
Query-Based Access Control for Ontologies

Martin Knechtel1 ? and Heiner Stuckenschmidt2

1 SAP Research Center Dresden, Germany
martin.knechtel@sap.com

2 Computer Science Institute, University of Mannheim, Germany
heiner@informatik.uni-mannheim.de

Abstract. Role-based access control is a standard mechanism in information
systems. Based on the role a user has, certain information is kept from the user
even if requested. For ontologies representing knowledge, deciding what can be
told to a user without revealing secrets is more difficult as the user might be able
to infer secret knowledge using logical reasoning. In this paper, we present two
approaches to solving this problem: query rewriting vs. axiom filtering, and show
that while both approaches prevent the unveiling of secret knowledge, axiom fil-
tering is more complete in the sense that it does not suppress knowledge the user
is allowed to see while this happens frequently in query rewriting. Axiom filtering
requires that each axiom carries a label representing its access level. We present
methods to find an optimal axiom labeling to enforce query-based access restric-
tions and report experiments on real world data showing that a significant number
of results are retained using the axiom filtering method.

1 Motivation

Access control is an essential operation in standard information systems to prevent
unauthorized access and use of information from the system. In a traditional information
system, where all the available information is stored explicitly, it is possible to simply
label information items with the roles, a user must have, to be allowed to receive this
particular information. With knowledge represented in ontologies, this approach does
not work anymore, because new knowledge can be derived, leading to the ’inference
problem’ [5]: avoiding a situation where a user can infer knowledge he should not have
access to using knowledge he is allowed to access. To make the problem well defined,
we assume that the user has the same ability to derive knowledge as the system.

In this paper, we compare two existing proposals for solving the inference problem:
query rewriting vs. axiom filtering. For both, we start from an access restriction given in
the form of a query, whose result is a set of axioms that shall be protected. Such a query
could, for example, address knowledge about a concept and all subconcepts in order to
restrict knowledge along the subsumption hierarchy comparable to information systems
restricting access to files in a directory and all subdirectories. Conflict resolution mech-
anism might be necessary then since a concept might have multiple superconcepts. The
query rewriting approach proposed in [4] is based on the idea of rewriting user queries
? This research was partly funded by the German Federal Ministry of Economics and Technol-

ogy under the promotional reference 01MQ07012.



based on the role a user has in such a way that the result to the rewritten query only
returns knowledge the user is allowed to see. The axiom filtering approach proposed in
[1] assumes an a priori labeling of axioms in the ontology to consistently derive labels
for implicit consequences. Axioms and consequences are delivered based on a compar-
ison of user label and axiom label. Our assessment of the two approaches concludes
that axiom filtering is independent of the ontology language and more complete in the
sense that it does not suppress knowledge the user is allowed to see.

However axiom filtering requires an a priori labeling of axioms and it is not clear
from previous work how to create an access labeling from query-based access restric-
tions. Our main contributions are (1) algorithms to repair a given axiom labeling in an
optimal way so that a query-based access restriction is enforced to explicit and implicit
knowledge, (2) conflict resolution strategies for cases where query-based access restric-
tions contain conflicts, (3) empirical results for our algorithms with practical ontologies.
Our main result is that axiom filtering provides higher availability of knowledge com-
pared to query rewriting.

2 Preliminaries

2.1 Ontologies

Ontologies are formal descriptions of the terminology used in an application domain.
A number of logical languages have been proposed for representing ontologies. In this
paper, we only consider sublanguages of the Web Ontology Language (OWL) that can
be translated to Description Logics (DL).

Formally, an ontology O is a finite set, whose elements are called axioms, such that
every subset of an ontology is itself an ontology. If O′ ⊆ O and O is an ontology,
then O′ is called a sub-ontology of O. One can distinguish ABox axioms A and TBox
axioms T and let O = T ∪ A. An ontology language specifies which sets of axioms
are admitted as ontologies. For instance, given a Description Logic L (e.g., the DL
SHOIN (D) underlying OWL DL), an ontology is a finite set of general concept in-
clusion axioms (GCIs) of the form C v D, concept assertion axioms of the form C(a)
and role assertion axioms of the form R(a, b) for L-concept descriptions C,D, role R
and individuals a, b. In order not to mix user roles and DL roles, we stick to the OWL
lingo and call DL roles from now on properties. The signature sig(O) of an ontology
is the set of all concept and role names occurring in its axioms. Given an ontology lan-
guage, a monotone consequence relation |= is a binary relation between ontologies O
and consequences c such that if O |= c, then for every ontology O′ ⊇ O it holds that
O′ |= c. If O |= c, we say that c follows from O or that O entails c. Often, a conse-
quence c already follows from a subset S ⊆ O of the axioms in the ontology. We call
such a subset an explanation for O |= c if there is no subset S′ ⊂ S such that S′ |= c.
Note that for one consequence there might be multiple explanations.

A query to an ontology is a conjunction Q = A1, · · · , An of OWL axioms over
sig(O), but not necessarily from O, containing variables. For a concrete definition of
the form of axioms see [12]. The set of variables occurring in Q is denoted as var(Q).
Let ind(O) be the set of individuals in O, then the result of a query is the set of all



mappings µ : var(Q) → ind(O) assigning individuals from O to variables in Q.
An answer µ(Q) to a query Q is an instantiation of all variables in the query, so that
O |= µ(Q) [12]. Note that there might be several possible µ for one query.

2.2 Access Control

Access control systems enable the regulation of access to protected resources (i.e. ob-
jects) in distributed systems by subjects such as users or system processes. They can be
categorized in discretionary access control (DAC), mandatory access control (MAC),
and role-based access control (RBAC) models. In DAC-based systems, the permissions
to access an object are defined by its owner. In MAC models, the system determines the
access to objects either by utilizing access rules or lattices for assigning permissions
to subjects. It thus removes the ability of the users to control access to their resources.
RBAC systems finally remove the explicit use of subjects within access rules or lattices
and replace them with roles, which form a logical group of a number of subjects. In
fact, permissions are assigned to roles and the subjects are assigned members of a num-
ber of roles. Thus changes of single subjects do not necessarily have consequences in
the actual access control policies. On the most fine-grained level, permissions can be
defined on the level of axioms, or on the level of query responses.

2.3 Access Restrictions as Queries

Assume we want customers and employees to query knowledge from a product ontol-
ogy. From Example 1, employees have full access and we do not want customers to
see if any product gets an increased price soon. This restriction could be defined by
enumerating all query responses except the price increase as permissions and assigning
them to the respective user role. There are two problems with this approach. First of
all, the price increase can still be inferred if the axioms of O can be queried. Further,
enumerating all query responses, however, is not feasible in practice and asks for more
efficient ways of specifying these restrictions, e.g. by means of a query.

Example 1. Let O be an ontology from a marketplace in the Semantic Web with the
following axioms

a1 : EUecoService uHighperformanceService(ecoCalculatorV1 )
a2 : HighperformanceService
v ServiceWithLowCustomerNr u LowProfitService

a3 : EUecoService v ServiceWithLowCustomerNr u LowProfitService
a4 : ServiceWithLowCustomerNr v ServiceWithComingPriceIncrease
a5 : LowProfitService v ServiceWithComingPriceIncrease

The consequence c1 : ServiceWithComingPriceIncrease(ecoCalculatorV1 ) follows
from each of the explanations {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4}, {a1, a3, a5}.
The consequence c2 : LowProfitService(ecoCalculatorV1 ) follows
from each of the explanations {a1, a2}, {a1, a3}. Three more in-
stance assertions of individual ecoCalculatorV1 to the concept names
EUecoService,HighperformanceService,ServiceWithLowCustomerNr are conse-
quences of O.



A way is to define permissions intentionally in terms of queries over the signature
of the ontology. More specifically, we can describe facts that should not be accessible
by a certain role in terms of a set of axioms - the same kinds of axioms used in queries
- whose instantiations should not be derivable from query results. In the case of the
example above, we could formulate the following access restriction for customers:

ServiceWithComingPriceIncrease(x )

stating that for no instantiation of the variable x it should be possible to infer that it
is an instance of ServiceWithComingPriceIncrease .

3 Enforcing Access Restrictions

There are different ways for implementing access control for ontological knowledge.
While query rewriting extends a user’s query to include all access restrictions, axiom
filtering only allows a subset of the ontology to be used to answer the unchanged query.

3.1 Access Control by Query Rewriting

One option for enforcing access restrictions is by means of query rewriting. This ap-
proach has been proposed in [4] as a suitable way for enforcing access restrictions in
the context of SPARQL queries, while the TBox is assumed to be completely public.
Similar approaches are also allowing to hide TBox parts [7], or to define not the re-
strictions but the permissions by a query [3]. The idea in [4] is to automatically add
filter conditions to the query that suppress such answers the user is not supposed to see.
Given a Query Q and a set of access restrictions {AR1, · · · , ARn} that apply to the
current user, the query can be rewritten to a new query that is defined as:

Q ∧ ¬AR1 ∧ · · · ∧ ¬ARn

Where the junction of two queries Q1 ∧ Q2 is the junction of all contained query
axioms

∧
q∈Q1

q ∧
∧

q∈Q2
q [12]. This way of rewriting the query based on the access

restrictions of the individual users effectively prevents the system from giving away re-
stricted knowledge. In particular, using query rewriting, the effective answer to a query
is

{µ(Q)|O |= µ(Q ∧ ¬AR1 ∧ · · · ∧ ¬ARn)}
It however comes with a problem: it hides more knowledge than necessary.

In particular, in the example above where we want to hide from customers that
some product is increased in price, the query rewriting approach hides too much
knowledge. If a customer for instance asks the system for all high performance
services, thus Q = HighperformanceService(x ), this query will be rewritten to
HighperformanceService(x ) ∧ ¬ServiceWithComingPriceIncrease(x ). This query
will only return high performance services which will not be increased in price. This is
unfortunate, because the knowledge that ecoCalculatorV1 is a high performance ser-
vice was not supposed to be hidden. Similarly querying for instances of the remaining
four concept names in sig(O) are filtered, resulting in five queries without an answer.



3.2 Access Control by Axiom Filtering

A framework to control access to an ontology’s axioms is introduced in [1]. In contrast
to the query rewriting approach above, the TBox is not assumed to be completely public.
The idea is to label each axiom with a certain access restriction. Users are labeled with
the restrictions they are allowed to see. The approach is to use a labeling lattice (L,≤);
i. e. a set L of labels together with a partial order ≤ such that every finite set of labels
has a join (⊕, supremum, least upper bound) and a meet (⊗, infimum, greatest lower
bound) w.r.t.≤. Every axiom a in the ontologyO is assumed to have a label lab(a) ∈ L,
and each user receives also a label ` ∈ L. The sub-ontology to which a user with label
` has access is defined as

O≥` := {a ∈ O | lab(a) ≥ `}.
The sub-ontologies O6≥`, O6≤` etc. can be defined analogously. Applied to our sce-

nario with the user roles customer (`C) and employee (`E), let the labeling lattice
be (L,≤) with L = {`C , `E} and ≤= {(`E , `C)}. Let the labeling function lab
assign label `C to axioms a1, a2, a3 and `E to axioms a4, a5. Employees can see
O≥`E = {a1, a2, a3, a4, a5}, i.e. the complete ontology. Customers can see O≥`C =
{a1, a2, a3}. Intuitively, the access restriction to a consequence, called boundary, should
be based on the access restriction of its implying axioms. The access restriction for a
consequence with multiple explanations should be the least restrictive of all explana-
tions and within one explanation the most restrictive of all axioms. Formally, a con-
sequence c with n explanations S1, . . . , Sn has boundary

⊕n
i=1

⊗
a∈Si

lab(a). In our
example, each of the four explanations for c1 has label (`C ⊗ `C ⊗ `E) = `E , thus
the boundary is `E , i.e. employees can see it but customers not. Consequence c2 has
boundary `C , i.e. employees and customers can see it. Apart from c1, c2, instance rela-
tionships to the three remaining concepts in sig(O) have boundary `C as can be verified
easily. A customer querying for instances of the five concept names in the ontology will
get no answer for Q = ServiceWithComingPriceIncrease(x ) but will get an answer
for the four remaining queries. So axiom filtering provides 4/5 answers, while query
rewriting provides 0/5 answers.

3.3 Discussion

As we have seen, query rewriting and axiom filtering are approaches of ensuring that
no classified knowledge is given to users that do not have the permission to see it. Both
approaches do neither require to track the history of queries nor disallow query askers
of the same user role to share any knowledge. We have seen that query rewriting is
suboptimal with respect to availability in the sense of preserving maximal access to
non-restricted knowledge. Axiom filtering provides a higher availability and is more
general since it is independent of the concrete ontology language which makes the ap-
proach preferable in many situations. However it requires an a priori axiom labeling,
and it is not clear how to enforce query-based access restrictions. Previous work on la-
beled ontologies focused on computing a consequence’s label based on axiom labels [1]
and on repairing the axiom labeling in order to determine one consequence’s label [9,
10]. However, access restrictions in the form of queries might require changing labels



Fig. 1. Lattice (L,≤) with 4 user labels and an assignment of 5 axioms to labels

of multiple consequences simultaneously. Such a mechanism will be presented in the
next section. Our main quality criterion for the algorithms is availability. In the empiri-
cal evaluation we measure how many knowledge is additionally accessible with axiom
filtering compared to query rewriting.

4 Optimal Axiom Labeling for implementing Access Control

In the last section we have only shown that there is an axiom labeling to enforce access
restrictions for a selected example. Now we will elaborate how to compute it in general.
We are starting from an arbitrary label assignment, and change it in a minimal way so
that a given access restriction is enforced.

Example 2. We continue Example 1. Let (L,≤) be the lattice shown in Figure 1, where
valid user labels are `0, `2, `3, `5 which represent user roles as illustrated. The condition
for a valid user label is the join prime property discussed in [1]. Let O of Example 1
be a labeled ontology where the function lab assigns to each axiom ai the label `i as
shown in Figure 1. The computed boundary is `3 for c1, since = (`1⊗ `2⊗ `4)⊕ (`1⊗
`2⊗ `5)⊕ (`1⊗ `3⊗ `4)⊕ (`1⊗ `3⊗ `5). It is `2 for c2, since = (`1⊗ `2)⊕ (`1⊕ `3).
For users `0 and `3, consequences c1 and c2 are visible. For user `2, only c2 is visible.

We now define a notion for changing an axiom label assignment. Beforehand, we
define the function lbl in order to address computed boundaries of consequences in a
convenient way.

Definition 1 (Consequence Labeling Function). Let O be a labeled ontology, (L,≤)
a labeling lattice, lab : O → L a labeling function. The consequence labeling function
lbl : {c | O |= c} → L assigns labels to consequences and is defined as lbl(c) =
computed boundary of c.

Definition 2 (MCS). Let O be an ontology, c any consequence of O, (L,≤) a lattice,
lab a labeling function, G a set of goals of the form (c, `g) with goal label `g for conse-
quence c, M a set of assignments (a, `) of label ` to axiom a. The modified assignment
labM is defined to be

labM (a) =

{
`, if (a, `) ∈M,

lab(a), otherwise.



The respective consequence labeling function lblM is given by Definition 1. The set M
is called multiple change set (MCS) iff for any c, (c, `g) ∈ G : lblM (c) = `g and there
is no M ′ ⊂M with lblM ′(c) = `g .

Whether we can find a labM fulfilling a given goal set is independent of the label
assignment lab we start from. For default deny-all behavior, we start with all axioms
assigned to the bottom lattice element. For default allow-all behavior, we start with all
axioms assigned to the top lattice element. We will now introduce the computation of a
change set for one goal and building on that introduce the computation of a MCS.

4.1 Computing a Change Set for one Goal Label

If G is the singleton set of only one tuple (c, `), computing a multiple change set boils
down to computing a change set (CS) which has been introduced in our prior work in
[10, 9]. For every CS S ⊆ O there is a MCS M := {(a, `g) | a ∈ S} and lblM (c) = `g
holds. The computation of a CS exploited main ideas from axiom-pinpointing [8, 2] and
we presented a black-box approach that yields the desired set. Intuitively, a consequence
c needs to be made more public if `g > lbl(c) or less public if `g < lbl(c). From the
perspective of the target users who see O≥`g , the former is achieved by including an
axiom set IAS to their ontology and the latter by removing an axiom set RAS from other
user’s ontologies. The definition of an IAS (RAS) is a generalization of the definition
of a MinA (diagnosis) [10].

Definition 3 (IAS,RAS). A minimal inserted axiom set (IAS) for `g is a subset I ⊆
O6≥`g such that O≥`g ∪ I |= c and for every I ′ ⊂ I : O≥`g ∪ I ′ 6|= c. A minimal
removed axiom set (RAS) for `g is a subset R ⊆ O6≤`g such that O6≤`g \R 6|= c and for
every R′ ⊂ R : O 6≤`g \R′ |= c.

A CS is either an IAS, a RAS, or union of both. As elaborated in [10], computing
IAS and RAS is tightly related to computing explanations (also called MinA) and di-
agnoses. The computation by a Hitting Set Tree (HST) algorithm [11] is repeated here
only briefly. The HST algorithm makes repeated calls to an auxiliary procedure that
computes one CS. A tree is built, where each node is labeled with a CS and each edge
with an axiom. If the CS labeling a node has n axioms (S := {a1, . . . , an}), then this
node is expanded with n children: the edge to the i-th child labeled with ai, the child
labeled with a CS that is not allowed to contain neither ai nor any ancestor’s edge label.
This ensures that each node is labeled with a CS distinct from those of its predecessors.

HST optimizations such as early termination and node reuse avoid redundant com-
putations and are included in current implementations. Another optimization is putting
a cardinality limit, applicable when not all, but only the CS of minimal cardinality |S|
is of interest. Then nodes might contain partial solutions, called partial CS, in the sense
that some axioms are missing, but still the smallest CS is proven to be found [10, 9].

Example 3. We continue Example 2. Assume we want to make c1 as private as possible,
i.e.G = {(c1, `0)}. All RAS are {a1}, {a2, a3}, {a4, a5}, so the smallest MCS isM1 =
{(a1, `0)} and we get lblM1(c1) = `0. As second example assume we want to make c2
as public as possible, i.e.G = {(c2, `1)}. All IAS are {a2}, {a3}, so one of the smallest
MCS is M2 = {(a3, `1)} and we get lblM2

(c2) = `1.



Algorithm 1 Extract cMCS with optimizations CS reuse (switch off: remove Line 11)
and cardinality limit (switch off: in Line 7 replace “n− |M |” by “∞”)
Procedure init-cMCS-extraction(O, lab, (L,≤), G)
Input: O, lab: labeled ontology; (L,≤): lattice; G: goal set
1: Global: O, lab, G′ := {(c, `g, isI , isR, CS) | (c, `g) ∈ G,

isI := `g 6< lbl(c) ∧O≥`g 6|= c, (decision to compute IAS)
isR := `g 6> lbl(c) ∧O6≤`g |= c, (decision to compute RAS)
CS := ∅} (reuse set for CS)

Procedure extract-partial-cMCS(K,n)
Input: K: prohibited label changes; n: cardinality limit
Output: first n elements of a cMCS
1: M := ∅
2: for each goal (c, `g, isI , isR, CS) ∈ G′ do
3: H := {a | (a, `g) ∈ K} (set of axioms not allowed to be labelled with `g)
4: if ∃S′ ∈ CS : ∅ = S′ ∩H then
5: S := S′ (CS reuse)
6: else
7: S :=extract-partial-CS(O, lab, c, `g, isI , isR, H, n− |M |) (defined by [9])
8: if ∅ = S then
9: return ∅ (HST normal termination for one goal fires for complete goal set)

10: if |S| 6= n− |M | then
11: CS := CS ∪ {S} (remember only non-partial CS)
12: M := M ∪ {(a, `g) | a ∈ S}
13: return M

4.2 Computing a Multiple Change Set for Multiple Goal Labels

An MCS for several goals consists of CS for each of the individual goals. However, it
is no solution to compute single CS and combine them since this might not yield the
smallest MCS or they might even conflict.

Example 4. We combine both goals of Example 3 simultaneously, i.e. we want to make
c1 as private as possible and c2 as public as possible, G = {(c1, `0), (c2, `1)}. Just
concatenating the above mentioned MCS to M = M1 ∪M2 = {(a1, `0), (a3, `1)} is
no MCS since lblM (c2) = `0 6= `1. However, M = {(a4, `0), (a5, `0), (a2, `1)} is an
MCS.

For this reason we call any combination of CS a candidate MCS (cMCS). To com-
pute the shortest MCS, we introduce Algorithm 2 which is similar to the HST algorithm
for computing the shortest CS in [9]. The only difference is that each call to the auxil-
iary procedure computes a (partial) cMCS instead of a (partial) CS which is assigned
to a node in the search tree, and edges are not labeled with an axiom but with a tuple
(a, `) which is not allowed in the child node’s (partial) cMCS.

A (partial) cMCS is computed by a call extract-partial-cMCS(K,n) to the auxil-
iary procedure in Algorithm 1, where K is the set of prohibited label changes, i.e. all
tuples at edges to ancestors in the HST, and n is the size of the currently known short-
est MCS. The procedure comes with 2 optimizations: CS reuse and cardinality limit.



Algorithm 2 HST algorithm to find smallest MCS for G
Procedure hst-extract-smallest-MCS(O, lab, (L,≤), G,K)
Input: O, lab: labeled ontology; (L,≤): lattice; G: goal set; K: prohibited label changes
Output: MCS of minimum cardinality
1: Global Mmin := ∅, n :=∞, G
2: init-cMCS-extraction(O, lab, (L,≤), G)
3: expand-hst-MCS(K)
4: return Mmin

Procedure expand-hst-MCS(K)
Input: K: prohibited label changes
Side effects: modifications to Mmin and n

1: M := extract-partial-cMCS(K,n)
2: if M = ∅ then
3: return (HST normal termination)
4: if |M | < n then
5: if (a, `1), (a, `2) ∈M =⇒ `1 = `2 then
6: if ∀(c, `g) ∈ G : lblM (c) = `g then
7: Mmin := M
8: n := |Mmin|
9: else

10: . . . (semantic conflict resolution)
11: else
12: . . . (syntactic conflict resolution)
13: for the first (n− 1) label changes (a, `) ∈M do
14: expand-hst-MCS(K ∪ {(a, `)})

As any cMCS is a combination of CS, one CS might be contained in several cMCS.
Instead of computing it anew for every cMCS, the first optimization reuses it. Putting
a cardinality limit is a second optimization which computes a cMCS or stops once this
has reached a size n and returns a potentially partial cMCS. Computing partial CS for
one goal turned out to reduce execution time [9]. In a partial cMCS, the last contained
CS is partial. Partial CS are not reused.

Turning to Algorithm 2, whenever a cMCS M is found with |M | < n, it is shorter
than our currently known shortest MCS and we can be sure that it is not partial. The
question remains if it is a MCS or only a cMCS, which is checked in Line 6: neither is an
axiom allowed to have multiple labels assigned (syntactic conflict) nor might a change
set for one goal influence any other goal which is the case if any computed boundary
does not equal the goal label (semantic conflict). Only after passing both checks, we
update our globally known shortest known MCS Mmin in Line 7. Loosening the con-
straints of a goal set, the semantic conflicts can be resolved in Line 10 or syntactic
conflicts can be resolved in Line 12 which is explained in the next section.

We now show correctness of both optimizations, CS reuse and cardinality limit.
Reuse of CS is correct, since the only non-constant parameter to extract a CS in Line 7
is the set of prohibited axioms H and Line 4 ensures H and the reused CS are disjoint.



Theorem 1 (Cardinality Limit Optimization). Let O,lab be a labeled ontology and
G a goal set. If m is the minimum cardinality of all MCS for G, the HST Algorithm 2
outputs a MCS M such that |M | = m.

Proof. The described algorithm outputs a MCS since the globally stored and finally
returned Mmin is only modified when the output of extract-partial-cMCS has size
strictly smaller than the limit n, has neither any syntactic nor any semantic conflict
and hence only when this is indeed a MCS itself. Suppose now that the output MCS
Mmin is such that m < |Mmin|, and let M0 be a MCS such that |M0| = m, which
exists by assumption. Then, every MCS, i.e. every cMCS free of syntactic and se-
mantic conflicts, obtained by calls to extract-partial-cMCS has size strictly greater
than m, since otherwise, Mmin and n would be updated. Consider now an arbitrary
MCS M ′ found during the execution through a call to extract-partial-cMCS, and let
M ′n := {(a1, `1), . . . , (an, `n)} be the first n assignments ofM ′. SinceM ′ is a (partial)
MCS, it must be the case that M0 6⊆ M ′n since every returned MCS is minimal in the
sense that no label change might be removed to obtain another MCS. Then, there must
be an i, 1 ≤ i ≤ n such that (ai, `i) 6∈ M0. But then, M0 will still be a MCS (and a
cMCS anyway) after label change {(ai, `i)} has been removed. Since this argument is
true for all nodes, it is in particular true for all leaf nodes, but then they should not be
leaf nodes, since a new cMCS, namely M0 can still be found by expanding the HST,
which contradicts the fact that Mmin is the output of the algorithm. ut

4.3 Conflict resolution

We already elaborated on syntactic and semantic conflicts which might prevent a cMCS
from being a MCS. It might be the case that for a goal set, no MCS can be found.

Example 5. We continue Example 2. Assume G = {(c1, `4), (c2, `3)}. For the goal
(c1, `4) all IAS are {a2}, {a3}. For the goal (c2, `3) all RAS are {a1}, {a2}. The cMCS
M1 = {(a2, `4), (a2, `3)} is obviously no MCS due to a syntactic conflict. But also
the remaining cMCS M2 = {(a2, `4), (a1, `3)},M3 = {(a3, `4), (a1, `3)},M4 =
{(a3, `4), (a2, `3)} are no MCS due to semantic conflicts, since lblM2

(c1) =
lblM3

(c1) = `3 6= `4 and lblM4
(c2) = `4 6= `3.

For these cases we introduce a generalization of an MCS called Relaxed MCS
(RMCS) where the goal set is only partially satisfied according to a defined strategy.
For the special case of no conflict, the RMCS equals the MCS. We identified 4 strate-
gies to resolve conflicts, where we focus on syntactic conflict resolution only:

1. Overrestrictive: accept lower labels for a minimal number of consequences than
specified by the goal label. Formally, ∀(c, `g) ∈ G : lblM (c) 6= `g =⇒ lblM (c) <
`g and cardinality |{(c, `g) ∈ G | lblM (c) 6= `g}| is minimal. Applied to the above
example, {(a2, `3)} is a RMCS.

2. Overpermissive: accept higher labels for a minimal number of consequences than
specified by the goal label. Formally, ∀(c, `g) ∈ G : lblM (c) 6= `g =⇒ lblM (c) >
`g and cardinality |{(c, `g) ∈ G | lblM (c) 6= `g}| is minimal. Applied to the above
example, {(a2, `4)} is a RMCS.



Algorithm 3 Computing a RMCS, overpermissive strategy (for overrestrictive strategy:
replace “⊕” with “⊗” in Line 3, “≥” with “≤” in Line 4, “>” with “<” in Line 5)
Basis is the Algorithm 2. In Procedure hst-extract-smallest-MCS, add global variables N :=
∅, r :=∞, and add before Line 4:
1: if ∅ = Mmin then
2: return N

In Procedure expand-hst-MCS, replace Line 12 for syntactic conflict resolution with:
1: N ′ := M
2: for each a : (a, `1), (a, `2) ∈ N ′ ∧ `1 6= `2 do
3: N ′ := N ′ \ {(a, `1), (a, `2)} ∪ {(a, `1 ⊕ `2)}
4: if ∀(c, `g) ∈ G : lblN′(c) ≥ `g then (fulfills overpermissive strategy)
5: r′ := |{(c, `g) ∈ G | lblN′(c) > `g}|
6: if r′ < r then
7: N := N ′

8: r := r′

3. Override strategy: The goal G set is split up into fragments Gi so that G =
G1 ∪ . . . ∪Gn for which individual MCS Mi can be computed. The changed label
assignment ((labM1

) . . .)Mn
is obtained by sequentially applying each MCS Mi,

where the order can be chosen based on some prioritization. This implies that labels
changed by one MCS might be changed again by any subsequent MCS. Applied to
the above example, splitting up G into G1 and G2, G1 = {(c1, `4)} yields MCS
M5 = {(a2, `4)}, subsequently G2 = {(c2, `3)} yields MCS M6 = {(a2, `3)}.

Strategy 3 although easy to implement has an unacceptable drawback, conflicting
our RMCS definition: even if there is a MCS for the union of all goal subsets, a se-
quentially applied MCS for one goal subset might override a previous for another goal
subset since they are computed independently of each other. For this reason we focus
on strategies 1 and 2 for resolution of syntactic conflicts.

Algorithm 3 describes the resolution of syntactic conflicts. It is an adapted version
of Algorithm 2, where additionally the global variable r stores the minimal number
of overpermissive (overrestrictive) consequence labels and N stores the RMCS with
minimal r. Again this Algorithm relies on the cMCS extraction Algorithm 1 and the
optimization of reusing CS can be applied. The cardinality limit optimization is of no
use here since if no MCS is found, then no cardinality limit is set and the HST is fully
expanded.

There are goal sets yielding semantic conflicts but no syntactic conflicts in cMCS.
These are not solved by syntactic conflict resolution. For these cases not only IAS and
RAS, but complete explanations and diagnoses need to be taken into account, as the
following example shows.

Example 6. We continue Example 2. Assume G = {(c1, `2), (c2, `5)}. For the goal
(c1, `2) all IAS are {a4}, {a5}. For the goal (c2, `5) all IAS are {a2}, {a3}, all RAS
are {a1}, {a2, a3}. Obviously no combination of CS for both goals yields a syn-
tactic conflict. Nevertheless there is no MCS since every combination of CS has
a semantic conflict. After conflict resolution, an overpermissive RMCS is NOP =



{(a4, `2), (a2, `2 ⊕ `5 = `1), (a3, `5}, yielding lblNOP
(c1) = `1, lblNOP

(c2) = `1.
An overrestrictive RMCS is NOR = {(a4, `2), (a2, `2 ⊗ `5 = `0), (a3, `5)}, yielding
lblNOR

(c1) = `5, lblNOR
(c2) = `5.

5 Experiments

We implemented and evaluated our algorithms empirically with large practical ontolo-
gies. The following sections describe our test setting and the results.

5.1 Test Procedure and Test Data

We test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We implemented
all approaches with Java 1.6, Pellet 2.0 and OWL API trunk revision 1150. As labeling
lattice (L,≤) we use the one introduced in Figure 1. We use the top lattice element `1
for public knowledge, `2 for intermediate knowledge and `3 for top secret knowledge.

Our test ontologies OGEOM1, OMGED2, OPROCESS3 are selected ontologies from the
TONES Ontology Repository4 with a high number of individuals. At time of their
download on March 25th 2010, they had the characteristics given in Table 1. The test
ontology OFUNCT is an OWL ontology for functional description of mechanical engi-
neering solutions presented in [6].

In a first experimental setting we tested the availability of access control by query
rewriting vs. access control by axiom filtering. Initially each ontology axiom is labeled
`1 so that the complete ontology is public. This reflects default allow-all behavior of a
security policy. Then for each concept C in the ontology, we apply access restriction
AR = C(x) by including each query result c = µ(AR) with goal label `3 in the goal
set. The computed MCS is used to create a newly labeled ontology, on which we per-
form the following queries. We count for every C-instance the instance relationships to
concepts other than C which are available for public users (`1). With query rewriting
their count is 0. With axiom filtering their count is the availability gain of axiom filter-
ing vs. query rewriting. For cMCS extraction defined by Algorithm 1, we tested both
optimizations CS reuse and cardinality limit separately and their combination. In this
setting every cMCS is automatically an MCS since there are no conflicting goals. Al-
though not included in Algorithm 2 for transparency reasons, the mentioned usual HST
optimizations early termination and node reuse are included in our implementation.

In a second experimental setting we tested conflict resolution strategies in cases
where multiple goals conflict each other so that no MCS can be computed without
relaxing one of the goals. We test the overrestrictive conflict resolution approach vs. the
overpermissive conflict resolution approach of Algorithm 3 with the same ontologies.
Only the CS reuse optimization of the auxiliary procedure in Algorithm 1 to extract
cMCS is used, cardinality limit is not used for reasons explained in Section 4.3. First
all axioms are labeled with intermediate security level, i.e. `2. A goal set is created

1 http://i2geo.net/ontologies/dev/ontology.owl
2 http://mged.sourceforge.net/ontologies/MGEDOntology.owl
3 http://sweet.jpl.nasa.gov/ontology/process.owl
4 http://owl.cs.manchester.ac.uk/repository/



Ontology DL expressivity ]logical
axioms

]concepts ]individuals ]goal sets ]goals per
goal set

OFUNCT ALCOIN (D) 3189 115 545 102 12.2
OGEOM ALCHOIN (D) 8803 589 2010 571 14.1
OPROCESS ALCHOF(D) 2578 1537 150 40 20.9
OMGED ALEOF(D) 1387 234 681 125 28.8

Table 1. Test sets consisting of ontologies and goal sets

for each concept C containing the same consequences described above, but now one
half of this set has goal label `1 and the other half `3. Some of the resulting goal sets
are contradictory. We test Algorithm 3 to compute a RMCS with overpermissive vs.
overrestrictive conflict resolution strategy for the same goal set and we count the number
of overpermissive/overrestrictive consequence labels.

For both experiments the test data characteristics are given in Table 1. The number
of goal sets and of goals per goal set are the same for both experiments since they con-
tain the assertions to each of the ontology’s concepts, only with different goal labels. In
order to limit runtime we compute in maximum 10 cMCS before the HST Algorithms 2
and 3 return, so there might be MCS or RMCS of lower cardinality.

5.2 Empirical Results

The experimental results for the first experiment are given in Table 2. It compares avail-
ability of access control by query rewriting vs. access control by axiom filtering and it
compares performance of both optimizations cardinality limit vs. CS reuse. The given
total number of CS includes reused CS. The number of cMCS is equal to the number
of MCS since the goals contain no conflicts with the first experiment. The number of
gained assertions confirms that our ideas improve availability of knowledge when us-
ing axiom filtering instead of query rewriting. While the number of gained assertions
is comparable between the optimizations applied, their runtime differs significantly. CS
reuse alone, and also in combination with cardinality limit runs significantly faster com-
pared to using cardinality limit optimization only. TestingOMGED with cardinality limit
optimization did not terminate after 4 days, so no results are provided.

The experimental results for the second experiment comparing conflict resolution
with overrestrictive strategy vs. overpermissive strategy are given in Table 3. Only some
of the goal sets constructed as described above are conflicting, and results are only
given for those. Only the given percentage of the goals in one goal set are enforced,
the remaining consequences have overpermissive/overrestrictive labels making them
more public/private than intended by the goal set. The runtime limit of 10 cMCS was
hit in every case, making the HST algorithm stop so there might be RMCS with less
overpermissive/overrestrictive consequence labels when relaxing this runtime limit.



Test set optimization Results (averages per goal set)
]CS ]reused CS ]cMCS

= ]MCS
|MCS| runtime

(minutes)
]gained

assertions
OFUNCT card. limit 131.8 0.0 3.9 23.9 3.6 28.5

CS reuse 135.2 118.4 3.9 24.0 0.7 28.6
both 132.6 115.7 3.9 24.1 0.6 28.4

OGEOM card. limit 146.9 0.0 2.6 9.2 24.0 43.4
CS reuse 148.9 132.9 2.5 9.3 4.2 43.3

both 147.3 131.1 2.6 9.3 4.2 43.3

OPROCESS card. limit 199.3 0.0 6.9 12.0 2.3 92.6
CS reuse 250.9 217.8 6.7 12.2 0.6 91.8

both 197.9 165.0 6.8 12.2 0.6 91.9

OMGED card. limit n/a n/a n/a n/a n/a n/a
CS reuse 286.4 253.4 2.9 15.1 115.9 53.9

both 265.1 232.4 3.0 15.1 114.3 54.1

Table 2. Gained assertions compared to query rewriting, performance of optimizations

6 Conclusions

We considered scenarios where different parts of a given ontology should be visible
for different users. We introduced access restrictions intentionally defined by means
of a query. The answer to that query is the set of those axioms and consequences of
the ontology, which have to be access restricted. We compared two basic approaches
to enforce those access restrictions: query rewriting vs. axiom filtering. Compared to
query rewriting, axiom filtering allows higher availability in the sense of more answers
delivered to a user without unveiling any secret and is independent of any ontology
language.

Axiom filtering relies on an axiom labeling. The problem solved by this paper is
to find an optimal axiom labeling to enforce given access restrictions. Given a query-
generated goal set containing consequences and intended labels, our algorithms com-
pute a minimal change set defining a new axiom labeling. We show that a change set
does not always exist since a goal set might contain conflicts, and we provide 2 conflict
resolution strategies to relax the goal set so that a change set can be computed. Our
experimental results show that our algorithms behave well in practical scenarios.

As future work we will look at other criteria for the minimality of change sets for
example not counting the amount of changed axiom labels but the distance of the new
from the old label in the lattice, the amount of other consequence’s labels changed,
or the amount of affected users. We will also look at resolution of semantic conflicts
and study a more expressive goal language to define for each single goal of a goal set
whether it may be lowered or lifted in case of conflicts.



Test set ]goal ]goals strat- Results (averages per conflicting goal set)
sets

confl.
per

confl.
goal set

egy ]cMCS ]RMCS |RMCS| runtime
(min-
utes)

]OR/OP
cons.
labs

% of
enforced

goals
OFUNCT 19 50.3 OR 10.0 10.0 101.4 2.2 19.5 61%

OP 10.0 10.0 110.0 2.0 20.3 60%
OGEOM 39 150.7 OR 10.0 10.0 139.4 45.4 63.3 58%

OP 10.0 10.0 140.4 37.0 52.1 65%
OPROCESS 23 31.0 OR 10.0 10.0 32.3 0.9 12.7 59%

OP 10.0 10.0 32.6 0.8 11.0 64%
OMGED 16 165.8 OR 10.0 10.0 140.4 814.6 75.6 54%

OP 10.0 10.0 141.6 780.8 51.9 69%

Table 3. Conflict resolution with overrestrictive (OR) strategy vs. overpermissive (OP) strategy

References

1. F. Baader, M. Knechtel, and R. Peñaloza. A generic approach for large-scale ontological rea-
soning in the presence of access restrictions to the ontology’s axioms. In Proc. of ISWC 2009,
volume 5823 of LNCS, pages 49–64, 2009.

2. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010. Special Issue: Tableaux and Analytic Proof Methods.

3. D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati. View-based query answering
over description logic ontologies. In Proc. of KR 2008, 2008.

4. W. Chen and H. Stuckenschmidt. A model-driven approach to enable access control for
ontologies. In Proc. of WI 2009, pages 663–672, 2009.

5. C. Farkas and S. Jajodia. The inference problem: a survey. SIGKDD Explor. Newsl., 4(2):6–
11, 2002.

6. A. Gaag, A. Kohn, and U. Lindemann. Function-based solution retrieval and semantic search
in mechanical engineering. In Proc. of ICED 09, 2009.

7. B. C. Grau and I. Horrocks. Privacy-preserving query answering in logic-based information
systems. In Proc. of ECAI-2008, 2008.

8. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of OWL DL
entailments. In Proc. of ISWC/ASWC 2007, volume 4825 of LNCS, pages 267–280, 2007.

9. M. Knechtel and R. Peñaloza. Correcting access restrictions to a consequence. In Proc. of
DL 2010, volume 573 of CEUR-WS, 2010.

10. M. Knechtel and R. Peñaloza. A generic approach for correcting access restrictions to a
consequence. In Proc. of ESWC 2010, volume 6088 of LNCS, pages 167–182, 2010.

11. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987.

12. E. Sirin and B. Parsia. SPARQL-DL: SPARQL queries for OWL-DL. In Proc. of
OWLED 2007, 2007.


