
A Generic Approach for Correcting Access
Restrictions to a Consequence

Martin Knechtel1 and Rafael Peñaloza2

1 SAP Research Center Dresden
martin.knechtel@sap.com

2 Theoretical Computer Science TU Dresden, Germany
penaloza@tcs.inf.tu-dresden.de

Abstract. Recent research has shown that annotations are useful for
representing access restrictions to the axioms of an ontology and their
implicit consequences. Previous work focused on assigning a label, rep-
resenting its access level, to each consequence from a given ontology.
However, a security administrator might not be satisfied with the access
level obtained through these methods. In this case, one is interested in
finding which axioms would need to get their access restrictions modified
in order to get the desired label for the consequence. In this paper we
look at this problem and present algorithms for solving it with a variety
of optimizations. We also present first experimental results on large scale
ontologies, which show that our methods perform well in practice.

1 Introduction

In several applications it is desirable to have one, usually large, ontology, but
offer different users access to different views of this ontology. In other words,
each user has access to only a subset of the ontology, selected in accordance
to an appropriate criterion. Different criteria can be used: access rights is only
one of them, others are granularity, certainty, relevancy, trust etc., without loss
of generality we focus on access rights in this paper while the results remain
applicable to all the other lattice-based applications. Axioms have a privacy
level and users get assigned a security clearance. A user can then only see those
axioms whose privacy level is dominated by the security clearance of the user. In
order to maintain only one ontology, we want to be able to store and retrieve the
access information of users and axioms in an easy way. The approach proposed
in [2] is to use a labeling lattice (L,≤); i. e. a set L of labels together with a
partial order ≤ such that every finite set of labels has a join (least upper bound)
and a meet (greatest lower bound) w.r.t. ≤. Every axiom a in the ontology O
is assumed to have a label lab(a) ∈ L, and each user receives also a label ` ∈ L.
The sub-ontology to which a user with label ` has access is defined as

O≥` := {a ∈ O | lab(a) ≥ `}.

A desirable property in ontologies is that they express as least explicit in-
formation as possible, while all the implicitly encoded knowledge is accessible

through reasoning. Whenever we obtain a consequence c from an ontology, we
need to be able to detect which users are allowed to see this consequence; in
other words, if the user has a label `, we need to decide whether c also follows
from the sub-ontology O≥`. The solution presented in [2] is to compute a so-
called boundary for the consequence c; that is, an element νc of L such that c is
a consequence of O≥` iff ` ≤ νc.

The general problem can be seen similar to reducing inference control to
access control in databases [8, 7]. Inference control assumes a set of defined secrets
and checks at runtime on every response to a user’s query whether this response
together with the user’s a priori knowledge and already delivered answers implies
any secret. In contrast to that, access control is enforced by following a policy
which regulates access on explicit data. For knowledge bases, we extended access
control to implied knowledge by computing a boundary for a consequence as
described above. A security administrator can change the boundary only by
changing the implying axioms’ labels. For this purpose, he might be interested
in support to find the minimal set of those axioms.

Just as ontology development and maintenance is an error prone activity, so is
the adequate labeling of axioms according to their access requirements. A wrong
access labeling may allow a user to deduce consequences for which he should
have no security clearance. One may also encounter the dual problem, where a
consequence is restricted to a user having the adequate security clearance. Both
of these errors can be detected by looking at the boundary computed for the
consequence. The first case occurs when the boundary is set too high up in the
lattice, while the second case arises when the boundary is lower than expected.

The problem we want to solve then is that of repairing the labeling: we want
to find a relabeling of the ontology such that the boundary computed under this
new labeling yields the desired privacy level. This problem differs from that of
ontology repair in that we do not aim to modify the axioms in the ontology,
but only the labeling they receive. Our approach focuses on finding a minimal
sub-ontology S such that, if we relabel all axioms in S to the goal label `g, and
leave all other labels unchanged, then the boundary is changed to `g. Such a set
will be called a change set. In order to commit as least changes as possible, we
will prefer change sets of smaller cardinality.

We show that the ideas of axiom pinpointing [13, 12, 11, 4, 3] can be adapted
to the search of a change set with minimum cardinality. We present black-box
methods, improving upon the Hitting Set Tree approach to axiom pinpoint-
ing [10, 14] that yield the desired change set. The methods take advantage of our
search of a set with minimum cardinality, as well as the axiom labeling to reduce
the search space and hence also the execution time. The experimental results at
the end of the paper show that these enhancements improve the execution time.

2 Basic Notions and Results

To keep our presentation and results as general as possible, we impose only
minimal restrictions to our ontology language. We just assume that an ontology

is a finite set, whose elements are called axioms, such that every subset of an
ontology is itself an ontology. If O′ ⊆ O and O is an ontology, then O′ is called
a sub-ontology of O. An ontology language specifies which sets of axioms are
admitted as ontologies. Given an ontology language, a monotone consequence
relation |= is a binary relation between ontologies O and consequences c such
that if O |= c, then for every ontology O′ ⊇ O it holds that O′ |= c. If O |= c,
we say that c follows from O or that O entails c.

If O |= c, we may be interested in finding the axioms responsible for this
fact. A sub-ontology S ⊆ O is called a MinA for O,c if S |= c and for every
S ′ ⊂ S,S ′ 6|= c. The dual notion of a MinA is that of a diagnosis. A diagnosis for
O,c is a sub-ontology S ⊆ O such that O \ S 6|= c and O \ S ′ |= c for all S ′ ⊂ S.

For a lattice (L,≤) and a set K ⊆ L, we denote as
⊕

`∈K ` and
⊗

`∈K ` the
join (least upper bound) and meet (greatest lower bound) of K, respectively. We
consider that ontologies are labeled with elements of the lattice. More formally,
for an ontology O there is a labeling function lab that assigns a label lab(a) ∈ L
to every element a of O. We will often use the notation Llab := {lab(a) | a ∈
O}. For an element ` ∈ L, we denote as O≥` the sub-ontology O≥` := {a ∈
O | lab(a) ≥ `}. The sub-ontologies O≤`,O=`,O6=`,O6≥`, and O6≤` are defined
analogously. This notion is also extended to sets of labels in the natural way,
e.g. O=K := {a ∈ O | lab(a) = ` for some ` ∈ K}. Conversely, for a sub-ontology
S ⊆ O, we define λS :=

⊗
a∈S lab(a) and µS :=

⊕
a∈S lab(a). An element ` ∈ L

is called join prime relative to Llab if for every K1, . . . ,Kn ⊆ Llab, ` ≤
⊕n

i=1 λKi

implies that there is i, 1 ≤ i ≤ n such that ` ≤ λKi . Join prime elements relative
to Llab are called user labels. The set of all user labels is denoted as U . When
dealing with labeled ontologies, the reasoning problem of interest consists on
the computation of a boundary for a consequence c. Intuitively, the boundary
divides the user labels ` of U according to whether O≥` entails c or not.

Definition 1 (Boundary). Let O be an ontology and c a consequence. An
element ν ∈ L is called a boundary for O,c if for every join prime element
relative to Llab ` it holds that ` ≤ ν iff O≥` |= c.

Given a user label `u, we will say that the user sees a consequence c if `u ≤ ν
for some boundary ν. The following lemma relating MinAs and boundaries was
shown in [2].

Lemma 1. If S1, . . . ,Sn are all MinAs for O,c, then
⊕n

i=1 λSi
is a boundary

for O,c.

A dual result, which relates the boundary with the set of diagnoses, also
exists. The proof follows easily from the definitions given in this section.

Lemma 2. If S1, . . . ,Sn are all diagnoses for O,c, then
⊗n

i=1 µSi
is a boundary

for O,c.

Example 1. Let (Ld,≤d) be the lattice shown in Figure 1, and O a labeled
ontology from a marketplace in the Semantic Web with the following axioms

Fig. 1. Lattice (Ld,≤d) with 4 user labels and an assignment of 5 axioms to labels

a1 : EUecoService uHighperformanceService(ecoCalculatorV1)
a2 : HighperformanceService
v ServiceWithLowCustomerNr u LowProfitService

a3 : EUecoService v ServiceWithLowCustomerNr u LowProfitService
a4 : ServiceWithLowCustomerNr v ServiceWithComingPriceIncrease
a5 : LowProfitService v ServiceWithComingPriceIncrease

where the function lab assigns to each axiom the labels as shown in Figure 1.
This ontology entails c : ServiceWithComingPriceIncrease(ecoCalculatorV1).
The MinAs for O,c are {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}, and its
diagnoses are {a1}, {a2, a3}, {a4, a5}. Using Lemma 2, we can compute the bound-
ary as µ{a1} ⊗ µ{a2,a3} ⊗ µ{a4,a5} = `1 ⊗ `2 ⊗ `4 = `3. Valid user labels are
`0, `2, `3, `5 which represent user roles as illustrated. For `0 and `3, c is visible.

3 Modifying the Boundary

Once the boundary for a consequence c has been computed, it is possible that
the knowledge engineer or the security administrator considers this solution er-
roneous. For instance, the boundary may express that a given user u is able to
deduce c, although this was not intended. Alternatively, the boundary may imply
that c is a confidential consequence, only visible to a few, high-clearance users,
while in reality c should be publicly available. The problem we face is how to
change the labeling function so that the computed boundary corresponds to the
desired label in the lattice. This problem can be formalized and approached in
several different ways. In our approach, we fix a goal label `g and try to modify
the labeling of as least axioms as possible so that the boundary equals `g.

Definition 2. Let O be an ontology, c a consequence, lab a labeling function,
S ⊆ O and `g ∈ L the goal label. The modified assignment labS,`g

is given by

labS,`g
(t) =

{
`g, if t ∈ S,
lab(t), otherwise.

A sub-ontology S ⊆ O is called a change set for `g if the boundary for O,c under
the labeling function labS,`g

equals `g.

Fig. 2. Hide consequence from some user roles (left), allow additional user roles to see
consequence (right) and both at the same time (middle)

Obviously, the original ontology O is always a change set for any goal label if
O |= c. However, we are interested in performing minimal changes to the labeling
function. Hence, we search for a change set of minimum cardinality. It follows
from [5] that this problem is NP-complete.

Let `g denote the goal label and `c the computed boundary for c. There are
three possible cases for `g and `c to differ, which are illustrated in Figure 2:
either (i) `g < `c (left), (ii) `c < `g (right), or (iii) `g and `c are incomparable
(middle). The sets Lc and Lg contain the user labels before and after the label
changes respectively. Consider the first case, where `g < `c. Then, from Lemma 2
it follows that any diagnosis S is a change set for `g: since `g < `c, then for every
diagnosis S ′, `g < µS′ . But then, under the new labeling labS,`g

we get that
µS = `g. And hence, when the greatest lower bound of all µS′ is computed,
we obtain `g as a boundary. Using an analogous argument and Lemma 1, it is
possible to show that if `c < `g, then every MinA is a change set for `g. The
third case can be solved using a combination of the previous two: if `g and `c
are incomparable, we can first set as a partial goal `′g := `g ⊗ `c. Thus, we
can first solve the first case, to set the boundary to `′g, and then, using the
second approach, modify this new boundary once more to `g. Unfortunately,
this approach does not yield a change set of minimum cardinality, even if the
smallest diagnosis or MinA is computed, as shown in the following example.

Example 2. Let O,c and lab be as in Example 1. We then know that `c := `3 is
a boundary for O,c. Suppose now that the goal label is `g := `4. Since `c < `g,
we know that any MinA is a change set. Since all MinAs for O,c have exactly
three elements, any change set produced this way will have cardinality three.
However, {a2} is also a change set, whose cardinality is obviously smaller.

To understand why the minimality of MinAs is not sufficient for obtaining
a minimum change set, we can look back to Lemma 1. This lemma says that
in order to find a boundary, we need to compute the join of all λS , with S a
MinA, and λS the meet of the labels of all axioms in S. But then, for any axiom
a ∈ S such that `g ≤ lab(a), modifying this label to `g will have no influence in
the result of λS . In Example 2, there is a MinA {a1, a2, a4}, where two axioms,

namely a1 and a4 have a label greater or equal to `g = `4. Thus, the only axiom
that needs to be relabeled is in fact a2, which yields the minimum change set
{a2} shown in the example. Basically, we consider every axiom a ∈ O such that
`g ≤ lab(a) as fixed in the sense that it is superfluous for any change set. For
this reason, we will deal with a generalization of MinAs and diagnoses, that we
call IAS and RAS, respectively.

Definition 3 (IAS,RAS). A minimal inserted axiom set (IAS) for `g is a
subset I ⊆ O6≥`g

such that O≥`g
∪ I |= c and for every I ′ ⊂ I : O≥`g

∪ I ′ 6|= c.
A minimal removed axiom set (RAS) for `g is a subset R ⊆ O6≤`g

such that
O6≤`g

\R 6|= c and for every R′ ⊂ R : O6≤`g
\R′ |= c.

The following theorem justifies the use of IAS and RAS when searching for
change sets of minimum cardinality.

Theorem 1. Let `c be a boundary for O,c, `g the goal label, I an IAS for `g of
minimum cardinality and R an RAS for `g of minimum cardinality. Then, the
following holds:

– if `g < `c, then R is a change set of minimum cardinality,
– if `c < `g, then I is a change set of minimum cardinality.

4 Computing the Smallest IAS and RAS

In this section, we show how the smallest IAS and RAS can be computed. We
first present the most obvious approach that is based in the computation of
all MinAs and diagnoses. Afterwards, we show how this idea can be improved
by considering fixed portions of the ontology, as described before. We further
improve this approach by showing that it usually suffices to compute only partial
IAS and RAS, thus reducing the search space and execution time of our method.

4.1 Using Full Axiom Pinpointing

Although we have shown in Example 2 that MinAs and diagnoses do not yield
change sets of minimum cardinality directly, these change sets can still be de-
duced from the set of all MinAs and diagnoses, as shown by the following lemma.

Lemma 3. Let I (R) be an IAS (RAS) for `g, then there is a MinA (diagnosis)
S such that I = S \ O≥`g (R = S \ O≤`g).

Lemma 3 shows that we can compute the set of all IAS by first computing
all MinAs and then removing the set of fixed elements O≥`g

from it.1 Thus, the
most näıve approach for computing a change set of minimum cardinality is to
1 To avoid unnecessary repetitions, we henceforth focus our discussion on the compu-

tation of the smallest IAS except for very specific cases. It should be noted, however,
that the case of RAS can be treated in a similar fashion.

first find all MinAs, then compute the set of all IAS by removing all elements in
O≥`g

, and finally search for the IAS having the least elements.
The task of computing all MinAs, also called axiom pinpointing, has been

widely studied in recent years, and there exist black-box implementations based
on the hitting set tree (HST) algorithm [10, 14]. The HST algorithm makes
repeated calls to an auxiliary procedure that computes a single MinA. Further
MinAs are found by building a tree, where nodes are labeled with MinAs. If the
MinA labeling a node has n axioms (S := {a1, . . . , an}), then this node will have
n children: the i-th child is labeled with a MinA obtained after removing ai from
the ontology. This ensures that each node is labeled with a MinA distinct from
those of its predecessors. Although not stated explicitly in the axiom pinpointing
literature, it is clear that the same HST algorithm can be used for computing
all diagnoses. The only variant necessary is to have a subroutine capable of
computing one such diagnosis, which can be obtained by dualizing the algorithm
computing one MinA (see Algorithm 2 for an example on how this dualization
works). In our experiments, we used this approach as a basis to measure the
improvement achieved by the optimizations that will be introduced next.

4.2 Using Fixed Sub-Ontologies and Cardinality Limit

Rather than computing the set of IAS indirectly by first computing MinAs and
then removing the fixed axioms, we would like to use a procedure that finds
them directly. Moreover, since our goal is to find the smallest IAS, we want this
procedure to stop once the IAS being computed is ensured to have cardinality
larger than or equal to that of the best IAS found so far. In Algorithm 1 we
present a variation of the logarithmic MinA extraction procedure presented in [6]
that is able to compute an IAS or stop once this has reached a size n. We also
show the RAS variant in Algorithm 2 to illustrate how the duality between IAS
and RAS transfers to the algorithms that compute them. Given a goal label `g,
if we want to compute an IAS of size at most n for a consequence c, then we
would make a call to extract-partial-IAS(O≥`g

,O \ O≥`g
, c, n). Similarly, a call

to extract-partial-RAS(O \O≤`g
,O \O≤`g

, c, n) yields an RAS of size at most n.
The second parameter defines the axioms which are allowed to be contained in
the RAS. One of the advantages of the HST algorithm is that the labels of any
node are always ensured not to contain the label of any of its predecessor nodes.
In particular this means that even if we do not always compute a full IAS (like
in Algorithm 1, where the output may be only a subset of size n of an IAS), the
algorithm will still correctly find all IAS that do not contain any of the partial
IAS found during the execution. Since we are interested in finding the IAS of
minimum cardinality, we can set the limit n to the size of the smallest IAS found
so far. If extract-partial-IAS outputs a set with fewer elements, we are sure that
this is indeed a full IAS, and hence we can update our best result to this newly
found set. The HST algorithm will not find all IAS in this way, but we can be
sure that one IAS with the minimum cardinality will be found.

The idea of using only partial information for finding the smallest IAS can
be taken a step further. We can in fact modify the HST algorithm itself, so

Algorithm 1 Compute (partial) IAS
Procedure extract-partial-IAS(Ofix,Otest, c, n)
Input: Ofix: fixed axioms; Otest: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ofix ∪ S |= c

1: Global l := 0, n
2: return extract-partial-IAS-r(Ofix,Otest, c)

Subprocedure extract-partial-IAS-r(Ofix,Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then
4: l := l + 1
5: return Otest

6: S1,S2 := halve(Otest) (partition Otest so that ||S1| − |S2|| ≤ 1)
7: if Ofix ∪ S1 |= c then
8: return extract-partial-IAS-r(Ofix,S1, c)
9: if Ofix ∪ S2 |= c then

10: return extract-partial-IAS-r(Ofix,S2, c)
11: S ′1 := extract-partial-IAS-r(Ofix ∪ S2,S1, c)
12: S ′2 := extract-partial-IAS-r(Ofix ∪ S ′1,S2, c)
13: return S ′1 ∪ S ′2

that it looks only at a reduced search space, while still finding a smallest IAS.
Algorithm 3 shows the modified HST method.

There are two main differences between the original HST method as described
in [10, 14] and the procedure hst-extract-smallest-IAS. The first one, as already
explained before, is that the nodes of the generated tree are not necessarily
labeled with an IAS, but may contain only a partial IAS. The reduction in the
search space here is clear: since nodes have less axioms, the search tree has a
lower branching factor. Moreover, the set of (possibly partial) IAS still to be
found is also reduced, since no superset of any label set found so far is allowed.
The second difference is that the tree is not expanded at each node for all the
axioms in it, but rather only on the first m − 1, where m is the size of the
smallest IAS found so far. This further reduces the search space by decreasing
the branching factor of the search tree. Notice that the highest advantage of
this second optimization appears when the HST is constructed in a depth-first
fashion. In that case, a smaller IAS found further below in the tree will reduce
the branching factor of all its predecessors. The following theorem shows that
Algorithm 3 is correct.

Theorem 2. Let O be an ontology, c a consequence with O |= c, and `g a goal
label. If n is the minimum cardinality of an IAS for `g, then Algorithm 3 outputs
an IAS I such that |I| = n.

Proof. Algorithm 3 always outputs an IAS since I is only modified when the
output of extract-partial-IAS has size strictly smaller than the limit m, and hence
only when this is an IAS itself. Suppose now that the output I is such that

Algorithm 2 Compute (partial) RAS
Procedure extract-partial-RAS(Ononfix,Otest, c, n)
Input: Ononfix: axioms; Otest: axioms; c: consequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such that Ononfix \ S 6|= c

1: Global l := 0,O := Ononfix, n
2: return extract-partial-RAS-r(∅,Otest, c)

Subprocedure extract-partial-RAS-r(Ofix,Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then
4: l := l + 1
5: return Otest

6: S1,S2 := halve(Otest)
7: if O \ (Ofix ∪ S1) 6|= c then
8: return extract-partial-RAS-r(Ofix,S1, c)
9: if O \ (Ofix ∪ S2) 6|= c then

10: return extract-partial-RAS-r(Ofix,S2, c)
11: S ′1 := extract-partial-RAS-r(Ofix ∪ S2,S1, c)
12: S ′2 := extract-partial-RAS-r(Ofix ∪ S ′1,S2, c)
13: return S ′1 ∪ S ′2

n < |I|, and let I0 be an IAS such that |I0| = n, which exists by assumption.
Then, every set obtained by calls to extract-partial-IAS has size strictly greater
than n, since otherwise, I and m would be updated. Consider now an arbitrary
set S found during the execution through a call to extract-partial-IAS, and let
Sn := {a1, . . . , an} the first n elements of S. Since S is a (partial) IAS, it must
follow that I0 6⊆ Sn. Then, there must be an i, 1 ≤ i ≤ n such that ai /∈ I0.
But then, I0 will still be an IAS after axiom {ai} has been removed. Since this
argument is true for all nodes, it in particular holds at all leaf nodes, but then
they cannot be leaf nodes, since a new IAS, namely I0 can still be found by
expanding the HST. This contradicts that I is the output of the algorithm. ut

Efficient implementations of the original version of the HST algorithm rely
on several optimizations. Two standard optimizations described in the literature
are node-reuse and early path termination (see, e.g. [10, 14, 2]). Node-reuse keeps
a history of all nodes computed so far in order to avoid useless (and usually
expensive) calls to the auxiliary procedure that computes a new node. Early path
termination, on the other hand, prunes the hitting set tree by avoiding expanding
nodes when no new information can be derived from further expansion. In order
to avoid unnecessary confusion, we have described the modified HST algorithm
without including these optimizations. However, it should be clear that both,
node-reuse and early path termination, can be included in the algorithm without
destroying its correctness. All the implementations used in the experimental
results contain these two optimizations

Algorithm 3 Modified HST algorithm to find smallest IAS for `g
Procedure hst-extract-smallest-IAS(O, (L,≤), c, `g)
Input: O: labeled ontology; (L,≤): lattice; c: consequence of O; `g: goal label
Output: IAS I of minimum cardinality

1: Global I := O, m := |O|,Ofix := O≥`g ,Ononfix := O \ Ofix

2: expand-hst-IAS(O \ Ofix, c)
3: return I

Procedure expand-hst-IAS(O, c)
Input: O: ontology; c: consequence
Side effects: modifications to I and m

1: if Ofix ∪ O 6|= c then
2: return
3: else
4: S := extract-partial-IAS(Ofix,O, c, m)
5: if |S| < |I| then
6: I := S
7: m := |I|
8: for the first (m− 1) axioms t in S do
9: expand-hst-IAS(O \ {t}, c)

4.3 Label-based Optimization

Up to now, our approach has only looked at the axioms individually in an at-
tempt to compute the IAS, but the labels of these axioms have been ignored,
except for the fixed axioms, whose label is greater than or equal to `g. The ex-
periments in [2] show that it is usually faster to compute the set of labels that
contain a MinA than a MinA itself. This is not surprising since usually a single
lattice element ` labels more than one axiom, and hence when testing whether
there is an axiom labeled with ` that belongs to a MinA we are simultaneously
performing this test for several axioms. Intuitively, the same should be true for
the computation of IAS. Hence, our search for the smallest IAS can be further
improved if IAS are computed through a two-step procedure: (1) without com-
puting the IAS we compute the set of labels K of axioms in the IAS, (2) we then
find the IAS from only the axioms that have labels in K. Notice that for a given
set of labels K, there can in fact be several IAS having labels in K. We can use
a HST algorithm to find all of them before trying to compute a new label set.

Interestingly, this approach can also be improved when searching for the
smallest IAS by using (partial) label sets of length at most that of the smallest
IAS found so far. Algorithm 4 shows a simple procedure for computing such
partial label sets, up to a given length n. Let LIAS be the set obtained by an
application of partial-lab-IAS(O, (L,≤), L≥`g , c, n), where L≥`g := {` ∈ L | ` ≥
`g}. Then, every IAS contained in OLIAS has at least one axiom labeled with each
element ` of LIAS; otherwise, ` would not have been added to the set during the
application of the algorithm. That in particular means that for every IAS I
contained in OLIAS it holds that |LIAS| ≤ |I|. Thus, there is no risk on stopping

Algorithm 4 Compute labels of (partial) IAS
Procedure partial-lab-IAS(O, (L,≤), Lfix, c, n)
Input: O ontology; (L,≤) lattice; Lfix: fixed labels; c: consequence; n: limit
Output: LIAS ⊆ L: set of labels of at least one (partial) IAS of size at most n

1: S := O; LIAS := ∅
2: for every k ∈ (L \ Lfix) do
3: if S \ O=k |= c then
4: S := S \ O=k

5: else
6: LIAS := LIAS ∪ {k}
7: if |LIAS| = n then
8: return LIAS

9: return LIAS

the computation of the label set when it is large enough, if we are only searching
for the smallest IAS. Moreover, any IAS that can be deduced from this set of
labels will not give any new information, so we can further avoid the second step
that extracts specific IAS from the set of labels. Algorithm 5 shows how the two
step computation of IAS can be combined with the modified HST approach of
Algorithm 3 to efficiently obtain the smallest IAS.

The algorithm works as follows. It fist computes a set of labels of an IAS
LIAS. Using the restricted ontology having only axioms labeled with elements of
LIAS, it starts then the modified hitting set tree algorithm trying to find an IAS
of smaller size. However, when the hitting set tree cannot be expanded further
due to the fact that no other IAS appear in the ontology in use, the algorithm
does not stop, but rather goes back to compute a new label set. Intuitively, is
a nesting of two HST methods. The outer one only computes label sets in the
style of [2], and the inner one uses restricted sub-ontologies based on the results
of the outer one to compute the actual IAS. As said before, the method also
uses the optimization in which the sets used in each of the hitting set trees are
restricted in size, according to the smallest IAS found so far. Additionally, the
inner HST is not called whenever the label set found by the outer procedure is
already larger than the smallest IAS known, since no IAS found from that sub-
ontology will be smaller, and hence is irrelevant in our search for the IAS with
least axioms. The following theorem, stating the correctness of Algorithm 5, can
be shown following an argument similar to the proof of Theorem 2.

Theorem 3. Let O be an ontology, c a consequence with O |= c, and `g a goal
label. If n is the minimum cardinality of an IAS for `g, then Algorithm 5 outputs
an IAS I such that |I| = n.

5 Empirical Evaluation

We implemented and evaluated our algorithms empirically with large practical
ontologies. The following sections describe our test setting and the results.

Algorithm 5 Label optimized HST algorithm to find smallest IAS
Procedure lab-hst-extract-smallest-IAS(O, (L,≤), c, `g)
Input: O: labeled ontology; (L,≤): lattice; c: consequence; `g: goal boundary
Output: IAS I of minimum cardinality

1: Global I := O, m := |O|, Lfix := {` ∈ L | ` ≥ `g},Ofix := O≥`g , (L,≤),
Ononfix := O \ Ofix

2: expand-lab-hst-IAS(O \ Ofix, c)
3: return I

Procedure expand-lab-hst-IAS(O, c)
Input: O: ontology; c: consequence
Side effects: modifications to I and m

1: if Ofix ∪ O 6|= c then
2: return
3: M := partial-lab-IAS(O, (L,≤), Lfix, c, m)
4: if |M | < m then
5: expand-hst-IAS-aux(O,O=M , c)
6: else
7: for the first m− 1 labels ` ∈M do
8: expand-lab-hst-IAS(O 6=`, c)

Procedure expand-hst-IAS-aux(O,Otest, c)
Input: O: ontology; Otest: axioms; c: consequence
Side effects: modifications to I and m

1: if Ofix ∪ Otest 6|= c then
2: expand-lab-hst-IAS(O, c)
3: else
4: S := extract-partial-IAS(Ofix,Otest, c, m)
5: if |S| < m then
6: I := S
7: m := |I|
8: for the first (m− 1) axioms t in S do
9: expand-hst-IAS-aux(O \ {t},Otest \ {t}, c)

5.1 Test Data and Test Environment

We test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We imple-
mented all approaches with Java 1.6, CEL 1.0, Pellet 2.0 and OWL API trunk re-
vision 1150. Since we need lattices, labeled ontologies and computed boundaries
of their consequences, the test data used in [2] was feasible also in this context
and we will describe the test data here only briefly. The two labeling lattices
are similar to ones encountered in real-world applications: the nonlinear lattice
(Ld,≤d) was already introduced in Figure 1, the linear order (Ll,≤l) has 6 ele-
ments Ll = Ld = {`0, . . . , `5} with ≤l := {(`n, `n+1) | `n, `n+1 ∈ Ll∧0 ≤ n ≤ 5}.

We used the two ontologies OSnomed and OFunct with different expressivity
and types of consequences for our experiments. The Systematized Nomencla-
ture of Medicine, Clinical Terms (Snomed ct) is a comprehensive medical and
clinical ontology built using the Description Logic (DL) EL+. From the Jan-

uary/2005 release of the DL version, which contains 379,691 concept names, 62
object property names, and 379,704 axioms, and entails more than five million
subsumptions, we used a sampled set of 27,477 positive subsumptions. Follow-
ing [6], for each subsumee A of any subsumption A v B we precomputed the
reachability-based module with CEL and stored these modules. This module is
guaranteed to contain all axioms of any MinA for A v B, so it can be used as the
start ontology when searching for MinA, thus also for diagnoses, IAS and RAS
rather than searching the complete ontology. OFunct is an OWL-DL ontology for
functional description of mechanical engineering solutions [9]. It has 115 concept
names, 47 object property names, 16 data property names, 545 individual names,
3,176 axioms, and the DL expressivity is SHOIN (D). Its 716 consequences are
12 subsumption and 704 instance relationships (class assertions).

To obtain labeled ontologies, axioms in both labeled ontologies received a
random label assignment of elements from Ll = Ld. As black-box subsump-
tion and instance reasoner we used the reasoner Pellet since it can deal with
the expressivity of both ontologies. For the expressive DL SHOIN (D) it uses
a tableau-based algorithm and for EL+ it uses an optimized classifier for the
OWL 2 EL profile, which is based on the algorithm described in [1].

We computed the boundary `c of each consequence c of the ontologies with
the algorithms described in [2] and then computed the change set described in
this paper to reach goal boundary `g which is constantly `3 in all experiments.
Consequences where `c = `g were not considered. Thus, from the 716 conse-
quences in OFunct, we have 415 remaining with labeling lattice (Ld,≤d) and
474 remaining with (Ll,≤l). From the 27,477 consequences in OSnomed we have
23,695 remaining with labeling lattice (Ld,≤d) and 25,897 with (Ll,≤l).

5.2 Results

Table 1 contains results for the 4 combinations of the 2 ontologies and the 2 la-
beling lattices. For each of them we tested 4 variants, leading to 16 measurement
series overall. We tested the variants full axiom pinpointing limited to 10 MinA,
fixed axioms, fixed axioms and cardinality limit and fixed axioms and cardinality
limit and label-based optimization all of the last three limited to 10 IAS and 10
RAS. Running with fixed axioms without cardinality limit can be done easily by
skipping Line 7 in Algorithm 3.

Since we limit the number of MinAs, IAS and RAS, our algorithms might not
find the smallest change set before reaching the limit. We measure the quality
of the presented variants given those limitations at execution time. Table 1 lists
the ratio of correct solutions where at least 1 correct change set was computed,
and the ratio of optimal solutions where the limit was not reached during the
computation and thus yielded the shortest change set possible. Notice however
that the ratio of cases with the minimal change set successfully computed might
be higher, including those where the limitation was reached but the minimal
change set was already found.

Full axiom pinpointing is clearly outperformed by the other variants. Re-
markably, label-based optimization seems not to pay off in our setting. A reason

O
n
t.

L
a
t. Variant and Runtime Limit Time Ratio of Ratio of

(minutes) correct optimal
solutions solutions

O
F
u
n
c
t

n
o
n
li
n
ea

r full PP, ≤ 10 MinA 44.05 96% 47%
fixed axioms, ≤ 10 IAS/RAS 20.36 100% 91%
fixed axioms, partial, ≤ 10 IAS/RAS 7.11 100% 99%
fixed axioms, partial, lab-opt., ≤ 10 IAS/RAS 7.85 100% 99%

li
n
ea

r

full PP, ≤ 10 MinA 54.46 98% 49%
fixed axioms, ≤ 10 IAS/RAS 16.65 100% 96%
fixed axioms, partial, ≤ 10 IAS/RAS 8.00 100% 99%
fixed axioms, partial, lab-opt. 7.56 100% 100%

O
S
n
o
m
e
d

n
o
n
li
n
ea

r full PP, ≤ 10 MinA 184.76 100% 75%
fixed axioms, ≤ 10 IAS/RAS 16.00 100% 99%
fixed axioms, partial, ≤ 10 IAS/RAS 9.81 100% 100%
fixed axioms, partial, lab-opt., ≤ 10 IAS/RAS 11.70 100% 100%

li
n
ea

r

full PP, ≤ 10 MinAs 185.35 100% 75%
fixed axioms, ≤ 10 IAS/RAS 41.66 100% 95%
fixed axioms, partial, ≤ 10 IAS/RAS 27.50 100% 98%
fixed axioms, partial, lab-opt., ≤ 10 IAS/RAS 32.80 100% 98%

Table 1. Results of the optimizations in 4 test settings

might be the small subset of the ontology, on which the Hitting Set Tree algo-
rithms is working on already by fixing axioms. Furthermore in OSnomed we work
on the extracted reachability-modules so that the search space is further reduced
already. To conclude, fixed sub-ontologies and cardinality limit are optimizations
with reasonable impact.

6 Conclusions

Previous work has studied labeled ontologies and methods to compute bound-
aries for their consequences. In the present paper we have looked at the problem
of finding an adequate relabeling of the ontology in case that the boundary
obtained differs from the desired one. Our approach focuses on the search of a
change set of minimum cardinality. We identified simple cases, namely where the
boundary `c and the goal label `g are comparable w.r.t. to the lattice ordering,
in which known methods from ontology repair can be adapted. In particular, we
showed that if `c < `g, then any MinA yields a change set, while if `g < `c, then
diagnoses correspond to change sets. The remaining case, where `c and `g are
incomparable is reduced to the previous one by using `c ⊗ `g as an intermediate
goal label.

In order to find a change set with minimum cardinality, we presented a vari-
ation of the HST algorithm used in axiom-pinpointing. Our variations are based
on three insights: (i) some axioms are irrelevant for the computation of a change
set; thus, they can be removed from the search space from the beginning; (ii)
since we are interested only in a change set of minimum cardinality, we can im-
prove the search by avoiding unnecessarily large solutions; and (iii) axioms can

be grouped by their labels to first reduce the ontology from which the change
set will be computed. We implemented algorithms to test the benefit of using
the optimizations obtained by these three insights, and tested them on large-
scale ontologies. Our first results show that the first two ideas yield tangible
improvements in both the execution time and the quality of the solution. How-
ever, trying to optimize the search through the labels does not seem to pay off.
All our algorithms are black-box based, which means that they can be used with
any off-the-shelf reasoner, without the need of modifications.

As future work we intend to study the problem of finding change sets for sev-
eral consequences (each with its own goal label) simultaneously. An availability
policy could further restrict the set of axioms and their allowed label changes.
We will also look more closely at the case where the boundary and the goal label
are incomparable, and try to develop methods that improve both, the quality of
the change set and its computation time. Moreover, we will look at other criteria
for the minimality of change sets and more flexible restrictions on the goal label.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI’05,
Edinburgh, UK, 2005.

2. F. Baader, M. Knechtel, and R. Peñaloza. A generic approach for large-scale
ontological reasoning in the presence of access restrictions to the ontology’s axioms.
In Proc. of ISWC’09, volume 5823 of LNCS, pages 49–64, 2009.

3. F. Baader and R. Peñaloza. Automata-based axiom pinpointing. Journal of Au-
tomated Reasoning, 2010. Special Issue: IJCAR 2008. To appear.

4. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 20(1):5–34, 2010. Special Issue: Tableaux’07.

5. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the Description
Logic EL+. In Proc. of KI’07, volume 4667 of LNAI, pages 52–67, 2007.

6. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pin-
pointing in the description logic EL+. In Proc. of KR-MED’08, 2008.

7. J. Biskup, D. W. Embley, and J.-H. Lochner. Reducing inference control to access
control for normalized database schemas. Inf. Process. Lett., 106(1):8–12, 2008.

8. C. Farkas and S. Jajodia. The inference problem: a survey. SIGKDD Explor.
Newsl., 4(2):6–11, 2002.

9. A. Gaag, A. Kohn, and U. Lindemann. Function-based solution retrieval and
semantic search in mechanical engineering. In Proc. of ICED’09, 2009.

10. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In Proc. of ISWC’07 + ASWC’07, pages 267–280, 2007.

11. A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. Debugging unsatisfiable
classes in OWL ontologies. J. Web Sem., 3(4):268–293, 2005.

12. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable termi-
nologies for the description logic ALC. In Proc. of AAAI’06, 2006.

13. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In Proc. of IJCAI’03, pages 355–362, 2003.

14. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Mainte-
nance of Large-Scale Biomedical Ontologies. PhD thesis, TU Dresden, 2008.

