given suh a run,leaf(r) denotes the set of all states appearing as labels of a leaf.



21We denote by runs1 the set of all �nite runs r of depth at least 1 suh that, for everynode u 6= ", r(u) 2 F if and only if u is a leaf. Additionally, for every n � 1, let runs�n1denote the set of all �nite runs in runs1 having depth at most n. For a state q 2 Q,runs1(q) = fr 2 runs1 j r(") = qg; analogously, runs�n1 (q) = fr 2 runs�n1 j r(") = qg.The weight of a �nite run r : t! Q is wt(r) = Nu2tnlnode(t) wt(r(u); r(u1); : : : ; r(uk)).Looking again at the speial ase of a weighted automaton simulating an unweightedone, we see that during the inner iteration we do not want to ompute the weights ofall �nite runs in runs1 but only those that �nish in states that are not bad. In otherwords, we multiply the weight of the run, by the funtion bad omputed so far appliedto eah of its leafs. Given a funtion f : Q! S, we de�ne the f -weight of a �nite runr as wtf (r) = wt(r)
 Nq2leaf(r) f(q). The lfp of the operator Of omputes the sumof the f -weights of all runs in runs1.Lemma 2 For all n � 0 and all q 2 Q, Onf (e0)(q) = Lr2runs�n1 (q) wtf (r).Proof The proof is by indution on n. For n = 0, the result follows from the fat thatruns�01 = ;, and hene Lr2runs�01 (q) wtf (r) = 0 = e0(q) = O0f (e0)(q). Assume now thatthe identity holds for n. Given a tuple (q1; : : : ; qk) 2 Qk, let i1; : : : ; il be all the indiessuh that qij =2 F for all j; 1 � j � l, and il+1; : : : ; ik those indies suh that qij 2 Ffor all j; l+1 � j � k. For 1 � j � l, we will abbreviate runs�n1 (qij ) as rnnj and leaf(rj)as lfj . In addition, F is an abbreviation for the produt Nkj=l+1 f(qij ). Then,On+1f (e0)(q) = M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 kOj=1 stepf (Onf (e0))(qj) (5)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 lOj=1Onf (e0)(qij )
 kOj=l+1 f(qij ) (6)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( lOj=1 Mrj2rnnj wtf (rj))
 F (7)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( Mr12rnn1 ;:::;rl2rnnl lOj=1wtf (rj))
 F (8)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( Mr12rnn1 ;:::;rl2rnnl lOj=1wt(rj)
 Op2lfj f(p))
 F (9)= M(q1;:::;qk)2Qk Mr12rnn1 ;:::;rl2rnnl wt(q; q1; : : : ; qk)
 Oqj =2F wt(rj)
 Op2lfj f(p)
 F (10)= Mr2runs�n+11 (q)wt(r)
 Op2leaf(r) f(p) (11)= Mr2runs�n+11 (q)wtf (r):Identities (5) and (6) employ the de�nition of the operator Of and stepf , respetively,and (7) applies the indution hypothesis. Identity (8) uses the fat that SQ is a dis-tributive lattie, whih allows us to move the addition out of the produt, while (9)



22uses the de�nition of the f -weight. Identity (10) uses again the distributivity to multi-ply wt(q; q1; : : : ; qk) in. Finally, Identity (11) simpli�es the two sums by onstruting arun of larger depth. Instead of onsidering �rst the transition (q; q1; : : : ; qk) and thenruns of depth up to n starting with eah qij , we simply take the orresponding run ofdepth n+1 starting at q. This run labels the root with q and the suessor node i withqi. If qi is a �nal state, then it remains as a leaf, otherwise, below the node i we havethe former run starting with qi. Thus, the set of leafs of this larger run is the union ofthe sets of leafs of the runs rj and the set of those qis that are �nal states. The lastidentity merely applies the de�nition of f -weight again. utTheorem 4 Let f 2 SQ and assume that �0 is the lfp of the operator Of . Then, forevery q 2 Q, �0(q) = Lr2runs1(q) wtf (r).Proof By Lemma 2, we have
Mn�0Onf (e0)(q) = Mn�0 Mr2runs�n1 (q)wtf (r) = Mr2runs1(q)wtf (r):Tarski's �xpoint theorem says that the least �xpoint of Of is Ln�0Onf (e0), whihompletes the proof of the theorem. utBefore turning our attention to the outer iteration of the method for omputing thebehaviour, we will present a bound on the number of steps that are neessary beforereahing the �xpoint of the inner iteration.De�nition 21 A WBA is m-�nalising if, for every f 2 SQ and every partial run r inruns1(q), there is a partial run sr in runs�m1 (q) suh that wtf (r) �S wtf (sr).We will �rst show that every WBA is m-�nalising for any m greater to the numberof states jQj. Afterwards we will show how this property yields a bound on the numberof iterations needed to reah the least �xpoint of Of .Theorem 5 Let A be a WBA with less than m states. Then A is m-�nalising.Proof Let f 2 SQ and onsider a run r 2 runs1(q). If r 2 runs�m1 (q), then there isnothing to prove. Otherwise, if r =2 runs�m1 (q), then there must be a path in r of lengthgreater thanm. Sine there are less thanm di�erent states, there must be two non-rootnodes u; v in this path suh that r(u) = r(v). Sine these nodes are on the same path,we an assume w.l.o.g. that v = uv0 for some v0 2 K� n f"g. We de�ne a new run s asfollows: for every node w, if there is no w0 for whih w = uw0, then set s(w) := r(w);otherwise (that is, if w = uw0 for some w0) set s(uw0) := r(vw0). This onstrutionde�nes an injetive funtion g from the nodes of s to the nodes of r suh that, for everynode w of s, we have s(w) = r(g(w)). Notie that this funtion is not surjetive, asthere is no w suh that g(w) = u. Thus, s has less nodes than r. Furthermore, everytransition in s is also a transition in r, and for every w 2 leaf(s), g(w) 2 leaf(r). Thisimplies that wtf (r) �S wtf (s). If s is still not in runs�m1 , then we an repeat the sameproess to produe a smaller run s0 with a smaller f -weight, until we �nd one that isin runs�m1 . utTheorem 6 If A is m-�nalising, then Omf (e0) is the lfp of Of .



23Proof Let �0 be the lfp of Of . We know that �0 is the supremum of fOnf (e0) j n � 0g;thus, it is suÆient to show that Omf (e0)(q) �S �0(q) for all q 2 Q. By Theorem 4, weknow that �0(q) = Lr2runs1(q) wtf (r). Sine A is m-�nalising, we an replae everyr 2 runs1(q) by the orresponding sr 2 runs�m1 (q), thus obtaining a greater element inthe lattie. Hene,�0(q) �S Mr2runs1(q)wtf (sr) �S Ms2runs�m1 (q)wtf (s) = Omf (e0)(q);whih ompletes the proof of the theorem. utThis theorem tells us that, in order to onstrut the lfp of the operator Of , it is enoughto apply this operator jQj+1 times. Sine eah of the iteration steps also requires onlypolynomial time, as a funtion of the number of statesQ, we know that the omputationof the lfp needs overall polynomial time in the number of states, independently of thelattie used. As mentioned before, this bound greatly improves on the trivial obtainedfrom the �niteness SQ sine the trivial bound is exponential in the number of statesof the automaton and depends also on the size of the lattie S.We fous now on the outer iteration of the algorithm. For the unweighted ase, thisiteration mainly updates the set of bad states with the information obtained from theinternal iteration. To do this, we de�ne the operator Q : SQ ! SQ as follows: for all� 2 SQ Q(�) := lfp(O�);where lfp represents the least �xpoint.We will show that, again, a repeated appliation of this operator leads to an ap-propriate �xpoint, due to the fat that Q is monotone and SQ is �nite.Lemma 3 The operator Q is monotone.Proof Let �; �0 2 SQ suh that � �SQ �0. Notie �rst that, for every run r 2 runs1,this implies that wt�(r) �S wt�0(r). From this we obtain, for every q 2 Q,Q(�)(q) = lfp(O�)(q)= Mr2runs1(q)wt�(r) (12)�S Mr2runs1(q)wt�0(r)= lfp(O�0)(q) (13)= Q(�0(q);where Identities (12) and (13) follow from Theorem 4 and the inequality is a onse-quene of the remark at the beginning of this proof. utAgain, �niteness of SQ implies that the operator Q is atually ontinuous, and thusTarski's �xpoint theorem says that Q has Nn�0Qn(e1) as its greatest �xpoint (gfp). Itremains to show how this gfp an be used to ompute the behaviour of a given WBA.Let suA(q) denote the set of all suessful runs of A whose root is labelled with q.Consider the funtion �k 2 SQ where �k(q) := Lr2suA(q) wt(r). Given this funtion,we an obtain the behaviour of the WBA A as follows:



24Lemma 4 kAk = Lq2Q in(q)
 �k(q).It turns out that �k is in fat the greatest �xpoint of Q. Before proving this, wewill introdue some additional notation. We will use the expression runsn for n � 1 todenote the set of all �nite runs suh that every path from the root to a leaf has exatlyn non-root nodes labelled with a �nal state, the last of whih is the leaf.Given a run r 2 runsn, its preamble is the unique �nite run s 2 runs1 suh that, forevery node u, if s(u) is de�ned, then s(u) = r(u). We will denote the preamble of r bypre(r). Notie that, if r 2 runsn for n � 1, then its preamble always exists, and an beonstruted as follows: �rst set pre(r)(") = r(") and pre(r)(i) = r(i) for all i; 1 � i � k.Then, for every node u for whih pre(r)(u) is de�ned, if r(u) 2 F , then u is a leaf ofpre(r); otherwise, set pre(r)(ui) = r(ui) for all i; 1 � i � k. This onstrution �nishessine, in every path, we must �nd at least one �nal state, whih will be a leaf in pre(r),and thus also pre(r) 2 runs1.Given a (�nite) run r and a node u in r, we will denote the subrun of r starting atu as rju. More formally, rju is the run suh that, for every v 2 K�, if r(uv) is de�ned,then rju(v) = r(uv).The next lemma relates the number n of times the operator Q has been applied tothe greatest element e1 of SQ to the weights of the runs in runsn.Lemma 5 For all n > 0 and q 2 Q it holds thatQn(e1)(q) = Mr2runsn(q)wt(r):Proof We prove this fat also by indution on n. For n = 1, the result follows diretlyfrom Theorem 4. Assume now that it holds for n.Qn+1(e1)(q) = lfp(OQn(e1))(q)= Mr2runs1(q)wtQn(e1)(r) (14)= Mr2runs1(q)wt(r)
 Op2leaf(r)Qn(e1)(p) (15)= Mr2runs1(q)wt(r)
 Op2leaf(r) Ms2runsn(p)wt(s) (16)= Mr2runs1(q)wt(r)
 Ou2lnode(r) Ms2runsn(r(u))wt(s) (17)= Mr2runs1(q)wt(r)
 Mft2runsn+1(q)jpre(t)=rg Ou2lnode(r)wt(tju) (18)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(r)
 Ou2lnode(r)wt(tju) (19)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(t) (20)= Ms2runsn+1(q)wt(s): (21)



25The �rst identity employs only the de�nition of Q. Theorem 4 yields Identity (14).Identities (15) and (16) follow from the de�nition of f -weights and the indution hy-pothesis, respetively. Identity (17) hanges the indies to run over the set of leaf nodes,rather than by the states that label them; the idempoteny of the operators � and 
implies that this hange does not alter the result. For Identity (18) we use the distribu-tivity of the lattie. The de�nition of distributivity says that, in order to exhange theoperators � and 
, the now external addition needs to range over all funtions map-ping nodes u 2 lnode(r) to runs s 2 runsn(r(u)). We notie that eah funtion of thiskind, together with the run r 2 runs1(q), de�nes exatly one �nite run t 2 runsn+1(q).We thus use this t to represent the funtion. Identity (19) is an easy onsequene ofdistributivity. For Identity (20), we then use the fat that a run in runsn+1 an be seenas its preamble (in runs1) onatenated at eah of its leafs with a run in runsn. Finally,for Identity (21) we notie that the set of all runs in runsn+1 an be partitioned bymeans of their preambles, whih means that both sides of the identity range over thesame runs. utAs it was the ase for the operator O in the internal iteration, we an bound thenumber of iterations that Q needs before reahing a �xpoint by the number of statesof the automaton.De�nition 22 (m-omplete) A WBA A is m-omplete if, for every partial run r 2runsm(q), there is a suessful run sr 2 suA(q) suh that wt(r) �S wt(sr).Using the fat that 
 is idempotent, it is easy to see that every WBA ism-ompletefor any m greater than the number of �nal states jF j. The proof is similar to the onegiven in [3℄ for the fat that a looping automaton has a run i� it has a partial run ofdepth greater than jQj. However, we now also need to take into aount whih are thestates that are �nal, and whih are not.Theorem 7 If A is a WBA with less than m �nal states, then A is m-omplete.Proof Suppose that we have a partial run r : t! Q in runsm(q). We use r to onstruta funtion � : K� ! t by indution. With this funtion, we then onstrut a suessfulrun sr by setting sr(u) := r(�(u)). The intuitive meaning of �(v) = w is that, in therun sr, the node v will have the same label as the node w in r. We de�ne � as follows:{ �(") := ",{ for a node v � i, if there is a predeessor w of �(v) � i suh that (i) r(�(v) � i) = r(w),and (ii) r(w) 2 F , then set �(v � i) := w; otherwise, set �(v � i) := �(v) � i.Notie that the funtion � is well-de�ned sine, for every v 2 K�, we have that �(v) isnot a leaf node of t. In fat, whenever we �nd a �nal state several times in the samepath, the mapping � always leads to the earliest one. Thus, reahing a leaf would meanthat we have a path reahing m �nal states, where none of them repeats, ontraditingthe fat that the automaton has less than m �nal states in total.We now show that it is possible to onstrut a suessful run sr from r by de�ningsr(v) = r(�(v)) for all v 2 K�, and that wt(r) �S wt(sr). Our de�nition of � ensuresthat, for every v 2 K� and i 2 K, it holds that sr(v � i) = r(�(v) � i). Thus, for everyv 2 K�, we have (sr(v); sr(v1); : : : ; sr(vk)) = (r(�(v)); r(�(v) � 1); : : : ; r(�(v) � k)), andhene, wt(sr(v); sr(v1); : : : ; sr(vk)) = wt(r(�(v)); r(�(v) � 1); : : : ; r(�(v) � k)):



26This implies that every fator in the produt wt(sr) is also a fator in the produtwt(r). Sine the produt omputes the in�mum, we thus have wt(r) �S wt(sr).It remains only to show that sr is suessful. Suppose to the ontrary that sr isnot suessful. Then, there must exist a path p and a node v 2 p suh that all itssuessors in p are labelled with non-�nal states. In other words, for every w 2 K�, ifv �w 2 p, then sr(v �w) =2 F . This implies, by our de�nition of �, that �(v �w) = �(v)�w,for all v � w 2 p. Thus, r has an in�nite path, whih ontradits the assumption thatr 2 runsm. utThe following theorem states that it is possible to ompute the mapping �k for anm-omplete automaton by applying the Q operator to the greatest element of SQ atmost m times.Theorem 8 If A is an m-omplete WBA, then Qm(e1) = �k.Proof Notie �rst that, by Lemma 5, we know that Qm(1)(q) = Lr2runsm(q) wt(r).Sine A is m-omplete, we an replae eah of these partial runs by a suessful run,whih yields Qm(e1)(q) �S Mr2runsm(q)wt(sr) �S Ms2su(q)wt(s) = �k(q):To prove the inequality in the other diretion, notie that, given a suessful run r,we an trunate it at every path when m �nal states have been found. The result ofthis is a �nite run sine otherwise, as the tree is �nitely branhing, K�onig's Lemmawould imply the existene of an in�nite path in this tree. Sine we trunate eah branhwhenever we have found m �nal states, an in�nite path would be one on whih lessthan m �nal states our, ontraditing the fat that r is a suessful run. Thus, thepartial run rm onstruted this way belongs to runsm. Notie that, for every node u ofrm, it holds that rm(u) = r(u). Hene, we have wt(r) �S wt(rm). This yields�k(q) = Mr2su(q)wt(r) �S Mr2su(q)wt(rm)�S Ms2runsm(q)wt(s) = Qm(e1)(q):Putting the two inequalities together proves the theorem. utIn partiular, this theorem shows that the mapping �k is indeed the gfp of Q.Corollary 1 The mapping �k is the greatest �xpoint of Q.Proof Sine SQ is �nite, the gfp of Q is reahed after �nitely many iterations; morepreisely, if n0 > jSjjQj, then this gfp is Nn�0Qn(e1) = Qn0(e1). Obviously, we anhoose n0 suh that n0 > jF j. Theorem 7 then says that the automaton is n0-omplete.Thus, by Theorem 8, it follows that Qn0(e1) = �k. utOverall, we have thus shown how to ompute the behaviour of a WBA. By Lemma 4,kAk = Lq2Q in(q)
�k(q). The above orollary says that �k is the greatest �xpoint ofQ. Let us illustrate this proess by using it to ompute the behaviour of the pinpointingautomaton of Example 4.



27Example 6 To ompute the behaviour of the pinpointing automaton introdued inExample 4, we need to �nd the greatest �xpoint of Q, found after repeated appliationsof Q to e1. By de�nition, Q(e1) = lfp(Oe1); hene, we repeatedly apply Oe1 to e0 to �ndthis least �xpoint. This operator is de�ned asOe1(�)(p) = ^(p;p1;p2)2Q3 wt(p; p1; p2) _ stepe1(�)(p1) _ stepe1(�)(p2);where stepe1(�)(p) = ? if p 2 fq1; q3g and �(p) otherwise. The �rst iteration of the�xpoint omputation looks as follows:11Oe1(e0)(q0) = (wt(q0; q1; q1) _ ?_?) ^ (wt(q0; q2; q2) _ >_ >)= (?_?_?) ^ (?_>_>) = ?;Oe1(e0)(q1) = wt(q1; q1; q1) _ ?_? = ax1 _ ?_ ? = ax1;Oe1(e0)(q2) = (wt(q2; q2; q2) _ >_>) ^ (wt(q2; q3; q3) _ ?_ ?)= (ax3 _ >_ >)^ (?_ ?_ ?) = ?;Oe1(e0)(q3) = >:Analogously, we an ompute O2
e1(e0) = Oe1(e0) = (?;ax1;?;>), whih means that wehave found the least �xpoint; hene Q(e1) = (?; ax1;?;>).For the seond iteration, we get that O2Q(e1)(e0) = OQ(e1)(e0) = (ax1; ax1;>;>),and thus Q2(e1) = (ax1; ax1;>;>). A further iteration of this operator yields Q3(e1) =Q2(e1) and hene we have found the greatest �xpoint �k of Q.Knowing this �xpoint, we an now ompute the behaviour of (Aex; �res; Ires)pin:k(Aex; �res; Ires)pink = 3̂i=0 in(qi) _ �k(qi)= (ax2 _ ax1) ^ (>_ ax1) ^ (>_>) ^ (>_>)= ax2 _ ax1;whih is idential to the behaviour that we have omputed in an ad ho manner inExample 4.In general, the �xpoint �k an be omputed in mo := jF j + 1 iteration stepssine mo is larger than the number of �nal states of the input WBA (Theorems 7and 8). Eah step of this outer iteration onsists of omputing the least �xpoint of theoperator O� , where � is the result of the previous step. This �xpoint an be omputedin mi = jQj+1 iteration steps sine mi is larger that the number of states of the inputWBA (Theorems 5 and 6). Suh an inner iteration step requires a polynomial numberof lattie operations (in the ardinality jQj of Q).Thus, to analyze the omplexity of our algorithm for omputing the behaviour of aWBA, we need to know the omplexity of applying the lattie operations. If we assumethat this omplexity is onstant (i.e., the lattie S is assumed to be �xed), then we endup with an overall polynomial time omplexity. However, this is not always a reasonableassumption. In fat, we were able to restrit our attention to �nite distributive lattiesby taking, for a given WBA, the distributive lattie generated by the weights ourring11 For brevity, we onsider only those transitions that have a weight di�erent from >.



28in it (where these weights may ome from an underlying in�nite distributive lattie).Thus, the atual �nite distributive lattie used may depend on the automaton. Letus assume that the lattie operations an be performed using time polynomial in thesize of any generating set. Sine the size of this generating set is itself polynomial inthe number of states of the input WBA A, this assumption implies that the lattieoperations an be performed in time polynomial in the size of the automaton. Thus,under this assumption, we have an overall polynomial bound (measured in the numberof states) for the omputation of the behaviour of a WBA.In the ase of pinpointing, we use the T -Boolean semiring BT , whih is the freedistributive lattie generated by the set lab(T ). The lattie operations are onjuntionand disjuntion of monotone Boolean formulae. Note that, stritly speaking, the lattieelements are monotone Boolean formulae modulo equivalene, i.e., equivalene lassesof monotone Boolean formulae. However, sine equivalene of monotone Boolean for-mulae is known to be an NP-omplete problem, we do not try to ompute uniquerepresentatives of the equivalene lasses. We just leave the formulae as they are. Nev-ertheless, if we are not areful, then the omputed pinpointing formula may still beexponential in the size of the automaton, though we apply only a polynomial numberof onjuntion and disjuntion operations. The reason is that we may have to reateopies of subformulae. However, this problem an easily be avoided by employing stru-ture sharing, i.e., using direted ayli graphs (DAGs) as data struture for monotoneBoolean formulae.Corollary 2 Let � be an axiomatized input and (A; �res; Ires) an axiomati automa-ton for � w.r.t. the -property P suh that A is a WBA. Then a DAG representationof a pinpointing formula for � w.r.t. P an be omputed in time polynomial in the sizeof A.We will show in Setion 5.3 below that there is a behaviour-preserving polynomial-time redution of WGBA to WBA. This implies that the above Corollary 2 also holdsfor the ase whereA is a generalized WBA. Note, however, that the size of the automatawe have onstruted for SI and LTL is already exponential in the size of the input.Thus, the (DAG representation of the) pinpointing formula may still be exponentialin the size of the input, and omputing it may take exponential time in the size of theinput.We proeed now to show how the method for omputing the behaviour of a WBAintrodued above an be used for omputing the behaviour of the other two kinds ofweighted automata we have de�ned, namely, WLA and WGBA.5.2 Computing the Behaviour of a WLAA WLA is a WGBA that has no set of �nal states. In this ase, the ondition for arun to be suessful|that is, that every path must have in�nitely many states labelledwith elements of Fi for eah set of �nal states Fi|is trivially satis�ed. Thus, every runof a weighted looping automaton is suessful. Alternatively, we an view the WLA(Q; in; wt) as the WBA (Q; in; wt;Q) sine every state being a �nal state also meansthat every run is suessful. Thus, WLAs are speial kinds of WBAs, whih shows thatour approah for omputing the behaviour of WBAs an diretly be applied to WLAs.



29However, the fat that every run is suessful an be used to simplify the proedureinto one that uses only a single iteration.Notie �rst that the operator Of depends on the set of �nal states. More preisely,the set of �nal states is used in the de�nition of the auxiliary funtion stepf :stepf (�)(q) = (f(q) if q 2 F�(q) otherwiseIf all states are �nal, then no ase analysis is neessary in stepf , and hene stepf (�)(q) =f(q) for all � 2 SQ and all q 2 Q. This ollapses the de�nition of the operator Of toOf (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 f(qj):Notie that in this ase Of does not depend on the input �, and hene its only �xpointis reahed after exatly one iteration. This allows us to simplify the de�nition of theoperator Q in the following way:Q(�)(q) = lfp(O�)(q)= O�(e0)(q)= M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 �(qj)The behaviour of a WLA is then the gfp of this operator Q, whih an be omputedby a single iteration. The inner iteration of the general proedure is replaed by adiret appliation of the simpli�ed de�nition of Q. Note that this simpli�ed de�nitionof Q oinides with the one introdued in [6℄ spei�ally for WLAs. Thus, the \nestediteration approah" for WBAs developed in the present paper an be seen as a diretgeneralization of the \bottom-up approah" introdued in [6℄ for the ase of WLAs.Let us apply this insight to the pinpointing automaton for SI onstruted in Se-tion 4.2. This automaton has exponentially many states in the size n of the input(C; T ). Thus, we need exponentially many appliations of the operator Q, when mea-sured on n. It is also easy to see that the time required by eah appliation of Q ispolynomial in the size of the automaton, and thus exponential in n. Hene, this leadsto an algorithm with a total running time that is exponential in the size of the input.Corollary 3 Let C be an ALC onept desription and T an SI TBox. A pinpointingformula for (C; T ) w.r.t. unsatis�ability an be omputed in time exponential in thesize of (C; T ).Sine even deiding satis�ability of ALC onept desriptions w.r.t. SI TBoxes isknown to be ExpTime-hard, this bound is optimal.5.3 Computing the Behaviour of a Generalized WBAWe have shown how to ompute the behaviour of a WBA in time polynomial in thenumber of states. We will now give a polynomial redution in whih, for every WGBA,we onstrut a WBA that has the same behaviour, transferring this way the problem of



30omputing the behaviour of WGBAs to the speial ase of WBAs that we have alreadysolved. The idea of the redution is to make several opies of the set of states anduse eah opy to test the B�uhi ondition for a spei� set of �nal states, moving tothe next opy one we have found a �nal state of the set we are urrently looking at.This is the same idea as the one used in the unweighted ase to redue the emptinessproblem for GBAs to the one for BAs [41℄.Let A = (Q; in; wt; F0; : : : ; Fn�1) be a WGBA. We onstrut the WBA A0 =(Q0; in0; wt0; F 0) as follows:{ Q0 = f(q; i) j q 2 Q; 0 � i � n� 1g,{ in0(q; i) = (in(q) if i = 0,0 otherwise{ wt0((q0; i); (q1; j); : : : ; (qk; j)) = 8
><
>:

wt(q0; q1; : : : ; qk) if q0 2 Fi, j = i+ 1 mod n,wt(q0; q1; : : : ; qk) if q0 =2 Fi, i = j0 otherwise{ F 0 = f(q; n� 1) j q 2 Fn�1g.Notie that the automaton A0 has n � jQj states, where n is the number of sets of�nal states. Sine there an potentially be 2jQj sets of �nal states, this redution is notpolynomial when measured only in the number of states of A, but it is polynomial inthe total size of the automaton A.Theorem 9 If A is a WGBA and A0 is onstruted as above, then kAk = kA0k.Proof Reall �rst that the behaviour of an automaton is the addition of the weightsof all suessful runs multiplied with the initial distribution of their root labels. If arun r is suh that in(r("))
wt(r) = 0, then it will not be of interest, sine it will notinuene the omputation of the behaviour. Given a WGBA or WBA B, let supp(B) bethe set of all runs r suh that in(r("))
 wt(r) 6= 0. We introdue a bijetive funtionf : supp(A)! supp(A0) suh that, for every run r 2 supp(A), wt(r) = wt0(f(r)) and ris suessful (w.r.t. A) i� f(r) is suessful (w.r.t. A0).Let r be a run in supp(A). We de�ne the run f(r) of A0 indutively as follows:{ f(r)(") = (r("); 0);{ let u 2 K� and f(r)(u) = (q; i). Then, for all 1 � j � k,f(r)(u � j) = ((r(u � j); i) if q =2 Fi;(r(u � j); i+ 1 mod n) if q 2 Fi:Let u 2 K� and f(r)(u) = (q; i). Then r(u) = q. Furthermore, for all 1 � j � k,f(r)(uj) = (r(uj); i+1 mod n) if q 2 Fi and f(r)(uj) = (r(uj); i) otherwise. Togetherwith the de�nition of wt0, this implieswt0(f(r)(u); f(r)(u1); : : : ; f(r)(uk)) = wt(r(u); r(u1); : : : ; r(uk)):This yields wt(r) = wt0(f(r)). Sine we also have in0(f(r)(")) = in(r(")), the fat thatin(r("))
 wt(r) 6= 0 also implies that in0(f(r)("))
 wt0(f(r)) 6= 0. Thus, f is indeeda funtion from supp(A) to supp(A0).It is easy to see that f is injetive. We show now that it is also surjetive. Let s 2supp(A0). We onstrut a run r 2 supp(A) as follows: for every u 2 K�, if s(u) = (q; i),then r(u) = q. We show that s = f(r). First, sine in0(s("))
 wt0(s) 6= 0, it must be



31the ase that in0(s(")) 6= 0, and thus s(") = (q; 0) for some q 2 Q. Consider now someu 2 K� and let s(u) = (q; i). Hene, also r(u) = q. Sine wt0(s(u); s(u1); : : : ; s(uk)) 6= 0,it must be the ase that, if q 2 Fi, then for all 1 � j � k it holds that s(uj) = (qj ; i+1mod n) for some qj 2 Q, and if q =2 Fi, then s(uj) = (qj ; i). Thus, s satis�es thede�nition of f(r).It remains only to show that r is suessful (w.r.t. A) i� f(r) is suessful (w.r.t.A0). Suppose �rst that f(r) is suessful. Then for every path there are in�nitely manynodes labelled with elements of F 0 = f(q; n�1) j q 2 Fn�1g. But notie that, aordingto the way f was de�ned, if f(r)(u) 2 F 0, then f(r)(uj) is of the form (qj ; 0) for all1 � j � k. All the following nodes in the path will have labels of the form (�; 0) until astate from F0 is found, in whih ase the next labels are of the form (�; 1), et. Thus, toget to another node with label (q0; n�1) 2 F 0 on the path, one must �rst have reahednodes with labels (q0; 0); (q1; 1); : : : ; (qn�2; n � 2) where qi 2 Fi for i = 0; : : : ; n � 2.This implies that r is suessful.Conversely, assume that f(r) is not suessful. Then there is a path in f(r) onwhih, from some node on, no element of F 0 ours as a label on the path. Sine theseond omponent of the node labels an only swith bak to 0 when an element of F 0is reahed, this means that there is an i0; 0 � i0 � n� 1, suh that, from some nodeon, all the labels on the path have i0 as their seond omponent. This means, however,that from this node on no element of Fi0 ours in the �rst omponent. Consequently,r annot be suessful.As a onsequene of the properties of the funtion f that we have shown so far, weobtain kAk = Mr suessful run of A in(r("))
 wt(r)= Mr suessful run of A in(r("))
 wt(f(r))= Mf(r) suessful run of A' in(f(r)("))
 wt(f(r))= Mr suessful run of A' in(r("))
wt(r) = kA0k: utGiven a WGBA with m states and n sets of �nal states, this redution yields a WBAwith n �m states. As desribed before, omputing the behaviour of a WBA requirestime polynomial in the size of its state set; in this ase, polynomial in n � m. Thus,our method omputes the behaviour of a WGBA in time polynomial in its number ofstates and sets of �nal states.Let us apply this approah for omputing the behaviour of a WGBA to the pinpoint-ing automaton for LTL onstruted in Setion 4.3. This automaton has exponentiallymany states in the size n of the input (�;R) and linearly many sets of �nal states in n.Thus, the WBA onstruted from the WGBA is of size exponential in n. Overall, thetwo nested iterations perform exponentially many steps, whih leads to an algorithmwith a total running time that is exponential in the size of the input.Corollary 4 Let � be an LTL formula and R a set of LTL formulae. A pinpointingformula for (�;R) w.r.t. a-unsatis�ability an be omputed in time exponential in thesize of (�;R).



325.4 An Alternative Approah for Computing the BehaviourIndependently from us, a di�erent algorithm for omputing the behaviour of WBAsover distributive latties was developed by Droste et.al. [15℄. We will �rst skeththis alternative approah and then ompare it to ours, with speial attention to theappliation in the pinpointing senario.12 In the following, we will all our method theiterative method and the one from [15℄ the prime method.The prime method is based on the following property of distributive latties. Let(S;�S) be a distributive lattie. An element p 2 S is alled meet prime if, for everyt1; t2 2 S, t1 
 t2 �S p implies that either t1 �S p or t2 �S p. It is known that anyelement t of S equals the in�mum of all the meet prime elements greater than or equalto t [18℄. If one ould deide, for a given meet prime element p, whether p is greaterthan or equal to the behaviour of a weighted automaton, then this behaviour ould bereadily omputed from the outputs of suh deisions, as we will show next.The prime method performs this deision as follows. Let A = (Q; in; wt; F ) be theWBA over the distributive lattie (S;�S) for whih we want to ompute the behaviour,and let prime(S) denote the set of all meet prime elements of S. For every meet primeelement p 2 prime(S), onstrut the (unweighted) automaton Ap = (Q;�; I; F ) where:{ � := f(q; q1; : : : ; qk) 2 Qk+1 j wt(q; q1; : : : ; qk) 6�S pg;{ I := fq 2 Q j in(q) 6�S pg.It is easy to see that Ap aepts a non-empty language (i.e., there exists a suessfulrun of Ap that starts with an initial state) i� there is a suessful run r of A suhthat in(r("))
wt(r) 6�S p. Equivalently, the language aepted by Ap is empty i�, forevery suessful run r of A, it holds that in(r("))
 wt(r) �S p. But this means thatkAk �S p. Thus, if we denote by L(Ap) the language aepted by the automaton Ap,we have kAk = Ofp2prime(S)jL(Ap)=;g p:In the pinpointing appliation, we use the lattie BT , where the meet prime ele-ments are exatly all onjuntions of propositional variables in lab(T ).13 There is thena one-to-one orrespondene between the meet prime elements of BT and all subsetsof axioms appearing in the axiomati input for whih the pinpointing formula is beingomputed. Take an arbitrary meet prime element p and assume that it orresponds tothe set of axioms T 0 � T , i.e., p = Vt2T 0 lab(t). The automaton Ap has a transition(q; q1; : : : ; qk) i��vio(q; q1; : : : ; qk) = wt(q; q1; : : : ; qk) 6�BT p = ^t2T 0 lab(t):Sine �vio(q; q1; : : : ; qk) = Wft2T j(q;q1;:::;qk)=2�res(t)g lab(t), this means that for everyt 2 T 0, (q; q1; : : : ; qk) 2 �res(t). But this holds i� (q; q1; : : : ; qk) is a transition of AjT 0 .12 We present only a speial ase of the algorithm in [15℄, where we allow only unlabelledtrees as inputs. Furthermore, we have exhanged the use of join prime elements in [15℄ withthe use of their meet prime ounterparts. This is justi�ed by duality, and allows for an easierunderstanding of how this method works in the pinpointing appliation, and makes it easierto ompare it with our approah in this setting.13 Reall that the lattie BT uses disjuntion as its in�mum operator, and onjuntion as thesupremum. Thus, onjuntions of variables are the only elements of the lattie that annot bewritten as the in�mum (disjuntion) of other elements.



33Analogously, it is easy to see that a state q is an initial state of Ap i� it is an initial stateof AjT 0 . Thus, the automaton Ap is idential to the T 0-restrited subautomaton AjT 0 .Consequently, testing the automaton Ap for emptiness is the same as testing AjT 0for emptiness, whih in turn is just an appliation of the automata-based deisionproedure as a blak-box proedure for testing the -property. One ould, of ourse,also use any other deision proedure for the -property instead. This shows that theprime method atually orresponds to the na��ve blak-box approah of testing the -property for all possible subsets of axioms. Unoptimized, this proess will thus alwaysneed an exponential number of tests for omputing the pinpointing formula. However,this proess allows the use of all the optimizations appliable to blak-box pinpointingalgorithms.Notie that, in the examples we have presented in this paper (i.e., pinpointingunsatis�ability in SI and LTL), both the iterative and the prime method have anexponential run time. For the iterative method, we have a bound that is polynomial inthe number of states of the onstruted automata, but this number is itself exponentialin the size of the input. The prime method performs exponentially many emptinesstests, eah of whih requires exponential time (sine it is performed on an exponentiallylarge automaton). Although both approahes result in an exponential-time algorithmin these ases, the bound on the iterative method has the advantage of not dependingon the number of meet prime elements of the lattie, as opposed to the prime method.In the ase of pinpointing, the lattie has always 2n meet prime elements, where n isthe number of input axioms. If the axiomati automaton deiding the property has anumber of states polynomial in the size of the input, then this exponential number oftests will yield a suboptimal proedure, as demonstrated by the following examples.Example 7 Assume that we have an input I and a set of axioms T = ft0; : : : ; tn�1g,and that the -property is de�ned as follows: P1 := f(I; T 0) j T 0 � T ; jT 0j > 0g.Let eah axiom ti be labelled with the propositional variable pi. Then a pinpointingformula for P1 is given by W0�i<n pi.We an onstrut an axiomati automaton (An; �res; Ires) for the axiomatizedinput (I; T ) as follows:{ An is the looping automaton An := (fq0; : : : ; qn�1g; �; fq0g);{ � = f(qi; q(i+1)mod n) j 0 � i < ng;{ for every 0 � j � n� 1; �res(tj) = � n f(qj ; q(j+1)mod ng;{ for every t 2 T ; Ires(t) = fq0g.It is easy to see that this axiomati automaton is orret for the property P1. Sine Anhas n states and n transitions, the iterative method needs polynomial time to omputethe behaviour of the pinpointing automaton indued by (An; �res; Ires), measured inthe number of axioms n := jT j. On the other hand, the unoptimized prime methodrequires 2n emptiness tests.In order to illustrate the working of the iterative methods, we show how it omputesthe pinpointing formula in this example. The axiomati automaton (An; �res; Ires)indues the pinpointing automaton (A; �res; Ires)pin = (fq0; : : : ; qn�1g; in; wt), where{ in(q0) = ? and in(qi) = > for all 0 < i < n; and{ wt(qi; qj) equals pi if j = (i+ 1) mod n, and > otherwise.As this is a weighted looping automaton, the iterative method redues to an iteratedappliation of the simpli�ed operator Q desribed in Setion 5.2. Notie that, for ev-ery state qi, there is exatly one transition, namely (qi; q(i+1)mod n), having a weight



34distint from >. Hene, for every funtion � : Q! BT we have:Q(�)(qi) = ^0�j<nwt(qi; qj) _ �(qj)= wt(qi; q(i+1)mod n) _ �(q(i+1)mod n) = pi _ �(q(i+1)mod n):The proess starts with the funtion e1 : Q ! BT that maps every state to ?; thatis, e1(qi) = ? for all 0 � i < n. After the �rst appliation of the operator Q, we haveQ(e1)(qi) = pi for all 0 � i < n sine pi _ ? is equivalent to pi. Analogously, after miterations we have, for all 0 � i < n, thatQm(e1)(qi) = _0�j<m p(i+j)mod n:This proess reahes a �xpoint when m = n, in whih ase every state qi is mapped tothe formula W0�j<n pj . Thus, the behaviour of (A; �res; Ires)pin isk(A; �res; Ires)pink = V0�i<n in(qi) _Qn(e1)(qi)= in(q0) _ Qn(e1)(q0)= Qm(e1)(q0) = W0�j<n pj ;whih is a pinpointing formula.Our seond example shows that this di�erene in the exeution times of the twomethods ours also for more elaborate properties whose automata deision proedureuses a B�uhi aeptane ondition.Example 8 Let Q be an in�nite set of states and let the set of inputs I be the set of allgeneralized B�uhi automata using states from Q, and the set of axioms be T := Qk+1.That is, we use the transitions in A as axioms of our property. We de�ne the -propertyP2 as the set of all tuples (A; �) where A = (Q;�; I; F1; : : : ; Fn) is a generalized B�uhiautomaton in I, and � � T is suh that (Q;�n�; I; F1; : : : ; Fn) has no suessful run rwith r(") 2 I. Intuitively, the axioms tell whih transitions are disallowed in the inputautomaton A. The -property is satis�ed whenever we remove enough transitions (byadding them to the axiom set) to avoid any suessful run whose root is labelled withan initial state. It is easy to see that the axiomati automaton (A; �res; Ires) where�res(t) = � n ftg and Ires(t) = Q for all t 2 � is orret for the property P andthe axiomatized input (A; �). As we have seen, the iterative method requires timepolynomial in the number of states jQj of this axiomati automaton to ompute thepinpointing formula for this property. On the other hand, the prime method needs2j�j emptiness tests, eah polynomial on jQj. We thus have an exponential inrease inexeution time, when ompared to the iterative method.One advantage of the prime method is that it an easily be generalized to moreomplex automata models. For instane, it is shown in [15℄ how the same idea works inthe presene of a more omplex aeptane ondition, known as the Muller ondition.Also note that the prime method an possibly be optimized using the ideas underlyingthe known optimizations of blak-box pinpointing proedures, not just in the ase ofapplying it to pinpointing, but also in a more general setting.
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