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Abstract. We investigate the complexity of enumerating pseudo-intents
in the lectic order. We look at the following decision problem: Given a
formal context and a set of n pseudo-intents determine whether they are
the lectically first n pseudo-intents. We show that this problem is coNP-
hard. We thereby show that there cannot be an algorithm with a good
theoretical complexity for enumerating pseudo-intents in a lectic order.
In a second part of the paper we introduce the notion of minimal pseudo-
intents, i. e. pseudo-intents that do not strictly contain a pseudo-intent.
We provide some complexity results about minimal pseudo-intents that
are readily obtained from the previous result.

1 Introduction

The so-called stem base or Duquenne-Guigues Base from Formal Concept Anal-
ysis (FCA, [5]) plays an important rôle within FCA [6]. It has applications both
within FCA as well as other fields such as Description Logics (DL) (in particular
in knowledge base completion [1]). Therefore it is not surprising that it has been
of major interest in the FCA community since its introduction.

In order to compute the Duquenne-Guigues Base of a formal context one
must compute its pseudo-intents. The most well known algorithm for computing
pseudo-intents is the Next-Closure-Algorithm [4]. It produces all concept intents
and all pseudo-intents of a given formal context in a lexicographic order (called
the lectic order). Another less well known algorithm has been introduced in
2007 [9, 10]. It computes concept intents and pseudo-intents by starting with a
set containing a single attribute and then incrementally adding attributes.

Both algorithms compute not only pseudo-intents but also concept intents.
It is not difficult to see that the number of concept intents can be exponential
in the number of pseudo-intents. As an example consider a series of contexts
Kn = (Gn,Mn, In) where Mn = {1, . . . , n} and all subsets of Mn with cardinality
n − 2 are object intents. This context has 1

2n(n − 1) objects and n attributes.
The pseudo-intents of Kn are exactly the sets of cardinality n − 1. All sets of
cardinality less than n−1 are concept intents. This means that there are 2n−n−1
concept intents while there are only n pseudo-intents. The case n = 4 is shown
in Table 1.

This shows that there is a problem with the known algorithms for computing
pseudo-intents. In many practical applications such as attribute exploration or



Table 1. A Formal Context with 4 Pseudo-intents and 24 − 4 − 1 Concept Intents

1 2 3 4

g1 X X

g2 X X

g3 X X

g4 X X

g5 X X

g6 X X

knowledge base completion one is not interested in concept intents but only in
pseudo-intents. Yet, the above example shows that in the worst case the time
needed to enumerate all pseudo-intents can be exponential in the size of the
output, i. e. the number of pseudo-intents, when using one of the two known
algorithms.

This raises the question whether it is theoretically possible to find more
efficient algorithms for computing pseudo-intents. It is known that the number
of pseudo-intents can be exponential in the size of the incidence relation of the
context [7]. From this it immediately follows that there cannot be an algorithm
that enumerates pseudo-intents in polynomial time in the size of the input (which
would be the incidence relation).

For problems where the size of the output can be large in the size of the
input other measures of complexity have been developped. One possibility is
to take into account not only the size of the input, but also the size of the
output. An algorithm is said to run in output polynomial time if it enumerates
the solutions in time polynomial in the size of the input and the output. In
previous work a relationship between the problem of enumerating pseudo-intents
and the so-called transversal hypergraph problem (TransHyp, [2]) has been
discovered. TransHyp is known to be in coNP but so far no hardness result
has been shown. It is most likely not coNP-hard because it can be solved in
no(log n) time [3]. It is also not known whether TransHyp is in P. It has been
shown that pseudo-intents cannot be enumerated in output-polynomial time
unless TransHyp is in P [11, 12].

For someone who wants to apply attribute exploration in practice the most
interesting measure of complexity is the delay between the computation of one
pseudo-intent and the next. During this time the expert must wait unproduc-
tively for the next question to show up. With the known algorithms the delay
can be exponential in the size of the input – and even in the size of the output.
An enumeration algorithm is said to run with polynomial delay if the time be-
tween the enumeration of one solution and the next is polynomial in the size of
the input.

The central question in this paper is whether it is possible to enumerate
pseudo-intents in the lectic order with polynomial delay. We prove that the
problem of checking whether a given set of n pseudo-intents is the set of the
lectically first n pseudo-intents is coNP-hard. We conclude, it is impossible



to enumerate pseudo-intents in the lectic order with polynomial delay unless
P = NP.

In a second part of the paper we look at a subclass of the class of pseudo-
intents that we call minimal pseudo-intents. We show that it is tractable to check
whether a given set is a minimal pseudo-intent. We also provide an algorithm
that given a context will output a minimal pseudo-intent in polynomial time.
We show that, surprisingly, it is not even possible to enumerate minimal pseudo-
intents in output polynomial time unless P = NP.

2 Preliminaries

We briefly introduce the basic notions of formal concept analysis. A formal
context is a tuple (G,M, I) where G and M are finite sets and I ⊆ G × M is
a binary relation. The elements of G are called objects and elements of M are
called attributes. FCA provides two derivation operators that are both denoted
by ·′. For a set of objects A ⊆ G one defines A′ = {m ∈ M | ∀g ∈ A : gIm}.
Analogously, for a set B ⊆ M one defines B′ = {g ∈ G | ∀m ∈ B : gIm}.
Applying the two derivation operators successively yields the closure operators
·′′. The ·′′-closed subsets of M are called concept intents, while the ·′′-closed
subsets of G are called concept extents. A concept intent A is called object intent
if it can be written as the closure of a singleton set A = {g}′, g ∈ G. Given a
context (G,M, I) and a set A ⊆ M one can check in time polynomial in the
size of I and A whether A is a concept intent. The following Lemma is common
knowledge in FCA.

Lemma 1. A set of attributes A ⊆ M is a concept intent if and only if it can be
written as an intersection of object intents, i. e. there is a set B ⊆ G such that

A =
⋂

g∈B

{g}′.

An interesting research area in FCA are dependencies between sets of at-
tributes. The simplest form of such a dependency is an implication A → B,
A,B ⊆ M . A set of attributes D ⊆ M respects A → B if A 6⊆ D or B ⊆ D.
A → B holds in the context (G,M, I) if all object intents respect A → B.

Let L be a set of implications. We say that A → B follows semantically from
L if and only if each subset D ⊆ M that respects all implications from L also
respects A → B. L is an implicational base for (G,M, I) if it is

– sound, i. e. all implications from L hold in (G,M, I), and
– complete, i. e. all implications that hold in (G,M, I) follow from L.

In [6] a minimum cardinality base, which is called the Duquenne-Guigues-Base,
has been introduced. The premises of the implications in the Duquenne-Guigues-
Base are so-called pseudo-intents. P ⊆ M is a pseudo-intent if P is not a concept
intent and Q′′ ⊆ P holds for every pseudo-intent Q that is a proper subset of P .



The Duquenne-Guigues-Base consists of all implications P → P ′′, where P is a
pseudo-intent.

The well-known algorithm Next-Closure computes all pseudo-intents and con-
cept intents in the lectic order [4]. The lectic order is defined as follows. Let a
strict total order < on the set M of attributes be given. Let A,B ⊆ M be two
sets of attributes. Define

A < B :⇔ ∃i ∈ B − A : A ∩ {j ∈ M | j < i} = B ∩ {j ∈ M | j < i}.

If A < B holds then we say that A is lectically smaller than B.

3 Enumerating Pseudo-Intents in a Lectic Order

We have seen that the delay between the computation of two pseudo-intents is
important. The two known algorithms do not have good theoretical properties.
Both of them compute not only pseudo-intents, but also concept intents. For a
given context the number of concept intents can be exponential in the number of
pseudo-intents. That means that in the worst case, the algorithm would compute
an exponential number of concept intents before the next pseudo-intent shows
up. We ask whether it is possible to come up with an algorithm that behaves
better. The answer is, if we require that the pseudo-intents be computed in the
lectic order then there cannot be an algorithm with polynomial delay unless
P = NP. We prove this by examining the following decision problem.

Problem 1 (Lectically first pseudo-intents (FirstPI)). Input: A formal context
K = (G,M, I) and pseudo-intents P1, . . . Pn.
Question: Are P1, . . . , Pn the n lectically first pseudo-intents of K?

The dual problem to FirstPI would be “Given a formal context K and
pseudo-intents P1, . . . , Pn check if P1, . . . , Pn are not the lectically first pseudo-
intents of K.”. This problem can be characterized as follows.

Proposition 1. P1,. . . , Pn are not the n lectically first pseudo-intents of K iff
there is a set Q ⊆ M such that

1. Q is lectically smaller than Pj for some j ∈ {1, . . . , n}, and
2. Q is not a concept intent, and
3. for all i ∈ {1, . . . , n} either Pi 6⊆ Q or P ′′

i ⊆ Q.

Proof. if: Because Q is not a concept intent there must be a pseudo-intent P of
K such that P ⊆ Q but P ′′ 6⊆ Q. Because of 3 it holds that P /∈ {P1, . . . , Pn}. P
is lectically smaller than Pj because Q is lectically smaller than Pj and P ⊆ Q.
Thus P1, . . . , Pn are not the lectically smallest pseudo-intents of K.

only if: Let P be a pseudo-intent that is lectically smaller than Pj , for some
j ∈ {1, . . . , n} but not contained in {P1, . . . , Pn}. Then Q = P satisfies the three
conditions 1 to 3.

Lemma 2 (Containment in coNP). FirstPI is in coNP.



Proof. We show that the dual problem of FirstPI can be decided in non-
deterministic polynomial time.

Whether a set Q ⊆ M satisfies conditions 1 to 3 from Proposition 1 can
be checked in time polynomial in the size of K and P1, . . . , Pn. In order to
decide whether P1, . . . , Pn are not the lectically first pseudo-intents of K one
can non-deterministically guess a subset Q ⊆ M and then check in polynomial
time whether it satisfies 1 to 3. Hence the dual problem of FirstPI is in NP

and thus FirstPI is in coNP.

For our hardness proof we use a reduction from the tautology problem, the
prototypical coNP-complete problem.

Problem 2 (Tautology). Input: A boolean DNF-formula f(p1, . . . , pm) = (x11∧
· · · ∧ x1l1) ∨ · · · ∨ (xk1 ∧ · · · ∧ xklk), where xij ∈ {p1, . . . , pm} ∪ {¬p1, . . . ,¬pm}.
Question: Is f a tautology?

Tautology is coNP-complete, even with the restriction that f be in DNF.
This is because f is a tautology iff ¬f is unsatisfiable. If f is in DNF then ¬f
can be transformed to CNF in linear time. Checking if ¬f is unsatisfiable is the
dual problem of the Satisfiability Problem for boolean CNF formulae, which is,
of course, NP-complete.

We prove that FirstPI is harder than Tautology by reduction. Let an
instance f of Tautology be given. Let f be the DNF-formula f(p1, . . . , pm) =
D1∨· · ·∨Dk, where Di = (xi1∧· · ·∧xili) and xij ∈ {p1, . . . , pm}∪{¬p1, . . . ,¬pm}
for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , li}. We define a context K as follows.

Let M be the set M = {α1, . . . , αm, t1, . . . , tm, f1, . . . fm}. We define a total
order < on the elements of M as follows

α1 < · · · < αm < t1 < f1 < · · · < tm < fm.

For every i ∈ {1, . . . , k} define a set

Ai = M − {fj | pj occurs in Di as a positive literal}

− {tj | pj occurs in Di as a negative literal}

− {αj | pj occurs in Di}

and furthermore for every i ∈ {1, . . . , k} and every j ∈ {1, . . . ,m} let Fij and
Tij be the sets Tij = Ai −{fj , αj}, Fij = Ai −{tj , αj}. Define the set of objects
G to be G = {u1, . . . , u2m} ∪ {gTij

| i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}} ∪ {gFij
| i ∈

{1, . . . , k}, j ∈ {1, . . . ,m}}. The relation I is defined so that every object gTij

has all the attributes that are contained in the set Tij and analogously for gFij
.

Furthermore I is such that every singleton set {ti} or {fi} occurs as the concept
intent of some ui. More formally, we define

I ={(u2i−1, ti) | i ∈ {1, . . . ,m}} ∪ {(u2i, fi) | i ∈ {1, . . . ,m}}

∪ {(gFij
, x) | i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, x ∈ Fij}

∪ {(gTij
, x) | i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, x ∈ Tij}.



α1 . . . αm t1 f1 t2 f2 . . . tm fm

u1 X
... · · ·
... · · ·
u2m X

gT11
T11

...
...

gT1m T1m

...
...

gTk1
Tk1

...
...

gTkm
Tkm

gF11
F11

...
...

gF1m F1m

...
...

gFk1
Fk1

...
...

gFkm
Fkm

Table 2. Context K

There are 2mk + 2m objects and 3m attributes, so the size of the context is
O(m2k + m2). As sets P1, . . . , Pm we define Pi = {ti, fi} for all i ∈ {1, . . . ,m}.

The reduction may look complicated at first glance. The basic ideas in the
design of the reduction are the following.

– Any assignment of truth values φ corresponds naturally to a subset of {t1, f1, . . . , tm, fm},
namely the set

Sφ := {ti | φ(pi) = true} ∪ {fi | φ(pi) = false}. (1)

– If φ makes Di true then Sφ is a subset of Ai.

– If Sφ is a subset of Ai then Sφ is a concept intent.

To formally prove that this is a reduction from Tautology to FirstPI we
need to show two things. First, we need to show that what we have obtained is
really an instance of FirstPI and second, we need to show that f is a “Yes”-
instance of Tautology if and only if (K, {P1, . . . , Pm}) is a “Yes”-instance of
FirstPI.

Lemma 3. (K, {P1, . . . , Pm}) is an instance of FirstPI



Proof. All we have to show is that all Pi are pseudo-intents. Note that all strict
subsets of Pi are concept intents in K (this is because all singleton subsets {ti}
and {fi} are object intents of some ui). To see that αi ∈ P ′′

i and thus P ′′
i 6= Pi

consider the sets Ar for r ∈ {1, . . . , k}. If Pi = {ti, fi} ⊆ Ar then by definition of
Ar pi does not occur in Di. Therefore αi ∈ Ar. Let s ∈ {1, . . . ,m} be an index
of some set Trs. If Pi ⊆ Trs then Pi ⊆ Ar and i 6= s. Then αi ∈ Ar holds and
because i 6= s it follows that αi ∈ Trs = Ar − {fs, αs} Analogously αi ∈ Frs

if Pi ⊆ Frs. Therefore all objects that have all attributes from Pi also have αi

as an attribute and thus αi ∈ P ′′
i . Therefore P ′′

i 6= Pi must hold. Hence Pi is a
pseudo-intent. Therefore (K, {P1, . . . , Pm}) is an instance of FirstPI.

We show that K has a pseudo-intent that is lectically smaller than P1 if
and only if f is not a tautology. Let φ be an assignment that maps all pi to a
truth value in {true, false}. Let Sφ be defined as in (1). Note that Sφ contains
exactly one element of {ti, fi} for every i ∈ {1, . . . ,m}.

Lemma 4. There is some i ∈ {1, . . . , k} for which Sφ ⊆ Ai if and only if
f(φ(p1), . . . , φ(pm)) = true.

Proof. only-if : Let φ be such that Sφ ⊆ Ai. Then by definition of Ai it holds
that fj 6∈ Sφ, and thus φ(pj) = true, for all pj that occur as positive literals in
Di (we have removed fj from Ai). Analogously, φ(pj) = false for all pj that
occur as negative literals. Hence all literals in Di evaluate to true and therefore
both Di and the whole formula evaluate to true.

if: Now let φ be an assignment that makes f true. Since f is in DNF it
evaluates to true iff at least one of the k implicants evaluates to true. Let Di for
some i ∈ {1, . . . , k} be an implicant that evaluates to true. Then φ(pj) = true

for all pj that occur as positive literals Di and φ(pj) = false for all pj that
occur as negative literals in Di. By definition of Ai and Sφ this implies Sφ ⊆ Ai.

Lemma 5. If Sφ ⊆ Ai then Sφ can be written as

Sφ =
⋂

j∈{1,...,m}
φ(pj)=true

Tij ∩
⋂

j∈{1,...,m}
φ(pj)=false

Fij

Proof. We denote the right-hand side of the above equation by R. By definition
Sφ does not contain fj if φ(pj) = true. Thus Sφ ⊆ Ai −{fj , αj} = Tij for all pj

for which φ(pj) = true. Likewise, Sφ ⊆ Ai − {tj , αj} = Fij for all pj for which
φ(pj) = false. Thus Sφ ⊆ R. To prove the other inclusion consider some x ∈ R.
For every j ∈ {1, . . . ,m} it holds that αj 6∈ Fij and αj 6∈ Tij . If φ(pj) = true

then R ⊆ Tij , otherwise R ⊆ Fij . So in either case αj 6∈ R. Therefore x 6= αj

holds for all j ∈ {1, . . . ,m}. Assume that x = tj for some j. Then φ(pj) = true

must hold, for otherwise R would be a subset of Fij which does not contain
tj . Now φ(pj) = true implies x = tj ∈ Sφ. The case x = fj for some j can be
treated analogously. Thus for every x ∈ R it holds that x ∈ Sφ and thus R ⊆ Sφ.
Hence Sφ = R.



Lemma 6. f is a tautology if and only if for all assignments φ the set Sφ is a
concept intent of K.

Proof. Let us start by proving the if -direction. Assume that there is an as-
signment φ that makes f false. From Lemma 4 it follows that Sφ 6⊆ Ai for all
i ∈ {1, . . . , k}. But then no object in G has all the attributes in Sφ because every
object intent is either a singleton set or a subset of some Ai. Therefore S′′

φ = M
and thus Sφ is not a concept intent. This contradicts the assumption and thus
f must be a tautology.

For the only if -direction assume that there is some φ for which Sφ is not a
concept intent. We know that the intersection of concept intents is also a concept
intent. This implies in particular that Sφ cannot be written as the intersection
of object intents. From Lemma 5 it follows that Sφ 6⊆ Ai for all i ∈ {1, . . . , k}.
But then Lemma 4 shows that φ makes f false. This is a contradiction to the
assumption that f is a tautology. Therefore Sφ must be a concept intent for all
φ.

Lemma 7. P1, . . . , Pm are the lectically smallest pseudo-intents of K if and
only if for all assignments φ the set Sφ is a concept intent in K.

Proof. only-if -direction: Assume that some Sφ is not a concept intent. Then Sφ

has a subset P ⊆ Sφ which is a pseudo-intent. Obviously P is lectically smaller
than P1. Also P must be different from all the Pi because Sφ does not include
any of the Pi. This is a contradiction to the assumption that P1, . . . , Pm are the
lectically smallest pseudo-intents of K.

if -direction: Let Q ⊆ M be a set of attributes that is lectically smaller
than P1. If Q would contain some αi then it would be lectically larger than
P1. Therefore Q must be a subset of {t1, f1, . . . , tm, fm}. If there is some i ∈
{1, . . . ,m} such that Pi ⊆ Q then αi ∈ P ′′

i −Q and thus P ′′
i 6⊆ Q. Therefore Q is

not equal to Pi or a pseudo-intent. If Pi 6⊆ Q for all i ∈ {1, . . . ,m} then define:

φt(pi) =











true ti ∈ Q

false fi ∈ Q

true otherwise

φf (pi) =











true ti ∈ Q

false fi ∈ Q

false otherwise

Both φt and φf are well-defined since Q cannot contain both ti and fi for any
i. With φt and φf defined as above it holds that Q = Sφt

∩Sφf
. Since all Sφ are

concept intents the intersection of Sφt
and Sφf

must also be a concept intent.
Therefore Q cannot be a pseudo-intent.

Theorem 1 (Hardness of FirstPI). FirstPI is coNP-hard.

Proof. From Lemma 6 and Lemma 7 it follows that P1,. . . ,Pm are the lectically
first pseudo-intents in K if and only if f is a tautology. Since the reduction can
be done in polynomial time it follows that FirstPI is coNP-hard.

Corollary 1. FirstPI is coNP-complete.



What does this mean for the problem of enumerating pseudo-intents in the
lectic order? Assume that there is an algorithm A that given a context enu-
merates its pseudo-intents in the lectic order and with polynomial delay. That
means that there is a polynomial p(|G|, |M |) such that the delay between the
computation of one pseudo-intent and the next is bounded by p(|G|, |M |). Here
|M | denotes the number of attributes and |G| denotes the number of objects in
the context.

In order to solve FirstPI for an input ((G,M, I), {P1, . . . , Pn}) we can con-
struct a new algorithm A′ from A. A′ lets A run for time n · p(|G|, |M |). After
that time A will have computed the lectically first n pseudo-intents (and possibly
some more, but these are not interesting). If these lectically first n pseudo-intents
are identical to P1, . . . , Pn then A′ returns “Yes”, otherwise it returns “No”.
The runtime of A′ is bounded by n · p(|G|, |M |) and thus polynomial in the size
of the input. Since FirstPI is coNP-hard, it cannot be solved in polynomial
time unless P = NP.

Theorem 2. Pseudo-intents cannot be enumerated in the lectical order with
polynomial delay, unless P = NP.

4 Minimal Pseudo-Intents

4.1 Introducing Minimal Pseudo-Intents

We say that P is a minimal pseudo-intent of K if P is a pseudo-intent of K and
P does not contain any other pseudo-intent of K. An equivalent definition is the
following.

Definition 1 (Minimal Pseudo-Intent). A minimal pseudo-intent of a con-
text is a set P ⊆ M such that

– P is not a concept intent, and
– every strict subset S ⊂ P is a concept intent.

Minimal pseudo-intents play a special rôle among the pseudo-intents of a
given context. While the Duquenne-Guigues base is the most well known impli-
cation base, a given formal context K may have other implication bases. There
may even be several implication bases with minimal cardinality. Minimal pseudo-
intents are important since they have to occur as premises in all bases of a
context, not just in the Duquenne-Guigues base.

To clarify this assume that L is a set of implications of the context K. Let P
be a minimal pseudo-intent of K. Assume that L does not contain an implication
whose left-hand side is P . Since all strict subsets of P are concept intents, there
can be no implication C → D in L where C ⊆ P but D 6⊆ P . But then P → P ′′

does not follow from L and thus L is not a concept intent.

Lemma 8. If L is an implication base of a given context K = (G,M, I) and P is
a minimal pseudo-intent of K then L contains an implication P → D, D ⊆ M ,
whose premise is P .



This shows that any algorithm that computes an implication base for a con-
text inevitably has to compute all minimal pseudo-intent. This makes them an
interesting subject for further research.

Given a context K = (G,M, I) and a set of attributes P ⊆ M it is not
hard to tell whether P is a minimal pseudo-intent. By definition, P is a minimal
pseudo-intent if and only if it is not a concept intent and all its strict subsets
are concept intents.

Lemma 9. All strict subsets of P are concept intents if and only if all sets
P \ {m}, m ∈ P , are concept intents.

Proof. Assume that all sets of the form P \ {m}, m ∈ P , are concept intents.
Let S ( P be a strict subset. S can be written as the intersection

S =
⋂

m∈P\S

(P \ {m}).

Since the intersection of concept intents is itself a concept intent S must be a
concept intent. This proves the “if”-direction. The “only if”-direction is trivial.

Because of Lemma 9 we do not need to check for all strict subsets of P
whether they are pseudo-intents. To test if P is a minimal pseudo-intent it
suffices to perform n + 1 checks, namely checking whether each of the n sets
P \ {m}, m ∈ P , is a concept intent and whether P itself is not a concept
intent. Since checking whether a given set is a concept intent can be done in
polynomial time it can be checked in polynomial time whether P is a minimal
pseudo-intent. By comparison the best known algorithm to check whether a set
P is a pseudo-intent runs in coNP [8, 7].

4.2 Finding Minimal Pseudo-Intents

Not only do the two algorithms Next Closure and Incremental Construction
have an exponential delay in between the computation of one pseudo-intent and
the next. One may even have to wait for some time exponential in the size
of the context until even the first pseudo-intent is computed. This raises the
question whether there can be an algorithm that finds at least one pseudo-intent
in polynomial time. To the best knowledge of the author no such algorithm
has yet been published. Lemma 9 gives us an idea for a minimal algorithm
(Algorithm 1) that finds one minimal pseudo-intent in polynomial time.

The idea is the following. We start with the full attribute set M and check
whether all its strict subsets are concept intents using Lemma 9. If they are all
concept intents then the context has no pseudo-intents. If one of them is not a
concept intent then it either contains a pseudo-intent or is a pseudo-intent itself.
Then we continue by checking whether that subset has a subset that is not a
concept intent and so on.

Lemma 10 (Soundness of Algorithm 1). Let K be a context. If K has a
pseudo-intent then Algorithm 1 returns a minimal pseudo-intent S upon termi-
nation.



Algorithm 1 Algorithm for finding one minimal pseudo-intent

1: Input: K = (G, M, I)
2: S := M

3: repeat

4: finished := true

5: for all m ∈ S do

6: if S \ {m} is not a concept intent then

7: S := S \ {m}
8: finished := false

9: exit for-loop
10: end if

11: end for

12: until finished

13: if S = M then

14: print K has no pseudo-intent
15: else

16: return S

17: end if

Proof. Algorithm 1 remains in the repeat-loop until the variable finished is
true. This means that upon termination for all m ∈ S the set S \ {m} is a
concept intent. Otherwise finished would have been set to false in one of the
iterations of the inner for-loop. It follows from Lemma 9 that all strict subsets
of S are concept intents. If S 6= M then S is itself not a concept intent (this has
been checked in the previous iteration of the repeat-loop). Then S is a minimal
pseudo-intent.

On the other hand if Algorithm 1 terminates with S = M then both M and
all of its subsets are concept intents. Thus K does not have any pseudo-intents.

Lemma 11 (Termination of Algorithm 1). Algorithm 1 terminates after at
most |M | iterations of the repeat-loop. The total runtime is bounded by O(|G| ·
|M |3).

Proof. The algorithm starts with S = M . In each iteration of the repeat-loop
one element is removed from S. The algorithm terminates if S is the empty set.
Therefore it must terminate after at most |M | iterations.

In each iteration of the repeat-loop the for-loop is entered at most |S| < |M |
times. Inside the for-loop the algorithm checks whether S \ {m} is a concept
intent. This check can be done in time of order O(|G||M |). Thus, the total
runtime is bounded by O(|G||M | · |M | · |M |).

This shows that not only is it possible to check in polynomial time whether
a given set of attributes is a minimal pseudo-intent, it is also possible to find an
arbitrary minimal pseudo-intent in polynomial time. This raises hopes that it
might be possible to compute at least the minimal pseudo-intents in polynomial
time. Unfortunately, this is not the case, as we will see by examining the following
problem.



Problem 3 (All minimal pseudo-intents (AllMPI)). Input: A formal context
K = (G,M, I) and pseudo-intents P1, . . . , Pn.
Question: Are P1, . . . , Pn all minimal pseudo-intents of K?

Lemma 12 (Containment in coNP). AllMPI is in coNP.

Proof. We already know that checking whether a set Q ⊆ M is a minimal
pseudo-intent can be done in polynomial time (Lemma 9). So to decide whether
P1, . . . , Pn are not all the minimal pseudo-intents one can non-deterministically
guess a set Q ⊆ M such that Q /∈ {P1, . . . , Pn} and then check in polynomial
time whether it is a minimal pseudo-intent. Thus the dual problem of AllMPI

can be decided in non-deterministic polynomial time. Therefore AllMPI is in
coNP.

Lemma 13 (Hardness of AllMPI). AllMPI is coNP-hard.

Proof. We use the same reduction as for Theorem 1. Given an instance of Tau-

tology, i. e. a propositional formula f in disjunctive normal form, let K be the
context from Table 2, constructed as in Section 3. We show that P1 = {t1, f1},
. . . , Pm = {tm, fm}, Pm+1 = {α1}, P2m = {αm} are all the minimal pseudo-
intents of K iff f is a tautology.

It has already been shown in the proof of Theorem 1 that P1,. . . ,Pm are
minimal pseudo-intents. The empty set ∅ is a concept intent in K. In K all
objects intents g′ for some g ∈ G are such that αi ∈ g′ if and only if {ti, fi} ⊆
g′. Therefore, {ti, fi} is contained in {αi}

′′ = P ′′
m+i. Thus Pm+1,. . . , P2m are

also minimal pseudo-intents. We can use the first three steps of the proof of
Theorem 1.

We claim that P1,. . . ,P2m are all minimal pseudo-intents of K iff for all
assignments φ the set Sφ is a concept intent in K. only-if : Assume that some
Sφ is not a concept intent. Then Sφ must contain some minimal pseudo-intent
P ⊆ Sφ. The definition of Sφ (1) shows that Sφ does not contain αi, and it
contains either ti or fi but not both, for all i ∈ {1, . . . , n}. Thus Sφ does not
contain any of the P1,. . . , P2m, and therefore it must be a new minimal pseudo-
intent.

if : Let Q ⊆ M be a set of attributes. If Q contains some αi then Q cannot
be a minimal pseudo-intent. Therefore Q is a subset of {t1, f1, . . . , tm, fm}. In
Lemma 7 it is shown that Q cannot be a pseudo-intent if the hypothesis holds.
Thus there cannot be another minimal pseudo-intent.

Together with Lemma 6 this proves that P1, . . . , P2m are all minimal pseudo-
intents of K iff f is a tautology. Thus AllMPI is coNP-hard.

Corollary 2. AllMPI is coNP-complete.

Corollary 3. Given a context K the set of all minimal pseudo-intents of K

cannot be computed in output-polynomial time unless P = NP.

Proof. Assume that there was an algorithm A that takes K as its input and
enumerates the set P of all minimal pseudo-intents in output-polynomial time.



Let n be the number of pseudo-intents. This means that there is a polynomial
p(|G|, |M |, |P|) such that for all contexts K = (G,M, I) the runtime of A is
bounded by p(|G|, |M |, |P|).

Then we can construct an algorithm A′ that decides AllMPI as follows.
Given a context K and a set of minimal pseudo-intents {P1, . . . , Pn} A′ runs A
on K for at most p(|G|, |M |, n) steps. If A does not terminate then there must be
more than n minimal pseudo-intents, so A′ return “No”. If A terminates then A′

compares the output of A to {P1, . . . , Pn}. If they are identical then A′ return
“Yes”, otherwise “No”. The runtime of A′ is bounded by a polynomial in |G|,
|M | and |P|.

Note that this does not yield a complexity result for the problem of computing
all pseudo-intents. That is unless it can be shown that the total number of
pseudo-intents of a context is bounded by a polynomial in the number of its
minimal pseudo-intents. We conjecture that this is not the case.

5 Conclusion

In this work we have proved that the problem FirstPI of determining whether
a given set of pseudo-intents is the set of lectically first pseudo-intents of a given
context is coNP-complete. This helped us to prove that enumerating pseudo-
intents in the lectic order is not tractable unless P = NP. From the results of
previous work it only followed that enumerating pseudo-intents (in any order) is
not tractable unless TransHyp is in P.

In the second section of the paper we have introduced minimal pseudo-
intents. They play a special rôle because they occur in any implication base
of a context, not only in the Duquenne-Guigues base. In many ways they are
easier to handle than general pseudo-intents. For example we have shown that
given a set of concept intents it is tractable to check whether it is a minimal
pseudo-intent. Furthermore, one can find one minimal pseudo-intent in polyno-
mial time. However, we have shown that the set of minimal pseudo-intents of a
context cannot be computed in output polynomial time.

Future work We conjecture that the lectic order is a source of complexity in
the enumeration process. We therefore suggest that in order to develop efficient
algorithms for computing pseudo-intents the FCA community should try to find
alternatives to the lectic order. An idea might be incremental algorithms in the
style of Obiedkov et al. [10]. Perhaps, it is also possible to compute all pseudo-
intents by starting with the full set of attributes and then deleting attributes
similar to Algorithm 1.
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