
An Approach to Exploring Description Logic

Knowledge Bases

Felix Distel

Theoretical Computer Science, TU Dresden, Germany
felix@tcs.inf.tu-dresden.de

Abstract. This paper is the successor to two previous papers published
at the ICFCA conference. In the first paper we have shown that in the
Description Logics EL and ELgfp, the set of general concept inclusions
holding in a finite model always has a finite basis. An exploration for-
malism that can be used to obtain this basis was presented in the second
paper. In this paper we show how this formalism can be modified such
that counterexamples to GCIs can be provided in the form of ABox-
individuals. In a second part of the paper we examine which description
logics can be used for this ABox.

1 Introduction

Description Logics (DLs) are a formalism for representing knowledge that has
gained international recognition during the last decade [3]. They play a signif-
icant role in the Semantic Web Community, in particular because of the OWL
language which is essentially a variant of an expressive DL [10].

A DL knowledge base usually consists of two parts. The first part, the TBox
is used to describe the terminology of the knowledge base. It contains general
concept inclusion (GCIs), i. e. statements of the form C ⊑ D. Here C and D
are concept descriptions written using a set of so-called concept constructors,
concept names and role names. Different DL languages use different concept
constructors. However, all DL languages provide a formal, well-defined model
based semantics for the concept descriptions. A model i = (∆i, ·

i) consists of a
set ∆i and a function ·i that maps concept descriptions C to subsets Ci ⊆ ∆i.
The second part of the knowledge base is the ABox. It contains knowledge about
individuals. One can for example assert that an individual Henry belongs to the

Henry Jane Troy

Peter Bridget

Female, Mother MaleMale, Father

Male, Father Female

hasChild

hasChild

hasChild

hasChild

Fig. 1. A Model of a Family of Three Generations



concept Father or that there is a hasChild role leading from Henry to Jane.
An important aspect are the open world semantics of ABoxes. If it is not stated
that Henry is a Father then it is not assumed that Henry is not a Father.

Writing knowledge bases can be a difficult process, in particular because
experts in the domain of the knowledge base are usually not experts in DL. In
order to help them to find the right GCIs to add to their TBox, one approach is to
use a formalism that is inspired by attribute exploration from Formal Concept
Analysis (FCA) [9]. In the formalism that has been presented in a previous
ICFCA Paper [6] it is assumed that the domain of the knowledge base can be
represented as a DL model, and that this model is completely known to a human
expert. In this formalism the expert does not have to come up with GCIs herself.
Instead the system suggests GCIs that she can either add to the TBox, or reject
by providing a counter-example. This approach is often referred to as knowledge
base completion.

Let us assume that the domain was represented by the model of a family of
three generations from Figure 1. The system might come up with a GCI like
Father ⊑ Male ⊓ ∃hasChild.⊤, i. e. “Every father is male and has a child.”
The expert would obviously accept this GCI and add it to the knowledge base.
If, however, the system comes up with the GCI Father ⊑ Mother, i. e. “Every
father is a mother”, then the expert would reject it and add e. g. Henry as a
counter-example.

The GCIs from the example are written in the lightweight description logic
EL. EL is less expressive than most other standard DLs but has the advantage
that standard reasoning tasks are tractable [8]. This is one of the reasons why
tractable extensions of EL are used for large scale biomedical ontologies such as
SNOMED [12] and the Gene Ontology [13].

Our algorithm from the previous ICFCA paper also uses a tractable exten-
sion of EL, ELgfp, which allows the algorithm to generate concept descriptions
that are cyclic. The major weakness of our previous algorithm is the way in
which counter-examples are provided. It uses connected submodels which use a
closed-world semantics. The submodel is extended every time the expert pro-
vides a counter-example. Let us assume the expert wants to state that Henry is
a counter-example to the GCI Father ⊑ Mother. Assume that the expert only
adds Henry, but not Jane or Peter, to the submodel and says that Henry is a
Father but not a Mother. Because of the closed world semantics the algorithm
would assume that Henry does not have children which would make Henry a
counter-example to the GCI Father ⊑ hasChild.⊤. This is unwanted because
Father ⊑ hasChild.⊤ does hold in the domain. The only way to avoid this effect
is to add not only Henry, but also all of his direct or indirect role successors, in
this case his children and grandchildren.

So the expert would need to add a lot more information than is actually
needed to make Henry a counter-example without creating unwanted artefacts.
This is inconvenient and can only be overcome by allowing open-world-semantics.
In the DL-world the natural datastructure to keep track of individuals which pro-
vides an open-world semantics is an ABox. This paper will present an approach



how to extend the algorithm from the previous paper to work with ABoxes as
the underlying datastructure. We will introduce minimal possible consequences
as a central notion. Since this is ongoing work some important questions remain
open, e. g. if and how minimal possible consequences can be computed effectively.

Due to space restrictions we cannot introduce Formal Concept Analysis. We
assume that the reader is familiar with the basic notions from this field.

Related Work: There are two other works important works that try to combine
FCA and DL. The work by Baader et al. provides a knowledge base completion
formalism that also uses ABoxes as the underlying datastructure [7]. However,
their algorithm does not perform knowledge base completion with respect to
arbitrary GCIs written in a language like EL. Instead they only allow conjunc-
tions of previously defined concepts. The second approach by Rudolph can be
used to compute a basis for the GCIs of a given DL model. The main difference
compared to our approach lies in the way the GCIs are computed. While we
construct a context on the fly, adding only a few interesting attributes at a time,
Rudolph’s approach successively increases role depth and adds all attributes up
to a certain depth [11].

2 Preliminaries

The Description Logic EL Due to space restrictions we can only give a brief
introduction to the DLs EL and ELgfp. EL concept descriptions are generated
from a finite set NC of concept names and a finite set Nr of role names as follows.

– concept names and the top concept ⊤ are EL-concept descriptions;

– if C,D are EL-concept descriptions and r is a role name, then C ⊓ D and
∃r.C are EL-concept descriptions.

The tuple Σ = (NC ,Nr) is called the signature of the concept description.

A EL model i = (∆i, ·
i) consists of a finite set ∆i, the so-called domain of

the model, and an interpretation function ·i mapping role names r to relations
ri ⊆ ∆i × ∆i and concept descriptions C to their extensions such that

⊤i = ∆i, (C1 ⊓ C2)
i = Ci

1 ∩ Ci
2, and

(∃r.D)i = {d ∈ ∆i | ∃e ∈ Di such that (d, e) ∈ ri}.

Note that it suffices to define the interpretation function for role names and
concept names. The interpretations of more complex concept descriptions can
then be derived, recursively. Subsumption and equivalence between EL-concept
descriptions is defined in the usual way, i.e., C is subsumed by D (written C ⊑ D)
iff Ci ⊆ Di for all models i, and C is equivalent to D (written C ≡ D) iff C ⊑ D
and D ⊑ C.



TBoxes and ABoxes A GCI is a statement of the form C ⊑ D, where C and
D are concept descriptions. We say that a GCI C ⊑ D holds in a model i if
Ci ⊆ Di holds. Note that this is not the same as subsumption. An equivalence
statement is a statement of the form A ≡ D, where A is a concept name and D
a concept description. A ≡ D is said to hold in i if Ai = Di.

TBoxes are sets of equivalence statements and GCIs. They fall into three
categories.

– Acyclic TBoxes contain only equivalence statements where the left-hand side
is not used in the concept description on the right-hand side implicitly or
explicitly.

– Cyclic TBoxes contain only equivalence statements
– General TBoxes contain arbitrary GCIs.

A model i is said to be a model of a TBox T if all statements from T hold in i. In
the case of cyclic TBoxes there exists also the notion of greatest-fixpoint-models.
Informally, a model i is a greatest-fixpoint model of T if the interpretations of
all concept names in i are maximal among all other models of T with the same
domain. A more formal definition can be found in [2].

An ABox A is a set of concept assertions and role assertions, where a role
assertion is of the form r(a, b) and a concept assertion is of the form A(a), with r
a role name, A a concept name, and a and b so-called individual names. A model
i = (∆i, ·

i) of an ABox A is a model where ·i is extended to map individual
names a to individuals ai ∈ ∆i such that a ∈ Ai for all concept assertions
A(a) ∈ A and (a, b) ∈ ri for all role assertions r(a, b) ∈ A.

The Description Logic ELgfp ELgfp is the extension of EL by cyclic concept
definitions interpreted with greatest fixpoint (gfp) semantics. In ELgfp, we as-
sume that the set of concept names is partitioned into the set Nprim of primitive
concepts and the set Ndef of defined concepts. We only allow concept definitions
of the form

B0 ≡ P1 ⊓ . . . ⊓ Pm ⊓ ∃r1.B1 ⊓ . . . ⊓ ∃rn.Bn (1)

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The
empty conjunction (i.e., m = 0 = n) stands for ⊤.

Definition 1 (ELgfp-concept description). A ELgfp-concept description is a
tuple (A, T ) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

Let i = (∆i, ·
i) be a model. The extension (A, T )i of (A, T ) in i is the set assigned

to A by the gfp-model of T based on i. Subsumption and equivalence between
ELgfp-concept descriptions is defined as in the case of EL-concept descriptions.
It is easy to see that acyclic ELgfp-concept descriptions (i.e., ones where the
TBox component is acyclic) correspond exactly to EL-concept descriptions.

It is difficult to obtain a good intuition about greatest-fixpoint semantics.
Fortunately, there is an alternative characterization. Given a model i and an



individual x ∈ ∆i we can define the set of concept names assigned to x as
namesi(x) = {A ∈ Nprim | x ∈ Ai}. We denote the set of all r-successors of x in
i by xri = {y ∈ ∆i | (x, y) ∈ ri}.

For TBoxes that contain only concept definitions of the form (1) we introduce
notations similar to those for models. For a defined concept B we denote by
namesT (B) the set of all primitive concept names P1, . . . , Pk that occur in the
definition of B in T . For a defined concept B1 and a role name r we denote by
B1rT the set of all defined concept names B2 for which the term ∃r.B2 occurs
in the definition of B1 in T . A simulation from a normalized TBox T to a model
i is a relation ζ ⊆ Ndef × ∆i where

(S1) namesT (B) ⊆ namesi(x) for all pairs (B, x) ∈ ζ. , and

(S2) for all role names r ∈ Nr, all pairs (B, x) ∈ ζ and all E ∈ BrT there is some
y ∈ xri such that (E, y) ∈ ζ holds.

The following theorem enables us to check instance without using greatest
fixpoints explicitly [1].

Lemma 1. Let C = (AC , TC) be an ELgfp-concept description. Let i = (∆i, ·
i)

be a model and x ∈ ∆i an individual. Then it holds that x ∈ Ci iff there is a
simulation ζ from TC to i that contains (AC , x).

Given a set of GCIs B, we say that the GCI C ⊑ D follows from B if C ⊑ D
holds in all models in which all GCIs from B hold. We say that B is a basis for
the ELgfp-GCIs holding in i if B is

– sound for i, i. e. it contains only GCI that hold in i, and

– complete for i, i. e. any ELgfp-GCI holding in i follows from B.

3 Results from Previous Work

Exploration as a method for knowledge base completion relies on the existence
of an expert with complete knowledge about the domain of the knowledge base.
For practical purposes we assume that the domain of the knowledge base (“the
real world”) can be represented as a model i of the final (complete) knowledge
base. In this and the previous work i is called the background model. The goal
of an exploration is to find a basis for the set of GCIs holding in i.

In doing this we face two major challenges: First, for most DLs it is not
trivial to find a basis, even when the background model is known. Second, since
the complete background model is unknown to the algorithms, the algorithm
must gradually gain information about the background model by querying the
expert. The first challenge has been adressed in [5] while a solution for the
second problem is proposed in [6]. The purpose of this section is to recapitulate
important notions from these two publications.



3.1 Model-Based Most Specific Concepts

Suppose we want to compute a basis for the GCIs holding in the model i from
Figure 1. Suppose furthermore that we have decided (for example by using the
algorithm described in [6]) that the ELgfp-concept description Father is an in-
teresting premise for a GCI. We might add any of the GCIs Father ⊑ Male,
or Father ⊑ Male ⊓ ∃hasChild.⊤ to the basis. However, if we decide to add
the first one and later find out that we need to add also the second to ensure
completeness we obtain redundance (because the first GCI follows from the lat-
ter). In an exploration setting this would mean that we would ask two questions
where one would be enough. To avoid redundant questions, the idea is to be as
specific as possible when choosing the right-hand side of a GCI. For the descrip-
tion logic ELgfp model-based most specific concepts are what we need to find
these conclusions.

Definition 2 (Model-Based Most Specific Concept). Let i = (∆i, ·i) be
a finite model and X ⊆ ∆i a set. The ELgfp-concept description C is the most
specific ELgfp-concept of X in i if it is the least ELgfp-concept description such
that X ⊆ Ci. By least ELgfp-concept description we mean that every other
ELgfp-concept description C̄ satisfying X ⊆ C̄i also satisfies C ⊑ C̄.

It is justified to speak of the model-based most specific concept (mmsc)
because the model-based most specific concept is unique up to equivalence. We
use the notation Xi to denote the mmsc of X. Mmsc for the description logic
ELgfp exist for all models i = (∆i, ·i) and all sets X ⊆ ∆i and can be computed
effectively [5].

Lemma 2. Let i be a model, X,Y ∈ ∆i sets of objects and let C,D be ELgfp-
concept descriptions. Then the following statements hold

1. X ⊆ Y ⇒ Xi ⊑ Y i

2. C ⊑ D ⇒ Ci ⊆ Di

3. X ⊆ Xii

4. Cii ⊑ C
5. Xi ≡ Xiii

6. Ci = Ciii

7. X ⊆ Ci ⇔ Xi ⊑ C.

This lemma from [5] shows that GCIs of the form C ⊑ Cii play a special rôle.

Lemma 3. Let C,D be ELgfp-concept descriptions and i a finite ELgfp-model.
Then C ⊑ Cii holds in i. If C ⊑ D holds in i, then C ⊑ D follows from
{C ⊑ Cii}.

We have seen that mmsc can help to reduce redundancy. They are therefore
useful when it comes to constructing finite sets of axioms for a given model.

3.2 An Algorithm for Axiomatizing a Given Model

In [6] an algorithm has been presented that can be used to axiomatize a given
(known) model i (Algorithm 1). Given a finite model i as input Algorithm 1 will



Algorithm 1 Computing a basis for an a priori given model i

1: Input: finite model i = (∆i, ·
i)

2: M0 := NC , S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0
4: while Pk 6= null do

5: Πk+1 := Πk ∪ {Pk}
6: Mk+1 := Mk ∪ {∃r.(

d
Pk)ii | r ∈ Nr}

7: Sk+1 := {{C} → {D} | C, D ∈ Mk+1, C ⊑ D}
8: k := k + 1
9: if Mk = Mk−1 = Pk then

10: Pk := null

11: else

12: Pk := lectically next set of attributes that respects all implications in
{Pj → P

′′k
j | 1 ≤ j < k} and Sk

13: end if

14: end while

always terminate. Upon termination it will have produced a set Πn of so-called
premises Pk such that

Bn := {
l

Pk ⊑ (
l

Pk)ii | Pk ∈ Πn}

is a basis for the GCIs holding in i.
The algorithm uses the notation

d
U , where U is a set of concept descriptions,

to denote the concept
d

U :=
d

D∈U D.
It uses some elements of FCA, in particular the next-closure algorithm. The

connection between FCA and DL is made by so-called induced contexts. What
we call induced contexts in this work are formal contexts whose attributes are
concept descriptions and whose set of objects is the domain ∆i of a finite model
i. More formally, let i be a finite ELgfp-model and M a finite set of ELgfp-
concept descriptions. The context induced by M and i is the formal context
K = (G,M, I), where G = ∆i and I = {(x,C) | C ∈ M and x ∈ Ci}.

There are infinitely many possible concept descriptions and thus infinitely
many possible attributes for an induced context. The most important idea in
the construction of Algorithm 1 was that the set of attributes was not fixed
in the beginning. Instead a new set of attributes Mk is generated during each
iteration. The notation ·′′k denotes the ·′′-operator from FCA computed in the
context Kk, where Kk denotes the context induced by Mk and i.

3.3 Exploration Using Submodels

Of the two main challenges that we have identified, the second one was construct-
ing a set of axioms in a situation where the background model is not known to
the algorithm. The only way to gain information about the model is to ask the
expert. In [6] an algorithm has been presented that uses the familiar exploration
principle. It generates a GCI and asks the expert whether this GCI holds in



the background model. If so, the GCI is added to the set of axioms. Otherwise
the expert is asked to provide a counterexample. Now the question is in what
form these counterexamples should be provided. In [6] the counterexamples are
provided in the form of connected submodels of the background model.

Thereby a submodel j of a model i is a model such that ∆j ⊆ ∆i and
Cj = Ci ∩∆j for all concept names C and rj = ri ∪ (∆j ×∆j) for all role names
r. j is called a connected submodel if and only if for every x ∈ ∆i and all r ∈ Nr

if x ∈ ∆j then all r-successors of x are also in ∆j . Whenever a GCI is refuted
the expert is asked to provide a new model ij that we call the working model.
It is required to extend the previous working model ij−1, to be a connected
submodel of i and to contain a counterexample. Similar to Algorithm 1 it has
been shown that this algorithm always terminates and produces a basis for the
set of implications holding in i.

4 Replacing Models by ABoxes

4.1 Possible Consequences

We consider a setting where (instead of a connected submodel of the background
model i) the expert provides a knowledge base consisting of an ABox A and a
TBox T . For now, the background model i should be a model of the ABox A
that contains the counterexamples and the TBox T . Given A and T what can
be said about the GCIs that hold in i? First, there are the GCIs that hold in
every model of A and T . These are the GCIs which are already known to hold
in i. Therefore they are not interesting for a completion formalism.

On the other hand, there are the GCIs that hold in at least one model of
A and T . Since the background model i is unknown, it is possible that i is
one of these models in which the GCI holds. So these GCIs are the ones we
are interested in. Provided an ELgfp-concept description C we define the set of
concept descriptions D that are possible consequences of C to be

pcA,T (C) = {D | ∃j model of A and T : Cj ⊆ Dj}.

Notice, that we do not make any requirements with respect to the language of
the ABox A and the TBox T , except that they have a model-theoretic semantics
with models as defined in Section 2. It may be different from ELgfp. The certain
and possible consequences, however, are expressed in ELgfp.

Now, suppose we want to present to the expert a GCI C ⊑ D whose left-
hand side is C. It does not make sense to ask this question, unless D is a possible
consequence of C. Otherwise the answer would certainly be “No”. So we have
to choose D among the possible consequences of C.

Once the expert accepts a GCI, the algorithm should not have to generate
another GCI with the same premise. This is why we introduce the notion of
minimal possible consequences. D is said to be a minimal possible consequence
of C if D ∈ pcA,T (C) and D is minimal in pcA,T (C) with respect to ⊑. The
set of all minimal possible consequences of C is denoted by mpcA,T (C). Unlike



mmsc minimal possible consequences need not be unique up to equivalence. We
will mostly be interested in GCIs over a fixed signature Σ. We introduce the
notation pcΣ

A,T (C) for the set of all possible consequences that are expressed

using only the signature Σ. Analogously, we define mpcΣ
A,T (C).

Those who are familiar with [7] will find that the K(·)-operator computes
minimal possible consequences for the special case of a logic that allows only for
conjunction.

4.2 Adapting the Exploration Algorithm

It is not yet known if (or rather for which logics) minimal possible consequences
exist. This is work in progress and will not be considered here. For now, we
assume that the knowledge bases considered here are written in a logic for which
the existence of minimal possible consequences is guaranteed. We also assume
that there exists an oracle to compute a minimal possible consequence for a
given ELgfp-concept description C.

We show that under these assumptions Algorithm 1 requires only subtle
modifications in order to function with ABoxes as underlying datastructure.
The modified algorithm is presented as Algorithm 2. We assume that there is a
background model i which is known to the expert. The input consists of a TBox
T0 and an ABox A0 (instead of a model). We require that i is a model of the T0

and A0. The signature of the initial knowledge base is denoted by Σ0.
The modification with respect to Algorithm 1 primarily consists in the addi-

tion of a second while-loop. Informally, the purpose of this inner while-loop is to
find the proper conclusion Dk to a given premise

d
Pk. Since i is not explicitly

given it is not possible to directly compute (
d

Pk)ii like in Algorithm 1.
Before we start to prove completeness, let us first clarify a few details about

Algorithm 2. First of all, note that while the newly acquired GCIs (i. e. the Pk

found in the algorithm) are formulated in ELgfp we do not specify the logic of the
underlying ABox and TBox. Using two different languages may seem unnatural
at first, but is, unfortunately, necessary. This will become clear in Section 5.

In Line 19 prM (C) denotes the projection of a concept description C to a
set of concept descriptions M , i. e. the set prM (C) = {D ∈ M | C ⊑ D}. The
following lemma about projections in induced contexts has been proved in [4].

Lemma 4. Let U ⊆ M be any set of attributes in a context K induced by i and
M . Then U ′′ = prM

(
(
d

U)ii
)
.

A last remark concerns the changing signatures. In Line 8 the expert is asked
to provide a new TBox Tj and ABox Aj . We allow that new concept names that
are not present in Σ0 are used in Tj and Aj . The motive behind this is that
in certain logics new concept names are necessary to express that an individual
is a counterexample to a GCI (cf. Section 5.2). Allowing new concept names
yields one problem: It is not clear how to interpret the new concept names in
the background model. In other words i is not a model of Tj and Aj . That is
why we introduce the notion of a representation of a model. Tj and Aj are called
a representation of i if there is a model ι of Tj and Aj such that



Algorithm 2 The ABox Exploration Algorithm

1: Input: ABox A0, TBox T0 with signature Σ0

2: M0 := Nprim, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0, j := 0
4: while Pk 6= null do

5: Obtain D ∈ mpc
Σ0

Tj ,Aj
(
d

Pk) from oracle

6: while expert refutes
d

Pk ⊑ D do

7: j := j + 1
8: Ask the expert for a new knowledge base (Tj ,Aj) that extends (Tj−1,Aj−1),

and is a representation of i.
9: Obtain D ∈ mpc

Σ0

Tj ,Aj
(
d

Pk) from oracle

10: end while

11: Dk = D

12: Πk+1 := Πk ∪ {Pk}
13: Mk+1 := Mk ∪ {∃r.Dk | r ∈ Nr}
14: Sk+1 := {{C} → {E} | C, E ∈ Mk+1, C ⊑ E}
15: k := k + 1
16: if Mk = Mk−1 = Pk then

17: Pk := null

18: else

19: Pk := lectically next set of attributes that respects all implications in
{Pl → prMk

(Dl) | 1 ≤ l < k} and Sk

20: end if

21: end while

– ∆i = ∆ι, and
– for all ELgfp-concept descriptions over the smaller signature Σ0 it holds that

Ci = Cι.

Once the expert has accepted a GCI, the algorithm should not need to con-
sider the same premise Pk again. Lemma 5 shows why this is indeed the case.

Lemma 5. Whenever Algorithm 2 leaves the inner while-loop (Lines 6 to 10)
it holds that D ≡ (

d
Pk)ii.

Proof. The algorithm will only leave the inner while-loop when the expert states
that

d
Pk ⊑ D holds in i. This means that (

d
Pk)i ⊆ Di is true. Lemma 2

implies that (
d

Pk)ii ⊑ D. Because Aj and Tj are a representation, there must
be a model ι of Aj and Tj such that for all ELgfp-concept descriptions C over the
smaller signature Σ0 it holds that Ci = Cι. Since

d
Pk and (

d
Pk)ii use only the

signature Σ0 it follows that (
d

Pk)ι = (
d

Pk)i ⊆ (
d

Pk)iii = ((
d

Pk)ii)ι. This
shows that (

d
Pk)ii is a possible consequence of

d
Pk. Since D is minimal among

the possible consequences of
d

Pk we obtain D ⊑ (
d

Pk)ii. Thus D ≡ (
d

Pk)ii.

Theorem 1 (Completeness). Assume that Algorithm 2 terminates after the
n-th iteration of the outer while loop. Then the set of GCIs B = {

d
Pk ⊑ Dk |

0 ≤ k ≤ n} is complete for the background model i.



Proof. We prove completeness by showing that Algorithm 2 finds exactly the
same GCIs as Algorithm 1 initialised with the full background model i. This is
done by induction. Let Pk, Πk, Mk and Sk represent the outputs of Algorithm 1.
Let Pk, Πk, Mk and Sk represent the respective outputs of Algorithm 2. We
prove by induction over k that

Pk = Pk, Πk = Πk, Mk = Mk, Sk = Sk (2)

Base Case: The case k = 0 is trivial. Step Case: Assume that (2) holds for
all k < k0. Part 1. Πk0

= Πk0
, Mk0

= Mk0
, Sk0

= Sk0
follow immediately

from the induction hypothesis and Lines 5-7 in Algorithm 1 and Lines 12-14
in Algorithm 2. Part 2. We show that Pk0

= Pk0
. To do this, we only need to

show that prMk0

(Dl) = P
′′k0

l for all 1 ≤ l < k0 (see Line 12 of Algorithm 1

and Line 19 of Algorithm 2). Lemma 4 shows that P
′′k0

l = prMk0

(
(
d

Pl)
ii
)
.

By induction hypothesis and Part 1 we obtain P
′′k0

l = prMk0

(
(
d

Pl)
ii
)
. Then

Lemma 5 proves that prMk0

(Dl) = P
′′k0

l for all 1 ≤ l < k0, and therefore
Pk0

= Pk0
.

This finishes the induction proof. So we have shown that Pk = Pk for all
k ∈ {1, . . . , n}. Lemma 5 proves Dk = (

d
Pk)ii = (

d
Pk)ii. Hence the set

of GCIs B that is found by Algorithm 2 is exactly the same as the set Bn

that Algorithm 1 computes with the full background model i as input. Since
Algorithm 1 is complete, Algorithm 2 must also be complete.

Termination, however, is more difficult. If the algorithm does not get stuck
in the inner while-loop (Lines 6 to 10) then it is guaranteed to terminate. This
is because outside the inner while loop it behaves just like Algorithm 1, and
Algorithm 1 terminates. In summary, there remain two issues to be adressed: The
existence and computation of minimal possible consequences and termination of
the above algorithm.

5 Which Language Should be Used for the Knowledge

Base?

So far we have not said anything about the description logic in which the knowl-
edge base should be written. Algorithm 2 does not make any explicit require-
ments except that minimal possible consequences should exist. Of course, the
whole algorithm only makes sense if it can terminate. In this section we try to
find out for which logics this is the case.

The most natural choice for the logic of the knowledge base is ELgfp. Un-
fortunately, ELgfp is not suitable, because it is not expressive enough to express
that an individual is a counterexample to a given GCI C ⊑ D. Intuitively, this is
because ELgfp does not provide any form of negation. For example, it is impossi-
ble to state in ELgfp that Henry from the model from Figure 1 is not an instance
of Mother. Therefore, it is impossible to state that Henry is a counter-example to
the GCI Father ⊑ Mother. Because the expert cannot describe counter-examples
the algorithm cannot terminate if ELgfp is used for the knowledge base.



5.1 ELgfp with Negated Concept Assertions

We have seen that we require at least some weak form of negation in the un-
derlying knowledge base, or else the algorithm cannot terminate. On the other
hand, we do not want to make the language of the knowledge base unnecessarily
complicated. A simple extension are negated concept assertions.

A negated concept assertion is a statement of the form ¬C(a), where C is a
concept description. The semantics of negated concept assertions is defined in
a straightforward way. Let A be an ABox that contains role assertions, concept
assertions and negated concept assertions. An interpretation i is a model of A
if and only if for all concept assertions C(a) in A it holds that ai ∈ Ci, and
for all negated concept assertions ¬C(a) it holds that ai /∈ Ci, and for all role
assertions r(a, b) it holds that (ai, bi) ∈ ri.

In the setting that we consider in this subsection we are given a background
model i. The concept assertions and negated concept assertions occurring in
A shall use ELgfp-concept descriptions over Σ0, the signature of i. We do not
explicitly use a TBox, but TBoxes are, of course, implicitly present within the
ELgfp-concept descriptions. Allowing (unfoldable) TBoxes explicitly would not
result in more expressivity. Obviously in this setting counterexamples do exist
and are easy to describe. To turn an individual a into a counterexample to a GCI
C ⊑ D we simply need add C(a) and ¬D(a) to the ABox. However, there can still
be situations (i. e. background models) where the algorithm cannot terminate.

Consider the background model i depicted in Figure 2. Let the signature be
NC = {P,Q} and Nr = {r}. Assume that A is an ABox that has i as its model.
Clearly, if A is empty then any interpretation is a model and thus any concept
description D is a possible consequence of P . In particular this means that {x}i

is not minimal among the possible consequences of P .
If A is not empty, then there is exactly one individual present in A because

of the unique names assumption and because there is only one individual in
the background model. We denote this individual by a. Let A contain the con-
cept assertions T1(a), . . . , Tt(a), and the negated concept assertions ¬F1(a),. . . ,
¬Ff (a), and possibly a single role assertion r(a, a). For every concept description
Fk that occurs in a negated concept assertion we can define the Q-depth dFk

of
Fk. By dFk

we denote the minimal role depth at which Q appears in Fk. Define
d = 1 + max1≤k≤f dFk

.
Now, look at the model ι depicted in Figure 3. The model ι is obtained from

i by attaching to x a sequence of nodes vk, k ∈ {1, . . . , d} where each node is
connected to its successor by the role r. The last of these new nodes vd is in
Qι. Clearly, the role assertion r(a, a) holds in ι. All positive concept assertions
from A hold in ι because they hold in i and i is a submodel of ι. All negated

x

r

P

Fig. 2. The model i used in Section 5.1



concept assertions Nk(a) from A also hold in ι, because Q occurs in Nk at a
role depth less than d, but there is no path of length less than d leading from x
to an individual in Qι. Therefore ι is a model of A. It holds that x ∈ Eι, with
E = (AE , TE) where TE is defined as

TE = {AE ≡ P ⊓ ∃r.AE ⊓ ∃r.∃r . . . ∃r
︸ ︷︷ ︸

d times

.Q}.

Thus E is a possible consequence for P . In particular this proves that {x}i = P ii

is not a minimal possible consequence of P .
Now assume that the algorithm has reached a point where Pk = {P}. The

condition required to leave the inner-while loop is that the expert accepts the
GCI P ⊑ D where D is a minimal possible consequence for P . We have seen that
this can only be the case if D = P ii (Lemma 5). But this can never happen, as for
no ABox – be it empty or non-empty – P ii is a minimal possible consequence
of P . Hence, for our purposes negated concept assertions are an insufficient
extension to EL.

5.2 EL with ⊥ and general TBoxes

The bottom concept ⊥ is a concept constructor whose semantics is defined as
⊥i = ∅. We suggest to use EL with the bottom concept ⊥ and general TBoxes
(from now on denoted as EL⊥) as the DL for the knowledge base. First of all,
this logic is a fragment of EL++, a well-supported, tractable DL that is used in
many applications such as SNOMED.

EL⊥ is a minimal extension of EL in which it is possible to provide coun-
terexamples. Consider for example the model from Figure 1. The model con-
tains a counter-example to the GCI Father ⊑ Mother, namely the individual
Henry. To describe this counter-example in EL⊥ we have to express that Henry
is not an instance of Mother. We can do this by extending the signature of the
knowledge base by adding a new concept name THenry. Then we add the GCI
THenry ⊓ Mother ⊑ ⊥ to the TBox and Father(Henry) and THenry(Henry) to the
ABox. This implies that Henry, as an ABox-individual, must be an instance of
Father, yet it cannot be an instance of Mother. Notice, that we need to extend
the signature of the TBox, in order to describe the counterexample.

Termination is Possible Regarding termination of Algorithm 2 one can ask
two questions. First, is it possible that an expert with an optimal strategy of
providing counterexamples can force the algorithm to terminate? And second,

x v1 v2 vd

r

r rP Q

Fig. 3. The model ι used in Section 5.1



is it possible to modify the algorithm such that it terminates, even if the expert
uses a suboptimal strategy? While the second question is part of ongoing work,
we can give the answer to the first question for EL⊥.

We have seen in Section 4.2 that Algorithm 2 terminates if and only if it does
not get stuck in the inner while loop (Lines 6 to 10). It will leave the inner while
loop when D ≡ (

d
Pk)ii holds. That means, the expert can force the algorithm

to terminate if she can come up with an ABox Aj and a TBox Tj such that
(
d

Pk)ii is the only minimal possible consequence of
d

Pk.
Let i be the background model that is known to the expert and Σ0 =

(NC ,Nr) its signature. We prove that enforcing termination is possible by pro-
viding a construction for such ABox and TBox from i and Aj−1 and Tj−1. For
every x ∈ ∆i extend the signature Σj−1 by concept names Tx and Fx. Add an
individual ax for every x ∈ ∆i. Tj is obtained from Tj−1 by adding statements

Tx ⊓ Fx ⊑ ⊥ for all x ∈ ∆i, (3)

A ⊑ Fx for all A ∈ NC with x 6∈ Ai, (4)

∃r.
l

{Fy | y ∈ xri} ⊑ Fx for all r ∈ Nr. (5)

Aj is obtained from Aj−1 by adding the following statements

A(ax) for every x ∈ ∆i and for every A ∈ NC with x ∈ Ai, (6)

r(ax, ay) for every r ∈ Nr and for all x, y ∈ ∆i with (x, y) ∈ ri, (7)

Tx(ax) for every individual x ∈ ∆i. (8)

The concept Tx intuitively represents the properties that x does have while
Fx represents the properties that x does not have. In the following we shall prove
that for any arbitrary concept description C over the signature Σ0 the concept
Cii is the only minimal possible consequence with respect to Aj and Tj .

Lemma 6. Aj and Tj are a representation of i.

Proof. We have assumed that Aj−1 and Tj−1 are representations of the back-
ground model i. That means, there is a model ι of Aj−1 and Tj−1 such that ι
restricted to Σ0 is identical to i. We can further extend ι to a model ῑ by defining
T ῑ

x = {x} and F ῑ
x = ∆i \ {x}. Then ῑ is a model of Aj and Tj (it is simple to

check that each of the statements (3) to (8) holds in ῑ). This shows that Aj and
Tj are a representation of i.

Lemma 7. Let C be any ELgfp-concept description over the signature Σ0. Cii

is a possible consequence of C with respect to Aj and Tj.

Proof. We have already seen that ῑ is a model of Aj and Tj . Since C and Cii

use only the signature Σ0 (and not the new concept names Fx and Tx, x ∈ ∆i)
it holds that Ci = C ῑ and Ciii = (Cii)ῑ. Lemma 2 states that Ci = Ciii and
thus C ῑ = (Cii)ῑ. Thus Cii is a possible consequence of C in Ai and Ti.

Lemma 8. Let C = (AC , TC) be an ELgfp-concept description over the signature
Σ0. Let x ∈ ∆i be an individual. If there is a model ι of Aj and Tj such that
aι

x ∈ Cι then x ∈ Ci holds.



Proof. Let ι be a model such that aι
x ∈ Cι. From Lemma 1 it follows that there

is a simulation ζCι from TC to ι such that (AC , aι
x) ∈ ζCι. Define ζCi as follows:

ζCi = {(B, y) | ∃z ∈ ∆ι : z /∈ F ι
y and (B, z) ∈ ζCι}.

To prove that ζCi is a simulation from TC to i that contains (AC , x) one must
prove (S1), (S2) and (AC , x) ∈ ζCi. Due to space restrictions we only show the
interesting part (S2). Let r ∈ Nr be a role name, (B, y) ∈ ζCi and E ∈ BrTC

.
By definition of ζCi there is some z ∈ ∆ι such that z /∈ F ι

y and (B, z) ∈ ζCι.

Because ζCι is a simulation there must be some z̄ ∈ zri such that (E, z̄) ∈ ζCι.
Suppose that for all ȳ ∈ yri it holds that (E, ȳ) /∈ ζCi. This implies that

z̄ ∈ F ι
ȳ for all ȳ ∈ yri. But Tj contains the statement ∃r.

d
{Fȳ | ȳ ∈ yri} ⊑ Fy.

The above proves z̄ ∈ (
d
{Fȳ | ȳ ∈ yri})ι and thus z ∈ (∃r.

d
{Fȳ | ȳ ∈ yri})ι ⊆

F ι
y. This contradicts z /∈ F ι

y. We have shown by contradiction that (S2) holds.
Together with the omitted steps this proves that ζCi is a simulation from TC to
i such that (C, x) ∈ ζCi. Lemma 1 shows that x ∈ Ci.

Lemma 9. Let C = (AC , TC) be an ELgfp-concept description over the signature
Σ0. Let x ∈ ∆i. If x ∈ Ci holds then Aj , Tj |= C(ax)

Proof. We need to show that for any model ι of Aj and Tj it holds that aι
x ∈ Cι.

Because of x ∈ Ci there must be a simulation ζCi from TC to i containing (AC , x).
Define ζCι = {(B, aι

y) | (B, y) ∈ ζCi}. As above, we omit the proofs for (S1) and
(AC , aι

x) ∈ ζCι. We only prove the interesting step (S2). Let r ∈ Nr be a role
name, let (B, aι

y) ∈ ζCι, and let B̄ ∈ BrTC
. (B, aι

y) ∈ ζCι implies (B, y) ∈ ζCi.

Because ζCi is a simulation there is some ȳ ∈ yri such that (B̄, ȳ) ∈ ζCi. The
latter implies that (B̄, aι

ȳ) ∈ ζCι. ȳ ∈ yri implies that Aj contains a statement
r(ay, aȳ) and therefore aι

ȳ ∈ aι
yrι. This proves (S2). From Lemma 1 and the fact

that ζCι is a simulation it then follows that aι
x ∈ Cι. Since ι was an arbitrary

model it follows that Aj , Tj |= C(ax).

Theorem 2. Let C be any ELgfp-concept description. Cii is the only minimal
possible consequence of C with respect to Aj and Tj.

Proof. Lemma 7 proves that Cii is a possible consequence of C with respect
to Aj and Tj . Let D be another possible consequence of C. That means there
is a model ι of Aj and Tj such that Cι ⊆ Dι. From Lemma 9 it follows that
aι

x ∈ Cι for all x ∈ Ci and thus also aι
x ∈ Dι. But then Lemma 8 implies that

x ∈ Di for all x ∈ Ci, i. e. Ci ⊆ Di. Because most specific concepts are minimal
with respect to ⊑ we obtain that Cii ⊑ D. This proves that Cii is the the only
minimal possible consequence of C with respect to Aj and Tj .

6 Summary and Open Questions

We have shown that the model exploration algorithm from [6] can be adapted
to a new setting. In this new setting, the counter-examples for the rejected GCIs
are stored in an ABox instead of a model.



In order to adapt the algorithm we have introduced the notion of minimal
possible consequences. We have seen that minimal possible consequences can be
used to replace model-based most specific concepts in our new setting. We have
presented an exploration algorithm (Algorithm 2) and proved its completeness.
We have pointed out that not all DL languages are suitable to describe counter-
examples. It is crucial that this language provides negation or disjointness.

This is ongoing work, and the questions of termination and the existence
of minimal possible consequences remain open. Termination has partly been
addressed in this paper. We have seen that an expert with an optimal strategy
can force the algorithm to terminate if EL⊥ is used for the knowledge base.
However, termination is not guaranteed if the expert uses a different strategy.

Existence of minimal possible consequences, has not been addressed in this
work. The author is currently working on a modified tableau algorithm which
might be used to compute minimal possible consequences for EL⊥.

References

1. Baader, F.: Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In: Proc. of IJCAI

2003, pp. 319–324. Morgan Kaufmann, San Francisco (2003).
2. Baader, F.: Terminological cycles in a description logic with existential restrictions.

In: Proc. of IJCAI 2003, pp. 319–324. Morgan Kaufmann, San Francisco (2003).
3. Baader F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., edi-

tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003).

4. Baader, F. and Distel, F.: Exploring finite models in the description logic ELgfp.
LTCS-Report 08-05, Chair for Automata Theory, TU Dresden (2008).

5. Baader, F. and Distel, F.: A finite basis for the set of EL-implications holding in a
finite model. In: Proc. of ICFCA ’08, LNAI, vol. 4933, pp. 46–61. Springer (2008).

6. Baader, F. and Distel, F.: Exploring finite models in the description logic ELgfp.
In: Proc. of ICFCA 2009. Springer (2009).

7. Baader, F., Ganter, B., Sattler, U., and Sertkaya, B.. Completing description logic
knowledge bases using formal concept analysis. In: Proc. of the IJCAI 2007. AAAI
Press/The MIT Press (2007).

8. Baader, F., Lutz, C., and Suntisrivaraporn, B.: CEL—a polynomial-time reasoner
for life science ontologies. In: Proc. of IJCAR 2006, LNAI, vol. 4130, pp. 287–291.
Springer (2006).

9. Ganter, B. and Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1997).

10. Horrocks, I., Patel-Schneider, P., and van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7–26
(2003).

11. Rudolph, S.: Exploring relational structures via FLE. In: ICCS, LNCS, vol. 3127,
pp. 196–212 (2004).

12. Spackman, K.A., Campbell, K.E., and Cote, R.A.: SNOMED RT: A reference
terminology for health care. J. of the American Medical Informatics Association,
pp. 640–644 (1997). Fall Symposium Supplement.

13. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29 (2000).


