
Correcting Access Restrictions to a Consequence

Martin Knechtel1 and Rafael Peñaloza2

1 SAP Research Center Dresden, Germany
martin.knechtel@sap.com

2 Theoretical Computer Science TU Dresden, Germany
penaloza@tcs.inf.tu-dresden.de

Abstract. Recent research has shown that annotations are useful for
representing access restrictions to the axioms of an ontology and their im-
plicit consequences. Previous work focused on computing a consequence’s
access restriction efficiently from the restrictions of its implying axioms.
However, a security administrator might not be satisfied since the in-
tended restriction differs from the one obtained through these methods.
In this case, one is interested in finding a minimal set of axioms which
need changed restrictions. In this paper we look at this problem and
present algorithms based on ontology repair for solving it. Our first ex-
perimental results on large scale ontologies show that our methods per-
form well in practice.

1 Introduction

Description Logics (DL) [1] have been successfully used to model a wide variety
of real-world application domains. The relevant portions of these domains are
described through a DL ontology and highly optimized reasoners can then be
used to deduce facts implicitely described in the ontology. In information systems
with a huge ontology it is desirable to restrict the access of users to only a
portion of the whole ontology, selected in accordance to an appropriate criterion.
Motivations might be reducing information overload, filtering with respect to a
trust level, or controlled access following a strict policy. For the access control
scenario, each axiom is assigned a privacy level and each user is assigned a
security clearance. A user can then see only those axioms whose privacy level is
exceeded by the clearance of the user. One naive approach would be to maintain
a separate sub-ontology obtained from one big ontology for each possible security
clearance which means that any update in the ontology needs to be propagated
to each of the sub-ontologies, and any change in the privacy levels or security
clearances may result in a full recomputation of the sub-ontologies. Moreover,
this would require separate reasoning for each sub-ontology. In order to avoid
this, one rather keeps only the big ontology and stores the access information for
axioms and users so that they can be retrieved easily. The approach proposed
in [2] is to use a labeling lattice (L,≤). Every axiom and user gets a label in L
assigned, and the sub-ontology accessible to a user with label ` is the set of all
axioms whose label is greater than or equal to `. In [2] it was also shown that

any implicit consequence c from the ontology can be assigned a label, called a
boundary, such that deciding whether a user has access to c requires again only
a computationally cheap label comparison.

DL systems consist of an ontology which represents explicit knowledge and
a reasoner which makes implicit consequences of this knowledge explicit. The
explicit and implied knowledge is exploited by the application by interacting
with the DL system. A correct access labeling of an ontology is a difficult task.
Indeed, several seemingly harmless axioms might possibly be combined to deduce
information that is considered private. On the other hand, an over-restrictive
labeling of axioms may cause public information to be inaccessible to some users.
If the knowledge engineer finds that the boundary for a given consequence differs
from the desired one, then she would like to automatically receive suggestions
on how to modify the labeling function and correct this error. In this paper we
present some methods in this direction. We assume that the knowledge engineer
knows the exact boundary `g that the consequence c should receive, and propose
a set S of axioms of minimal cardinality such that if all the axioms in S are
relabeled to `g, then the boundary of c will be `g. We call S a change set.

We show that the main ideas from axiom-pinpointing [11, 10, 8, 4, 3] can be
exploited in the computation of a change set and present a hitting set tree-based
black-box approach that yields the desired set. Our experimental results at the
end of the paper show that our algorithms behave well in practice.

2 Preliminaries

To keep our presentation and results as general as possible, we impose only
minimal restrictions to our ontology language. We just assume that an ontology
is a finite set, whose elements are called axioms, such that every subset of an
ontology is itself an ontology. If O′ ⊆ O and O is an ontology, then O′ is called
a sub-ontology of O. A monotone consequence relation |= is a binary relation
between ontologies O and consequences c such that if O |= c, then for every
ontology O′ ⊇ O it holds that O′ |= c. If O |= c, we say that c follows from
O or that O entails c. An ontology language specifies which sets of axioms
are admitted as ontologies. Consider, for instance, a Description Logic L. Then,
an ontology is a finite set of general concept inclusion axioms (GCIs) of the
form C v D, with C,D L-concept descriptions and assertion axioms of the form
C(a), with C an L-concept description and a an individual name. Examples of
consequences are subsumption relations A v B for concept names A,B.

If O |= c, we may be interested in finding the axioms responsible for this
fact. A sub-ontology S ⊆ O is called a MinA for O,c if S |= c and for every
S ′ ⊂ S,S ′ 6|= c. The dual notion of a MinA is that of a diagnosis. A diagnosis for
O,c is a sub-ontology S ⊆ O such that O \ S 6|= c and O \ S ′ |= c for all S ′ ⊂ S.

For a lattice (L,≤) and a set K ⊆ L, we denote as
⊕

`∈K ` and
⊗

`∈K ` the
join (least upper bound) and meet (greatest lower bound) of K, respectively. We
consider that ontologies are labeled with elements of the lattice. More formally,

for an ontology O there is a labeling function lab that assigns a label lab(a) ∈ L
to every element a of O. We will often use the notation Llab := {lab(a) | a ∈ O}.

For a user labeled with ` ∈ L, we denote as O≥` the sub-ontology O≥` :=
{a ∈ O | lab(a) ≥ `} visible for him. The sub-ontologies O≤`,O=`,O6=`,O6≥`,
and O6≤` are defined analogously. This notion is extended to sets of labels in the
natural way, e.g. O=K := {a ∈ O | lab(a) = ` for some ` ∈ K}. Conversely, for a
sub-ontology S ⊆ O, we define λS :=

⊗
a∈S lab(a) and µS :=

⊕
a∈S lab(a). An

element ` ∈ L is called join prime relative to Llab if for every K1, . . . ,Kn ⊆ Llab,
` ≤

⊕n
i=1 λKi implies that there is i, 1 ≤ i ≤ n such that ` ≤ λKi . For instance,

in Figure 1, `1 and `4 are the only elements that are not join prime relative
to Llab = {`1, . . . , `5}, since `1 ≤ `2 ⊕ `4 but neither `1 ≤ `2 nor `1 ≤ `4 and
similarly `4 ≤ `5 ⊕ `3 but neither `4 ≤ `5 nor `4 ≤ `3. Join prime elements
relative to Llab are called user labels. The set of all user labels is denoted as U .
When dealing with labeled ontologies, the reasoning problem of interest consists
on the computation of a boundary for a consequence c. Intuitively, the boundary
divides the user labels ` of U according to whether O≥` entails c or not.

Definition 1 (Boundary). Let O be an ontology and c a consequence. An
element ν ∈ L is called a boundary for O,c if for every join prime element
relative to Llab ` it holds that ` ≤ ν iff O≥` |= c.

Given a user label `u, we will say that the user sees a consequence c if `u ≤ ν
for some boundary ν. The following lemma relating MinAs and boundaries was
shown in [2].

Lemma 1. If S1, . . . ,Sn are all MinAs for O,c, then
⊕n

i=1 λSi is a boundary
for O,c.

A dual result, which relates the boundary with the set of diagnoses, also
exists. The proof follows easily from the definitions given in this section.

Lemma 2. If S1, . . . ,Sn are all diagnoses for O,c, then
⊗n

i=1 µSi
is a boundary

for O,c.

Example 1. Let (Ld,≤d) be the lattice shown in Figure 1, and O a labeled
ontology from a marketplace in the Semantic Web with the following axioms

a1 : EUecoService uHighperformanceService(ecoCalculatorV1)
a2 : HighperformanceService
v ServiceWithLowCustomerNr u LowProfitService

a3 : EUecoService v ServiceWithLowCustomerNr u LowProfitService
a4 : ServiceWithLowCustomerNr v ServiceWithComingPriceIncrease
a5 : LowProfitService v ServiceWithComingPriceIncrease

where the function lab assigns to each axiom the labels as shown in Figure 1.
This ontology entails c : ServiceWithComingPriceIncrease(ecoCalculatorV1).
The MinAs for O,c are {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}, and its
diagnoses are {a1}, {a2, a3}, {a4, a5}. Using Lemma 2, we can compute the bound-
ary as µ{a1} ⊗ µ{a2,a3} ⊗ µ{a4,a5} = `1 ⊗ `2 ⊗ `4 = `3. Valid user labels are
`0, `2, `3, `5 which represent user roles as illustrated. Only for `0 and `3, c is
visible.

Fig. 1. Lattice (Ld,≤d) with 4 user labels and an assignment of 5 axioms to labels

3 Modifying the Boundary

Once the boundary for a consequence c has been computed, it is possible that
the knowledge engineer or the security administrator considers this solution er-
roneous. For instance, the boundary may express that a given user u is able to
deduce c, although this was not intended. Alternatively, the boundary may imply
that c is a very confidential consequence, only visible to a few, high-clearance
users, while in reality c should be more publicly available.

Example 2. The boundary `3 computed in Example 1 expresses that the conse-
quence c can only be seen by the development engineers and customer service
employees (see Figure 1). It could be, however, that c is not expected to be
accessible to development engineers, but rather to customers. In that case, we
wish to modify the boundary of c to `5.

The problem we face is how to change the labeling function so that the
computed boundary corresponds to the desired label in the lattice. This problem
can be formalized and approached in several different ways. In our approach, we
fix a goal label `g and try to modify the labeling of as few axioms as possible so
that the boundary equals `g.

Definition 2. Let O be an ontology, lab a labeling function, S ⊆ O and `g ∈ L
the goal label. The modified assignment labS,`g is given by

labS,`g
(a) =

{
`g, if a ∈ S,
lab(a), otherwise.

A sub-ontology S ⊆ O is called a change set (CS) for `g if the boundary for O,c
under the labeling function labS,`g equals `g.

Obviously, the original ontology O is always a CS set for any goal label if
O |= c. However, we are interested in performing minimal changes to the labeling
function. Hence, we search for a CS of minimum cardinality.

Let `g denote the goal label and `c the computed boundary for c. If `g 6= `c, we
have three cases: either (1) `g < `c, (2) `c < `g, or (3) `g and `c are incomparable.

In our example, the three cases are given by `g being `0, `4, and `5, respectively.
Consider the first case, where `g < `c. Then, from Lemma 2 it follows that any
diagnosis S is a CS for `g: since `g < `c, then for every diagnosis S ′, `g < µS′ .
But then, under the new labeling labS,`g we get that µS = `g. And hence, when
the greatest lower bound of all µS′ is computed, we obtain `g as a boundary.
Using an analogous argument and Lemma 1, it is possible to show that if `c < `g,
then every MinA is a CS for `g. The third case can be solved using a combination
of the previous two: if `g and `c are incomparable, we can first set as a partial
goal `′g := `g ⊗ `c. Thus, we can first solve the first case, to set the boundary to
`′g, and then, using the second approach, modify this new boundary once more
to `g. Rather than actually performing this task as a two-step computation, we
can simply compute a MinA and a diagnose. The union of these two sets yields
a CS. Unfortunately, the CS computed this way is not necessarily of minimum
cardinality, even if the smallest diagnosis or MinA is used, as shown in the
following example.

Example 3. Let O,c and lab be as in Example 1. We then know that `c := `3 is
a boundary for O,c. Suppose now that the goal label is `g := `4. Since `c < `g,
we know that any MinA is a CS. Since all MinAs for O,c have exactly three
elements, any CS produced this way will have cardinality three. However, {a2}
or {a3} are also valid CS, whose cardinalities are obviously smaller.

To understand why the minimality of MinAs is not sufficient for obtaining a
minimum CS, we can look back to Lemma 1. This lemma says that in order to
find a boundary, we need to compute the join of all λS , with S a MinA, and λS
the meet of the labels of all axioms in S. But then, for any axiom a ∈ S such
that `g ≤ lab(a), modifying this label to `g will have no influence in the result
of λS . In Example 3, there is a MinA {a1, a2, a4}, where two axioms, namely a1

and a4 have a label greater or equal to `g = `4. Thus, the only axiom that needs
to be relabeled is in fact a2, which yields the minimum CS {a2} shown in the
example. Basically, we consider every axiom a ∈ O such that `g ≤ lab(a) as fixed
in the sense that it is superfluous for any CS. For this reason, we will deal with a
generalization of MinAs and diagnoses, that we call IAS and RAS, respectively.

Definition 3 (IAS,RAS). A minimal inserted axiom set (IAS) for `g is a
subset I ⊆ O 6≥`g

such that O≥`g
∪ I |= c and for every I ′ ⊂ I : O≥`g

∪ I ′ 6|= c.
A minimal removed axiom set (RAS) for `g is a subset R ⊆ O6≤`g

such that
O6≤`g

\R 6|= c and for every R′ ⊂ R : O6≤`g
\R′ |= c.

The following theorem justifies the use of IAS and RAS when searching for
a CS of minimum cardinality.

Theorem 1. Let `c be a boundary for O,c, `g the goal label, and mR,mI and
mU the cardinalities of the smallest RAS, the smallest IAS and the smallest
union of an IAS and a RAS for `g, respectively. Then, for every IAS I and RAS
R for `g it holds:

– if `g < `c and |R| = mR, then R is a CS of minimum cardinality,

– if `c < `g and |I| = mI , then I is a CS of minimum cardinality,
– if `c and `g are incomparable and |R ∪ I| = mU , then I ∪ R is a CS of

minimum cardinality.

4 Computing a Minimal Change Set

Näıvely the smallest CS can be found by computing all CS and selecting the
smallest. As explained above, the task of computing all CS is related to com-
puting all diagnoses and all MinAs, which has been widely studied in recent
years, and there exist black-box implementations based on the hitting set tree
(HST) algorithm [7, 12]. Our approach to compute a minimal CS follows similar
ideas. The HST algorithm makes repeated calls to an auxiliary procedure that
computes a single CS. Further CS are found by building a tree, where nodes are
labeled with CS and edges with axioms. If the CS labeling a node has n axioms
(S := {a1, . . . , an}), then this node will have n children: the edge to the i-th
child labeled with ai, the child labeled with a CS that is not allowed to contain
neither ai nor any ancestor’s edge label. This ensures that each node is labeled
with a CS distinct from those of its predecessors.

For the auxiliary procedure to compute a single CS, we will use two sub
procedures extracting RAS and IAS, respectively. In Algorithm 1 we present
a variation of the logarithmic MinA extraction procedure presented in [5] that
is able to compute an IAS or stop once this has reached a size n and return a
partial IAS. We also show the RAS variant in Algorithm 2. Given a goal label `g,
if we want to compute a IAS or a partial IAS of size exactly n for a consequence
c, then we would make a call to extract-partial-IAS(O≥`g ,O6≥`g , c, n). Similarly, a
call to extract-partial-RAS(O 6≤`g ,O6≤`g , c, n) yields a RAS of size ≤ n or a partial
RAS of size exactly n. The cardinality limit will be used to avoid unnecessary
computations when looking for the smallest CS.

Given the procedures to extract RAS and IAS, Algorithm 3 extracts a CS. In
order to label a node, we compute a CS with extract-partial-CS(O, lab, c, `g, H, n),
where H is the set of all labels attached to edges on the way from the node to
the root of the tree. Note that axioms in H are removed from the search space
to extract the IAS and RAS. Furthermore, axioms in the IAS are considered as
fixed for the RAS computation. The returned set is a CS of size ≤ n or a partial
CS of size n.

Example 4. Returning to our running example, suppose now that we want to
modify the label of consequence c to `g = `5. Algorithm 3 starts by making
a call to extract-partial-IAS(O≥`5 ,O 6≥`5 , c).

1 A possible output for this call is
I = {a3}. We can then call extract-partial-RAS(O 6≤`5 \ I,O6≤`5 \ I, c), which may
output e.g. the set R = {a1}. Thus, globally the algorithm returns {a3, a1},
which can be easily verified to be a CS for `5.

One of the advantages of the HST algorithm is that the labels of any node
are always ensured not to contain the label of any of its predecessor nodes. In
1 For this example, we ignore the cardinality limit, as we want to find only one CS.

Algorithm 1 Compute (partial) IAS
Procedure extract-partial-IAS(Ofix,Otest, c, n)
Input: Ofix: fixed axioms; Otest: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ofix ∪ S |= c

1: Global l := 0, n
2: return extract-partial-IAS-r(Ofix,Otest, c)

Subprocedure extract-partial-IAS-r(Ofix,Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then
4: l := l + 1
5: return Otest

6: S1,S2 := halve(Otest) (partition Otest so that ||S1| − |S2|| ≤ 1)
7: if Ofix ∪ S1 |= c then
8: return extract-partial-IAS-r(Ofix,S1, c)
9: if Ofix ∪ S2 |= c then

10: return extract-partial-IAS-r(Ofix,S2, c)
11: S ′1 := extract-partial-IAS-r(Ofix ∪ S2,S1, c)
12: S ′2 := extract-partial-IAS-r(Ofix ∪ S ′1,S2, c)
13: return S ′1 ∪ S ′2

particular this means that even if we compute a partial CS, the algorithm will
still correctly find all CS that do not contain any of the partial CS found during
the execution. Since we are interested in finding the CS of minimum cardinality,
we can set the limit n to the size of the smallest CS found so far. This limit is
initially fixed to the size of the ontology. If extract-partial-CS outputs a set with
fewer elements, we are sure that this is indeed a full CS, and our new smallest
known CS. The HST algorithm will not find all CS in this way, but we can
be sure that one CS with the minimum cardinality will be found. The idea of
limiting cardinality for finding the smallest CS can be taken a step further by
not expanding each node for all the axioms in it, but rather only on the first
n − 1, where n is the size of the smallest CS found so far. This further reduces
the search space by decreasing the branching factor of the search tree. Notice
that the highest advantage of this second optimization appears when the HST
is constructed in a depth-first fashion. In that case, a smaller CS found further
below in the tree will reduce the branching factor of all its predecessors. So the
cardinality limit reduces the search space in two dimensions: (1) the computation
of a single CS is limited to n axioms and (2) only n − 1 axioms are expanded
from each node. The following theorem shows that such a variant of the HST
algorithm is correct.

Theorem 2. Let O be an ontology, c a consequence with O |= c, and `g a
goal label. If m is the minimum cardinality of all CS for `g, the HST algorithm
described above outputs a CS S such that |S| = m.

Algorithm 2 Compute (partial) RAS
Procedure extract-partial-RAS(Ononfix,Otest, c, n)
Input: Ononfix: axioms; Otest ⊆ Ononfix: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ononfix \ S 6|= c

1: Global l := 0,Ononfix, n
2: return extract-partial-RAS-r(∅,Otest, c)

Subprocedure extract-partial-RAS-r(Ohold,Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then
4: l := l + 1
5: return Otest

6: S1,S2 := halve(Otest) (partition Otest so that ||S1| − |S2|| ≤ 1)
7: if Ononfix \ (Ohold ∪ S1) 6|= c then
8: return extract-partial-RAS-r(Ohold,S1, c)
9: if Ononfix \ (Ohold ∪ S2) 6|= c then

10: return extract-partial-RAS-r(Ohold,S2, c)
11: S ′1 := extract-partial-RAS-r(Ohold ∪ S2,S1, c)
12: S ′2 := extract-partial-RAS-r(Ohold ∪ S ′1,S2, c)
13: return S ′1 ∪ S ′2

Proof. The described algorithm outputs a CS since the globally stored and finally
returned S is only modified when the output of extract-partial-CS has size strictly
smaller than the limit n, and hence only when this is indeed a CS itself. Suppose
now that the output S is such that m < |S|, and let S0 be a CS such that
|S0| = m, which exists by assumption. Then, every set obtained by calls to
extract-partial-CS has size strictly greater than m, since otherwise, S and n would
be updated. Consider now an arbitrary set S ′ found during the execution through
a call to extract-partial-CS, and let S ′n := {a1, . . . , an} be the first n elements of
S ′. Since S ′ is a (partial) CS, it must be the case that S0 6⊆ S ′n since every
returned CS is minimal in the sense that no axiom might be removed to obtain
another CS. Then, there must be an i, 1 ≤ i ≤ n such that ai /∈ S0. But then,
S0 will still be a CS after axiom {ai} has been removed. Since this argument is
true for all nodes, it is in particular true for all leaf nodes, but then they should
not be leaf nodes, since a new CS, namely S0 can still be found by expanding
the HST, which contradicts the fact that S is the output of the algorithm. ut

Example 5. Returning to our running example, suppose that we want to set the
label of c to `g = `0. Algorithm 3 first calls extract-partial-RAS(O6≤`0 ,O6≤`0 , c, 5).
A possible output of this call is R = {a2, a3}. The tree now branches through
a2 and a3. In the first case it calls extract-partial-RAS(O 6≤`0 ,O 6≤`0 \ {a2}, c, 2),
which could yield R = {a4, a5}. This might be a partial CS since its size equals
the cardinality limit. The next call extract-partial-RAS(O 6≤`0 ,O6≤`0 \{a2, a4}, c, 2)
yields the smallest R = {a1}, and the HST terminates. Notice that if {a1} had
been the first change set found, the process would have immediately terminated.

Algorithm 3 Compute (partial) Change Set
Procedure extract-partial-CS(O, lab, c, `g, H, n)

1: `c := hst-boundary(O, c) function defined in [2]
2: return extract-partial-CS(O, lab, c, `g,

`g 6< `c ∧ O≥`g 6|= c,
`g 6> `c ∧ O 6≤`g |= c, H, n)

Procedure extract-partial-CS(O, lab, c, `g, isI , isR, H, n)
Input: O, lab: labeled ontology; c: consequence; `g: goal label; isI : decision to compute
IAS; isR: decision to compute RAS; H: HST edge labels; n: limit
Output: first n elements of a minimal CS S ⊆ O
1: if 1 ≥ n or isI ∧ O≥`g ∪ (O6≥`g \H) 6|= c or isR ∧H |= c then
2: return ∅ (HST normal termination)
3: if isI then
4: I := extract-partial-IAS(O≥`g ,O 6≥`g \H, c, n)
5: if isR and O 6≤`g \ I |= c then
6: R := extract-partial-RAS(O 6≤`g \ I,O 6≤`g \ (I ∪H), c, n− |I|)
7: return I ∪R

Fig. 2. Hitting Set Trees to compute all MinAs (left) and a minimal change set for
`g = `5 (right)

Efficient implementations of the original version of the HST algorithm rely
on several optimizations. Two standard optimizations described in the literature
are node-reuse and early path termination (see, e.g. [7, 12, 2]). Node-reuse keeps
a history of all nodes computed so far in order to avoid useless (and usually
expensive) calls to the auxiliary procedure that computes a new node. Early path
termination, on the other hand, prunes the hitting set tree by avoiding expanding
nodes when no new information can be derived from further expansion. In order
to avoid unnecessary confusion, we have described the modified HST algorithm
without including these optimizations. However, it should be clear that both,
node-reuse and early path termination, can be included in the algorithm without
destroying its correctness. The implementation used for our experiments contain
these two optimizations.

Figure 2 shows the expansion of the HST trees when computing all MinAs
and all diagnoses, in comparison with the one obtained for computing a minimal
change set for `g = `5, using the ontology and consequences of Example 1.

This paper’s results are a continuation of work in [9], where we had not one
Hitting Set Tree Algorithm but two separately for the smallest IAS and the
smallest RAS. This paper’s variant is guaranteed to find the smallest CS, as
given in the Proof above. For a CS consisting of an IAS and a RAS, computing
a smallest of both does not necessarily yield the smallest CS, as the following
example shows. Assume {a1, a2}, {a2, a3} are the smallest RAS and {a1, a4} is
the smallest IAS, then {a1, a2, a4} is the smallest CS, but choosing one small-
est IAS and one smallest RAS might yield a CS of cardinality 4. In [9] we also
investigated the performance gain by taking not only advantage of fixing a sub-
set of the axioms and limiting cardinality but also by taking the labels of the
remaining axioms into account.

5 Empirical Evaluation

We implemented and evaluated our algorithms empirically with large practi-
cal ontologies. The test system is identical to one used previous work in [2],
so we describe it here very briefly. The two labeling lattices used are (Ld,≤d),
already introduced in Figure 1, and the linear order (Ll,≤l) with 6 elements
Ll = Ld = {`0, . . . , `5} with ≤l := {(`n, `n+1) | `n, `n+1 ∈ Ll ∧ 0 ≤ n ≤ 5}.
We used the two ontologies OSnomed and OFunct with different expressivity and
types of consequences for our experiments. The Systematized Nomenclature of
Medicine, Clinical Terms (Snomed ct) is a comprehensive medical and clinical
ontology which is built using the Description Logic (DL) EL+. From the Jan-
uary/2005 release of the DL version, which contains 379,691 concept names, 62
object property names, and 379,704 axioms, and entails more than five million
subsumptions, we used a sampled set of 27,477 positive subsumptions. OFunct

is an OWL-DL ontology for functional description of mechanical engineering
solutions [6]. It has 115 concept names, 47 object property names, 16 data prop-
erty names, 545 individual names, 3,176 axioms, and the DL expressivity is
SHOIN (D). Its 716 consequences are 12 subsumption and 704 instance rela-
tionships (class assertions).

We computed the boundary `c of each consequence c of the ontologies with
the algorithms described in [2] and then computed the change set for goal bound-
ary `g = `3. Consequences where `c = `g were not considered. Thus, from the
716 consequences in OFunct, we have 415 remaining with labeling lattice (Ld,≤d)
and 474 remaining with (Ll,≤l). From the 27,477 consequences in OSnomed we
have 23,695 remaining with labeling lattice (Ld,≤d) and 25,897 with (Ll,≤l).

Table 1 contains results for the 4 combinations of the two ontologies and
the two labeling lattices. For each of them we tested our algorithm against the
basic approach of computing all MinAs and diagnoses. We limit the number of
computed MinAs and CS to 10, so our algorithms might not find the smallest
change set before reaching the limit. We measure the quality of the presented
variants given those limitations at execution time. Table 1 lists the ratio of
correct solutions where at least 1 correct change set was computed, and the ratio
of optimal solutions where the limit was not reached during the computation

O
n
t. Lattice Variant Runtime Limit Time Ratio of Ratio of

per goal (minutes) correct optimal
solutions solutions

O
F
u
n
c
t

nonlinear all diagnoses and MinAs ≤ 10 MinA 44.05 96% 47%
a minimal CS ≤ 10 (partial) CS 8.66 100% 98%

linear all diagnoses and MinAs ≤ 10 MinA 54.46 98% 49%
a minimal CS ≤ 10 (partial) CS 8.61 100% 99%

O
S
n
o
m
e
d nonlinear all diagnoses and MinAs ≤ 10 MinA 184.76 100% 75%

a minimal CS ≤ 10 (partial) CS 10.51 100% 100%
linear all diagnoses and MinAs ≤ 10 MinAs 185.35 100% 75%

a minimal CS ≤ 10 (partial) CS 28.14 100% 98%

Table 1. Results comparing our with the reference approach in 4 test settings

and thus yielded the smallest change set possible. Notice however that the ratio
of cases with the minimal change set successfully computed might be higher,
including those where the limitation was reached but the minimal change set
was already found.

Computing all MinAs is clearly outperformed by our optimized approach.
To conclude, fixed sub-ontologies and cardinality limit are optimizations with
reasonable impact.

6 Conclusions

Previous work has studied labeled ontologies and methods to compute bound-
aries for their consequences. In this paper we considered scenarios where a se-
curity administrator is not satisfied with the access restriction level computed
from the access restriction levels of the implying axioms. Based on ontology re-
pair techniques we developed algorithms to compute a change set of minimal
cardinality, which contains axioms to be relabeled in order to yield a conse-
quence’s access restriction. The base problem, finding the smallest MinA and
diagnosis without computing all of them might be interesting beyond our ap-
plication domain. Our algorithms take advantage of (1) fixing a subset of the
axioms which are not part of the search space, and (2) limiting cardinality of
change sets to be computed in the Hitting Set Tree to the smallest known change
set. We implemented the algorithms and have first experimental results on large-
scale ontologies which show that our ideas yield tangible improvements in both
the execution time and the quality of the solution.

As future work we intend to study the problem of finding change sets for
several consequences (each with its own goal label) simultaneously. We will also
look at more flexible restrictions on the goal label and other criteria for the
minimality of change sets for example not counting the amount of changed axiom
label assignments but the distance of the new from the old label in the lattice
or the amount of other consequence’s boundaries changed.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2007.

2. F. Baader, M. Knechtel, and R. Peñaloza. A generic approach for large-scale
ontological reasoning in the presence of access restrictions to the ontology’s axioms.
In Proc. of ISWC’09, volume 5823 of LNCS, pages 49–64, 2009.

3. F. Baader and R. Peñaloza. Automata-based axiom pinpointing. Journal of Au-
tomated Reasoning, 2010. Special Issue: IJCAR 2008. To appear.

4. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 2010. Special Issue: Tableaux’07. To appear.

5. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pin-
pointing in the description logic EL+. In Proc. of KR-MED’08, 2008.

6. A. Gaag, A. Kohn, and U. Lindemann. Function-based solution retrieval and
semantic search in mechanical engineering. In Proc. of ICED’09, 2009.

7. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In Proc. of ISWC’07 + ASWC’07, 2007.

8. A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. Debugging unsatisfiable
classes in OWL ontologies. J. Web Sem., 3(4):268–293, 2005.

9. M. Knechtel and R. Peñaloza. A Generic Approach for Correcting Access Restric-
tions to a Consequence. In Proc. of ESWC’10, 2010. To appear.

10. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable termi-
nologies for the description logic ALC. In Proc. of AAAI’06, 2006.

11. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In Proc. of IJCAI’03, pages 355–362, 2003.

12. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Mainte-
nance of Large-Scale Biomedical Ontologies. PhD thesis, TU Dresden, 2008.

